~axehind007/libmemcached/axehind-testing

« back to all changes in this revision

Viewing changes to zlib/deflate.c

  • Committer: Brian Pontz
  • Date: 2011-05-05 04:37:26 UTC
  • Revision ID: bpontz@bpontz-laptop-20110505043726-2gv8ybayvoojydur
Adding required zlib files for memory compression

Show diffs side-by-side

added added

removed removed

Lines of Context:
 
1
/* deflate.c -- compress data using the deflation algorithm
 
2
 * Copyright (C) 1995-2010 Jean-loup Gailly and Mark Adler
 
3
 * For conditions of distribution and use, see copyright notice in zlib.h
 
4
 */
 
5
 
 
6
/*
 
7
 *  ALGORITHM
 
8
 *
 
9
 *      The "deflation" process depends on being able to identify portions
 
10
 *      of the input text which are identical to earlier input (within a
 
11
 *      sliding window trailing behind the input currently being processed).
 
12
 *
 
13
 *      The most straightforward technique turns out to be the fastest for
 
14
 *      most input files: try all possible matches and select the longest.
 
15
 *      The key feature of this algorithm is that insertions into the string
 
16
 *      dictionary are very simple and thus fast, and deletions are avoided
 
17
 *      completely. Insertions are performed at each input character, whereas
 
18
 *      string matches are performed only when the previous match ends. So it
 
19
 *      is preferable to spend more time in matches to allow very fast string
 
20
 *      insertions and avoid deletions. The matching algorithm for small
 
21
 *      strings is inspired from that of Rabin & Karp. A brute force approach
 
22
 *      is used to find longer strings when a small match has been found.
 
23
 *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
 
24
 *      (by Leonid Broukhis).
 
25
 *         A previous version of this file used a more sophisticated algorithm
 
26
 *      (by Fiala and Greene) which is guaranteed to run in linear amortized
 
27
 *      time, but has a larger average cost, uses more memory and is patented.
 
28
 *      However the F&G algorithm may be faster for some highly redundant
 
29
 *      files if the parameter max_chain_length (described below) is too large.
 
30
 *
 
31
 *  ACKNOWLEDGEMENTS
 
32
 *
 
33
 *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
 
34
 *      I found it in 'freeze' written by Leonid Broukhis.
 
35
 *      Thanks to many people for bug reports and testing.
 
36
 *
 
37
 *  REFERENCES
 
38
 *
 
39
 *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
 
40
 *      Available in http://www.ietf.org/rfc/rfc1951.txt
 
41
 *
 
42
 *      A description of the Rabin and Karp algorithm is given in the book
 
43
 *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
 
44
 *
 
45
 *      Fiala,E.R., and Greene,D.H.
 
46
 *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
 
47
 *
 
48
 */
 
49
 
 
50
/* @(#) $Id$ */
 
51
 
 
52
#include "deflate.h"
 
53
 
 
54
const char deflate_copyright[] =
 
55
   " deflate 1.2.5 Copyright 1995-2010 Jean-loup Gailly and Mark Adler ";
 
56
/*
 
57
  If you use the zlib library in a product, an acknowledgment is welcome
 
58
  in the documentation of your product. If for some reason you cannot
 
59
  include such an acknowledgment, I would appreciate that you keep this
 
60
  copyright string in the executable of your product.
 
61
 */
 
62
 
 
63
/* ===========================================================================
 
64
 *  Function prototypes.
 
65
 */
 
66
typedef enum {
 
67
    need_more,      /* block not completed, need more input or more output */
 
68
    block_done,     /* block flush performed */
 
69
    finish_started, /* finish started, need only more output at next deflate */
 
70
    finish_done     /* finish done, accept no more input or output */
 
71
} block_state;
 
72
 
 
73
typedef block_state (*compress_func) OF((deflate_state *s, int flush));
 
74
/* Compression function. Returns the block state after the call. */
 
75
 
 
76
local void fill_window    OF((deflate_state *s));
 
77
local block_state deflate_stored OF((deflate_state *s, int flush));
 
78
local block_state deflate_fast   OF((deflate_state *s, int flush));
 
79
#ifndef FASTEST
 
80
local block_state deflate_slow   OF((deflate_state *s, int flush));
 
81
#endif
 
82
local block_state deflate_rle    OF((deflate_state *s, int flush));
 
83
local block_state deflate_huff   OF((deflate_state *s, int flush));
 
84
local void lm_init        OF((deflate_state *s));
 
85
local void putShortMSB    OF((deflate_state *s, uInt b));
 
86
local void flush_pending  OF((z_streamp strm));
 
87
local int read_buf        OF((z_streamp strm, Bytef *buf, unsigned size));
 
88
#ifdef ASMV
 
89
      void match_init OF((void)); /* asm code initialization */
 
90
      uInt longest_match  OF((deflate_state *s, IPos cur_match));
 
91
#else
 
92
local uInt longest_match  OF((deflate_state *s, IPos cur_match));
 
93
#endif
 
94
 
 
95
#ifdef DEBUG
 
96
local  void check_match OF((deflate_state *s, IPos start, IPos match,
 
97
                            int length));
 
98
#endif
 
99
 
 
100
/* ===========================================================================
 
101
 * Local data
 
102
 */
 
103
 
 
104
#define NIL 0
 
105
/* Tail of hash chains */
 
106
 
 
107
#ifndef TOO_FAR
 
108
#  define TOO_FAR 4096
 
109
#endif
 
110
/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
 
111
 
 
112
/* Values for max_lazy_match, good_match and max_chain_length, depending on
 
113
 * the desired pack level (0..9). The values given below have been tuned to
 
114
 * exclude worst case performance for pathological files. Better values may be
 
115
 * found for specific files.
 
116
 */
 
117
typedef struct config_s {
 
118
   ush good_length; /* reduce lazy search above this match length */
 
119
   ush max_lazy;    /* do not perform lazy search above this match length */
 
120
   ush nice_length; /* quit search above this match length */
 
121
   ush max_chain;
 
122
   compress_func func;
 
123
} config;
 
124
 
 
125
#ifdef FASTEST
 
126
local const config configuration_table[2] = {
 
127
/*      good lazy nice chain */
 
128
/* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
 
129
/* 1 */ {4,    4,  8,    4, deflate_fast}}; /* max speed, no lazy matches */
 
130
#else
 
131
local const config configuration_table[10] = {
 
132
/*      good lazy nice chain */
 
133
/* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
 
134
/* 1 */ {4,    4,  8,    4, deflate_fast}, /* max speed, no lazy matches */
 
135
/* 2 */ {4,    5, 16,    8, deflate_fast},
 
136
/* 3 */ {4,    6, 32,   32, deflate_fast},
 
137
 
 
138
/* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
 
139
/* 5 */ {8,   16, 32,   32, deflate_slow},
 
140
/* 6 */ {8,   16, 128, 128, deflate_slow},
 
141
/* 7 */ {8,   32, 128, 256, deflate_slow},
 
142
/* 8 */ {32, 128, 258, 1024, deflate_slow},
 
143
/* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
 
144
#endif
 
145
 
 
146
/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
 
147
 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
 
148
 * meaning.
 
149
 */
 
150
 
 
151
#define EQUAL 0
 
152
/* result of memcmp for equal strings */
 
153
 
 
154
#ifndef NO_DUMMY_DECL
 
155
struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
 
156
#endif
 
157
 
 
158
/* ===========================================================================
 
159
 * Update a hash value with the given input byte
 
160
 * IN  assertion: all calls to to UPDATE_HASH are made with consecutive
 
161
 *    input characters, so that a running hash key can be computed from the
 
162
 *    previous key instead of complete recalculation each time.
 
163
 */
 
164
#define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
 
165
 
 
166
 
 
167
/* ===========================================================================
 
168
 * Insert string str in the dictionary and set match_head to the previous head
 
169
 * of the hash chain (the most recent string with same hash key). Return
 
170
 * the previous length of the hash chain.
 
171
 * If this file is compiled with -DFASTEST, the compression level is forced
 
172
 * to 1, and no hash chains are maintained.
 
173
 * IN  assertion: all calls to to INSERT_STRING are made with consecutive
 
174
 *    input characters and the first MIN_MATCH bytes of str are valid
 
175
 *    (except for the last MIN_MATCH-1 bytes of the input file).
 
176
 */
 
177
#ifdef FASTEST
 
178
#define INSERT_STRING(s, str, match_head) \
 
179
   (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
 
180
    match_head = s->head[s->ins_h], \
 
181
    s->head[s->ins_h] = (Pos)(str))
 
182
#else
 
183
#define INSERT_STRING(s, str, match_head) \
 
184
   (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
 
185
    match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
 
186
    s->head[s->ins_h] = (Pos)(str))
 
187
#endif
 
188
 
 
189
/* ===========================================================================
 
190
 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
 
191
 * prev[] will be initialized on the fly.
 
192
 */
 
193
#define CLEAR_HASH(s) \
 
194
    s->head[s->hash_size-1] = NIL; \
 
195
    zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
 
196
 
 
197
/* ========================================================================= */
 
198
int ZEXPORT deflateInit_(strm, level, version, stream_size)
 
199
    z_streamp strm;
 
200
    int level;
 
201
    const char *version;
 
202
    int stream_size;
 
203
{
 
204
    return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
 
205
                         Z_DEFAULT_STRATEGY, version, stream_size);
 
206
    /* To do: ignore strm->next_in if we use it as window */
 
207
}
 
208
 
 
209
/* ========================================================================= */
 
210
int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
 
211
                  version, stream_size)
 
212
    z_streamp strm;
 
213
    int  level;
 
214
    int  method;
 
215
    int  windowBits;
 
216
    int  memLevel;
 
217
    int  strategy;
 
218
    const char *version;
 
219
    int stream_size;
 
220
{
 
221
    deflate_state *s;
 
222
    int wrap = 1;
 
223
    static const char my_version[] = ZLIB_VERSION;
 
224
 
 
225
    ushf *overlay;
 
226
    /* We overlay pending_buf and d_buf+l_buf. This works since the average
 
227
     * output size for (length,distance) codes is <= 24 bits.
 
