~ajdobbs/maus/event-viewer

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
"""
The Configuration defaults

These are the default values for MAUS and its components. Please DO NOT CHANGE
this unless you want to change this quantity for everybody. Values can be
overridden by setting configuration_file parameter on the comamnd line, for
example

bin/simulate_mice.py --configuration_file my_configuration.py
"""


#  This file is part of MAUS: http://micewww.pp.rl.ac.uk:8080/projects/maus
#
#  MAUS is free software: you can redistribute it and/or modify
#  it under the terms of the GNU General Public License as published by
#  the Free Software Foundation, either version 3 of the License, or
#  (at your option) any later version.
#
#  MAUS is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  You should have received a copy of the GNU General Public License
#  along with MAUS.  If not, see <http://www.gnu.org/licenses/>.

# NOTE: please use lower_case_and_underscores for new configuration cards

import os

type_of_dataflow = 'pipeline_single_thread'

input_json_file_name = "maus_input.json"
input_json_file_type = "text"
output_json_file_name = "maus_output.json"
output_json_file_type = "text"

input_root_file_name = "maus_input.root"
output_root_file_name = "maus_output.root"

# For InputCppRoot Enter an array of spill numbers here to select them from the
# input root file. Leaving the array empty automatically loads all spills.
# (Note present version emits selected spills for all input run numbers)
# e.g. selected_spills = [ 2, 34, 432, 3464 ]
selected_spills = []
data_maximum_reference_count = 100

# one_big_file - puts everything in output_root_file_name
# one_file_per_run - splits and inserts xxx_<run_number>.xxx for each run, like
#                    maus_output_1111.root
# end_of_run_file_per_run - as above, and places in
#        <end_of_run_output_root_directory>/<run_number>/<output_root_file_name>
#      users responsibility to ensure that <end_of_run_output_root_directory>
#      exists but MAUS will make <run_number> subdirectories
output_root_file_mode = "one_big_file"
end_of_run_output_root_directory = os.environ.get("MAUS_WEB_MEDIA_RAW")+"/end_of_run/" \
              if (os.environ.get("MAUS_WEB_MEDIA_RAW") != None) else os.getcwd()

# Used, for now, to determine what level of
# c++ log messages are reported to the user:
# 0 = debug info (and std::cout)
# 1 = run info
# 2 = warnings
# 3 = errors (and std::cerr)
# 4 = fatal
# >4 = silent
# Doesnt effect python
verbose_level = 1
errors_to_stderr = None # None = from verbose_level; else True or False
errors_to_json = True
on_error = 'none' # none, halt or raise
will_do_stack_trace = verbose_level < 1 # set to True to make stack trace on C++
                                        # exception

# set how headers and footers are handled - "append" will set to
# append headers and footers to the output; dont_append will set to not append
# headers and footers to the output. Affects JobHeader, JobFooter, RunHeader and
# RunFooter
#
# For example, if the user wants to copy data from one format to another, he
# should set to dont_append to avoid header and footer information being taken
# to the output
header_and_footer_mode = "append" #append or dont_append

# Dictionary of variable to be set when using G4BL to generate particles. If
# "get_magnet_currents_pa_cdb" is set to True magnet currents & proton absorber
# thickness will be retrieved from the CDB for the run_number specified
g4bl = {"run_number":2873,"q_1":1.066,"q_2":-1.332,"q_3":0.927,"d_1":-1.302,"d_2":-0.396,\
        "d_s":3.837,"particles_per_spill":0,"rotation_angle":0,"translation_z":1000.0,\
        "protonabsorberin":1,"proton_absorber_thickness":93,"proton_number":1E9,"proton_weight":1,\
        "particle_charge":'all',"file_path":'MAUS_ROOT_DIR/src/map/MapPyBeamlineSimulation/G4bl',\
        "get_magnet_currents_pa_cdb":False,"random_seed":1}

# Used by MapPyRemoveTracks.
keep_only_muon_tracks = False

# Used by MapCppSimulation
keep_tracks = False # set to true to keep start and end point of every track
keep_steps = False # set to true to keep start and end point of every track and
                   # every step point
#simulation_geometry_filename = "Stage4.dat" # geometry used by simulation - should be replaced by CDB version
simulation_geometry_filename = "Test.dat" # geometry used by simulation - should be replaced by CDB version
simulation_geometry_debug    = False
check_volume_overlaps = False
maximum_number_of_steps = 50000000 # particles are killed after this number of
                                 # steps (assumed to be stuck in the fields)
simulation_reference_particle = { # used for setting particle phase
    "position":{"x":0.0, "y":-0.0, "z":-6400.0},
    "momentum":{"x":0.0, "y":0.0, "z":1.0},
    "particle_id":-13, "energy":226.0, "time":0.0, "random_seed":10,
    "spin":{"x":0.0, "y":0.0, "z":1.0}
   # "beam_polarisation" : "Flat"
}
everything_special_virtual = False

