~centralelyon2010/inkscape/imagelinks2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
/* //////////////////////////////////////////////////////////////////////
//                               ftos.cc
//
// Copyright (c) 1996-2003 Bryce W. Harrington  [bryce at osdl dot org]
//
//-----------------------------------------------------------------------
// License:  This code may be used by anyone for any purpose
//           so long as the copyright notices and this license
//           statement remains attached.
//-----------------------------------------------------------------------
//
// string ftos(double val[, char mode[, int sigfig[, int precision[, int options]]]])
//
//  DESCRIPTION
//    This routine is intended to replace the typical use of sprintf for
//    converting floating point numbers into strings.
//
//    To one-up sprintf, an additional mode was created - 'h' mode -
//    which produces numbers in 'engineering notation' - exponents are
//    always shown in multiples of 3.  To non-engineers this mode is
//    probably irrelevant, but for engineers (and scientists) it is SOP.
//
//    One other new feature is an option to use 'x10^' instead of the
//    conventional 'E' for exponental notation.  This is entirely for
//    aesthetics since numbers in the 'x10^' form cannot be used as
//    inputs for most programs.
//
//    For most cases, the routine can simply be used with the defaults
//    and acceptable results will be produced.  No fill zeros or trailing
//    zeros are shown, and exponential notation is only used for numbers
//    greater than 1e6 or less than 1e-3.
//
//    The one area where sprintf may surpass this routine is in width control.
//    No provisions are made in this routine to restrict a number to a
//    certain number of digits (thus allowing the number to be constrained
//    to an 8 space column, for instance.)  Along with this, it does not
//    support pre-padding a number with zeros (e.g., '5' -> '0005') and will
//    not post-pad a number with spaces (i.e., allow left-justification.)
//
//    If width control is this important, then the user will probably want to
//    use the stdio routines, which really is well suited for outputting
//    columns of data with a brief amount of code.
//
//  PARAMETERS
//    val        - number to be converted
//    mode       - can be one of four possible values.  Default is 'g'
//
//                 e: Produces numbers in scientific notation.  One digit
//                    is shown on the left side of the decimal, the rest
//                    on the right, and the exponential is always shown.
//                    EXAMPLE:  1.04e-4
//
//                 f: Produces numbers with fixed format.  Number is shown
//                    exact, with no exponent.
//                    EXAMPLE:  0.000104
//
//                 g: If val is greater than 1e6 or less than 1e-3 it will
//                    be shown in 'e' format, otherwise 'f' format will be
//                    used.
//
//                 h: Produces numbers in engineering format.  Result is
//                    identical to 'f' format for numbers between 1 and
//                    1e3, otherwise, the number is shown such that it
//                    always begins with a nonzero digit on the left side
//                    (unless number equals zero), and the exponential is
//                    a multiple of 3.
//                    EXAMPLE:  104e-6
//
//                 If the mode is expressed as a capital letter (e.g., 'F')
//                 then the exponential part of the number will also be
//                 capitalized (e.g., '1E6' or '1X10^6'.)
//
//    sigfig     - the number of significant figures.  These are the digits
//                 that are "retained".  For example, the following numbers
//                 all have four sigfigs:
//                    1234       12.34      0.0001234       1.234e-10
//                 the last digit shown will be rounded in the standard
//                 manner (down if the next digit is less than 5, up otherwise.)
//
//    precision  - the number of digits to show to the right of the decimal.
//                 For example, all of the following numbers have precisions
//                 of 2:
//                    1234.00     12.34     0.00     1.23e-10   123.40e-12
//
//    options    - several options are allowed to control the look of the
//                 output.
//
//               FORCE_DECIMAL - require the decimal point to be shown for
//                 numbers that do not have any fractional digits (or that
//                 have a precision set to zero)
//                 EXAMPLE:  1.e6
//               FORCE_EXP_ZERO - pad the 10's zero in exponent if necessary
//                 EXAMPLE:  1e06
//               FORCE_HUNDRED_EXP_ZERO - pad the 100's zero in exponent if
//                 necessary.  Also pads 10's zero in exponent if necessary.
//                 EXAMPLE:  1e006
//               FORCE_EXP_PLUS - show the '+' in the exponent if exponent
//                 is used.
//                 EXAMPLE:  1e+6
//               FORCE_EXP - force the output to display the exponent
//                 EXAMPLE:  0e0
//               FORCE_X10 - use x10^ instead of E
//                 EXAMPLE:  1x10^6
//               FORCE_PLUS - force output of the '+' for positive numbers
//                 EXAMPLE:  +1e6
//
//                 Options can be combined using the usual OR method.  For
//                 example,
//
//                 ftos(123.456, 'f', -1, -1, FORCE_PLUS | FORCE_X10 | FORCE_EXP)
//
//                 gives "+123.456x10^0"
//
//  RETURN VALUE
//    The string representation of the number is returned from the routine.
//    The ANSI C++ Standard "string" class was used for several important
//    reasons.  First, because the string class manages it's own space, the
//    ftos routine does not need to concern itself with writing to unallocated
//    areas of memory or with handling memory reallocation internally.  Second,
//    it allows return of an object, not a pointer to an object; this may not
//    be as efficient, but it is cleaner and safer than the alternative.  Third,
//    the routine's return value can be directly assigned to a variable, i.e.
//        string var = ftos(3.1415);
//    which makes code much easier to comprehend and modify.
//
//    Internally, the ftos routine uses fairly typical string operators (=, +=,
//    +, etc.) which pretty much any other flavor of string class will define as
//    well.  Thus if one does not have access to the ANSI C++ Standard string
//    class, the user can substitute another with little difficulty.  (If the
//    alternate class is not named "string" then redefine "string" to whatever
//    you wish to use.  For example,
//        #define string CString
//
// November 1996 - Bryce Harrington
//    Created ftoa and ftos
//
// December 1996 - Bryce Harrington
//    Added engineering notation mode, added sigfig capability, added
//    significant debug code, added options, thoroughly debugged and
//    tested the code.
//
//
// June 1999 - Bryce Harrington
//    Modified to run on Linux for WorldForge
//
// March 2003 - Bryce Harrington
//    Removed DTAG() macros - use of fprintf(stderr,...) instead
//    Broke out round/itos/ftos into separate files
//    Removed curses bits
//
/////////////////////////////////////////////////////////////////////// */


