

C o n t e n t sC o n t e n t s

Introduction 3
What is PyIgnition?...3

Basics 3
How it works..3
Creating the ParticleEffect object...3

ParticleEffect object initialisation .. 3
Keyframing 4

Basics of keyframing..4
Keyframing a ParticleSource ... 4

Interpolation types..4
Mixing interpolation types ... 4

Setting variables..4
Consolidating keyframes..5

Particles and sources 5
How particles are managed in PyIgnition..........................5
Creating and using a ParticleSource...................................5

Initialising a ParticleSource object .. 5
ParticleSource arguments .. 5

Particle drawtypes and parameters....................................6
Keyframing..6

ParticleSource keyframes ... 6
Particle keyframes .. 7

Gravities 7
How gravity works in PyIgnition..7
Types of gravity...8

Initialising a point gravity source .. 8
Initialising a directed gravity source ... 8

Keyframing..8
PointGravity keyframes ... 8
DirectedGravity keyframes ... 8

Other uses..8
Collisions with obstacles 9

Obstacle physics in PyIgnition..9
Types of obstacles..9
Keyframing..9

Circle keyframes .. 9
Rectangle keyframes ... 9
BoundaryLine keyframes .. 9

Future plans 10
Key features..10
Get involved...10

Page II

I n t r o d u c t i o nI n t r o d u c t i o n

What is PyIgnition?

PyIgnition is an advanced particle effects engine written for
use with Pygame, which can be used to generate particle effects
for games and applications. It allows the user to create sources
and other such objects through a central class which manages
the entire effect, updating and redrawing all objects. It doesn't
require its own mainloop, and can instead be called to update or
to redraw at the user's command.

PyIgnition was conceived as a
way of speeding up the often
arduous process of creating particle
effects in Pygame. At the time of
writing Pygame has no built-in
modules for such things, and
although some external libraries do
have features facilitating particle

effect creation they are often fairly simple additions to larger
game engines and do not receive much focussed development.
The purpose of PyIgnition is to provide a complete library for the
sole purpose of developing complex particle effects which can
then be easily implemented in other projects.

B a s i c sB a s i c s

How it works

As mentioned, all particles, sources and other objects for a
particular effect come under the control of a ParticleEffect
object. ParticleEffect objects represent completely separate
particle effects – were you to create two, their effects would be
handled completely discretely and would not interfere with each
other in any way. Once initialised, ParticleEffect objects
can be used to create instances of sources, gravities and
obstacles (these cannot be created directly as they rely on a
parent ParticleEffect class to manage them).

Creating the ParticleEffect object

ParticleEffect object initialisation
import PyIgnition
effect = PyIgnition.ParticleEffect(display,
position, size)

Arguments:
#display: the surface to draw to
#position: the position of the effect on-

screen
#size: the size of the effect (normally

just the display size)

3
PyIgnition user documentation – version 1.0

K e y f r a m i n gK e y f r a m i n g

Basics of keyframing

One of PyIgnition's most useful features is its versatile
keyframing system. Almost every variable involved can be
keyframed, and by doing so you can quickly build up elaborate
animations.

In PyIgnition, keyframing is as simple as calling an object's
CreateKeyframe() function and supplying the frame and the
parameters to be keyframed. The specific parameters for each
object will be listed in later sections, but for now here is a simple
demo in which we keyframe a source to move from one place to
another.

Keyframing a ParticleSource
source.CreateKeyframe(frame = 0, pos = (0, 0))
source.CreateKeyframe(frame = 30, pos = (50,
10))

This means that when the program runs, the source will
move from (0, 0) to (50, 10) over the course of the first thirty
frames.

Interpolation types

You can also specify which type of interpolation you would
like a specific keyframe to use. PyIgnition currently supports two
types of interpolation: linear (essentially moves from one value
to another at a constant rate) and cosine (takes time to
accelerate from one value and slows down as it approaches the
next, which in many situations looks more natural). These can
be specified for a particular keyframe simply by supplying the
keyword argument 'interpolationtype' with a value of either
“linear” or “cosine” (if no argument is supplied, linear is the
default). The interpolation type needn't be constant for all
frames in an animation, or even for all variables. For instance, in
the following example we change a circle obstacle's colour
linearly whilst simultaneously moving it from one place to
another using cosine interpolation.

Mixing interpolation types
circle.CreateKeyframe(frame = 30, pos = (50,
10), interpolationtype = “cosine”)
circle.CreateKeyframe(frame = 40, colour =
(255, 100, 163), interpolationtype = “linear”)

Setting variables

There are some situations in which the normal keyframing
method is inappropriate. For instance, if you wanted a particle
source to follow the mouse cursor, you wouldn't be able to set
up keyframes beforehand to accomplish this as the mouse's

4
PyIgnition user documentation – version 1.0

movement is entirely unpredictable. However, PyIgnition
provides setter methods for all keyframeable variables which
can be accessed using the SetVariableName() pattern. For
instance, to set the particlesperframe variable of a
ParticleSource object, you would call
source.SetParticlesPerFrame(). (Note that function
names follow the 'CamelCase' capitalisation style throughout.)
This effectively creates a keyframe for said variable on the
current frame, with the supplied value.

