Universitdt Bremen, Fachbereich Physik / Elektrotechnik

SchroedingerSolver user’s guide

final project as part of the lecture

e . ”
scientific programming

authors:
Alexander Erlich (alexander.erlich@gmail.com)
Andreas Krut (andreas.krut@gmx.de)

supervisor:

Dr. Balint Aradi

project’s launchpad website:
https://launchpad.net/schroedingersolver

also available on:
WwWww.alrlich.de

—

= Do
- ‘ﬂ:%(@mt&)hf—m\?z(» 7

Bremen, September 2009

https://launchpad.net/schroedingersolver
www.airlich.de

What SchroedingerSolver does...

SchroedingerSolver computes numerical solutions of SCHRODINGER’s equation for the
stationary case (i.e., no time dependency). You can feed an arbitrary one-dimensional
potential into the solver, along with information about the observed interval and dis-
cretization. The program interpolates the potential and solves Schrédinger’s equation
numerically in order to obtain an arbitrary number of wave functions, as well as their
corresponding energy levels. All of the results are broken up in output files which can
easily be displayed graphically. Additionally, a Matlab routine is provided for the purpose
of obtaining a neat plot of the results. The program SchroedingerSolver is written entirely
in Fortran and uses several LAPACK routines.

Prequisites

In order to compile SchroedingerSolver, you will require a FORTRAN compiler. LAPACK
and BLAS are also required, as some of their routines are called from within the program.
The program was written on Ubuntu 8.04 LTS (“Hardy Heron”) using the gfortran
compiler. In order to install the necessary packages from the Ubuntu repositories, repeat
the following steps:

1. sudo apt-get install gfortran will take care of the gfortran compiler

2. sudo apt-get install liblapack-dev is a package which is essential for the link-
ing process. Installing it will take care of all necessary dependencies. Note that
liblapack allone won't work, it will install the libraries, but linking will remain
impossible.

3. sudo apt-get install bzr is optional as you can simpliy compile the files from
the project homepage.

4. sudo apt-get install grace will install the graphical tool xmgrace which you
need for make-testing the program

5. sudo apt-get install doxygen for creating source code documentation files (lat-
est stable version for Ubuntu 8.04 is <1.5.6, so no FORTRAN optimization!). Simply
navigate to the branch’s main folder and call $ doxygen. Note: this has not been
tested sufficiently: HTML and ETEX documentation may not contain all of the
documentation which is available in the f90 source code files.

How to get the branch

bzr branch lp:schroedingersolver will download the main bazaar branch (pro-
vided that bazaar has been installed according to step 3).

Compile and execute

Here is a quick overview of what the make file can do. Some more information is available
in the input output examples section where you’ll find step by step instructions on how
to create plots which are shown there.

[how to compile]
just type ’make’ and have fun!

[make commands]

-clean removes *.0 and *.mod files only
-realclean calls ’clean’, also removes project files *.dat
and the program ’sglSolver’
-testclean cleans the *.dat and *.error files in the test-dirs

-load_pottopfl 1loading example file pottopfl
-load_pottopf2 1loading example file pottopf2
-load_pottopf3 1loading example file pottopf3
-load_harmoszi loading example file harmoszi

-test_pottopfl testing example file pottopfl
-test_pottopf2 testing example file pottopf2
-test_pottopf3 testing example file pottopf3
-test_harmoszi testing example file harmoszi

A1l of the following use xmgrace for plotting (see prequisites).
Unless xmgrace is installed, there will be no plots, but the
program will remain stable.

-test makes a test for four examples

-test_lite makes a less accurate, but faster test for the same
four examples

-solveSGL executes the program using the current input file

and plots the results

-plot_discrpot plots the discretized potential

-plot_wfuncs plots all eigenfunctions

-plot_ewfuncs plots all eigenfunctions with the corresponding
eigenvalue added to the function’s y values

User input - editing the schrodinger.inp file

The user input is done entirely in the schrodinger.inp file. Here’s the main frame of
the file. If the user input is incorrect, the program will stop and refer to the very line
where the problem occured.

Example user input file schrodinger.inp

2.0 # mass

-2.0 2.0 1999 # xMin xMax nPoint

xMin xMax nPoint 1 15 # firstEigVal lastEigVal
linear # interpType

6 # nInterp

-2.0 0.0

-0.5 0.0

-0.5 -10.0

0.5 -10.0

0.5 0.0

2.0 0.0

Some explainations

The user provides an interval [xMin, xMax| on which a discretization is to be computed.
The length of one interval of discrtization (from here on called delta) is

delta=(xMax - xMin)/(nPoint-1)

As already mentioned in the introduction, one of the most important features of the
program is to interpolate the potential which is provided by the user (in the shape of the
x, y coordinates of nInterp interpolation points). The interpolation type interpType
can either be the string ’linear’ or ’polynomial’ (a string which does not begin with
either 1inear or polynomial will cause an error and terminate the program).