228
     */
 
229
 
 
230
    if (version == Z_NULL || version[0] != my_version[0] ||
 
231
        stream_size != sizeof(z_stream)) {
 
232
        return Z_VERSION_ERROR;
 
233
    }
 
234
    if (strm == Z_NULL) return Z_STREAM_ERROR;
 
235
 
 
236
    strm->msg = Z_NULL;
 
237
    if (strm->zalloc == (alloc_func)0) {
 
238
        strm->zalloc = zcalloc;
 
239
        strm->opaque = (voidpf)0;
 
240
    }
 
241
    if (strm->zfree == (free_func)0) strm->zfree = zcfree;
 
242
 
 
243
#ifdef FASTEST
 
244
    if (level != 0) level = 1;
 
245
#else
 
246
    if (level == Z_DEFAULT_COMPRESSION) level = 6;
 
247
#endif
 
248
 
 
249
    if (windowBits < 0) { /* suppress zlib wrapper */
 
250
        wrap = 0;
 
251
        windowBits = -windowBits;
 
252
    }
 
253
#ifdef GZIP
 
254
    else if (windowBits > 15) {
 
255
        wrap = 2;       /* write gzip wrapper instead */
 
256
        windowBits -= 16;
 
257
    }
 
258
#endif
 
259
    if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
 
260
        windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
 
261
        strategy < 0 || strategy > Z_FIXED) {
 
262
        return Z_STREAM_ERROR;
 
263
    }
 
264
    if (windowBits == 8) windowBits = 9;  /* until 256-byte window bug fixed */
 
265
    s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
 
266
    if (s == Z_NULL) return Z_MEM_ERROR;
 
267
    strm->state = (struct internal_state FAR *)s;
 
268
    s->strm = strm;
 
269
 
 
270
    s->wrap = wrap;
 
271
    s->gzhead = Z_NULL;
 
272
    s->w_bits = windowBits;
 
273
    s->w_size = 1 << s->w_bits;
 
274
    s->w_mask = s->w_size - 1;
 
275
 
 
276
    s->hash_bits = memLevel + 7;
 
277
    s->hash_size = 1 << s->hash_bits;
 
278
    s->hash_mask = s->hash_size - 1;
 
279
    s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
 
280
 
 
281
    s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
 
282
    s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
 
283
    s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
 
284
 
 
285
    s->high_water = 0;      /* nothing written to s->window yet */
 
286
 
 
287
    s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
 
288
 
 
289
    overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
 
290
    s->pending_buf = (uchf *) overlay;
 
291
    s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
 
292
 
 
293
    if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
 
294
        s->pending_buf == Z_NULL) {
 
295
        s->status = FINISH_STATE;
 
296
        strm->msg = (char*)ERR_MSG(Z_MEM_ERROR);
 
297
        deflateEnd (strm);
 
298
        return Z_MEM_ERROR;
 
299
    }
 
300
    s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
 
301
    s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
 
302
 
 
303
    s->level = level;
 
304
    s->strategy = strategy;
 
305
    s->method = (Byte)method;
 
306
 
 
307
    return deflateReset(strm);
 
308
}
 
309
 
 
310
/* ========================================================================= */
 
311
int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
 
312
    z_streamp strm;
 
313
    const Bytef *dictionary;
 
314
    uInt  dictLength;
 
315
{
 
316
    deflate_state *s;
 
317
    uInt length = dictLength;
 
318
    uInt n;
 
319
    IPos hash_head = 0;
 
320
 
 
321
    if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL ||
 
322
        strm->state->wrap == 2 ||
 
323
        (strm->state->wrap == 1 && strm->state->status != INIT_STATE))
 
324
        return Z_STREAM_ERROR;
 
325
 
 
326
    s = strm->state;
 
327
    if (s->wrap)
 
328
        strm->adler = adler32(strm->adler, dictionary, dictLength);
 
329
 
 
330
    if (length < MIN_MATCH) return Z_OK;
 
331
    if (length > s->w_size) {
 
332
        length = s->w_size;
 
333
        dictionary += dictLength - length; /* use the tail of the dictionary */
 
334
    }
 
335
    zmemcpy(s->window, dictionary, length);
 
336
    s->strstart = length;
 
337
    s->block_start = (long)length;
 
338
 
 
339
    /* Insert all strings in the hash table (except for the last two bytes).
 
340
     * s->lookahead stays null, so s->ins_h will be recomputed at the next
 
341
     * call of fill_window.
 
342
     */
 
343
    s->ins_h = s->window[0];
 
344
    UPDATE_HASH(s, s->ins_h, s->window[1]);
 
345
    for (n = 0; n <= length - MIN_MATCH; n++) {
 
346
        INSERT_STRING(s, n, hash_head);
 
347
    }
 
348
    if (hash_head) hash_head = 0;  /* to make compiler happy */
 
349
    return Z_OK;
 
350
}
 
351
 
 
352
/* ========================================================================= */
 
353
int ZEXPORT deflateReset (strm)
 
354
    z_streamp strm;
 
355
{
 
356
    deflate_state *s;
 
357
 
 
358
    if (strm == Z_NULL || strm->state == Z_NULL ||
 
359
        strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0) {
 
360
        return Z_STREAM_ERROR;
 
361
    }
 
362
 
 
363
    strm->total_in = strm->total_out = 0;
 
364
    strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
 
365
    strm->data_type = Z_UNKNOWN;
 
366
 
 
367
    s = (deflate_state *)strm->state;
 
368
    s->pending = 0;
 
369
    s->pending_out = s->pending_buf;
 
370
 
 
371
    if (s->wrap < 0) {
 
372
        s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
 
373
    }
 
374
    s->status = s->wrap ? INIT_STATE : BUSY_STATE;
 
375
    strm->adler =
 
376
#ifdef GZIP
 
377
        s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
 
378
#endif
 
379
        adler32(0L, Z_NULL, 0);
 
380
    s->last_flush = Z_NO_FLUSH;
 
381
 
 
382
    _tr_init(s);
 
383
    lm_init(s);
 
384
 
 
385
    return Z_OK;
 
386
}
 
387
 
 
388
/* ========================================================================= */
 
389
int ZEXPORT deflateSetHeader (strm, head)
 
390
    z_streamp strm;
 
391
    gz_headerp head;
 
392
{
 
393
    if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
 
394
    if (strm->state->wrap != 2) return Z_STREAM_ERROR;
 
395
    strm->state->gzhead = head;
 
396
    return Z_OK;
 
397
}
 
398
 
 
399
/* ========================================================================= */
 
400
int ZEXPORT deflatePrime (strm, bits, value)
 
401
    z_streamp strm;
 
402
    int bits;
 
403
    int value;
 
404
{
 
405
    if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
 
406
    strm->state->bi_valid = bits;
 
407
    strm->state->bi_buf = (ush)(value & ((1 << bits) - 1));
 
408
    return Z_OK;
 
409
}
 
410
 
 
411
/* ========================================================================= */
 
412
int ZEXPORT deflateParams(strm, level, strategy)
 
413
    z_streamp strm;
 
414
    int level;
 
415
    int strategy;
 
416
{
 
417
    deflate_state *s;
 
418
    compress_func func;
 
419
    int err = Z_OK;
 
420
 
 
421
    if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
 
422
    s = strm->state;
 
423
 
 
424
#ifdef FASTEST
 
425
    if (level != 0) level = 1;
 
426
#else
 
427
    if (level == Z_DEFAULT_COMPRESSION) level = 6;
 
428
#endif
 
429
    if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
 
430
        return Z_STREAM_ERROR;
 
431
    }
 
432
    func = configuration_table[s->level].func;
 
433
 
 
434
    if ((strategy != s->strategy || func != configuration_table[level].func) &&
 
435
        strm->total_in != 0) {
 
436
        /* Flush the last buffer: */
 
437
        err = deflate(strm, Z_BLOCK);
 
438
    }
 
439
    if (s->level != level) {
 
440
        s->level = level;
 
441
        s->max_lazy_match   = configuration_table[level].max_lazy;
 
442
        s->good_match       = configuration_table[level].good_length;
 
443
        s->nice_match       = configuration_table[level].nice_length;
 
444
        s->max_chain_length = configuration_table[level].max_chain;
 
445
    }
 
446
    s->strategy = strategy;
 
447
    return err;
 
448
}
 
449
 
 
450
/* ========================================================================= */
 
451
int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
 
452
    z_streamp strm;
 
453
    int good_length;
 
454
    int max_lazy;
 
455
    int nice_length;
 
456
    int max_chain;
 
457
{
 
458
    deflate_state *s;
 
459
 
 
460
    if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
 
461
    s = strm->state;
 
462
    s->good_match = good_length;
 
463
    s->max_lazy_match = max_lazy;
 
464
    s->nice_match = nice_length;
 
465
    s->max_chain_length = max_chain;
 
466
    return Z_OK;
 
467
}
 
468
 
 
469
/* =========================================================================
 
470
 * For the default windowBits of 15 and memLevel of 8, this function returns
 
471
 * a close to exact, as well as small, upper bound on the compressed size.
 
472
 * They are coded as constants here for a reason--if the #define's are
 
473
 * changed, then this function needs to be changed as well.  The return
 
474
 * value for 15 and 8 only works for those exact settings.
 
