
MICE Online Data Quality Journal of Physics:

Conference Series

M. Jackson (EPCC)1 and C.D. Tunnell (U. Oxford)

E-mail: michaelj@epcc.ed.ac.uk, c.tunnell1@physics.ox.ac.uk

Abstract. Within the Muon Ionization Cooling Experiment (MICE), the MICE Analysis User
Software (MAUS) framework performs both online analysis of live data and detailed offline data
analysis, simulation, and accelerator design. The MAUS Map-Reduce-inspired API parallelizes
computing in the control room, ensures that code can be run both offline and online, and
displays plots for users in an easily extendable manner. The classic Map-Reduce design can be
advantageous for offline computing but cannot be used in online settings. It expects all map
operations to terminate before running the reduction; however, the data flow for online analysis
requires the continuous updating of live plots as data arrives. For online running, the “map”
and “reduce”, which we call transform and merge, steps must happen concurrently; therefore,
new parallelisation routines were developed specifically for this use. The transform step is
parallelized using a Python-based distributed task queue called Celery, and output from these
tasks is then written into the NoSQL database CouchDB. As the transformer writes output, the
plotting mergers query the database, request data from a user-specified window in time, and
make plots using Matplotlib or PyRoot. The mergers serialize the plots into the data stream
after which all the data is written to the database by the output routines. Finally, plots are
displayed on the web using the Django platform, which queries the database and displays the
plots to the control room and the world. By maintaining the API and modifying the data flow,
MICE is able to use identical analysis software in both offline and online scenarios, thus avoiding
a common issue in experimental particle physics.

1. Background
The MICE experiment is based at the Rutherford Appleton Laboratory and is an R&D
experiment intending to reduce the phase space of muon beams. This accelerator physics R&D
is a muon linear accelerator and will help determine the feasibility of muon colliders and neutrino
factories towards probing new physics in the post-LHC era. The experiment includes a cooling
channel that performs the phase space reduction, scintillator fibre detectors upstream and
downstream of the cooling channel, as well as upstream time-of-flight and Cherenkov detectors
and a downstream totally active scintillator calorimeter.

In addition to the accelerator physics equipment, there has been considerable investment
into detectors to measure the manipulated muon beam. There are four detector technologies
across eight detectors which provides a considerable software complexity problem: the number
of technologies and detectors – by corollary, the number of calibrations and reconstruction

1 We would like to acknowledge the assistance of the Software Sustainability Institute. The work carried out by
the SSI is supported by EPSRC through grant EP/H043160/1.

Software�Sustainability�Institute

www.software.ac.uk

Architecture

InputPySpillGenerator

ReducePyDoNothing

OutputPyJSON

MapPyGroup
MapPyBeamMapper

MapCppSimulation

MapCppTrackerDigitization

spill N

(spill N)’

InͲmemory�
cache

DAQ

InputCppDAQOnlineData

ReducePyTOFPlot

OutputPyImage

MapPyGroup
MapCppTOFDigits

MapCppTOFSlabHit
s

MapCppTOFSpacePoints

spill N

(spill N)’

InͲmemory�
cache

INPUT

MERGE

OUTPUT

TRANSFORM

InͲmemory�
cache

Figure 1. The generic data flow within MAUS.

algorithms – is comparable to a collider physics experiment like ATLAS however the size of the
experiment and collaboration closer resembles a smaller neutrino experiment like MiniBooNe.

2. Introduction
This software challenge is addressed by the MICE Analysis User Software (MAUS) software [1, 2],
which is a Python-driven application that uses SWIG to interface with various C++ components.
The MAUS framework executes four types of component (Fig. 1). Each component creates or
manipulates spills. In this context, a spill is a JSON document representing information about
a collection of trigger events.

• Inputters - these input or generate spills e.g. read live DAQ data and convert into spills,
read archived DAQ data and convert into spills, or generate simulated spill data.

• Transforms - these analyse the data within the spill in various ways, derive new data and
add this to the spill.