# geant4 physics model
physics_model = "QGSP_BERT" # Physics package loaded by MAUS to set default values; modifications can be made
reference_physics_processes = "mean_energy_loss" # controls the physics processes of the reference particle. Set to "none" to disable all physics processes; or "mean_energy_loss" to make the reference particle see deterministic energy loss only
physics_processes = "standard" # controls the physics processes of normal particles. Set to "none" to disable all physics processes; "mean_energy_loss" to enable deterministic energy loss only; or "standard" to enable all physics processes
particle_decay = True # set to true to activate particle decay, or False to inactivate particle decay
polarised_decay = False # set to true to make muons decay with the correct distribution if the beam is polarised; if true, will force spin tracking on (if spin tracking is off, spin vectors will not be propagated to the decay point)
charged_pion_half_life = -1. # set the pi+, pi- half life [ns]. Negative value means use geant4 default
muon_half_life = -1. # set the mu+, mu- half life [ns]. Negative value means use geant4 default
production_threshold = 0.5 # set the threshold for delta ray production [mm]
fine_grained_production_threshold = { # set the production threshold per pid and per Geant4 region; regions are defined in MiceModules
# "region_name":{"11":0.5, "-11":100.}
# "another_region_name":{"11":0.5, "-11":100.}
}
default_keep_or_kill = True
# map of string pdg pids; always keep particles on creation if their pdg maps to True; always kill particles on creation if their pdg maps to False. Default comes from default_keep_or_kill
keep_or_kill_particles = {"mu+":True, "mu-":True,
                          "nu_e":False, "anti_nu_e":False,
                          "nu_mu":False, "anti_nu_mu":False,
                          "nu_tau":False, "anti_nu_tau":False,
}
max_step_length = 100. # default maximum step size during tracking (override with G4StepMax in MiceModule)
max_track_time = 1.e9 # kill tracks with time above max_time (override with G4TimeMax in MiceModule)
max_track_length = 1.e8 # kill tracks with track length above max_track_length (override with G4TrackMax in MiceModule)
kinetic_energy_threshold = 0.1 # kill tracks with initial kinetic energy below energy_threshold (override with G4KinMin in MiceModule)
field_tracker_absolute_error = 1.e-4 # set absolute error on MAUS internal stepping routines - used by e.g. VirtualPlanes to control accuracy of interpolation
field_tracker_relative_error = 1.e-4 # set relative error on MAUS internal stepping routines - used by e.g. VirtualPlanes to control accuracy of interpolation

stepping_algorithm = "ClassicalRK4" # numerical integration routine
spin_tracking = False # set to true to use G4 routines to precess the spin vector as particles go through EM fields
delta_one_step = -1. # Geant4 step accuracy parameter
delta_intersection = -1.
epsilon_min = -1.
epsilon_max = -1.
miss_distance = -1.

maximum_module_depth = 10 # maximum depth for MiceModules as used by the simulation
# geant4 visualisation (not event display)
geant4_visualisation = False
visualisation_viewer = "VRML2FILE"  # only supported option
visualisation_theta = 90.
visualisation_phi = 90.
visualisation_zoom = 1.
accumulate_tracks = 0 # this accumulates the tracks into one vrml file 1 = yes, 0 = no
#particle colour alterations
default_vis_colour = {"red":0. , "green":100.  ,"blue":0.} #green
pi_plus_vis_colour = {"red":255. , "green":250.  ,"blue":240.} # white
pi_minus_vis_colour = {"red":105. , "green":105.  ,"blue":105.} # grey
mu_plus_vis_colour = {"red":25. , "green":25.  ,"blue":112.} # dark blue
mu_minus_vis_colour = {"red":135. , "green":206.  ,"blue":250.} # light blue
e_plus_vis_colour = {"red":250. , "green":0.  ,"blue":0.} # red
e_minus_vis_colour = {"red":250. , "green":69.  ,"blue":0.} # orange red
gamma_vis_colour = {"red":255. , "green":20.  ,"blue":147.} # pink
neutron_vis_colour = {"red":139. , "green":69.  ,"blue":19.} # brown
photon_vis_colour = {"red":255. , "green":255.  ,"blue":0.} # yellow

# used by InputPySpillGenerator to determine the number of empty spills that
# will be generated by the simulation
spill_generator_number_of_spills = 100
# used by MapPyBeamMaker to generate input particle data
# This is a sample beam distribution based on guesses by Chris Rogers of what
# an optimised beam might look like
beam = {
    "particle_generator":"binomial", # routine for generating empty primaries
    "binomial_n":50, # number of coin tosses
    "binomial_p":0.5, # probability of making a particle on each toss
    "random_seed":5, # random seed for beam generation; controls also how the MC
                     # seeds are generated