475
 *
 
476
 * For any setting other than those defaults for windowBits and memLevel,
 
477
 * the value returned is a conservative worst case for the maximum expansion
 
478
 * resulting from using fixed blocks instead of stored blocks, which deflate
 
479
 * can emit on compressed data for some combinations of the parameters.
 
480
 *
 
481
 * This function could be more sophisticated to provide closer upper bounds for
 
482
 * every combination of windowBits and memLevel.  But even the conservative
 
483
 * upper bound of about 14% expansion does not seem onerous for output buffer
 
484
 * allocation.
 
485
 */
 
486
uLong ZEXPORT deflateBound(strm, sourceLen)
 
487
    z_streamp strm;
 
488
    uLong sourceLen;
 
489
{
 
490
    deflate_state *s;
 
491
    uLong complen, wraplen;
 
492
    Bytef *str;
 
493
 
 
494
    /* conservative upper bound for compressed data */
 
495
    complen = sourceLen +
 
496
              ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5;
 
497
 
 
498
    /* if can't get parameters, return conservative bound plus zlib wrapper */
 
499
    if (strm == Z_NULL || strm->state == Z_NULL)
 
500
        return complen + 6;
 
501
 
 
502
    /* compute wrapper length */
 
503
    s = strm->state;
 
504
    switch (s->wrap) {
 
505
    case 0:                                 /* raw deflate */
 
506
        wraplen = 0;
 
507
        break;
 
508
    case 1:                                 /* zlib wrapper */
 
509
        wraplen = 6 + (s->strstart ? 4 : 0);
 
510
        break;
 
511
    case 2:                                 /* gzip wrapper */
 
512
        wraplen = 18;
 
513
        if (s->gzhead != Z_NULL) {          /* user-supplied gzip header */
 
514
            if (s->gzhead->extra != Z_NULL)
 
515
                wraplen += 2 + s->gzhead->extra_len;
 
516
            str = s->gzhead->name;
 
517
            if (str != Z_NULL)
 
518
                do {
 
519
                    wraplen++;
 
520
                } while (*str++);
 
521
            str = s->gzhead->comment;
 
522
            if (str != Z_NULL)
 
523
                do {
 
524
                    wraplen++;
 
525
                } while (*str++);
 
526
            if (s->gzhead->hcrc)
 
527
                wraplen += 2;
 
528
        }
 
529
        break;
 
530
    default:                                /* for compiler happiness */
 
531
        wraplen = 6;
 
532
    }
 
533
 
 
534
    /* if not default parameters, return conservative bound */
 
535
    if (s->w_bits != 15 || s->hash_bits != 8 + 7)
 
536
        return complen + wraplen;
 
537
 
 
538
    /* default settings: return tight bound for that case */
 
539
    return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
 
540
           (sourceLen >> 25) + 13 - 6 + wraplen;
 
541
}
 
542
 
 
543
/* =========================================================================
 
544
 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
 
545
 * IN assertion: the stream state is correct and there is enough room in
 
546
 * pending_buf.
 
547
 */
 
548
local void putShortMSB (s, b)
 
549
    deflate_state *s;
 
550
    uInt b;
 
551
{
 
552
    put_byte(s, (Byte)(b >> 8));
 
553
    put_byte(s, (Byte)(b & 0xff));
 
554
}
 
555
 
 
556
/* =========================================================================
 
557
 * Flush as much pending output as possible. All deflate() output goes
 
558
 * through this function so some applications may wish to modify it
 
559
 * to avoid allocating a large strm->next_out buffer and copying into it.
 
560
 * (See also read_buf()).
 
561
 */
 
562
local void flush_pending(strm)
 
563
    z_streamp strm;
 
564
{
 
565
    unsigned len = strm->state->pending;
 
566
 
 
567
    if (len > strm->avail_out) len = strm->avail_out;
 
568
    if (len == 0) return;
 
569
 
 
570
    zmemcpy(strm->next_out, strm->state->pending_out, len);
 
571
    strm->next_out  += len;
 
572
    strm->state->pending_out  += len;
 
573
    strm->total_out += len;
 
574
    strm->avail_out  -= len;
 
575
    strm->state->pending -= len;
 
576
    if (strm->state->pending == 0) {
 
577
        strm->state->pending_out = strm->state->pending_buf;
 
578
    }
 
579
}
 
580
 
 
581
/* ========================================================================= */
 
582
int ZEXPORT deflate (strm, flush)
 
583
    z_streamp strm;
 
584
    int flush;
 
585
{
 
586
    int old_flush; /* value of flush param for previous deflate call */
 
587
    deflate_state *s;
 
588
 
 
589
    if (strm == Z_NULL || strm->state == Z_NULL ||
 
590
        flush > Z_BLOCK || flush < 0) {
 
591
        return Z_STREAM_ERROR;
 
592
    }
 
593
    s = strm->state;
 
594
 
 
595
    if (strm->next_out == Z_NULL ||
 
596
        (strm->next_in == Z_NULL && strm->avail_in != 0) ||
 
597
        (s->status == FINISH_STATE && flush != Z_FINISH)) {
 
598
        ERR_RETURN(strm, Z_STREAM_ERROR);
 
599
    }
 
600
    if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
 
601
 
 
602
    s->strm = strm; /* just in case */
 
603
    old_flush = s->last_flush;
 
604
    s->last_flush = flush;
 
605
 
 
606
    /* Write the header */
 
607
    if (s->status == INIT_STATE) {
 
608
#ifdef GZIP
 
609
        if (s->wrap == 2) {
 
610
            strm->adler = crc32(0L, Z_NULL, 0);
 
611
            put_byte(s, 31);
 
612
            put_byte(s, 139);
 
613
            put_byte(s, 8);
 
614
            if (s->gzhead == Z_NULL) {
 
615
                put_byte(s, 0);
 
616
                put_byte(s, 0);
 
617
                put_byte(s, 0);
 
618
                put_byte(s, 0);
 
619
                put_byte(s, 0);
 
620
                put_byte(s, s->level == 9 ? 2 :
 
621
                            (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
 
622
                             4 : 0));
 
623
                put_byte(s, OS_CODE);
 
624
                s->status = BUSY_STATE;
 
625
            }
 
626
            else {
 
627
                put_byte(s, (s->gzhead->text ? 1 : 0) +
 
628
                            (s->gzhead->hcrc ? 2 : 0) +
 
629
                            (s->gzhead->extra == Z_NULL ? 0 : 4) +
 
630
                            (s->gzhead->name == Z_NULL ? 0 : 8) +
 
631
                            (s->gzhead->comment == Z_NULL ? 0 : 16)
 
632
                        );
 
633
                put_byte(s, (Byte)(s->gzhead->time & 0xff));
 
634
                put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
 
635
                put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
 
636
                put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
 
637
                put_byte(s, s->level == 9 ? 2 :
 
638
                            (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
 
639
                             4 : 0));
 
640
                put_byte(s, s->gzhead->os & 0xff);
 
641
                if (s->gzhead->extra != Z_NULL) {
 
642
                    put_byte(s, s->gzhead->extra_len & 0xff);
 
643
                    put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
 
644
                }
 
645
                if (s->gzhead->hcrc)
 
646
                    strm->adler = crc32(strm->adler, s->pending_buf,
 
647
                                        s->pending);
 
648
                s->gzindex = 0;
 
649
                s->status = EXTRA_STATE;
 
650
            }
 
651
        }
 
652
        else
 
653
#endif
 
654
        {
 
655
            uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
 
656
            uInt level_flags;
 
657
 
 
658
            if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
 
659
                level_flags = 0;
 
660
            else if (s->level < 6)
 
661
                level_flags = 1;
 
662
            else if (s->level == 6)
 
663
                level_flags = 2;
 
664
            else
 
665
                level_flags = 3;
 
666
            header |= (level_flags << 6);
 
667
            if (s->strstart != 0) header |= PRESET_DICT;
 
668
            header += 31 - (header % 31);
 
669
 
 
670
            s->status = BUSY_STATE;
 
671
            putShortMSB(s, header);
 
672
 
 
673
            /* Save the adler32 of the preset dictionary: */
 
674
            if (s->strstart != 0) {
 
675
                putShortMSB(s, (uInt)(strm->adler >> 16));
 
676
                putShortMSB(s, (uInt)(strm->adler & 0xffff));
 
677
            }
 
678
            strm->adler = adler32(0L, Z_NULL, 0);
 
679
        }
 
680
    }
 
681
#ifdef GZIP
 
682
    if (s->status == EXTRA_STATE) {
 
683
        if (s->gzhead->extra != Z_NULL) {
 
684
            uInt beg = s->pending;  /* start of bytes to update crc */
 
685
 
 
686
            while (s->gzindex < (s->gzhead->extra_len & 0xffff)) {
 
687
                if (s->pending == s->pending_buf_size) {
 
688
                    if (s->gzhead->hcrc && s->pending > beg)
 
689
                        strm->adler = crc32(strm->adler, s->pending_buf + beg,
 
690
                                            s->pending - beg);
 
691
                    flush_pending(strm);
 
692
                    beg = s->pending;
 
693
                    if (s->pending == s->pending_buf_size)
 
694
                        break;
 
695
                }
 
696
                put_byte(s, s->gzhead->extra[s->gzindex]);
 
697
                s->gzindex++;
 
698
            }
 
699
            if (s->gzhead->hcrc && s->pending > beg)
 
700
                strm->adler = crc32(strm->adler, s->pending_buf + beg,
 
701
                                    s->pending - beg);
 
702
            if (s->gzindex == s->gzhead->extra_len) {
 
703
                s->gzindex = 0;
 