• Mergers - these summarise data within a series of successive spills and output new spills
with the summarised data.

• Outputters - these take in merged spills and output spills, for example saving them as JSON
files or, where applicable, extracting image data from them and saving this as image files.

The framework repeats the following loop until there are no more spills:

(i) Reads a spill from an inputter.

(ii) Transforms the spill.

(iii) Passes the transformed spill to a merger.

(iv) Passes a merged spill to an outputter.

3. Parallel transformation of spills
The MAUS work flow is able to be used for Online Data Quality (DQ) purposes (Fig. 2), where
the status of the experiment and quality of the data needs to be quickly and continuously
processed and displayed. However, parallelisation is required to meet the speed requirements of
this task.

Software�Sustainability�Institute

www.software.ac.uk

Software�development

Input

Output

Celery

DAQ

Web�frontͲend

Transform

spill N

Transform

spill N+1

Transform

spill N-1

(spill N)’ (spill N+1)’(spill N-1)’

Merge

parallel
transform
execution

histogram
mergers

web
front-
end

document-oriented
database

Figure 2. Details of the DQ data flow with distributed computing and a web interface.

Software�Sustainability�Institute

www.software.ac.uk

Celery�workers�and�broadcasts

RabbitMQ

Go.py

configuration

Celery��Proxy

configuration

configuration

configuration

configuration

status

status

status

status

status

Celery��Worker

Celery��Worker

Celery��Worker
Transform

Transform

Transform

Transform

Transform

Transform

Figure 3. The configuration procedure for worker nodes. Configuration information includes
the run number, calibration constants, and the choice of reconstruction algorithm.

As each spill is independent, spills can be transformed in parallel. Celery [3], a distributed
asynchronous task queue for Python is used to implement parallel transformation of spills.
Celery uses RabbitMQ [4] as a message broker to handle communications between clients and
Celery worker nodes.

A Celery worker executes transforms. When a worker starts up it registers with RabbitMQ
– the RabbitMQ task broker can be local or remote. By default Celery spawns N sub-processes
where N is the number of CPUs on a node, though N can be explicitly set by a user. Each
sub-process can execute one transform at a time. Multiple Celery workers can be deployed, each
of which with one or more sub-processes. Celery allows MAUS to execute highly-parallelised
transforming of spills.

For MAUS, each Celery worker needs a complete MAUS deployment running on the same
node as the worker. The MAUS distributed execution framework, configures Celery as follows
(Fig. 3):

• The framework gets the names of the transforms the user wants to apply e.g. a MapPyGroup
containing MapPyBeamMaker, MapCppSimulation, and MapCppTrackerDigitization. This
is termed a transform specification.

• A Celery broadcast is invoked, passing the transform specification, the MAUS configuration
and a configuration ID (e.g. the client’s process ID).

• Celery broadcasts are received by all Celery workers registered with the RabbitMQ message
broker.

• On receipt of the broadcast, each Celery worker:
Checks that the framework’s MAUS version is the same as the worker’s. If not then an

error is returned to the client.
Forces the transform specification down to each sub-process.
Waits for the sub-processes to confirm receipt.
If all sub-processes update correctly then a success message is returned to the

framework.
If any sub-process fails to update then a failure message, with details, is returned to

the framework.

• Each Celery sub-process:
Invokes death() on the existing transforms, to allow for clean-up to be done.
Updates their configuration.
Creates new transforms as specified in the transform configuration.
Invokes birth() on these with the new configuration.
Confirms with the Celery worker that the update has been done.

• Celery workers and sub-processes catch any exceptions they can to avoid the sub-processes
or, more seriously, the Celery worker itself from crashing in an unexpected way.

MAUS uses Celery to transform spills as follows:

• The framework gets the next spill from its input.

• A Celery client-side proxy is used to submit the spill to Celery. It gets an object which it
can use to poll the status of the “job”.

• The client-side proxy forwards the spill to RabbitMQ.

• RabbitMQ forwards this to an available Celery worker. If none are available then the job
is queued.

