~amsn-daily/amsn/amsn-packaging

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
##################################################
#
# md5.tcl - MD5 in Tcl
# Author: Don Libes <libes@nist.gov>, July 1999
# Version 1.2.0
#
# MD5  defined by RFC 1321, "The MD5 Message-Digest Algorithm"
# HMAC defined by RFC 2104, "Keyed-Hashing for Message Authentication"
#
# Most of the comments below come right out of RFC 1321; That's why
# they have such peculiar numbers.  In addition, I have retained
# original syntax, bugs in documentation (yes, really), etc. from the
# RFC.  All remaining bugs are mine.
#
# HMAC implementation by D. J. Hagberg <dhagberg@millibits.com> and
# is based on C code in RFC 2104.
#
# For more info, see: http://expect.nist.gov/md5pure
#
# - Don
#
# Modified by Miguel Sofer to use inlines and simple variables
# Modified by Alvaro J. Iradier Muro to avoid using package Trf
##################################################

::Version::setSubversionId {$Id$}

namespace eval ::md5 {
}

    # Without Trf use the all-tcl implementation by Don Libes.

    # T will be inlined after the definition of md5body

    # test md5
    #
    # This proc is not necessary during runtime and may be omitted if you
    # are simply inserting this file into a production program.
    #
    proc ::md5::test {} {
	foreach {msg expected} {
	    ""
	    "d41d8cd98f00b204e9800998ecf8427e"
	    "a"
	    "0cc175b9c0f1b6a831c399e269772661"
	    "abc"
	    "900150983cd24fb0d6963f7d28e17f72"
	    "message digest"
	    "f96b697d7cb7938d525a2f31aaf161d0"
	    "abcdefghijklmnopqrstuvwxyz"
	    "c3fcd3d76192e4007dfb496cca67e13b"
	    "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
	    "d174ab98d277d9f5a5611c2c9f419d9f"
	    "12345678901234567890123456789012345678901234567890123456789012345678901234567890"
	    "57edf4a22be3c955ac49da2e2107b67a"
	} {
	    puts "testing: md5 \"$msg\""
	    set computed [md5 $msg]
	    puts "expected: $expected"
	    puts "computed: $computed"
	    if {0 != [string compare $computed $expected]} {
		puts "FAILED"
	    } else {
		puts "SUCCEEDED"
	    }
	}
    }

    # time md5
    #
    # This proc is not necessary during runtime and may be omitted if you
    # are simply inserting this file into a production program.
    #
    proc ::md5::time {} {
	foreach len {10 50 100 500 1000 5000 10000} {
	    set time [::time {md5 [format %$len.0s ""]} 10]
	    regexp "\[0-9]*" $time msec
	    puts "input length $len: [expr {$msec/1000}] milliseconds per interation"
	}
    }

    #
    # We just define the body of md5pure::md5 here; later we
    # regsub to inline a few function calls for speed
    #

    set ::md5::md5body {

	#
	# 3.1 Step 1. Append Padding Bits
	#

	set msgLen [string length $msg]

	set padLen [expr {56 - $msgLen%64}]
	if {$msgLen % 64 > 56} {
	    incr padLen 64
	}

	# pad even if no padding required
	if {$padLen == 0} {
	    incr padLen 64
	}

	# append single 1b followed by 0b's
	append msg [binary format "a$padLen" \200]

	#
	# 3.2 Step 2. Append Length
	#

	# RFC doesn't say whether to use little- or big-endian
	# code demonstrates little-endian
	# This step limits our input to size 2^32b or 2^24B
	append msg [binary format "i1i1" [expr {8*$msgLen}] 0]
	
	#
	# 3.3 Step 3. Initialize MD Buffer
	#

	set A [expr 0x67452301]
	set B [expr 0xefcdab89]
	set C [expr 0x98badcfe]
	set D [expr 0x10325476]

	#
	# 3.4 Step 4. Process Message in 16-Word Blocks
	#

	# process each 16-word block
	# RFC doesn't say whether to use little- or big-endian
	# code says little-endian
	binary scan $msg i* blocks
	set len [llength $blocks]