704
                s->status = NAME_STATE;
 
705
            }
 
706
        }
 
707
        else
 
708
            s->status = NAME_STATE;
 
709
    }
 
710
    if (s->status == NAME_STATE) {
 
711
        if (s->gzhead->name != Z_NULL) {
 
712
            uInt beg = s->pending;  /* start of bytes to update crc */
 
713
            int val;
 
714
 
 
715
            do {
 
716
                if (s->pending == s->pending_buf_size) {
 
717
                    if (s->gzhead->hcrc && s->pending > beg)
 
718
                        strm->adler = crc32(strm->adler, s->pending_buf + beg,
 
719
                                            s->pending - beg);
 
720
                    flush_pending(strm);
 
721
                    beg = s->pending;
 
722
                    if (s->pending == s->pending_buf_size) {
 
723
                        val = 1;
 
724
                        break;
 
725
                    }
 
726
                }
 
727
                val = s->gzhead->name[s->gzindex++];
 
728
                put_byte(s, val);
 
729
            } while (val != 0);
 
730
            if (s->gzhead->hcrc && s->pending > beg)
 
731
                strm->adler = crc32(strm->adler, s->pending_buf + beg,
 
732
                                    s->pending - beg);
 
733
            if (val == 0) {
 
734
                s->gzindex = 0;
 
735
                s->status = COMMENT_STATE;
 
736
            }
 
737
        }
 
738
        else
 
739
            s->status = COMMENT_STATE;
 
740
    }
 
741
    if (s->status == COMMENT_STATE) {
 
742
        if (s->gzhead->comment != Z_NULL) {
 
743
            uInt beg = s->pending;  /* start of bytes to update crc */
 
744
            int val;
 
745
 
 
746
            do {
 
747
                if (s->pending == s->pending_buf_size) {
 
748
                    if (s->gzhead->hcrc && s->pending > beg)
 
749
                        strm->adler = crc32(strm->adler, s->pending_buf + beg,
 
750
                                            s->pending - beg);
 
751
                    flush_pending(strm);
 
752
                    beg = s->pending;
 
753
                    if (s->pending == s->pending_buf_size) {
 
754
                        val = 1;
 
755
                        break;
 
756
                    }
 
757
                }
 
758
                val = s->gzhead->comment[s->gzindex++];
 
759
                put_byte(s, val);
 
760
            } while (val != 0);
 
761
            if (s->gzhead->hcrc && s->pending > beg)
 
762
                strm->adler = crc32(strm->adler, s->pending_buf + beg,
 
763
                                    s->pending - beg);
 
764
            if (val == 0)
 
765
                s->status = HCRC_STATE;
 
766
        }
 
767
        else
 
768
            s->status = HCRC_STATE;
 
769
    }
 
770
    if (s->status == HCRC_STATE) {
 
771
        if (s->gzhead->hcrc) {
 
772
            if (s->pending + 2 > s->pending_buf_size)
 
773
                flush_pending(strm);
 
774
            if (s->pending + 2 <= s->pending_buf_size) {
 
775
                put_byte(s, (Byte)(strm->adler & 0xff));
 
776
                put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
 
777
                strm->adler = crc32(0L, Z_NULL, 0);
 
778
                s->status = BUSY_STATE;
 
779
            }
 
780
        }
 
781
        else
 
782
            s->status = BUSY_STATE;
 
783
    }
 
784
#endif
 
785
 
 
786
    /* Flush as much pending output as possible */
 
787
    if (s->pending != 0) {
 
788
        flush_pending(strm);
 
789
        if (strm->avail_out == 0) {
 
790
            /* Since avail_out is 0, deflate will be called again with
 
791
             * more output space, but possibly with both pending and
 
792
             * avail_in equal to zero. There won't be anything to do,
 
793
             * but this is not an error situation so make sure we
 
794
             * return OK instead of BUF_ERROR at next call of deflate:
 
795
             */
 
796
            s->last_flush = -1;
 
797
            return Z_OK;
 
798
        }
 
799
 
 
800
    /* Make sure there is something to do and avoid duplicate consecutive
 
801
     * flushes. For repeated and useless calls with Z_FINISH, we keep
 
802
     * returning Z_STREAM_END instead of Z_BUF_ERROR.
 
803
     */
 
804
    } else if (strm->avail_in == 0 && flush <= old_flush &&
 
805
               flush != Z_FINISH) {
 
806
        ERR_RETURN(strm, Z_BUF_ERROR);
 
807
    }
 
808
 
 
809
    /* User must not provide more input after the first FINISH: */
 
810
    if (s->status == FINISH_STATE && strm->avail_in != 0) {
 
811
        ERR_RETURN(strm, Z_BUF_ERROR);
 
812
    }
 
813
 
 
814
    /* Start a new block or continue the current one.
 
815
     */
 
816
    if (strm->avail_in != 0 || s->lookahead != 0 ||
 
817
        (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
 
818
        block_state bstate;
 
819
 
 
820
        bstate = s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
 
821
                    (s->strategy == Z_RLE ? deflate_rle(s, flush) :
 
822
                        (*(configuration_table[s->level].func))(s, flush));
 
823
 
 
824
        if (bstate == finish_started || bstate == finish_done) {
 
825
            s->status = FINISH_STATE;
 
826
        }
 
827
        if (bstate == need_more || bstate == finish_started) {
 
828
            if (strm->avail_out == 0) {
 
829
                s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
 
830
            }
 
831
            return Z_OK;
 
832
            /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
 
833
             * of deflate should use the same flush parameter to make sure
 
834
             * that the flush is complete. So we don't have to output an
 
835
             * empty block here, this will be done at next call. This also
 
836
             * ensures that for a very small output buffer, we emit at most
 
837
             * one empty block.
 
838
             */
 
839
        }
 
840
        if (bstate == block_done) {
 
841
            if (flush == Z_PARTIAL_FLUSH) {
 
842
                _tr_align(s);
 
843
            } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
 
844
                _tr_stored_block(s, (char*)0, 0L, 0);
 
845
                /* For a full flush, this empty block will be recognized
 
846
                 * as a special marker by inflate_sync().
 
847
                 */
 
848
                if (flush == Z_FULL_FLUSH) {
 
849
                    CLEAR_HASH(s);             /* forget history */
 
850
                    if (s->lookahead == 0) {
 
851
                        s->strstart = 0;
 
852
                        s->block_start = 0L;
 
853
                    }
 
854
                }
 
855
            }
 
856
            flush_pending(strm);
 
857
            if (strm->avail_out == 0) {
 
858
              s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
 
859
              return Z_OK;
 
860
            }
 
861
        }
 
862
    }
 
863
    Assert(strm->avail_out > 0, "bug2");
 
864
 
 
865
    if (flush != Z_FINISH) return Z_OK;
 
866
    if (s->wrap <= 0) return Z_STREAM_END;
 
867
 
 
868
    /* Write the trailer */
 
869
#ifdef GZIP
 
870
    if (s->wrap == 2) {
 
871
        put_byte(s, (Byte)(strm->adler & 0xff));
 
872
        put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
 
873
        put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
 
874
        put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
 
875
        put_byte(s, (Byte)(strm->total_in & 0xff));
 
876
        put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
 
877
        put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
 
878
        put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
 
879
    }
 
880
    else
 
881
#endif
 
882
    {
 
883
        putShortMSB(s, (uInt)(strm->adler >> 16));
 
884
        putShortMSB(s, (uInt)(strm->adler & 0xffff));
 
885
    }
 
886
    flush_pending(strm);
 
887
    /* If avail_out is zero, the application will call deflate again
 
888
     * to flush the rest.
 
889
     */
 
890
    if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
 
891
    return s->pending != 0 ? Z_OK : Z_STREAM_END;
 
892
}
 
893
 
 
894
/* ========================================================================= */
 
895
int ZEXPORT deflateEnd (strm)
 
896
    z_streamp strm;
 
897
{
 
898
    int status;
 
899
 
 
900
    if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
 
901
 
 
902
    status = strm->state->status;
 
903
    if (status != INIT_STATE &&
 
904
        status != EXTRA_STATE &&
 
905
        status != NAME_STATE &&
 
906
        status != COMMENT_STATE &&
 
907
        status != HCRC_STATE &&
 
908
        status != BUSY_STATE &&
 
909
        status != FINISH_STATE) {
 
910
      return Z_STREAM_ERROR;
 
911
    }
 
912
 
 
913
    /* Deallocate in reverse order of allocations: */
 
914
    TRY_FREE(strm, strm->state->pending_buf);
 
915
    TRY_FREE(strm, strm->state->head);
 
916
    TRY_FREE(strm, strm->state->prev);
 
917
    TRY_FREE(strm, strm->state->window);
 
918
 
 
919
    ZFREE(strm, strm->state);
 
920
    strm->state = Z_NULL;
 
921
 
 
922
    return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
 
923
}
 
924
 
 
925
/* =========================================================================
 
926
 * Copy the source state to the destination state.
 
927
 * To simplify the source, this is not supported for 16-bit MSDOS (which
 
928
 * doesn't have enough memory anyway to duplicate compression states).
 