Another feature of the program is the calculation of the eigenvalues and the eigenvec-
tors of the Hamiltonian. The Hamiltonian can be expressed as a tridiagonal matrix (see
M for its explicit form and some more mathematical explainations). If the Hamiltonians
dimensions are nPoint X nPoint, the LAPACK routine dsteqr which is used for eigen-
value/eigenvector computation will return nPoint eigenvalues. Naturally, you wouldn’t
want all of the eigenvalues and the corresponding eigenfunctions to be saved. Those for
saving are determined by firstEigValue and lastEigValue, first being the smallest.

Some details on discretization

It is not a simple issue how to deal with very close points. If two points are closer to each
other than the discretization step width, this makes the interpolation routines inoperable.
If a special routine (pointsTooClose in misc.f90) finds two points to be too close, it
moves the left one to the left (by exactly one disc. step width). Then the search for too
close points is re-run, starting with the utmost left points, and so on. The idea behind
this is that one point can never be moved past another (if it were so, it would signify that
the program would have missed two points which are truly too close to each other. An

4

honest boy always splits from his left girlfriend first and then has himself approached by
the right girl.)

It’s like Newton’s pendulum: The momentum is distributed from the right to the left
(or vice versa) via the spheres while the spheres never change their order.

Note that tooClosePoints is preceded by a bubblesort routine. Bubblesorting causes
the interpolation points to be sorted by their x values. But if two points have the same
x value, bubblesort will not change their order.

You can enter your points in any order (bubblesort will sort them), but those points which
have identical x values absolutely need to be given in the correct order (bubblesort will
not change their order - that is, among each other).

If tooClosePoints needs to move some interpolation points, a warning is displayed
(WARNING INTERMOVE). Note that tooClosePoints is followed by a routine called
check_intervals. If check_intervals finds the intervals to to be inconsistent (for which
one of the reasons might be the newton pendulum effect), it stops the program. It also
does make a reference to WARNING INTERMOVE, making it a lot easier to trace the
reason for program termination (pendulum effect or simply wrong user input?).

Input /output examples

All of the below plots have been created with the MATLAB script importfile. But why
are there two plots accompanying each example? What schroedinverSolver does, in a
nutshell, is computing the discretization of the user-given potential and writing it into a
file (discrpot.dat), and then use this file in order to compute the eigenvalues/eigenvectors
of the HV = EWV system, and write those of them into a corresponding file (wfuncs.dat
and ewfuncs.dat, respectively).

The first part, writing discrpot.dat, is always done by schroedingerSolver. But the
second part can rather easily be done by MATLAB as well, provided that discrpot.dat and
schrodinger.inp are available. So the pair of plots which goes with each example shows
the very same discretization of the potential (originating in discrpot.dat), but different
eigenvalues/eigenvectors, computed by schroedingerSolver (left plot) and MATLAB (right
plot). The MATLAB routine importfile which creates the pair of plots was used for debug-
ging purposes in the course of the development.

But if MATLAB is not available or not desired (or both), the very same plots can be created
using xmgrace very easily. The following commands will do the job: make plot_discrpot
for for plotting discrpot.dat, make plot_wfuncs for the eigenvectors on their own and
make plot_ewfuncs for the the sum of eigenvalue and corresponding eigenvector.

Example 1: infinite potential well

2.0 # mass
-2.0 2.0 1999 # xMin =xMax nPoint
1 15 # firstEigVal 1lastEigVal
linear # interpType
2 # nInterp
-2.0 0.0 # potAr(:,2)
2.0 0.0
disc. & eig.: FORTRAN disc.: FORTRAN, eig.: MATLAB
3 T T T T T 3 T T T T T
— % BSHGiAL(:,:)
200 —m— 20 —m— T
2r T 2r T
=l
=
o 1o T 1.5¢ 1
g
=
<5)
1r T 1r T
/—_\/’ /‘_F\—/
0.5} T 0.5F T
of e=———————————— - - Of ————————————— - -
-2 -1 0 1 2 -2 -1 0 1 2
x |Bohr| x |Bohr|

Commands to create this

$ make

$ make load_pottopf
./schroedingerSolver
cd documentation
MATLAB >> importfile

For xmgrace plots, see the instructions on the make file above.

Example 2: finite potential well

2.0 # mass
-2.0 2.0 1999 # xMin xMax nPoint
1 15 # firstEigVal 1lastEigVal
linear # interpType
6 # nInterp
-2.0 0.0 # potAr(:,2)
-0.5 0.0
-0.5 -10.0
0.5 -10.0
0.5 0.0
2.0 0.0
disc. & eig.: FORTRAN disc.: FORTRAN, eig.: MATLAB
2 T | IS S— T T 2 T T T T T
_ % poiiMGidar()
0f ——==- —————0 - 0f —-==- —————0 -
. .
' | ' |
-2F I | T -2F | | 1
. ' | ' |
=] : | : |
S i S I . 4t | .
20 ' ! ' !
I T
¢ | | | |
6t [| 1 6t | | i
| I | I
: | : |
-8} , : 1 -8t | :]
L T
I I I I
10 , & ——9 | s -10 B , & ——0 | .
-2 -1 0 1 2 -2 -1 0 1 2
x |Bohr] x |Bohr]

Commands to create this

$ make

$ make load_pottopf2
./schroedingerSolver
cd documentation
MATLAB >> importfile

For xmgrace plots, see the instructions on the make file above.