Consolidating keyframes

As you might imagine, doing this every frame over a long
period of time will result in a fairly massive number of keyframes

being stored. This eventually causes
decreased performance, and means that
memory usage grows constantly over
time. To avoid this, PyIgnition provides a
ConsolidateKeyframes() function for
all keyframeable objects which can be
called simply by typing

objectname.ConsolidateKeyframes(). This function
deletes all past keyframes and creates a new keyframe on the
present frame holding the current values for all variables. Called
periodically, this can significantly improve performance both in
programs which set variables every frames and ones which
simply use more keyframes than usual.

P a r t i c l e s a n d s o u r c e sP a r t i c l e s a n d s o u r c e s

How particles are managed in PyIgnition

Source creates them, passes them up to the main object...

Creating and using a ParticleSource

The following example demonstrates how you would go
about setting up a source to produce particles in PyIgnition. Not
that the arguments have been omitted for now as there are very
many of them; a full list can be found just after it.

Initialising a ParticleSource object
effect = ParticleEffect(screen, pos, size)
source = effect.CreateSource(arguments)

It is often wise to maintain a reference to the newly-created
source (as demonstrated above) so that you can modify its
parameters later or add keyframes to it. The full list of
ParticleSource arguments is given below.

ParticleSource arguments
-pos (tuple): the position of the source
-initvelocity (float): the initial velocity of
spawned particles
-initdirection (float): the angle at which
particles are released (in radians)

5
PyIgnition user documentation – version 1.0

-initvelocityrandrange (float): the range (±
around the supplied initvelocity) of initial
velocities a particle could have
-initvelocityrandrange (float): as above, but
for the initial direction
-particlesperframe (int): the number of
particles to produce on each update cycle
-particlelife (int): the number of update
cycles for which a generated particle will
survive
-genspacing (int): the number of update cycles
to wait between generating particles (used to
make sources release particles in bursts
instead of constantly)
-drawtype (int): the drawtype to use for
particles (see the 'Particle parameters'
section below for a list)
-colour (tuple): the initial colour of
generated particles
-radius (float): the initial radius of
generated particles (only used by certain
drawtypes)
-length (float): the initial length of
generated particles (only used by certain
drawtypes)
-image (pygame.surface): the image to use for
generated particles (only used by certain
drawtypes)

Particle drawtypes and parameters

Particles can use any of the following drawtypes:

➢ PyIgnition.DRAWTYPE_POINT – draws simple point
particles

➢ PyIgnition.DRAWTYPE_CIRCLE – draws particles as
circles (uses self.radius)

➢ PyIgnition.DRAWTYPE_LINE – draws particles as lines of
fixed length (uses self.length)

➢ PyIgnition.DRAWTYPE_SCALELINE – draws particles as
lines which scale with their velocities

➢ PyIgnition.DRAWTYPE_BUBBLE – draws particles as
unfilled circles or 'bubbles' (uses self.radius)

➢ PyIgnition.DRAWTYPE_IMAGE – draws particles as
arbitrary images (uses self.image)

As you may have noticed, the three main parameters held
by Particle objects are radius, length and image. You will
probably never have to actually set these for individual particles;
normally this would be done through the parent
ParticleSource object by creating keyframes.

Keyframing

Both sources and the particles they produce can be
keyframed through a reference to the source object:

ParticleSource keyframes
source.CreateKeyframe(args)

The arguments for this are the same as for creating a
source, except drawtype, colour, radius, length and

6
PyIgnition user documentation – version 1.0

image are excluded as they belong to particles and not
sources. Note that you do not have to supply a value for every
variable; those which are not supplied will not be keyed for that
frame. This way, you can effectively keyframe every variable
individually.

Particle keyframes
source.CreateParticleKeyframe(frame, colour,
radius, length, interpolationtype)

Arguments:
colour (tuple) – the colour of the

particle
radius (float) – the radius of the

particle
length (float) – the length of the

particle
frame and interpolationtype – see

section 'Keyframing'

Note that a keyframe is automatically created on frame 0
using the colour, radius and length parameters specified for the
source. This can of course be changed later in your program
simply by using CreateParticleKeyframe() with 0 as the
frame argument.

G r a v i t i e sG r a v i t i e s

How gravity works in PyIgnition

Gravities are essentially what they say on the tin: they are
used to apply forces to particles in motion, accelerating them in
particular directions. Each gravity object has its own

GetForce() function, which
calculates the force on a particle
based on its position and its
velocity. Behind the scenes, the
ParticleEffect object loops
through each particle and finds
the sum of the forces being
applied to it using all the existing
gravity objects' GetForce()
functions. This total force is then

used to accelerate the particle by simple application of
Newton's second law.

PyIgnition allows you to create an unlimited number of
gravity objects with each ParticleEffect, and gravities from
one effect will have no influence on particles from a different
effect, allowing you to have multiple completely separate
particle effects running at once.