929
 */
 
930
int ZEXPORT deflateCopy (dest, source)
 
931
    z_streamp dest;
 
932
    z_streamp source;
 
933
{
 
934
#ifdef MAXSEG_64K
 
935
    return Z_STREAM_ERROR;
 
936
#else
 
937
    deflate_state *ds;
 
938
    deflate_state *ss;
 
939
    ushf *overlay;
 
940
 
 
941
 
 
942
    if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) {
 
943
        return Z_STREAM_ERROR;
 
944
    }
 
945
 
 
946
    ss = source->state;
 
947
 
 
948
    zmemcpy(dest, source, sizeof(z_stream));
 
949
 
 
950
    ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
 
951
    if (ds == Z_NULL) return Z_MEM_ERROR;
 
952
    dest->state = (struct internal_state FAR *) ds;
 
953
    zmemcpy(ds, ss, sizeof(deflate_state));
 
954
    ds->strm = dest;
 
955
 
 
956
    ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
 
957
    ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
 
958
    ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
 
959
    overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
 
960
    ds->pending_buf = (uchf *) overlay;
 
961
 
 
962
    if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
 
963
        ds->pending_buf == Z_NULL) {
 
964
        deflateEnd (dest);
 
965
        return Z_MEM_ERROR;
 
966
    }
 
967
    /* following zmemcpy do not work for 16-bit MSDOS */
 
968
    zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
 
969
    zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos));
 
970
    zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos));
 
971
    zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
 
972
 
 
973
    ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
 
974
    ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
 
975
    ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
 
976
 
 
977
    ds->l_desc.dyn_tree = ds->dyn_ltree;
 
978
    ds->d_desc.dyn_tree = ds->dyn_dtree;
 
979
    ds->bl_desc.dyn_tree = ds->bl_tree;
 
980
 
 
981
    return Z_OK;
 
982
#endif /* MAXSEG_64K */
 
983
}
 
984
 
 
985
/* ===========================================================================
 
986
 * Read a new buffer from the current input stream, update the adler32
 
987
 * and total number of bytes read.  All deflate() input goes through
 
988
 * this function so some applications may wish to modify it to avoid
 
989
 * allocating a large strm->next_in buffer and copying from it.
 
990
 * (See also flush_pending()).
 
991
 */
 
992
local int read_buf(strm, buf, size)
 
993
    z_streamp strm;
 
994
    Bytef *buf;
 
995
    unsigned size;
 
996
{
 
997
    unsigned len = strm->avail_in;
 
998
 
 
999
    if (len > size) len = size;
 
1000
    if (len == 0) return 0;
 
1001
 
 
1002
    strm->avail_in  -= len;
 
1003
 
 
1004
    if (strm->state->wrap == 1) {
 
1005
        strm->adler = adler32(strm->adler, strm->next_in, len);
 
1006
    }
 
1007
#ifdef GZIP
 
1008
    else if (strm->state->wrap == 2) {
 
1009
        strm->adler = crc32(strm->adler, strm->next_in, len);
 
1010
    }
 
1011
#endif
 
1012
    zmemcpy(buf, strm->next_in, len);
 
1013
    strm->next_in  += len;
 
1014
    strm->total_in += len;
 
1015
 
 
1016
    return (int)len;
 
1017
}
 
1018
 
 
1019
/* ===========================================================================
 
1020
 * Initialize the "longest match" routines for a new zlib stream
 
1021
 */
 
1022
local void lm_init (s)
 
1023
    deflate_state *s;
 
1024
{
 
1025
    s->window_size = (ulg)2L*s->w_size;
 
1026
 
 
1027
    CLEAR_HASH(s);
 
1028
 
 
1029
    /* Set the default configuration parameters:
 
1030
     */
 
1031
    s->max_lazy_match   = configuration_table[s->level].max_lazy;
 
1032
    s->good_match       = configuration_table[s->level].good_length;
 
1033
    s->nice_match       = configuration_table[s->level].nice_length;
 
1034
    s->max_chain_length = configuration_table[s->level].max_chain;
 
1035
 
 
1036
    s->strstart = 0;
 
1037
    s->block_start = 0L;
 
1038
    s->lookahead = 0;
 
1039
    s->match_length = s->prev_length = MIN_MATCH-1;
 
1040
    s->match_available = 0;
 
1041
    s->ins_h = 0;
 
1042
#ifndef FASTEST
 
1043
#ifdef ASMV
 
1044
    match_init(); /* initialize the asm code */
 
1045
#endif
 
1046
#endif
 
1047
}
 
1048
 
 
1049
#ifndef FASTEST
 
1050
/* ===========================================================================
 
1051
 * Set match_start to the longest match starting at the given string and
 
1052
 * return its length. Matches shorter or equal to prev_length are discarded,
 
1053
 * in which case the result is equal to prev_length and match_start is
 
1054
 * garbage.
 
1055
 * IN assertions: cur_match is the head of the hash chain for the current
 
1056
 *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
 
1057
 * OUT assertion: the match length is not greater than s->lookahead.
 
1058
 */
 
1059
#ifndef ASMV
 
1060
/* For 80x86 and 680x0, an optimized version will be provided in match.asm or
 
1061
 * match.S. The code will be functionally equivalent.
 
1062
 */
 
1063
local uInt longest_match(s, cur_match)
 
1064
    deflate_state *s;
 
1065
    IPos cur_match;                             /* current match */
 
1066
{
 
1067
    unsigned chain_length = s->max_chain_length;/* max hash chain length */
 
1068
    register Bytef *scan = s->window + s->strstart; /* current string */
 
1069
    register Bytef *match;                       /* matched string */
 
1070
    register int len;                           /* length of current match */
 
1071
    int best_len = s->prev_length;              /* best match length so far */
 
1072
    int nice_match = s->nice_match;             /* stop if match long enough */
 
1073
    IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
 
1074
        s->strstart - (IPos)MAX_DIST(s) : NIL;
 
1075
    /* Stop when cur_match becomes <= limit. To simplify the code,
 
1076
     * we prevent matches with the string of window index 0.
 
1077
     */
 
1078
    Posf *prev = s->prev;
 
1079
    uInt wmask = s->w_mask;
 
1080
 
 
1081
#ifdef UNALIGNED_OK
 
1082
    /* Compare two bytes at a time. Note: this is not always beneficial.
 
1083
     * Try with and without -DUNALIGNED_OK to check.
 
1084
     */
 
1085
    register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
 
1086
    register ush scan_start = *(ushf*)scan;
 
1087
    register ush scan_end   = *(ushf*)(scan+best_len-1);
 
1088
#else
 
1089
    register Bytef *strend = s->window + s->strstart + MAX_MATCH;
 
1090
    register Byte scan_end1  = scan[best_len-1];
 
1091
    register Byte scan_end   = scan[best_len];
 
1092
#endif
 
1093
 
 
1094
    /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
 
1095
     * It is easy to get rid of this optimization if necessary.
 
1096
     */
 
1097
    Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
 
1098
 
 
1099
    /* Do not waste too much time if we already have a good match: */
 
1100
    if (s->prev_length >= s->good_match) {
 
1101
        chain_length >>= 2;
 
1102
    }
 
1103
    /* Do not look for matches beyond the end of the input. This is necessary
 
1104
     * to make deflate deterministic.
 
1105
     */
 
1106
    if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
 
1107
 
 
1108
    Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
 
1109
 
 
1110
    do {
 
1111
        Assert(cur_match < s->strstart, "no future");
 
1112
        match = s->window + cur_match;
 
1113
 
 
1114
        /* Skip to next match if the match length cannot increase
 
1115
         * or if the match length is less than 2.  Note that the checks below
 
1116
         * for insufficient lookahead only occur occasionally for performance
 
1117
         * reasons.  Therefore uninitialized memory will be accessed, and
 
1118
         * conditional jumps will be made that depend on those values.
 
1119
         * However the length of the match is limited to the lookahead, so
 
1120
         * the output of deflate is not affected by the uninitialized values.
 
1121
         */
 
1122
#if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
 
1123
        /* This code assumes sizeof(unsigned short) == 2. Do not use
 
1124
         * UNALIGNED_OK if your compiler uses a different size.
 
1125
         */
 
1126
        if (*(ushf*)(match+best_len-1) != scan_end ||
 
1127
            *(ushf*)match != scan_start) continue;
 
1128
 
 
1129
        /* It is not necessary to compare scan[2] and match[2] since they are
 
1130
         * always equal when the other bytes match, given that the hash keys
 
1131
         * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
 
1132
         * strstart+3, +5, ... up to strstart+257. We check for insufficient
 
1133
         * lookahead only every 4th comparison; the 128th check will be made
 
1134
         * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
 
1135
         * necessary to put more guard bytes at the end of the window, or
 
1136
         * to check more often for insufficient lookahead.
 
1137
         */
 
1138
        Assert(scan[2] == match[2], "scan[2]?");
 
1139
        scan++, match++;
 
1140
        do {
 
1141
        } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
 
1142
                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
 
1143
                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
 
1144
                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
 
1145
                 scan < strend);
 
1146
        /* The funny "do {}" generates better code on most compilers */
 
1147
 
 
1148
        /* Here, scan <= window+strstart+257 */
 
1149
        Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
 
1150
        if (*scan == *match) scan++;
 
1151
 
 
1152
        len = (MAX_MATCH - 1) - (int)(strend-scan);
 
1153
        scan = strend - (MAX_MATCH-1);
 
1154
 
 
1155
#else /* UNALIGNED_OK */
 
1156
 
 
1157
        if (match[best_len]   != scan_end  ||
 
1158
            match[best_len-1] != scan_end1 ||
 
1159
            *match            != *scan     ||
 
1160
            *++match          != scan[1])      continue;
 
1161
 
 
1162
        /* The check at best_len-1 can be removed because it will be made
 
1163
         * again later. (This heuristic is not always a win.)
 
1164
         * It is not necessary to compare scan[2] and match[2] since they
 
1165
         * are always equal when the other bytes match, given that
 
1166
         * the hash keys are equal and that HASH_BITS >= 8.
 
1167
         */
 
1168
        scan += 2, match++;
 
1169
        Assert(*scan == *match, "match[2]?");
 
1170
 
 
1171
        /* We check for insufficient lookahead only every 8th comparison;
 
1172
         * the 256th check will be made at strstart+258.
 