#    "particle_generator":"g4bl", # Uses G4BL as input for MAUS
#    "g4bl_generator":"True", # Call G4BL each time new spill is created
#    "random_seed":5,
    "definitions":[
    ##### MUONS #######
    {
       "reference":simulation_reference_particle, # reference particle
       "random_seed_algorithm":"incrementing_random", # algorithm for seeding MC
       "weight":90., # probability of generating a particle
       "transverse":{
          "transverse_mode":"constant_solenoid", # transverse distribution matched to constant solenoid field
          "emittance_4d":6., # 4d emittance
          "normalised_angular_momentum":0.1, # angular momentum from diffuser
          "bz":4.e-3 # magnetic field strength for angular momentum calculation
       },
       "longitudinal":{"longitudinal_mode":"sawtooth_time", # longitudinal distribution sawtooth in time
                   "momentum_variable":"p", # Gaussian in total momentum (options energy, pz)
                   "sigma_p":25., # RMS total momentum
                   "t_start":-1.e6, # start time of sawtooth
                   "t_end":+1.e6}, # end time of sawtooth
       "coupling":{"coupling_mode":"none"} # no dispersion
       #"spin":{"x":0.0, "y":0.0, "z":1.0}
    },
    ##### PIONS #####
    { # as above...
       "reference":{
           "position":{"x":0.0, "y":-0.0, "z":-6400.0},
           "momentum":{"x":0.0, "y":0.0, "z":1.0},
           "spin":{"x":0.0, "y":0.0, "z":1.0},
           "particle_id":211, "energy":285.0, "time":0.0, "random_seed":10
       },
       "random_seed_algorithm":"incrementing_random",
       "weight":2.,
       "transverse":{"transverse_mode":"constant_solenoid", "emittance_4d":6.,
            "normalised_angular_momentum":0.1, "bz":4.e-3},
       "longitudinal":{"longitudinal_mode":"sawtooth_time",
                   "momentum_variable":"p",
                   "sigma_p":25.,
                   "t_start":-1.e6,
                   "t_end":+1.e6},
       "coupling":{"coupling_mode":"none"}
      # "spin":{"x":0.0, "y":0.0, "z":1.0}
    },
    ##### ELECTRONS #####
    { # as above...
        "reference":{
            "position":{"x":0.0, "y":-0.0, "z":-6400.0},
            "momentum":{"x":0.0, "y":0.0, "z":1.0},
            "spin":{"x":0.0, "y":0.0, "z":1.0},
            "particle_id":-11, "energy":200.0, "time":0.0, "random_seed":10
        },
        "random_seed_algorithm":"incrementing_random",
        "weight":8.,
       "transverse":{"transverse_mode":"constant_solenoid", "emittance_4d":6.,
            "normalised_angular_momentum":0.1, "bz":4.e-3},
       "longitudinal":{"longitudinal_mode":"sawtooth_time",
                   "momentum_variable":"p",
                   "sigma_p":25.,
                   "t_start":-1.e6,
                   "t_end":+1.e6},
        "coupling":{"coupling_mode":"none"}
       # "spin":{"x":0.0, "y":0.0, "z":1.0}
    }]
}

# this is used by reconstruction; if set to an empty string, automatically
# acquires simulation_geometry_filename
reconstruction_geometry_filename = ""

# scifi tracker digitization
#SciFiDeadChanFName = ""
SciFiKunoSum = 318.5  # Sum of channel #s in 3 planes if they form a spoint
SciFiKunoSumT1S5 = 320.0 # Sum of channel #s in 3 planes if they form a spoint for T1 S5
SciFiKunoTolerance = 3.0 # Kuno conjecture tolerance
SciFiDigitizationNPECut = 2.0
SciFiMappingFileName = "scifi_mapping.txt"
SciFiCalibrationFileName = "scifi_calibration.txt"
SciFiBadChannelsFileName = "scifi_bad_channels.txt"
SciFiCalibMethod = "Current" # Date/Current/Run
SciFiCalibSrc = 7057 # exmple: "Date" - 1984-09-14 00:10:00.0    "Run" - 7057
SciFiMUXNum = 7
SciFiFiberDecayConst = 2.7
SciFiFiberConvFactor =  3047.1
SciFiFiberTrappingEff = 0.056
SciFiFiberMirrorEff = 0.6
SciFiFiberTransmissionEff = 0.8
SciFiMUXTransmissionEff = 1.0
SciFivlpcQE = 0.8
SciFivlpcEnergyRes = 4.0 # MeV
SciFivlpcTimeRes = 0.2 # ns
SciFiadcBits = 8.0
SciFitdcBits = 16
SciFitdcFactor = 1.0
SciFinPlanes = 3
SciFinStations = 5
SciFinTrackers = 2
SciFiCalibrateMC = True
SciFiNPECut = 2.0 # photoelectrons
SciFiClustExcept = 100 # exception is thrown
SciFi_sigma_tracker0_station5 = 0.4298 # Position error associated with station 5 (mm)
SciFi_sigma_triplet = 0.3844 # Position error for stations 1 to 4 (mm)
SciFi_sigma_z = 0.081 # mm
SciFi_sigma_duplet =  0.6197 # mm
SciFi_sigma_phi_1to4 = 1.0
SciFi_sigma_phi_5 = 1.0
SciFiClusterReconOn = True
SciFiSpacepointReconOn = True
SciFiPRHelicalTkUSOn = 0 # TkUS helical pattern recognition: 0 = auto, 1 = off, 2 = on
SciFiPRHelicalTkDSOn = 0 # TkDS helical pattern recognition: 0 = auto, 1 = off, 2 = on
SciFiPRStraightTkUSOn = 0 # TkUS straight pattern recognition: 0 = auto, 1 = off, 2 = on
SciFiPRStraightTkDSOn = 0 # TDUS straight pattern recognition: 0 = auto, 1 = off, 2 = on
SciFiPatRecVerbosity = 0 # The verbosity of the pat rec (0 - quiet, 1 - more)
SciFiStraightRoadCut = 7.0 # The road cut in pat rec for straights (mm)
SciFiStraightChi2Cut = 50.0 # Chi^2 on pat rec straight track fit
SciFiRadiusResCut = 150.0 # Helix radius cut (mm) for pattern recognition
SciFiPatRecCircleChi2Cut = 15.0 # Chi^2 on pat rec circle fit
SciFiNTurnsCut = 0.75 # Cut used when resolving number of turns between tracker stations (mm)
SciFiPatRecSZChi2Cut = 4.0 # Chi^2 cut on pat rec s-z fit
SciFiMaxPt = 180.0 # Transverse momentum upper limit cut used in pattern recognition
SciFiMinPz = 50.0 # Longitudinal momentum lower limit cut used in pattern recognition
SciFiPatRecDebugOn = False # Set Pattern Recogntition to debug mode
SciFiParams_Pitch = 1.4945
SciFiParams_Station_Radius = 160. # Used as cut by SpacePointReconstruction
SciFiParams_RMS = 370.
# Parameters used for MCS and E loss correction
#SciFiParams_Z = 5.61291
#SciFiParams_A = 104.15 # g/mol
SciFiParams_Z = 3.5
SciFiParams_A = 6.5
SciFiParams_Plane_Width = 0.6273 # mm
SciFiParams_Radiation_Length = 413.124 # mm
SciFiParams_Density = 1.06 #g/cm3, 0.00106 g/mm3
SciFiParams_Mean_Excitation_Energy = 68.7 / 1.0E6 # MeV
SciFiParams_Density_Correction = 0.164541
#MylarParams_Z = 5.
#MylarParams_A = 192.2 # g/mol
MylarParams_Z = 8.727
MylarParams_A = 4.545 # g/mol
MylarParams_Plane_Width = 0.025 # mm
MylarParams_Radiation_Length = 285.364  # mm
MylarParams_Density = 1.4 #g/cm3, 0.0014 g/mm3
MylarParams_Mean_Excitation_Energy = 78.7 / 1.0E6 # eV
MylarParams_Density_Correction = 0.126782
GasParams_Z = 2.
GasParams_A = 4. # g/mol
GasParams_Radiation_Length = 5671130. # mm
GasParams_Density = 0.000166322 # 1.66322e-04 g/cm3
GasParams_Mean_Excitation_Energy = 41.8 / 1.0E6 # eV
GasParams_Density_Correction  = 0.13443
SciFiTestVirtualTracksStraight = {"rms_position" : 70.0, "rms_angle" : 0.19}  # Description of straight tracks to simulate
SciFiTestVirtualTracksHelix = {"rms_position" : 70.0, "rms_pt" : 30.0, "pz" : 200.0}  # Description of helical tracks to simulate
SciFiTestVirtualMethod = "virtual" # How to test the scifi recon. Choose from "straight", "helical" or "virtual"
SciFiTestVirtualMakeDigits = False
SciFiTestVirtualMakeClusters = True
SciFiTestVirtualMakeSpacepoints = False
SciFiTestVirtualSmear = 0.431425 # Simulate measurement error on alpha with Gaussian Smearing this is the Std Dev.
# Set the smear value to negative to force a quantisation of alpha - like a real measurement