	# loop over the message taking 16 blocks at a time

	foreach {X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15} $blocks {

	    # Save A as AA, B as BB, C as CC, and D as DD.
	    set AA $A
	    set BB $B
	    set CC $C
	    set DD $D

	    # Round 1.
	    # Let [abcd k s i] denote the operation
	    #      a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s).
	    # [ABCD  0  7  1]  [DABC  1 12  2]  [CDAB  2 17  3]  [BCDA  3 22  4]
	    set A [expr {$B + [<<< [expr {$A + [F $B $C $D] + $X0  + $T01}]  7]}]
	    set D [expr {$A + [<<< [expr {$D + [F $A $B $C] + $X1  + $T02}] 12]}]
	    set C [expr {$D + [<<< [expr {$C + [F $D $A $B] + $X2  + $T03}] 17]}]
	    set B [expr {$C + [<<< [expr {$B + [F $C $D $A] + $X3  + $T04}] 22]}]
	    # [ABCD  4  7  5]  [DABC  5 12  6]  [CDAB  6 17  7]  [BCDA  7 22  8]
	    set A [expr {$B + [<<< [expr {$A + [F $B $C $D] + $X4  + $T05}]  7]}]
	    set D [expr {$A + [<<< [expr {$D + [F $A $B $C] + $X5  + $T06}] 12]}]
	    set C [expr {$D + [<<< [expr {$C + [F $D $A $B] + $X6  + $T07}] 17]}]
	    set B [expr {$C + [<<< [expr {$B + [F $C $D $A] + $X7  + $T08}] 22]}]
	    # [ABCD  8  7  9]  [DABC  9 12 10]  [CDAB 10 17 11]  [BCDA 11 22 12]
	    set A [expr {$B + [<<< [expr {$A + [F $B $C $D] + $X8  + $T09}]  7]}]
	    set D [expr {$A + [<<< [expr {$D + [F $A $B $C] + $X9  + $T10}] 12]}]
	    set C [expr {$D + [<<< [expr {$C + [F $D $A $B] + $X10 + $T11}] 17]}]
	    set B [expr {$C + [<<< [expr {$B + [F $C $D $A] + $X11 + $T12}] 22]}]
	    # [ABCD 12  7 13]  [DABC 13 12 14]  [CDAB 14 17 15]  [BCDA 15 22 16]
	    set A [expr {$B + [<<< [expr {$A + [F $B $C $D] + $X12 + $T13}]  7]}]
	    set D [expr {$A + [<<< [expr {$D + [F $A $B $C] + $X13 + $T14}] 12]}]
	    set C [expr {$D + [<<< [expr {$C + [F $D $A $B] + $X14 + $T15}] 17]}]
	    set B [expr {$C + [<<< [expr {$B + [F $C $D $A] + $X15 + $T16}] 22]}]

	    # Round 2.
	    # Let [abcd k s i] denote the operation
	    #      a = b + ((a + G(b,c,d) + X[k] + T[i]) <<< s).
	    # Do the following 16 operations.
	    # [ABCD  1  5 17]  [DABC  6  9 18]  [CDAB 11 14 19]  [BCDA  0 20 20]
	    set A [expr {$B + [<<< [expr {$A + [G $B $C $D] + $X1  + $T17}]  5]}]
	    set D [expr {$A + [<<< [expr {$D + [G $A $B $C] + $X6  + $T18}]  9]}]
	    set C [expr {$D + [<<< [expr {$C + [G $D $A $B] + $X11 + $T19}] 14]}]
	    set B [expr {$C + [<<< [expr {$B + [G $C $D $A] + $X0  + $T20}] 20]}]
	    # [ABCD  5  5 21]  [DABC 10  9 22]  [CDAB 15 14 23]  [BCDA  4 20 24]
	    set A [expr {$B + [<<< [expr {$A + [G $B $C $D] + $X5  + $T21}]  5]}]
	    set D [expr {$A + [<<< [expr {$D + [G $A $B $C] + $X10 + $T22}]  9]}]
	    set C [expr {$D + [<<< [expr {$C + [G $D $A $B] + $X15 + $T23}] 14]}]
	    set B [expr {$C + [<<< [expr {$B + [G $C $D $A] + $X4  + $T24}] 20]}]
	    # [ABCD  9  5 25]  [DABC 14  9 26]  [CDAB  3 14 27]  [BCDA  8 20 28]
	    set A [expr {$B + [<<< [expr {$A + [G $B $C $D] + $X9  + $T25}]  5]}]
	    set D [expr {$A + [<<< [expr {$D + [G $A $B $C] + $X14 + $T26}]  9]}]
	    set C [expr {$D + [<<< [expr {$C + [G $D $A $B] + $X3  + $T27}] 14]}]
	    set B [expr {$C + [<<< [expr {$B + [G $C $D $A] + $X8  + $T28}] 20]}]
	    # [ABCD 13  5 29]  [DABC  2  9 30]  [CDAB  7 14 31]  [BCDA 12 20 32]
	    set A [expr {$B + [<<< [expr {$A + [G $B $C $D] + $X13 + $T29}]  5]}]
	    set D [expr {$A + [<<< [expr {$D + [G $A $B $C] + $X2  + $T30}]  9]}]
	    set C [expr {$D + [<<< [expr {$C + [G $D $A $B] + $X7  + $T31}] 14]}]
	    set B [expr {$C + [<<< [expr {$B + [G $C $D $A] + $X12 + $T32}] 20]}]