1173
         */
 
1174
        do {
 
1175
        } while (*++scan == *++match && *++scan == *++match &&
 
1176
                 *++scan == *++match && *++scan == *++match &&
 
1177
                 *++scan == *++match && *++scan == *++match &&
 
1178
                 *++scan == *++match && *++scan == *++match &&
 
1179
                 scan < strend);
 
1180
 
 
1181
        Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
 
1182
 
 
1183
        len = MAX_MATCH - (int)(strend - scan);
 
1184
        scan = strend - MAX_MATCH;
 
1185
 
 
1186
#endif /* UNALIGNED_OK */
 
1187
 
 
1188
        if (len > best_len) {
 
1189
            s->match_start = cur_match;
 
1190
            best_len = len;
 
1191
            if (len >= nice_match) break;
 
1192
#ifdef UNALIGNED_OK
 
1193
            scan_end = *(ushf*)(scan+best_len-1);
 
1194
#else
 
1195
            scan_end1  = scan[best_len-1];
 
1196
            scan_end   = scan[best_len];
 
1197
#endif
 
1198
        }
 
1199
    } while ((cur_match = prev[cur_match & wmask]) > limit
 
1200
             && --chain_length != 0);
 
1201
 
 
1202
    if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
 
1203
    return s->lookahead;
 
1204
}
 
1205
#endif /* ASMV */
 
1206
 
 
1207
#else /* FASTEST */
 
1208
 
 
1209
/* ---------------------------------------------------------------------------
 
1210
 * Optimized version for FASTEST only
 
1211
 */
 
1212
local uInt longest_match(s, cur_match)
 
1213
    deflate_state *s;
 
1214
    IPos cur_match;                             /* current match */
 
1215
{
 
1216
    register Bytef *scan = s->window + s->strstart; /* current string */
 
1217
    register Bytef *match;                       /* matched string */
 
1218
    register int len;                           /* length of current match */
 
1219
    register Bytef *strend = s->window + s->strstart + MAX_MATCH;
 
1220
 
 
1221
    /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
 
1222
     * It is easy to get rid of this optimization if necessary.
 
1223
     */
 
1224
    Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
 
1225
 
 
1226
    Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
 
1227
 
 
1228
    Assert(cur_match < s->strstart, "no future");
 
1229
 
 
1230
    match = s->window + cur_match;
 
1231
 
 
1232
    /* Return failure if the match length is less than 2:
 
1233
     */
 
1234
    if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
 
1235
 
 
1236
    /* The check at best_len-1 can be removed because it will be made
 
1237
     * again later. (This heuristic is not always a win.)
 
1238
     * It is not necessary to compare scan[2] and match[2] since they
 
1239
     * are always equal when the other bytes match, given that
 
1240
     * the hash keys are equal and that HASH_BITS >= 8.
 
1241
     */
 
1242
    scan += 2, match += 2;
 
1243
    Assert(*scan == *match, "match[2]?");
 
1244
 
 
1245
    /* We check for insufficient lookahead only every 8th comparison;
 
1246
     * the 256th check will be made at strstart+258.
 
1247
     */
 
1248
    do {
 
1249
    } while (*++scan == *++match && *++scan == *++match &&
 
1250
             *++scan == *++match && *++scan == *++match &&
 
1251
             *++scan == *++match && *++scan == *++match &&
 
1252
             *++scan == *++match && *++scan == *++match &&
 
1253
             scan < strend);
 
1254
 
 
1255
    Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
 
1256
 
 
1257
    len = MAX_MATCH - (int)(strend - scan);
 
1258
 
 
1259
    if (len < MIN_MATCH) return MIN_MATCH - 1;
 
1260
 
 
1261
    s->match_start = cur_match;
 
1262
    return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
 
1263
}
 
1264
 
 
1265
#endif /* FASTEST */
 
1266
 
 
1267
#ifdef DEBUG
 
1268
/* ===========================================================================
 
1269
 * Check that the match at match_start is indeed a match.
 
1270
 */
 
1271
local void check_match(s, start, match, length)
 
1272
    deflate_state *s;
 
1273
    IPos start, match;
 
1274
    int length;
 
1275
{
 
1276
    /* check that the match is indeed a match */
 
1277
    if (zmemcmp(s->window + match,
 
1278
                s->window + start, length) != EQUAL) {
 
1279
        fprintf(stderr, " start %u, match %u, length %d\n",
 
1280
                start, match, length);
 
1281
        do {
 
1282
            fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
 
1283
        } while (--length != 0);
 
1284
        z_error("invalid match");
 
1285
    }
 
1286
    if (z_verbose > 1) {
 
1287
        fprintf(stderr,"\\[%d,%d]", start-match, length);
 
1288
        do { putc(s->window[start++], stderr); } while (--length != 0);
 
1289
    }
 
1290
}
 
1291
#else
 
1292
#  define check_match(s, start, match, length)
 
1293
#endif /* DEBUG */
 
1294
 
 
1295
/* ===========================================================================
 
1296
 * Fill the window when the lookahead becomes insufficient.
 
1297
 * Updates strstart and lookahead.
 
1298
 *
 
1299
 * IN assertion: lookahead < MIN_LOOKAHEAD
 
1300
 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
 
1301
 *    At least one byte has been read, or avail_in == 0; reads are
 
1302
 *    performed for at least two bytes (required for the zip translate_eol
 
1303
 *    option -- not supported here).
 
1304
 */
 
1305
local void fill_window(s)
 
1306
    deflate_state *s;
 
1307
{
 
1308
    register unsigned n, m;
 
1309
    register Posf *p;
 
1310
    unsigned more;    /* Amount of free space at the end of the window. */
 
1311
    uInt wsize = s->w_size;
 
1312
 
 
1313
    do {
 
1314
        more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
 
1315
 
 
1316
        /* Deal with !@#$% 64K limit: */
 
1317
        if (sizeof(int) <= 2) {
 
1318
            if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
 
1319
                more = wsize;
 
1320
 
 
1321
            } else if (more == (unsigned)(-1)) {
 
1322
                /* Very unlikely, but possible on 16 bit machine if
 
1323
                 * strstart == 0 && lookahead == 1 (input done a byte at time)
 
1324
                 */
 
1325
                more--;
 
1326
            }
 
1327
        }
 
1328
 
 
1329
        /* If the window is almost full and there is insufficient lookahead,
 
1330
         * move the upper half to the lower one to make room in the upper half.
 
1331
         */
 
1332
        if (s->strstart >= wsize+MAX_DIST(s)) {
 
1333
 
 
1334
            zmemcpy(s->window, s->window+wsize, (unsigned)wsize);
 
1335
            s->match_start -= wsize;
 
1336
            s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
 
1337
            s->block_start -= (long) wsize;
 
1338
 
 
1339
            /* Slide the hash table (could be avoided with 32 bit values
 
1340
               at the expense of memory usage). We slide even when level == 0
 
1341
               to keep the hash table consistent if we switch back to level > 0
 
1342
               later. (Using level 0 permanently is not an optimal usage of
 
1343
               zlib, so we don't care about this pathological case.)
 
1344
             */
 
1345
            n = s->hash_size;
 
1346
            p = &s->head[n];
 
1347
            do {
 
1348
                m = *--p;
 
1349
                *p = (Pos)(m >= wsize ? m-wsize : NIL);
 
1350
            } while (--n);
 
1351
 
 
1352
            n = wsize;
 
1353
#ifndef FASTEST
 
1354
            p = &s->prev[n];
 
1355
            do {
 
1356
                m = *--p;
 
1357
                *p = (Pos)(m >= wsize ? m-wsize : NIL);
 
1358
                /* If n is not on any hash chain, prev[n] is garbage but
 
1359
                 * its value will never be used.
 
1360
                 */
 
1361
            } while (--n);
 
1362
#endif
 
1363
            more += wsize;
 
1364
        }
 
1365
        if (s->strm->avail_in == 0) return;
 
1366
 
 
1367
        /* If there was no sliding:
 
1368
         *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
 
1369
         *    more == window_size - lookahead - strstart
 
1370
         * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
 
1371
         * => more >= window_size - 2*WSIZE + 2
 
1372
         * In the BIG_MEM or MMAP case (not yet supported),
 
1373
         *   window_size == input_size + MIN_LOOKAHEAD  &&
 
1374
         *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
 
1375
         * Otherwise, window_size == 2*WSIZE so more >= 2.
 
1376
         * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
 
1377
         */
 
1378
        Assert(more >= 2, "more < 2");
 
1379
 
 
1380
        n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
 
1381
        s->lookahead += n;
 
1382
 
 
1383
        /* Initialize the hash value now that we have some input: */
 
1384
        if (s->lookahead >= MIN_MATCH) {
 
1385
            s->ins_h = s->window[s->strstart];
 
1386
            UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
 
1387
#if MIN_MATCH != 3
 
1388
            Call UPDATE_HASH() MIN_MATCH-3 more times
 
1389
#endif
 
1390
        }
 
1391
        /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
 
1392
         * but this is not important since only literal bytes will be emitted.
 
1393
         */
 
1394
 
 
1395
    } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
 
1396
 
 
1397
    /* If the WIN_INIT bytes after the end of the current data have never been
 
1398
     * written, then zero those bytes in order to avoid memory check reports of
 
1399
     * the use of uninitialized (or uninitialised as Julian writes) bytes by
 
1400
     * the longest match routines.  Update the high water mark for the next
 
1401
     * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
 
1402
     * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
 
1403
     */
 
1404
    if (s->high_water < s->window_size) {
 
1405
        ulg curr = s->strstart + (ulg)(s->lookahead);
 
1406
        ulg init;
 
1407
 
 
1408
        if (s->high_water < curr) {
 
1409
            /* Previous high water mark below current data -- zero WIN_INIT
 
1410
             * bytes or up to end of window, whichever is less.
 