SciFiPRCorrection = 1.1776
SciFiPRBias = 0.2269

SciFiSeedCovariance = 1000.0 # Error estimate for Seed values of the Kalman Fit
SciFiSeedPatRec = True
SciFiKalmanOn = True # Flag to turn on the tracker Kalman Fit
SciFiKalmanCorrectPz = True # Flag to turn on the Kalman Pz correlations
SciFiPatRecOn = True # Flag to turn on the tracker Pattern Recognition
SciFiKalman_use_MCS = True # flag to add MCS to the Kalman Fit
SciFiKalman_use_Eloss = True # flag to add Eloss to the Kalman Fit
SciFiKalmanVerbose  = False # Dump information per fitted track
SciFiDefaultMomentum = 200.0 # Default momentum to assume for straight tracks
# How we determine the track ratings:
SciFiExcellentNumTrackpoints = 15
SciFiGoodNumTrackpoints = 10
SciFiPoorNumTrackpoints = 10
SciFiExcellentNumSpacepoints = 5
SciFiGoodNumSpacepoints = 5
SciFiPoorNumSpacepoints = 4
SciFiExcellentPValue = 0.05
SciFiGoodPValue = 0.01
SciFiPoorPValue = 0.0

# configuration database
cdb_upload_url = "http://cdb.mice.rl.ac.uk/cdb/" # target URL for configuration database uploads TestServer::http://rgma19.pp.rl.ac.uk:8080/cdb/
cdb_download_url = "http://cdb.mice.rl.ac.uk/cdb/" # target URL for configuration database downloads
cdb_cc_download_url = "" # "http://preprodcdb.mice.rl.ac.uk" # target URL for cooling channel configuration database downloads.

# geometry download
geometry_download_wsdl = "geometry?wsdl" # name of the web service used for downloads
geometry_download_directory   = "%s/files/geometry/download" % os.environ.get("MAUS_ROOT_DIR") # name of the local directory where downloads will be placed
geometry_download_by = 'id' # choose 'run_number' to download by run number, 'current' to use
                                    # the currently valid geometry or 'id' to use the cdb internal id
                                    # (e.g. if it is desired to access an old version of a particular
                                    # geometry)
geometry_download_beamline_for_run = 0
geometry_download_beamline_tag = ''
geometry_download_coolingchannel_tag = ''
geometry_download_run_number = 0
geometry_download_id = 49
geometry_download_cleanup = True # set to True to clean up after download
g4_step_max = 5.0 # this is the value which shall be placed in the Mice Modules which have been translated from CAD
geometry_use_active_rotations = False # Changes SciFiGeometryHelper to use active rotations for Mice Moduel only running.

# geometry upload
geometry_upload_wsdl = "geometrySuperMouse?wsdl" # name of the web service used for uploads
geometry_upload_directory = "%s/files/geometry/upload" % os.environ.get("MAUS_ROOT_DIR") # name of the local directory where uploads are drawn from
geometry_upload_note = "" # note, pushed to the server to describe the geometry. A note must be specified here (default will throw an exception).
geometry_upload_valid_from = "" # date-time in format like: that the specified installation was made in the experiment. A date-time must be specified here (default will throw an exception).
technical_drawing_name = "" #name and version of the technical drawing from which the CAD model came from.
geometry_upload_cleanup = True # set to True to clean up after upload
technical_drawing_name = "" #name and version of the technical drawing from which the CAD model came from.