• The Celery worker picks an available sub-process.

• The sub-process executes the current transform on the spill.

• The result spill is returned to the Celery worker and there back to RabbitMQ.

• The framework regularly polls the status of the transform job until it’s status is successful,
in which case the result spill is available, or failed, in which case the error is recorded but
execution continues.

4. Document-oriented database
After spills have been transformed, a document-oriented database, MongoDB [5], is used by the
framework to store the transformed spills. This database represents the interface between the
input-transform and merge-output phases of a spill processing workflow.

The framework is given the name of a collection of spills and reads these in order of the dates
and times they were added to the database. It passes each spill to a merger and then takes the
output of the merger and passes it to an outputter.

Use of a database allows the input-transform part of a workflow to be separate from the
merge-output part. It also allows them to operate in concurrently – one process can input and
transform spills, another can merge transformed spills and output the merged results. This also
allows many merge-output workflows to use the same transformed data, for example to generate
multiple types of histogram from the same data.

5. Histogram mergers
Histogram mergers take in spills and, from the data within the spills, update histograms. They
regularly output one or more histograms (either on a spill-by-spill basis or every N spills, where
N is configurable). The histogram is output in the form of a JSON document which includes:

• A list of keywords.

• A description of the histogram.

• A tag which can be used to name a file when the histogram is saved. The tags can also be
auto-numbered if the user wants.

• An image type e.g. EPS, PNG, JPG, or PDF. The image type is selected by the user.

• The image data itself in a base64-encoded format.

Histogram mergers do not display or save the histograms. That is the responsibility of other
components.

Example histogram mergers, and generic super-classes to build these, currently exist for
histograms drawn using PyROOT [6] (ReducePyTOFPlot and ReducePyROOTHistogram) and
matplotlib [7](ReducePyHistogramTDCADCCounts and ReducePyMatplotlibHistogram).

6. Saving images
An outputter (OutputPyImage) allows the JSON documents output by histogram mergers to be
saved. The user can specify the directory where the images are saved and a file name prefix for
the files. The tag in the JSON document is also used to create a file name.

The outputter extracts the base-64 encoded image data, unencodes it and saves it in a file.
It also saves the JSON document (minus the image data) in an associated meta-data file.

7. Web front-end
The web front-end allows histogram images to be viewed. The web front-end is implemented in
Django [8], a Python web framework. Django ships with its own lightweight web server or can
be run under Apache web server.

The web front-end serves up histogram images from a directory and supports keyword-based
searches for images whose file names contain those key words.

The web pages dynamically refresh so updated images deposited into the image directory can
be automatically presented to users.

The interface between the online reconstruction framework and the web front-end is just a set
of image files and their accompanying JSON meta-data documents (though the web front-end
can also render images without any accompanying JSON meta-data).

8. Design details
The processing for an individual spill can be seen in Fig. 4.

8.1. Run numbers
Each spill will be part of a run and have an associated run number. Run numbers are assumed
to be as follows:

• −N : Monte Carlo simulation of run N

• 0 : pure Monte Carlo simulation

• +N : run N

Software�Sustainability�Institute

www.software.ac.uk

Celery�workers�and�tasks

RabbitMQ
Celery��Worker

Go.py

spill

spill’

Celery��Proxy

spill
spill’

Celery��Worker

Celery��Worker
Transform

spill

spill’

Transform

Transform

Transform

Transform

Transform

Figure 4. The processing steps for an individual spill (or rather collection of events). The spill
will start at Go.py where Go.py will use the Python Celery API to send the spill for processing.
Celery uses RabbitMQ to communicate with worker nodes and distribute the spill to a worker
node. At the worker node, the spill will be processed before being sent back to RabbitMQ then
Go.py.

8.2. Transforming spills from an input stream (Input-Transform)
This is the algorithm used to transform spills from an input:

CLEAR document store

run_number = None

WHILE an input spill is available

GET next spill

IF spill does not have a run number

Assume pure MC

spill_run_number = 0

IF (spill_run_number != run_number)

We’ve changed run.