1411
             */
 
1412
            init = s->window_size - curr;
 
1413
            if (init > WIN_INIT)
 
1414
                init = WIN_INIT;
 
1415
            zmemzero(s->window + curr, (unsigned)init);
 
1416
            s->high_water = curr + init;
 
1417
        }
 
1418
        else if (s->high_water < (ulg)curr + WIN_INIT) {
 
1419
            /* High water mark at or above current data, but below current data
 
1420
             * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
 
1421
             * to end of window, whichever is less.
 
1422
             */
 
1423
            init = (ulg)curr + WIN_INIT - s->high_water;
 
1424
            if (init > s->window_size - s->high_water)
 
1425
                init = s->window_size - s->high_water;
 
1426
            zmemzero(s->window + s->high_water, (unsigned)init);
 
1427
            s->high_water += init;
 
1428
        }
 
1429
    }
 
1430
}
 
1431
 
 
1432
/* ===========================================================================
 
1433
 * Flush the current block, with given end-of-file flag.
 
1434
 * IN assertion: strstart is set to the end of the current match.
 
1435
 */
 
1436
#define FLUSH_BLOCK_ONLY(s, last) { \
 
1437
   _tr_flush_block(s, (s->block_start >= 0L ? \
 
1438
                   (charf *)&s->window[(unsigned)s->block_start] : \
 
1439
                   (charf *)Z_NULL), \
 
1440
                (ulg)((long)s->strstart - s->block_start), \
 
1441
                (last)); \
 
1442
   s->block_start = s->strstart; \
 
1443
   flush_pending(s->strm); \
 
1444
   Tracev((stderr,"[FLUSH]")); \
 
1445
}
 
1446
 
 
1447
/* Same but force premature exit if necessary. */
 
1448
#define FLUSH_BLOCK(s, last) { \
 
1449
   FLUSH_BLOCK_ONLY(s, last); \
 
1450
   if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
 
1451
}
 
1452
 
 
1453
/* ===========================================================================
 
1454
 * Copy without compression as much as possible from the input stream, return
 
1455
 * the current block state.
 
1456
 * This function does not insert new strings in the dictionary since
 
1457
 * uncompressible data is probably not useful. This function is used
 
1458
 * only for the level=0 compression option.
 
1459
 * NOTE: this function should be optimized to avoid extra copying from
 
1460
 * window to pending_buf.
 
1461
 */
 
1462
local block_state deflate_stored(s, flush)
 
1463
    deflate_state *s;
 
1464
    int flush;
 
1465
{
 
1466
    /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
 
1467
     * to pending_buf_size, and each stored block has a 5 byte header:
 
1468
     */
 
1469
    ulg max_block_size = 0xffff;
 
1470
    ulg max_start;
 
1471
 
 
1472
    if (max_block_size > s->pending_buf_size - 5) {
 
1473
        max_block_size = s->pending_buf_size - 5;
 
1474
    }
 
1475
 
 
1476
    /* Copy as much as possible from input to output: */
 
1477
    for (;;) {
 
1478
        /* Fill the window as much as possible: */
 
1479
        if (s->lookahead <= 1) {
 
1480
 
 
1481
            Assert(s->strstart < s->w_size+MAX_DIST(s) ||
 
1482
                   s->block_start >= (long)s->w_size, "slide too late");
 
1483
 
 
1484
            fill_window(s);
 
1485
            if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
 
1486
 
 
1487
            if (s->lookahead == 0) break; /* flush the current block */
 
1488
        }
 
1489
        Assert(s->block_start >= 0L, "block gone");
 
1490
 
 
1491
        s->strstart += s->lookahead;
 
1492
        s->lookahead = 0;
 
1493
 
 
1494
        /* Emit a stored block if pending_buf will be full: */
 
1495
        max_start = s->block_start + max_block_size;
 
1496
        if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
 
1497
            /* strstart == 0 is possible when wraparound on 16-bit machine */
 
1498
            s->lookahead = (uInt)(s->strstart - max_start);
 
1499
            s->strstart = (uInt)max_start;
 
1500
            FLUSH_BLOCK(s, 0);
 
1501
        }
 
1502
        /* Flush if we may have to slide, otherwise block_start may become
 
1503
         * negative and the data will be gone:
 
1504
         */
 
1505
        if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
 
1506
            FLUSH_BLOCK(s, 0);
 
1507
        }
 
1508
    }
 
1509
    FLUSH_BLOCK(s, flush == Z_FINISH);
 
1510
    return flush == Z_FINISH ? finish_done : block_done;
 
1511
}
 
1512
 
 
1513
/* ===========================================================================
 
1514
 * Compress as much as possible from the input stream, return the current
 
1515
 * block state.
 
1516
 * This function does not perform lazy evaluation of matches and inserts
 
1517
 * new strings in the dictionary only for unmatched strings or for short
 
1518
 * matches. It is used only for the fast compression options.
 
1519
 */
 
1520
local block_state deflate_fast(s, flush)
 
1521
    deflate_state *s;
 
1522
    int flush;
 
1523
{
 
1524
    IPos hash_head;       /* head of the hash chain */
 
1525
    int bflush;           /* set if current block must be flushed */
 
1526
 
 
1527
    for (;;) {
 
1528
        /* Make sure that we always have enough lookahead, except
 
1529
         * at the end of the input file. We need MAX_MATCH bytes
 
1530
         * for the next match, plus MIN_MATCH bytes to insert the
 
1531
         * string following the next match.
 
1532
         */
 
1533
        if (s->lookahead < MIN_LOOKAHEAD) {
 
1534
            fill_window(s);
 
1535
            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
 
1536
                return need_more;
 
1537
            }
 
1538
            if (s->lookahead == 0) break; /* flush the current block */
 
1539
        }
 
1540
 
 
1541
        /* Insert the string window[strstart .. strstart+2] in the
 
1542
         * dictionary, and set hash_head to the head of the hash chain:
 
1543
         */
 
1544
        hash_head = NIL;
 
1545
        if (s->lookahead >= MIN_MATCH) {
 
1546
            INSERT_STRING(s, s->strstart, hash_head);
 
1547
        }
 
1548
 
 
1549
        /* Find the longest match, discarding those <= prev_length.
 
1550
         * At this point we have always match_length < MIN_MATCH
 
1551
         */
 
1552
        if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
 
1553
            /* To simplify the code, we prevent matches with the string
 
1554
             * of window index 0 (in particular we have to avoid a match
 
1555
             * of the string with itself at the start of the input file).
 
1556
             */
 
1557
            s->match_length = longest_match (s, hash_head);
 
1558
            /* longest_match() sets match_start */
 
1559
        }
 
1560
        if (s->match_length >= MIN_MATCH) {
 
1561
            check_match(s, s->strstart, s->match_start, s->match_length);
 
1562
 
 
1563
            _tr_tally_dist(s, s->strstart - s->match_start,
 
1564
                           s->match_length - MIN_MATCH, bflush);
 
1565
 
 
1566
            s->lookahead -= s->match_length;
 
1567
 
 
1568
            /* Insert new strings in the hash table only if the match length
 
1569
             * is not too large. This saves time but degrades compression.
 
1570
             */
 
1571
#ifndef FASTEST
 
1572
            if (s->match_length <= s->max_insert_length &&
 
1573
                s->lookahead >= MIN_MATCH) {
 
1574
                s->match_length--; /* string at strstart already in table */
 
1575
                do {
 
1576
                    s->strstart++;
 
1577
                    INSERT_STRING(s, s->strstart, hash_head);
 
1578
                    /* strstart never exceeds WSIZE-MAX_MATCH, so there are
 
1579
                     * always MIN_MATCH bytes ahead.
 
1580
                     */
 
1581
                } while (--s->match_length != 0);
 
1582
                s->strstart++;
 
1583
            } else
 
1584
#endif
 
1585
            {
 
1586
                s->strstart += s->match_length;
 
1587
                s->match_length = 0;
 
1588
                s->ins_h = s->window[s->strstart];
 
1589
                UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
 
1590
#if MIN_MATCH != 3
 
1591
                Call UPDATE_HASH() MIN_MATCH-3 more times
 
1592
#endif
 
1593
                /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
 
1594
                 * matter since it will be recomputed at next deflate call.
 
1595
                 */
 
1596
            }
 
1597
        } else {
 
1598
            /* No match, output a literal byte */
 
1599
            Tracevv((stderr,"%c", s->window[s->strstart]));
 
1600
            _tr_tally_lit (s, s->window[s->strstart], bflush);
 
1601
            s->lookahead--;
 
1602
            s->strstart++;
 
1603
        }
 
1604
        if (bflush) FLUSH_BLOCK(s, 0);
 
1605
    }
 
1606
    FLUSH_BLOCK(s, flush == Z_FINISH);
 
1607
    return flush == Z_FINISH ? finish_done : block_done;
 
1608
}
 
1609
 
 
1610
#ifndef FASTEST
 
1611
/* ===========================================================================
 
1612
 * Same as above, but achieves better compression. We use a lazy
 
1613
 * evaluation for matches: a match is finally adopted only if there is
 
1614
 * no better match at the next window position.
 
1615
 */
 
1616
local block_state deflate_slow(s, flush)
 
1617
    deflate_state *s;
 
1618
    int flush;
 
1619
{
 
1620
    IPos hash_head;          /* head of hash chain */
 
1621
    int bflush;              /* set if current block must be flushed */
 
1622
 
 
1623
    /* Process the input block. */
 
1624
    for (;;) {
 
1625
        /* Make sure that we always have enough lookahead, except
 
1626
         * at the end of the input file. We need MAX_MATCH bytes
 
1627
         * for the next match, plus MIN_MATCH bytes to insert the
 
1628
         * string following the next match.
 