#dates need to get geomtry ids
get_ids_start_time = "2012-05-08 09:00:00"
get_ids_stop_time = "2012-05-22 15:47:34.856000"
get_ids_create_file = True

#get beamline information
# This executable will give the run numbers of the runs which the CDB has information on.
# The information is the magnet currents, reasons for run and other information which
# is specific to that run. When downloading a geometry by run number the beamline
# information is merged with the geometrical infomation. Options for querying
# beamline information are; 'all_entries' returns a list of all run numbers with beamline info.
#                           'run_number'  prints whether info is held for this run number or not.
#                           'dates'       returns a list of run numbers with info during specified time period.
get_beamline_by = "all_entries"
get_beamline_run_number = ""
get_beamline_start_time = ""
get_beamline_stop_time = ""

# File Numbers
# This following section gives the files numbers of each detector. The numbers speficy the technical drawing
# number for the sphere which represents each detector in the CAD model. These tags are seen in the style sheet
# and are used to replace the location sphere with the detecor geometry whether it is legacy or GDML.
tof_0_file_number = "Iges_10"
tof_1_file_number = "Iges_11"
tof_2_file_number = "Iges_13"
ckov1_file_number = "Iges_19"
ckov2_file_number = "Iges_21"
kl_file_number = "Iges_14"
emr_file_number = "Iges_15"
tracker0_file_number = "Iges_17"
tracker1_file_number = "Iges_18"
absorber0_file_number = "9999"
absorber1_file_number = "Iges_16"
# absorber1_file_number = "9999"
absorber2_file_number = "9999"

# Survey fit information
survey_measurement_record = ""
# This file should include position references and true locations of each detector.
survey_reference_position = ""
use_gdml_source           = True
# Survey targets
survey_target_detectors = []

# this is used by ImputCppRealData
Number_of_DAQ_Events = -1
Input_Use_JSON = False
Phys_Events_Only = False
Calib_Events_Only = False
Enable_V1290_Unpacking = True
Enable_V1731_Unpacking = True
Enable_V1724_Unpacking = True
Enable_V830_Unpacking = True
Enable_VLSB_Unpacking = True
Enable_VLSB_C_Unpacking = False
Enable_DBB_Unpacking = True
Enable_DBBChain_Unpacking = True
Do_V1731_Zero_Suppression = False
V1731_Zero_Suppression_Threshold = 100
Do_V1724_Zero_Suppression = True
V1724_Zero_Suppression_Threshold = 100
Do_VLSB_Zero_Suppression = True
VLSB_Zero_Suppression_Threshold = 1 # in PE count rather than ADC count.
Do_VLSB_C_Zero_Suppression = False
VLSB_C_Zero_Suppression_Threshold = 30
Enable_TOF = True
Enable_EMR = True
Enable_KL = True
Enable_CKOV = True

# DAQ cabling maps
# set the source for cabling to either 'CDB' or 'file'
# if set to 'file' the DAQ_cabling_file card will be used
DAQ_cabling_source = "CDB"

# set the method for retrieving cabling from CDB
# options are: 'run_number' or 'date'
# if DAQ_cabling_by is set to 'date', the DAQ_cabling_date card is used
# Default is to get the map based on run number
DAQ_cabling_by = "run_number"

# date can be 'current' or a date in YYYY-MM-DD hh:mm:ss format
# e.g. DAQ_cabling_date = '2015-06-30 01:02:03 00:00:00'
#   or DAQ_cabling_date = 'current'
DAQ_cabling_date = 'current'

# the DAQ_cabling_file card is used only if DAQ_cabling_source above is set to 'file'
DAQ_cabling_file = "/files/cabling/DAQChannelMap.txt"
DAQ_cabling_file_StepI = "/files/cabling/DAQChannelMap_preRun6541.txt"
DAQ_hostname = 'miceraid5'
DAQ_monitor_name = 'MICE_Online_Monitor'
daq_online_file = '' # set to a file name to force InputCppDAQOnlineData to take
                     # data from a file - mock-up of online for testing, not for
                     # production use (use offline recon here)
daq_online_spill_delay_time = 0. # delay in seconds between daq reads, intended
                                 # for mocking MICE target pulses

# tof digitization
TOFconversionFactor = 0.005 # MeV
TOFpmtTimeResolution = 0.1 # nanosecond
TOFattenuationLength = 140 * 10 # mm
TOFadcConversionFactor = 0.125
TOFtdcConversionFactor = 0.025 # nanosecond
TOFpmtQuantumEfficiency = 0.25
TOFscintLightSpeed =  170.0 # mm/ns

# KL digitization
KLconversionFactor = 0.000125 # MeV
KLlightCollectionEff = 0.031
KLlightGuideEff  = 0.85
KLquantumEff = 0.26
KLlightSpeed =  170.0 # mm/ns
KLattLengthLong  = 2400.0 # mm
KLattLengthShort =  200.0 # mm
KLattLengthLongNorm  = 0.655 # mm
KLattLengthShortNorm   = 0.345 # mm
KLadcConversionFactor = 250000 # nphe/adc
KLpmtGain = 2000000
KLpmtSigmaGain = 1000000