Example 3: harmonic oscillator potential

4.0 # mass
-10.0 10.0 1999 # xMin xMax nPoint
1 15 # firstEigVal 1lastEigVal
polynomial # interpType
3 # nInterp
-1.0 0.5 # potAr(:,2)
.0 0.0
1.0 0.5

disc.: FORTRAN, eig.: MATLAB

5-5 ‘ T T T ,
\1‘/\/\/\/\/\‘1/_
5' \ 1 T
/\/-W\/_/_

|]
ab I
[~

| !
3.5¢ :
_— " " "] \\/'\/\/_Lf—
j.__..s 3t ! I - 3t ! l _
e | \) | \)
o0 2.5 ! 2.5 !
& W— -\~~~]
v 2r ! ! 1 2} ‘ I 1
S U\ — S~
1.5 ! I - 1.5} \ ! 1
W W
1t \ I . 1t \ ! .
R Wi o ——— R W S —
0.5} ® ¢ 1 05) > 4 :
I e AN - A]
0f te’ . 0t te’ .
-4 -2 0 2 4 -4 -2 0 2 4
x |Bohr| x |[Bohr]

Commands to create this

$ make

$ make load_harmOszi
./schroedingerSolver
cd documentation
MATLAB >> importfile

For xmgrace plots, see the instructions on the make file above.

Example 3: double potential well

2.0 # mass
-20.0 20.0 1999 # xMin xMax nPoint
1 15 # firstEigVal 1lastEigVal
linear # interpType
8 # nInterp
-20.0 100.0 # potAr(:,2)
-8.0 -1.5
-7.0 -1.5
-0.5 1.8
0.5 1.8
7.0 -1.5
8.0 -1.5
20.0 100.0
disc. & eig.: FORTRAN disc.: FORTRAN, eig.: MATLAB
™ . T . . ™ . .
2.5 —%BB%@MVM:/— 2.5 W
A A S AAA T AR A VAA 2 T
9 W 9 W

15 1 Iy b 1.5t oo AN 1
VN 0000 | \

0.5 F—\/ ——<D0odt———

energy [Ha]
o
ot

|
] v p v
I~ ! B N/ S Vo
0_ I \ 7 0_ I | { T
r ! Vo P! .
[|
0.5] —\¢ 0.5 {f/& <0G
| \ I \
[|
1 \ I \

-1r w \ | . -1t oy \ I i
e , e ,
-5, e . e | _15f @ e , Y]
-10 -5 0) 10 -10 0 10

x |Bohr] x |Bohr]

Commands to create this

$ make

$ make load_pottopf3
./schroedingerSolver
cd documentation
MATLAB >> importfile

For xmgrace plots, see the instructions on the make file above.

A few notes, hints, remarks, and sort of an outlook

A programming project may have, roadmaps, release dates, hand-in dates etc., but it can
never be finished. There are a couple of things which would certainly be worth doing.
A lot of interesting things can be found in the documentation of the repositories. For
example, editing the schrodinger.inp file in the editor kate caused a lot of trouble until
the problem was discovered: kate sometimes suppresses a line terminator close to the
end of a file, which e.g. emacs or gedit don’t (see [B] for comp.lang.fortran discussion).
Another interesting journey was the so called cherrypick-merge which bazaar is able to
perform, but which is not documented as a merge in the repository and which is therefore
withdrawn from the bzr help merge page, but which nevertheless works perfectly well
(this is discussed in greater detail in revno 13, also see [B]). And last, but certainly not
least, for the purpose of dealing with unsorted interpolation points given by the user, and
algorithm was developed which the author is especially proud of (discussed in detail in
revno 15) and which is somewhat similar to Newton’s pendulum. All of this would have
been a pleasure to discuss and to illustrate in this documentation, and certainly there
are spots where the source code might shortened, generalized, modularized, documented
more extensively or more concisely, but our experience is that source code is always not
quite perfect.

References

[1] Balint Aradi: Projektspezifikation — Abschlussprojekt fiir Wissenschaftliches Program-
mieren. contained in the repository.

[2] Alexander Erlich: How to read the last line before the EOF is reached? discussion in
comp.lang.fortran started on 09.09.2009, see
http://groups.google.com/group/comp.lang.fortran/browse_thread/thread/cc3157a233bf"

[3] John A Meinel: ’bzr help merge’ should describe merging a single file. Launchpad bug
report #81758, see
https://bugs.launchpad.net/bzr/+bug/81758

10

http://groups.google.com/group/comp.lang.fortran/browse_thread/thread/cc3157a233bf2d46#
https://bugs.launchpad.net/bzr/+bug/81758