	    # Round 3.
	    # Let [abcd k s t] [sic] denote the operation
	    #     a = b + ((a + H(b,c,d) + X[k] + T[i]) <<< s).
	    # Do the following 16 operations.
	    # [ABCD  5  4 33]  [DABC  8 11 34]  [CDAB 11 16 35]  [BCDA 14 23 36]
	    set A [expr {$B + [<<< [expr {$A + [H $B $C $D] + $X5  + $T33}]  4]}]
	    set D [expr {$A + [<<< [expr {$D + [H $A $B $C] + $X8  + $T34}] 11]}]
	    set C [expr {$D + [<<< [expr {$C + [H $D $A $B] + $X11 + $T35}] 16]}]
	    set B [expr {$C + [<<< [expr {$B + [H $C $D $A] + $X14 + $T36}] 23]}]
	    # [ABCD  1  4 37]  [DABC  4 11 38]  [CDAB  7 16 39]  [BCDA 10 23 40]
	    set A [expr {$B + [<<< [expr {$A + [H $B $C $D] + $X1  + $T37}]  4]}]
	    set D [expr {$A + [<<< [expr {$D + [H $A $B $C] + $X4  + $T38}] 11]}]
	    set C [expr {$D + [<<< [expr {$C + [H $D $A $B] + $X7  + $T39}] 16]}]
	    set B [expr {$C + [<<< [expr {$B + [H $C $D $A] + $X10 + $T40}] 23]}]
	    # [ABCD 13  4 41]  [DABC  0 11 42]  [CDAB  3 16 43]  [BCDA  6 23 44]
	    set A [expr {$B + [<<< [expr {$A + [H $B $C $D] + $X13 + $T41}]  4]}]
	    set D [expr {$A + [<<< [expr {$D + [H $A $B $C] + $X0  + $T42}] 11]}]
	    set C [expr {$D + [<<< [expr {$C + [H $D $A $B] + $X3  + $T43}] 16]}]
	    set B [expr {$C + [<<< [expr {$B + [H $C $D $A] + $X6  + $T44}] 23]}]
	    # [ABCD  9  4 45]  [DABC 12 11 46]  [CDAB 15 16 47]  [BCDA  2 23 48]
	    set A [expr {$B + [<<< [expr {$A + [H $B $C $D] + $X9  + $T45}]  4]}]
	    set D [expr {$A + [<<< [expr {$D + [H $A $B $C] + $X12 + $T46}] 11]}]
	    set C [expr {$D + [<<< [expr {$C + [H $D $A $B] + $X15 + $T47}] 16]}]
	    set B [expr {$C + [<<< [expr {$B + [H $C $D $A] + $X2  + $T48}] 23]}]