# EMR characteristics
EMRnumberOfPlanes = 48
EMRnumberOfBars = 60 # number of bars in one plane (+ test channel 0)
EMRnBars = 2832 # total number of bars in the EMR
EMRbarLength = 1100 # mm, length of a scintillating bar
EMRbarWidth = 33 # mm, base of the triangle
EMRbarHeight = 17 # mm, height of the triangle
EMRgap = 0.5 # mm, gap between two adjacent bars

# EMR event pre-selection
EMRprimaryDeltatLow = -240 # DBB counts
EMRprimaryDeltatUp = -210 # DBB counts
EMRsecondaryNLow = 2
EMRsecondaryTotLow = 4 # DBB counts
EMRsecondaryBunchingWidth = 40 # ADC counts, 100ns

# EMR digitization
EMRdoSampling = 1 # sample as a Poisson distribution
EMRnphPerMeV = 2000 # number of photons per MeV
EMRtrapEff = 0.04 # photon trapping efficiency
EMRseed = 2 # seed state of the pseudorandom number generator, change equivalent to a power cycle of fADC
EMRattenWLSf = 2.0 # dB/m, attentuation factor of the WLS fibres
EMRattenCLRf = 0.35 # dB/m, attentuation factor of the clear fibres
EMRbirksConstant = 0.126 # mm/MeV
EMRsignalEnergyThreshold = 0.8 # Me
EMRfom = "median" # figure_Of-Merit for signal calibration

EMRdbbCount = 2.5 # ns, duration of a DBB cycle (f=400MHz)
EMRqeMAPMT = 0.25 # MAPMT quantum efficiency
EMRnadcPerPeMAPMT = 3 # number of ADC counts per photoelectron in the MAPMT
EMRelectronicsResponseSpreadMAPMT = 1 # ADC counts
EMRtimeResponseSpread = 1 # ADC counts
EMRtotFuncP1 = 12.55 # a in a*log(b*Q+c) (Shaping factor)
EMRtotFuncP2 = 0.0252 # b in a*log(b*Q+c) (Scaling factor)
EMRtotFuncP3 = 1.015 # c in a*log(b*Q+c) (Offset factor)
EMRdeltatShift = 12 # ADC counts, distance from the trigger

EMRfadcCount = 2.0 # ns, duration of an fADC cycle (f=500MHz)
#EMRqeSAPMT = 0.11 # SAPMT quantum efficiency, Step I
EMRqeSAPMT = 0.24 # SAPMT quantum efficiency, Step IV
#EMRnadcPerPeSAPMT = 2 # number of ADC counts per photoelectron in the SAPMT, Step I
EMRnadcPerPeSAPMT = 3 # number of ADC counts per photoelectron in the SAPMT, Step IV
EMRelectronicsResponseSpreadSAPMT = 1 # ADC count, Step I
EMRbaselinePosition = 123 # SAPMT signal baseline
EMRbaselineSpread = 10 # SAPMT signal baseline spread
EMRmaximumNoiseLevel = 50 # SAPMT noise maximum value
EMRacquisitionWindow = 302 # ADC counts
EMRsignalIntegrationWindow = 40 # ADC counts
EMRarrivalTimeShift = 40
EMRarrivalTimeSpread = 33
EMRarrivalTimeGausWidth = 3
EMRarrivalTimeUniformWidth = 12.5
EMRpulseShapeLandauWidth = 2

# EMR reconstruction
EMRchargeThreshold = 10 # ADC counts, rejects noise for plane density
EMRpolynomialOrder = 1 # Order of the polynomial to fit the tracks with
EMRmaxMotherDaughterTime = 5000 # ADC counts, ~ 6 decay constants, 99.7% of muons
EMRmaxMotherDaughterDistance = 100 # mm, max distance between mother and daughter
EMRholeFraction = 0.02117 # percentage of the EMR volume that is not PS

# EMR reducer
EMRdensityCut = 0.9
EMRchi2Cut = 2

# this is used by the reconstuction of the TOF detectors
TOF_trigger_station = "tof1"

# this sets the source for the calibrations and cabling
# by default it is from CDB
# set it to 'file' if you want to load local files
# if you set file, then uncomment the calib files below
TOF_calib_source = "CDB"
TOF_cabling_source = "CDB"

#TOF_cabling_file = "/files/cabling/TOFChannelMap.txt"
#TOF_TW_calibration_file = "/files/calibration/tofcalibTW_dec2011.txt"
#TOF_T0_calibration_file = "/files/calibration/tofcalibT0_trTOF1_dec2011.txt"
#TOF_T0_calibration_file = "/files/calibration/tofcalibT0_trTOF0.txt"
#TOF_Trigger_calibration_file = "/files/calibration/tofcalibTrigger_trTOF1_dec2011.txt"
#TOF_Trigger_calibration_file = "/files/calibration/tofcalibTrigger_trTOF0.txt"

TOF_findTriggerPixelCut = 0.5 # nanosecond
TOF_makeSpacePointCut = 0.5 # nanosecond

# get cabling and calibrations by either a) run_number or b) date
# default is by run_number
# if set to "date" then set the appropriate TOF_calib_date_from flag below
TOF_calib_by = "run_number"
TOF_cabling_by = "run_number"

# the date for which we want the cabling and calibration
# date can be 'current' or a date in YYYY-MM-DD hh:mm:ss format
TOF_calib_date_from = 'current'
TOF_cabling_date_from = 'current'

Enable_timeWalk_correction = True
Enable_triggerDelay_correction = True
Enable_t0_correction = True