IF spill is NOT a start_of_run spill

WARN user of missing start_of_run spill

WAIT for current Celery tasks to complete

WRITE result spills to document store

run_number = spill_run_number

CONFIGURE Celery by DEATHing current transforms and BIRTHing new transforms

TRANSFORM spill using Celery

WRITE result spill to document store

DEATH Celery worker transforms

If there is no initial start of run spill (or no spill num in the spills) in the input stream (as
can occur when using simple histogram example.py or simulate mice.py) then spill run number
will be 0, run number will be None and a Celery configuration will be done before the first spill
needs to be transformed.

Spills are inserted into the document store in the order of their return from Celery workers.
This may not be in synch with the order in which they were originally read from the input
stream.

8.3. Merging spills and passing results to an output stream (Merge-Output)
This is the algorithm used to merge spills and pass the results to an output stream:

run_number = None

end_of_run = None

is_birthed = FALSE

last_time = 01/01/1970

WHILE TRUE

READ spills added since last time from document store

IF spill IS ‘‘end_of_run’’

end_of_run = spill

IF spill_run_number != run_number

IF is_birthed

IF end_of_run == None

end_of_run = {‘‘daq_event_type’’:’’end_of_run’’, ‘‘run_num’’:run_number}

Send end_of_run to merger

DEATH merger and outputter

BIRTH merger and outputter

run_number = spill_run_number

end_of_run = None

is_birthed = TRUE

MERGE and OUTPUT spill

Send END_OF_RUN block to merger

DEATH merger and outputter

The Input-Transform policy of waiting for the processing of spills from a run to complete
before starting processing spills from a new run means that all spills from run N-1 are guaranteed
to have a time stamp ¡ spills from run N.

is birthed is used to ensure that there is no BIRTH-DEATH-BIRTH redundancy on receipt
of the first spill from the document store.

8.4. Document store
Spills are stored in documents in a collection in the document store.

Documents are of form:

{‘‘_id’’:ID, ‘‘date’’:DATE, ‘‘doc’’:SPILL}

where:

• ID: index of this document in the chain of those successfully transformed. It has no
significance beyond being unique in an execution of the Input-Transform loop which deposits
the spill. It is not equal to the spill num (Python string)

• DATE: date and time to the milli-second noting when the document was added. A Python
timestamp.

• DOC: spill document. A Python string holding a valid JSON document.

8.4.1. Collection names For Input-Transform,

• If configuration parameter doc collection name is None, an empty string, or “auto” then
HOSTNAME PID, where HOSTNAME is the machine name and PID the process ID, is
used.

• Otherwise the value of doc collection name is used.

• doc collection name has default value “spills”.

Software�Sustainability�Institute

www.software.ac.uk

Current�state

Figure 5. A photograph of the MAUS DQ running in parallel in the control room. On the left
screen are terminals for monitoring the various processes needed to run the DQ application. On
the right screen is a full-screen web browser that updates periodically with new plots.

For Merge-Output,

• If configuration parameter doc collection name is None, the empty string, or undefined then
an error is raised.

• Otherwise the value of doc collection name is used.

9. Conclusions
The MAUS Online DQ application has been successfully implemented and run in the MICE
control room (Fig. 5). By using various “off the shelf” Python-interface like Celery, MongoDB,
and Django, a DQ tool has been developed where the algorithms that run online are the
same as the algorithms that run offline and the various computational challenges associated
with continous data taking and live processing are solved. Future computational needs can be
addressed by adding more Celery worker nodes. MAUS has been extended to online running.

References
[1] MICE Analysis User Software, C.D. Tunnell and C. Rogers. IPAC 2011.
[2] maus.rl.ac.uk
[3] http://celeryproject.org/
[4] http://www.rabbitmq.com/
[5] http://www.mongodb.org/
[6] http://root.cern.ch/drupal/content/pyroot
[7] http://matplotlib.sourceforge.net/
[8] https://www.djangoproject.com/