1629
         */
 
1630
        if (s->lookahead < MIN_LOOKAHEAD) {
 
1631
            fill_window(s);
 
1632
            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
 
1633
                return need_more;
 
1634
            }
 
1635
            if (s->lookahead == 0) break; /* flush the current block */
 
1636
        }
 
1637
 
 
1638
        /* Insert the string window[strstart .. strstart+2] in the
 
1639
         * dictionary, and set hash_head to the head of the hash chain:
 
1640
         */
 
1641
        hash_head = NIL;
 
1642
        if (s->lookahead >= MIN_MATCH) {
 
1643
            INSERT_STRING(s, s->strstart, hash_head);
 
1644
        }
 
1645
 
 
1646
        /* Find the longest match, discarding those <= prev_length.
 
1647
         */
 
1648
        s->prev_length = s->match_length, s->prev_match = s->match_start;
 
1649
        s->match_length = MIN_MATCH-1;
 
1650
 
 
1651
        if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
 
1652
            s->strstart - hash_head <= MAX_DIST(s)) {
 
1653
            /* To simplify the code, we prevent matches with the string
 
1654
             * of window index 0 (in particular we have to avoid a match
 
1655
             * of the string with itself at the start of the input file).
 
1656
             */
 
1657
            s->match_length = longest_match (s, hash_head);
 
1658
            /* longest_match() sets match_start */
 
1659
 
 
1660
            if (s->match_length <= 5 && (s->strategy == Z_FILTERED
 
1661
#if TOO_FAR <= 32767
 
1662
                || (s->match_length == MIN_MATCH &&
 
1663
                    s->strstart - s->match_start > TOO_FAR)
 
1664
#endif
 
1665
                )) {
 
1666
 
 
1667
                /* If prev_match is also MIN_MATCH, match_start is garbage
 
1668
                 * but we will ignore the current match anyway.
 
1669
                 */
 
1670
                s->match_length = MIN_MATCH-1;
 
1671
            }
 
1672
        }
 
1673
        /* If there was a match at the previous step and the current
 
1674
         * match is not better, output the previous match:
 
1675
         */
 
1676
        if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
 
1677
            uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
 
1678
            /* Do not insert strings in hash table beyond this. */
 
1679
 
 
1680
            check_match(s, s->strstart-1, s->prev_match, s->prev_length);
 
1681
 
 
1682
            _tr_tally_dist(s, s->strstart -1 - s->prev_match,
 
1683
                           s->prev_length - MIN_MATCH, bflush);
 
1684
 
 
1685
            /* Insert in hash table all strings up to the end of the match.
 
1686
             * strstart-1 and strstart are already inserted. If there is not
 
1687
             * enough lookahead, the last two strings are not inserted in
 
1688
             * the hash table.
 
1689
             */
 
1690
            s->lookahead -= s->prev_length-1;
 
1691
            s->prev_length -= 2;
 
1692
            do {
 
1693
                if (++s->strstart <= max_insert) {
 
1694
                    INSERT_STRING(s, s->strstart, hash_head);
 
1695
                }
 
1696
            } while (--s->prev_length != 0);
 
1697
            s->match_available = 0;
 
1698
            s->match_length = MIN_MATCH-1;
 
1699
            s->strstart++;
 
1700
 
 
1701
            if (bflush) FLUSH_BLOCK(s, 0);
 
1702
 
 
1703
        } else if (s->match_available) {
 
1704
            /* If there was no match at the previous position, output a
 
1705
             * single literal. If there was a match but the current match
 
1706
             * is longer, truncate the previous match to a single literal.
 
1707
             */
 
1708
            Tracevv((stderr,"%c", s->window[s->strstart-1]));
 
1709
            _tr_tally_lit(s, s->window[s->strstart-1], bflush);
 
1710
            if (bflush) {
 
1711
                FLUSH_BLOCK_ONLY(s, 0);
 
1712
            }
 
1713
            s->strstart++;
 
1714
            s->lookahead--;
 
1715
            if (s->strm->avail_out == 0) return need_more;
 
1716
        } else {
 
1717
            /* There is no previous match to compare with, wait for
 
1718
             * the next step to decide.
 
1719
             */
 
1720
            s->match_available = 1;
 
1721
            s->strstart++;
 
1722
            s->lookahead--;
 
1723
        }
 
1724
    }
 
1725
    Assert (flush != Z_NO_FLUSH, "no flush?");
 
1726
    if (s->match_available) {
 
1727
        Tracevv((stderr,"%c", s->window[s->strstart-1]));
 
1728
        _tr_tally_lit(s, s->window[s->strstart-1], bflush);
 
1729
        s->match_available = 0;
 
1730
    }
 
1731
    FLUSH_BLOCK(s, flush == Z_FINISH);
 
1732
    return flush == Z_FINISH ? finish_done : block_done;
 
1733
}
 
1734
#endif /* FASTEST */
 
1735
 
 
1736
/* ===========================================================================
 
1737
 * For Z_RLE, simply look for runs of bytes, generate matches only of distance
 
1738
 * one.  Do not maintain a hash table.  (It will be regenerated if this run of
 
1739
 * deflate switches away from Z_RLE.)
 
1740
 */
 
1741
local block_state deflate_rle(s, flush)
 
1742
    deflate_state *s;
 
1743
    int flush;
 
1744
{
 
1745
    int bflush;             /* set if current block must be flushed */
 
1746
    uInt prev;              /* byte at distance one to match */
 
1747
    Bytef *scan, *strend;   /* scan goes up to strend for length of run */
 
1748
 
 
1749
    for (;;) {
 
1750
        /* Make sure that we always have enough lookahead, except
 
1751
         * at the end of the input file. We need MAX_MATCH bytes
 
1752
         * for the longest encodable run.
 
1753
         */
 
1754
        if (s->lookahead < MAX_MATCH) {
 
1755
            fill_window(s);
 
1756
            if (s->lookahead < MAX_MATCH && flush == Z_NO_FLUSH) {
 
1757
                return need_more;
 
1758
            }
 
1759
            if (s->lookahead == 0) break; /* flush the current block */
 
1760
        }
 
1761
 
 
1762
        /* See how many times the previous byte repeats */
 
1763
        s->match_length = 0;
 
1764
        if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
 
1765
            scan = s->window + s->strstart - 1;
 
1766
            prev = *scan;
 
1767
            if (prev == *++scan && prev == *++scan && prev == *++scan) {
 
1768
                strend = s->window + s->strstart + MAX_MATCH;
 
1769
                do {
 
1770
                } while (prev == *++scan && prev == *++scan &&
 
1771
                         prev == *++scan && prev == *++scan &&
 
1772
                         prev == *++scan && prev == *++scan &&
 
1773
                         prev == *++scan && prev == *++scan &&
 
1774
                         scan < strend);
 
1775
                s->match_length = MAX_MATCH - (int)(strend - scan);
 
1776
                if (s->match_length > s->lookahead)
 
1777
                    s->match_length = s->lookahead;
 
1778
            }
 
1779
        }
 
1780
 
 
1781
        /* Emit match if have run of MIN_MATCH or longer, else emit literal */
 
1782
        if (s->match_length >= MIN_MATCH) {
 
1783
            check_match(s, s->strstart, s->strstart - 1, s->match_length);
 
1784
 
 
1785
            _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
 
1786
 
 
1787
            s->lookahead -= s->match_length;
 
1788
            s->strstart += s->match_length;
 
1789
            s->match_length = 0;
 
1790
        } else {
 
1791
            /* No match, output a literal byte */
 
1792
            Tracevv((stderr,"%c", s->window[s->strstart]));
 
1793
            _tr_tally_lit (s, s->window[s->strstart], bflush);
 
1794
            s->lookahead--;
 
1795
            s->strstart++;
 
1796
        }
 
1797
        if (bflush) FLUSH_BLOCK(s, 0);
 
1798
    }
 
1799
    FLUSH_BLOCK(s, flush == Z_FINISH);
 
1800
    return flush == Z_FINISH ? finish_done : block_done;
 
1801
}
 
1802
 
 
1803
/* ===========================================================================
 
1804
 * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
 
1805
 * (It will be regenerated if this run of deflate switches away from Huffman.)
 
1806
 */
 
1807
local block_state deflate_huff(s, flush)
 
1808
    deflate_state *s;
 
1809
    int flush;
 
1810
{
 
1811
    int bflush;             /* set if current block must be flushed */
 
1812
 
 
1813
    for (;;) {
 
1814
        /* Make sure that we have a literal to write. */
 
1815
        if (s->lookahead == 0) {
 
1816
            fill_window(s);
 
1817
            if (s->lookahead == 0) {
 
1818
                if (flush == Z_NO_FLUSH)
 
1819
                    return need_more;
 
1820
                break;      /* flush the current block */
 
1821
            }
 
1822
        }
 
1823
 
 
1824
        /* Output a literal byte */
 
1825
        s->match_length = 0;
 
1826
        Tracevv((stderr,"%c", s->window[s->strstart]));
 
1827
        _tr_tally_lit (s, s->window[s->strstart], bflush);
 
1828
        s->lookahead--;
 
1829
        s->strstart++;
 
1830
        if (bflush) FLUSH_BLOCK(s, 0);
 
1831
    }
 
1832
    FLUSH_BLOCK(s, flush == Z_FINISH);
 
1833
    return flush == Z_FINISH ? finish_done : block_done;
 
1834
}