# this is used by the reconstuction of the KL detectors
# this sets the source for the calibrations
# by default it is from CDB
# set it to 'file' if you want to load local files
# if you set file, then uncomment the calib files below
KL_calib_source = "CDB"
KL_calib_date_from = 'current'
# uncomment the KL_calibration_file card below if you set KL_calib_source=file
#KL_calibration_file = "/files/calibration/klcalib.txt"

KL_cabling_file = "/files/cabling/KLChannelMap.txt"

Enable_klgain_correction = True

# this is used by the reconstuction of the EMR detectors
EMR_cabling_file = "/files/cabling/EMRChannelMap.txt"

# this sets the source of the EMR clear fiber length map
EMR_clear_fiber_length_map = "/files/cabling/EMRClearFiberLengthMap.txt"

# this sets the source of the EMR connector attenuation map
EMR_connector_attenuation_map = "/files/cabling/EMRConnectorAttenuationMap.txt"

# this sets the source of the calibrations for the EMR detector
EMR_calib_source = "CDB"
EMR_calib_date_from = 'current'
# EMR_calibration_file card below if you set EMR_calib_source=file
EMR_calib_file = "/files/calibration/emrcalib_cosmics_july2015.txt"

daq_data_path = '%s/src/input/InputCppDAQData' % os.environ.get("MAUS_ROOT_DIR") # path to daq data. Multiple locations can be specified with a space
# daq_data_file = '05466.001' # file name for daq data; if this is just a integer string, MAUS assumes this is a run number. Multiple entries can be specified separated by a space
daq_data_file = '06008.000'

maus_version = "" # set at runtime - do not edit this (changes are ignored)
configuration_file = "" # should be set on the command line only (else ignored)

doc_store_class = "docstore.MongoDBDocumentStore.MongoDBDocumentStore"
doc_collection_name = "spills" # Default document collection name. Only needed if using multi_process mode. If "auto" then a collection name will be auto-generated for spills output by input-transform workflows.
doc_store_event_cache_size = 10**8 # Maximum size of the Mongo cache to cache at any one time in multiprocessing mode, as used by e.g. online code. Corresponds to ~ n/3 spills.

mongodb_host = "localhost" # Default MongoDB host name. Only needed if using MongoDBDocumentStore.
mongodb_port = 27017 # Default MongoDB port. Only needed if using MongoDBDocumentStore.
mongodb_database_name = "mausdb" # Default MongoDB database name. Only needed if using MongoDBDocumentStore.
mongodb_collection_name = "spills" # Default MongoDB collection name. Only needed if using MongoDBDocucmentStore.

# in multiprocessing mode, the timeout after which reconstruction of an event will be abandonded [s]
reconstruction_timeout = 10
# refresh rate for refreshing the plots
reduce_plot_refresh_rate = 10
# Default OutputPyImage image directory. MAUS web application directory.
image_directory = os.environ.get("MAUS_WEB_MEDIA_RAW") if (os.environ.get("MAUS_WEB_MEDIA_RAW") != None) else os.getcwd()
# Default OutputPyImage image directory for end of run data. Will end up as image_directory+"/end_of_run/"
end_of_run_image_directory = ''
# Default OutputPyFile output directory. MAUS web application directory.
output_file_directory = os.environ.get("MAUS_WEB_MEDIA_RAW") if (os.environ.get("MAUS_WEB_MEDIA_RAW") != None) else os.getcwd()
# Default image types of OutputCppRootImage
image_types = ['png'] 

PolynomialOpticsModel_order = 1
PolynomialOpticsModel_algorithms = ["LeastSquares",
                    "ConstrainedLeastSquares", "ConstrainedChiSquared",
                    "SweepingChiSquared", "SweepingChiSquaredWithVariableWalls"]
PolynomialOpticsModel_algorithm = "LeastSquares"
# deltas for numerical derivative calculation of Optics transfer maps
TransferMapOpticsModel_Deltas = {"t":0.01, "E":0.1,
                                 "x":0.1, "Px":0.1,
                                 "y":0.1, "Py":0.01}

# Default location of root file containing PDF histograms used for Global PID
PID_PDFs_file =  '%s/src/map/MapCppGlobalPID/PIDhists.root' % os.environ.get("MAUS_ROOT_DIR")
#PID_PDFs_file =  '%s/src/map/MapCppGlobalPID/com_pid_hists.root' % os.environ.get("MAUS_ROOT_DIR")
# Tag used by both MapCppGlobalPID and ReduceCppGlobalPID, determines which PDFs to perform PID
# against/which PDFs to produce (in this case, set based upon input MC beam). A typical tag here
# would be the emittance and momentum, e.g. 3-140, 6-200, etc.
pid_beam_setting = "6-200"
# Unique identifier used when creating PDFs in Global PID to distinguish between PDFs for
# the same hypothesis generated at different times. For PDFs to be produced, this must be set.
# Any string can be used but date and time is recommended, by using python datetime module and
# the line unique_identifier = (datetime.datetime.now()).strftime("%Y_%m_%dT%H_%M_%S_%f")
unique_identifier = ""
# Polarity of running mode, used by pid to select whether to run pid against positive or
# negative particles, value can be positive or negative.
pid_beamline_polarity = "positive"