7
PyIgnition user documentation – version 1.0

Types of gravity

PyIgnition currently supports two types of gravities:
PointGravity is the most physically accurate as its strength
follows an inverse square law with distance from its location;
DirectedGravity, meanwhile, supplies constant gravitational
pull in one direction, which is often more useful for normal
purposes. The following code examples show how to create
each type of gravity.

Initialising a point gravity source
gravity = effect.CreatePointGravity(strength,
strengthrandrange, pos)

Arguments:
strength (float) – essentially a

multiplier for the force calculated by
GetForce()

strengthrandrange (float) – similar to
the randrange variables supplied to
ParticleSources, this defines the range of
possible strength values on either side of the
supplied one.

pos (tuple) – the position of the point
gravity

Initialising a directed gravity source
gravity =
effect.CreateDirectedGravity(strength,
strengthrandrange, direction)

Arguments:

strength and strengthrandrange – as
above

direction (tuple) – a vector defining
the direction of the gravity

Keyframing

Much like particle sources, point gravities are keyframed
through references returned by the creating functions (in each of
the previous examples, this would be the 'gravity' object).

PointGravity keyframes
gravity.CreateKeyframe(frame, strength,
strengthrandrange, pos, interpolationtype)

DirectedGravity keyframes
gravity.CreateKeyframe(frame, strength,
strengthrandrange, direction,
interpolationtype)

As you can see, the arguments when creating keyframes
are the same as those for initialising the objects apart from the
frame and interpolationtype parameters.

Other uses

Gravities in PyIgnition need not only be used for the
suggested purpose of simulating gravity. They can also be used
to direct particle flows, and when keyframed can help create
interesting flow patterns. Also, by adding randomness to
directed gravity you can simulate natural effects like wind which

8
PyIgnition user documentation – version 1.0

tend to fluctuate erratically.
C o l l i s i o n s w i t h o b s t a c l e sC o l l i s i o n s w i t h o b s t a c l e s

Obstacle physics in PyIgnition

PyIgnition handles obstacles in much the same way as it
handles gravities: they are created with a ParticleEffect
object using the function
ParticleEffect.CreateObstacle(arguments)

(substituting in an obstacle type in place of 'obstacle'), and then
modified using a returned reference. For example, here is how
one would create a Circle obstacle:

Initialising a Circle obstacle
circle = effect.CreateCircle(arguments)

All obstacles take the tuple argument pos (which gives
their starting position), the tuple argument colour (which
specifies their draw colour) and the float argument bounce
(which specifies how 'bouncy' the obstacle is – 0.5 is normally a
good value for this, as 1.0 is often slightly too bouncy to look
natural). Different types of obstacles will of course have their
own additional arguments, and these are detailed in the 'types
of obstacles' section below.

Types of obstacles

PyIgnition currently supports the following obstacle types:

9
PyIgnition user documentation – version 1.0

➢ Circle – a circular obstacle, which takes the extra float
paramater radius

➢ Rectangle – a rectangular obstacle, which takes the extra
integer paramaters width and height

➢ BoundaryLine – a line which serves as a boundary for the
effect (particles can only exist on one side of it), which takes
the extra parameter direction (a tuple representing the
normal vector)

Keyframing

Keyframing of obstacles is done in the same way as for all
other objects – simply call an obstacle's CreateKeyframe()
function, supplying a frame argument and the variables to set
for that frame. For obstacles, all parameters are keyframeable.

F u t u r e p l a n sF u t u r e p l a n s

Key features

The following features are planned:

➢ Custom XML-based file format and functionality for loading
and saving particle effects

➢ Vortex gravity which spirals particles around it as well as
drawing them in

➢ Line segment obstacle

Get involved

➢ Got an idea for a new feature or an improvement to the
existing feature set? Submit it at
blueprints.launchpad.net/pyignition!

➢ Found a bug? Submit a report to
bugs.launchpad.net/pyignition and we'll fix it as soon as we
can.

➢ If you have any general questions or wish to participate in
development, feel free to contact me at
animatinator@gmail.com.

10
PyIgnition user documentation – version 1.0

mailto:animatinator@gmail.com
http://bugs.launchpad.net/pyignition
http://blueprints.launchpad.net/pyignition

	Contents
	Introduction
	What is PyIgnition?

	Basics
	How it works
	Creating the ParticleEffect object
	ParticleEffect object initialisation

	Keyframing
	Basics of keyframing
	Keyframing a ParticleSource

	Interpolation types
	Mixing interpolation types

	Setting variables
	Consolidating keyframes

	Particles and sources
	How particles are managed in PyIgnition
	Creating and using a ParticleSource
	Initialising a ParticleSource object
	ParticleSource arguments

	Particle drawtypes and parameters
	Keyframing
	ParticleSource keyframes
	Particle keyframes

	Gravities
	How gravity works in PyIgnition
	Types of gravity
	Initialising a point gravity source
	Initialising a directed gravity source

	Keyframing
	PointGravity keyframes
	DirectedGravity keyframes

	Other uses

	Collisions with obstacles
	Obstacle physics in PyIgnition
	Initialising a Circle obstacle

	Types of obstacles
	Keyframing

	Future plans
	Key features
	Get involved