	    # Round 4.
	    # Let [abcd k s t] [sic] denote the operation
	    #     a = b + ((a + I(b,c,d) + X[k] + T[i]) <<< s).
	    # Do the following 16 operations.
	    # [ABCD  0  6 49]  [DABC  7 10 50]  [CDAB 14 15 51]  [BCDA  5 21 52]
	    set A [expr {$B + [<<< [expr {$A + [I $B $C $D] + $X0  + $T49}]  6]}]
	    set D [expr {$A + [<<< [expr {$D + [I $A $B $C] + $X7  + $T50}] 10]}]
	    set C [expr {$D + [<<< [expr {$C + [I $D $A $B] + $X14 + $T51}] 15]}]
	    set B [expr {$C + [<<< [expr {$B + [I $C $D $A] + $X5  + $T52}] 21]}]
	    # [ABCD 12  6 53]  [DABC  3 10 54]  [CDAB 10 15 55]  [BCDA  1 21 56]
	    set A [expr {$B + [<<< [expr {$A + [I $B $C $D] + $X12 + $T53}]  6]}]
	    set D [expr {$A + [<<< [expr {$D + [I $A $B $C] + $X3  + $T54}] 10]}]
	    set C [expr {$D + [<<< [expr {$C + [I $D $A $B] + $X10 + $T55}] 15]}]
	    set B [expr {$C + [<<< [expr {$B + [I $C $D $A] + $X1  + $T56}] 21]}]
	    # [ABCD  8  6 57]  [DABC 15 10 58]  [CDAB  6 15 59]  [BCDA 13 21 60]
	    set A [expr {$B + [<<< [expr {$A + [I $B $C $D] + $X8  + $T57}]  6]}]
	    set D [expr {$A + [<<< [expr {$D + [I $A $B $C] + $X15 + $T58}] 10]}]
	    set C [expr {$D + [<<< [expr {$C + [I $D $A $B] + $X6  + $T59}] 15]}]
	    set B [expr {$C + [<<< [expr {$B + [I $C $D $A] + $X13 + $T60}] 21]}]
	    # [ABCD  4  6 61]  [DABC 11 10 62]  [CDAB  2 15 63]  [BCDA  9 21 64]
	    set A [expr {$B + [<<< [expr {$A + [I $B $C $D] + $X4  + $T61}]  6]}]
	    set D [expr {$A + [<<< [expr {$D + [I $A $B $C] + $X11 + $T62}] 10]}]
	    set C [expr {$D + [<<< [expr {$C + [I $D $A $B] + $X2  + $T63}] 15]}]
	    set B [expr {$C + [<<< [expr {$B + [I $C $D $A] + $X9  + $T64}] 21]}]

	    # Then perform the following additions. (That is increment each
	    #   of the four registers by the value it had before this block
	    #   was started.)
	    incr A $AA
	    incr B $BB
	    incr C $CC
	    incr D $DD
	}
	# 3.5 Step 5. Output

	# ... begin with the low-order byte of A, and end with the high-order byte
	# of D.

	return [bytes $A][bytes $B][bytes $C][bytes $D]
    }

    #
    # Here we inline/regsub the functions F, G, H, I and <<< 
    #

    namespace eval ::md5 {
	#proc md5pure::F {x y z} {expr {(($x & $y) | ((~$x) & $z))}}
	regsub -all {\[ *F +(\$.) +(\$.) +(\$.) *\]} $md5body {((\1 \& \2) | ((~\1) \& \3))} md5body

	#proc md5pure::G {x y z} {expr {(($x & $z) | ($y & (~$z)))}}
	regsub -all {\[ *G +(\$.) +(\$.) +(\$.) *\]} $md5body {((\1 \& \3) | (\2 \& (~\3)))} md5body

	#proc md5pure::H {x y z} {expr {$x ^ $y ^ $z}}
	regsub -all {\[ *H +(\$.) +(\$.) +(\$.) *\]} $md5body {(\1 ^ \2 ^ \3)} md5body

	#proc md5pure::I {x y z} {expr {$y ^ ($x | (~$z))}}
	regsub -all {\[ *I +(\$.) +(\$.) +(\$.) *\]} $md5body {(\2 ^ (\1 | (~\3)))} md5body

	# bitwise left-rotate
	if 0 {
	    proc md5pure::<<< {x i} {
		# This works by bitwise-ORing together right piece and left
		# piece so that the (original) right piece becomes the left
		# piece and vice versa.
		#
		# The (original) right piece is a simple left shift.
		# The (original) left piece should be a simple right shift
		# but Tcl does sign extension on right shifts so we
		# shift it 1 bit, mask off the sign, and finally shift
		# it the rest of the way.
		