# Bounds set on values of PID variables when running PID
pid_bounds = {
    # Bounds for PIDVarA
    "minA":20,"maxA":40,
    # PIDVarB
    "XminB":10, "XmaxB":250, "YminB":20, "YmaxB":40,
    # PIDVarC
    "XminC":50, "XmaxC":350, "YminC":0, "YmaxC":8000,
    # PIDVarD
    "minD":0, "maxD":8000,
    # PIDVarE
    "minE":0, "maxE":1000,
    # PIDVarF
    "XminF":50, "XmaxF":350, "YminF":0, "YmaxF":1000,
    # PIDVarG
    "minG":0, "maxG":1,
    # PIDVarH
    "XminH":50, "XmaxH":350, "YminH":0, "YmaxH":1,
    # PIDVarI
    "XminI":50, "XmaxI":350, "YminI":0, "YmaxI":140,
    # PIDVarJ
    "XminJ":50, "XmaxJ":350, "YminJ":0, "YmaxJ":140,
    # ComPIDVarA
    "minComA":20, "maxComA":50,
    # ComPIDVarB
    "XminComB":20, "XmaxComB":50, "YminComB":0, "YmaxComB":8000,
    # ComPIDVarC
    "minComC":0, "maxComC":8000,
    # ComPIDVarD
    "minComD":0, "maxComD":1000,
    # ComPIDVarE
    "XminComE":20, "XmaxComE":60, "YminComE":0, "YmaxComE":1000,
    # ComPIDVarF
    "minComF":0, "maxComF":1,
    # ComPIDVarG
    "XminComG":20, "XmaxComG":50, "YminComG":0, "YmaxComG":1,
    # ComPIDVarH
    "XminComH":20, "XmaxComH":50, "YminComH":0, "YmaxComH":140,
    # ComPIDVarI
    "XminComI":20, "XmaxComI":50, "YminComI":0, "YmaxComI":140
}

# PID MICE configuration, 'step_4' for Step IV running, 'commissioning' for field free commissioning data
pid_config = "step_4"
# PID running mode - selects which PID variables are used. 'online' corresponds to less beam (momentum)
# dependent variables, 'offline' uses all variables and requires that specific PDFs for the beam already
# exist. 'custom' allows user to choose which variables to use, and these should then be set as datacards.
# However it is not recommended to use the custom setting unless you are the person currently developing
# the Global PID.
pid_mode = "offline"
# If pid_mode = "custom", variables to use should be set here as a space separated list, i.e.
# custom_pid_set = "PIDVarA PIDVarC PIDVarD". 
custom_pid_set = "PIDVarB"
# PID confidence level- set the margin (in %) between the confidence levels of competing pid hypotheses before they
# are selected as the correct hypothesis
pid_confidence_level = 10
# PID track selection- select which tracks from TrackMatching to perform PID on. Can perform PID on all tracks by
# setting to "all", or on all downstream tracks (set to "DS"), all upstream (set to "US"), through tracks (set to 
# "Through"), or the upstream or downstream components of the throught track (set to "Through_US" or "Through_DS"
# respectively). Or a combination of the above can be used, entered as a space separated list, e.g
# "Through Through_US Through_DS"
pid_track_selection = "Through"


root_document_store_timeout = 10
root_document_store_poll_time = 1

geometry_validation = { # see bin/utilities/geometry_validation.py for docs
    "file_name":os.path.expandvars("${MAUS_TMP_DIR}/geometry_validation.json"),
    "will_plot":True,
    "will_track":True,
    "z_start":-6000.,
    "z_end":6000.,
    "x_start":0.,
    "x_step":1.,
    "y_start":0.,
    "y_step":0.,
    "n_steps":301,
    "plot_formats":["root", "png"],
    "1d_material_plot":os.path.expandvars("${MAUS_TMP_DIR}/geometry_validation_materials_1d"),
    "2d_material_plot":os.path.expandvars("${MAUS_TMP_DIR}/geometry_validation_materials_2d"),
    "1d_volume_plot":os.path.expandvars("${MAUS_TMP_DIR}/geometry_validation_volumes_1d"),
    "2d_volume_plot":os.path.expandvars("${MAUS_TMP_DIR}/geometry_validation_volumes_2d"),
    "2d_volume_plot_label_size":0.25,
}

# Determines for which pid hypotheses track matching should be attempted. Default is "all"
# meaning electrons, muons, and pions of both charges (unless tracker recon produces a
# charge hypothesis). Alternatively, force/limit to either one (never several) of
# kEPlus, kEMinus, kMuPlus, kMuMinus, kPiPlus, kPiMinus
track_matching_pid_hypothesis = "all"

# Global track matching tolerances (in mm) for the various subdetectors. KL only provides a
# y coordinate, hence x does not need to be configurable. EMR uses reconstructed error
# so a multiplier is used.
track_matching_tolerances = {
  "TOF0t":2.0, # ns between actual and expected TOF0-1 Delta t
  "TOF1x":40.0,
  "TOF1y":40.0,
  "TOF2x":40.0,
  "TOF2y":40.0,
  "KLy":32.0,
  "EMRx":1.0, # Multiplier for the standard tolerance which is the reconstructed error*sqrt(12)
  "EMRy":1.0,
  "TOF12maxSpeed":1.0, # fraction of c to calculate travel time between TOFs for through matching
  "TOF12minSpeed":0.5,
}

# Whether to use energy loss calculations for global track matching
track_matching_energy_loss = True
# Whether propagation matching should not be performed if each detector has no more than one hit
track_matching_no_single_event_check = True
# Additional restriction on the above, still perform matching if some of the hits may be noise
# due to a small charge deposit
track_matching_check_charge_thresholds = {
  "TOF0":0.0,
  "TOF1":0.0,
  "TOF2":0.0,
  "KL":0.0
}