		expr {($x << $i) | ((($x >> 1) & 0x7fffffff) >> (31-$i))}
	    }
	}
	# inline <<<
	regsub -all {\[ *<<< +\[ *expr +({[^\}]*})\] +([0-9]+) *\]} $md5body {(([set x [expr \1]] << \2) |  ((($x >> 1) \& 0x7fffffff) >> (31-\2)))} md5body

	# inline the values of T
	set map {}
	foreach \
		tName {
	    T01 T02 T03 T04 T05 T06 T07 T08 T09 T10
	    T11 T12 T13 T14 T15 T16 T17 T18 T19 T20
	    T21 T22 T23 T24 T25 T26 T27 T28 T29 T30
	    T31 T32 T33 T34 T35 T36 T37 T38 T39 T40
	    T41 T42 T43 T44 T45 T46 T47 T48 T49 T50
	    T51 T52 T53 T54 T55 T56 T57 T58 T59 T60
	    T61 T62 T63 T64 } \
		tVal {
	    0xd76aa478 0xe8c7b756 0x242070db 0xc1bdceee
	    0xf57c0faf 0x4787c62a 0xa8304613 0xfd469501
	    0x698098d8 0x8b44f7af 0xffff5bb1 0x895cd7be
	    0x6b901122 0xfd987193 0xa679438e 0x49b40821

	    0xf61e2562 0xc040b340 0x265e5a51 0xe9b6c7aa
	    0xd62f105d 0x2441453  0xd8a1e681 0xe7d3fbc8
	    0x21e1cde6 0xc33707d6 0xf4d50d87 0x455a14ed
	    0xa9e3e905 0xfcefa3f8 0x676f02d9 0x8d2a4c8a

	    0xfffa3942 0x8771f681 0x6d9d6122 0xfde5380c
	    0xa4beea44 0x4bdecfa9 0xf6bb4b60 0xbebfbc70
	    0x289b7ec6 0xeaa127fa 0xd4ef3085 0x4881d05
	    0xd9d4d039 0xe6db99e5 0x1fa27cf8 0xc4ac5665

	    0xf4292244 0x432aff97 0xab9423a7 0xfc93a039
	    0x655b59c3 0x8f0ccc92 0xffeff47d 0x85845dd1
	    0x6fa87e4f 0xfe2ce6e0 0xa3014314 0x4e0811a1
	    0xf7537e82 0xbd3af235 0x2ad7d2bb 0xeb86d391
	} {
	    lappend map \$$tName $tVal
	}
	set md5body [string map $map $md5body]


	# Finally, define the proc
	proc md5 {msg} $md5body

	# unset auxiliary variables
	unset md5body tName tVal map
    }

    proc ::md5::byte0 {i} {expr {0xff & $i}}
    proc ::md5::byte1 {i} {expr {(0xff00 & $i) >> 8}}
    proc ::md5::byte2 {i} {expr {(0xff0000 & $i) >> 16}}
    proc ::md5::byte3 {i} {expr {((0xff000000 & $i) >> 24) & 0xff}}

    proc ::md5::bytes {i} {
	format %0.2x%0.2x%0.2x%0.2x [byte0 $i] [byte1 $i] [byte2 $i] [byte3 $i]
    }

    # hmac: hash for message authentication
    proc ::md5::hmac {key text} {
	# if key is longer than 64 bytes, reset it to MD5(key).  If shorter, 
	# pad it out with null (\x00) chars.
	set keyLen [string length $key]
	if {$keyLen > 64} {
	    set key [binary format H32 [md5 $key]]
	    set keyLen [string length $key]
	}

	# ensure the key is padded out to 64 chars with nulls.
	set padLen [expr {64 - $keyLen}]
	append key [binary format "a$padLen" {}]

	# Split apart the key into a list of 16 little-endian words
	binary scan $key i16 blocks

	# XOR key with ipad and opad values
	set k_ipad {}
	set k_opad {}
	foreach i $blocks {
	    append k_ipad [binary format i [expr {$i ^ 0x36363636}]]
	    append k_opad [binary format i [expr {$i ^ 0x5c5c5c5c}]]
	}
    
	# Perform inner md5, appending its results to the outer key
	append k_ipad $text
	append k_opad [binary format H* [md5 $k_ipad]]

	# Perform outer md5
	md5 $k_opad
    }

package provide md5 1.4