// This is the routine used for converting a floating point into a string
// This may be included in stdlib.h on some systems and may conflict.
// Let me know your system & etc. so I can properly #ifdef this, but
// try commenting the following four lines out if you run into conflicts.
// extern "C" {
// char*
// ecvt (double val, size_t ndigit, int *decpt, int *sign);
// }

using namespace std;

#ifndef HAS_ECVT
#include <glib.h>
#endif


#include "ftos.h"


// This routine counts from the end of a string like '10229000' to find the index
// of the first non-'0' character (5 would be returned for the above number.)
int countDigs(char *p)
{
    int length =0;
    while (*(p+length)!='\0') length++;               // Count total length
    while (length>0 && *(p+length-1)=='0') length--;  // Scan backwards for a non-'0'
    return length;
}

// This routine determines how many digits make up the left hand
// side of the number if the abs value of the number is greater than 1, or the
// digits that make up the right hand side if the abs value of the number
// is between 0 and 1.  Returns 1 if v==0.  Return value is positive for numbers
// greater than or equal to 1, negative for numbers less than 0.1, and zero for
// numbers between 0.1 and 1.
int countLhsDigits(double v)
{
    if (v<0) v = -v;                   // Take abs value
    else if (v==0) return 1;           // Special case if v==0

    int n=0;
    for (; v<0.1; v*=10)               // Count digits on right hand side (l.t. 0.1)
        { n--; }
    for (; v>=1; v/=10)                // Count digits on left hand side (g.e. 1.0)
        { n++; }
    return n;
}

// This is the routine that does the work of converting the number into a string.
string ftos(double val, char mode, int sigfig, int precision, int options)
{
    // Parse the options to a more usable form
    // These options allow the user to control some of the ornaments on the
    // number that is output.  By default they are all false.  Turning them
    // on helps to "fix" the format of the number so it lines up in columns
    // better.
    // - require the decimal point to be shown for numbers that do not have
    //   any fractional digits (or that have a precision set to zero
    bool forceDecimal = (options & FORCE_DECIMAL);
    // - show the 10's and 100's zero in exponent
    bool forceExpZero = (options & FORCE_EXP_ZERO);
    bool forceHundredExpZero = (options & FORCE_HUNDRED_EXP_ZERO);
    // - show the '+' in the exponent if exponent is used
    bool forceExpPlus = (options & FORCE_EXP_PLUS);
    // - force the output to display the exponent
    bool forceExponent = (options & FORCE_EXP);
    // - use x10^ instead of E
    bool forcex10 = (options & FORCE_X10);
    // - force output of the '+' for positive numbers
    bool forcePlus = (options & FORCE_PLUS);

#ifdef DEBUG
    fprintf(stderr, "Options: ");
    fprintf(stderr, "  %4s = %s ", "x10", (forcex10            ? "on" : "off" ));
    fprintf(stderr, "  %4s = %s ", ".",   (forceDecimal        ? "on" : "off" ));
    fprintf(stderr, "  %4s = %s ", "e0",  (forceExpZero        ? "on" : "off" ));
    fprintf(stderr, "  %4s = %s ", "e00", (forceHundredExpZero ? "on" : "off" ));
    fprintf(stderr, "  %4s = %s ", "e+",  (forceExpPlus        ? "on" : "off" ));
    fprintf(stderr, "  %4s = %s ", "e",   (forceExponent       ? "on" : "off" ));
    fprintf(stderr, "  %4s = %s \n", "+#",  (forcePlus           ? "on" : "off" ));
#endif

    // - exponent usage
    bool useExponent = false;

    // Determine the case for the 'e' (if used)
    char E = (forcex10)? 'x' : 'e';
    if (g_ascii_isupper(mode)) {
        E = g_ascii_toupper(E);
        mode = g_ascii_tolower(mode);
    }

    // Determine how many decimals we're interested in
    int L = countLhsDigits(val);

#ifdef DEBUG
    fprintf(stderr, "*** L is %s\n", itos(L).c_str());
#endif

    int count = 0;
    if (sigfig==0)                     // bad input - don't want any sigfigs??!!
        return "";
    else if (precision>=0) {           // Use fixed number of decimal places
        count = precision;
        if (mode == 'e') count += 1;
        else if (mode == 'f') count += L;
        else if (mode == 'g') count += (L>6 || L<-3)? 1 : L;
        else if (mode == 'h') count += (L>0)? ((L-1)%3+1) : (L%3+3);
        if (sigfig>0) count = (sigfig > count)? count : sigfig;  // Use sigfig # if it means more decimal places
    }
    else if (sigfig>0)                 // Just use sigfigs
        count = sigfig;
    else                               // prec < 0 and sigfig < 0
        count = 10;
#ifdef DEBUG
    fprintf(stderr, "*** count is %s\n", itos(count).c_str());
#endif

    // Get number's string rep, sign, and exponent
    int sign = 0;
    int decimal=0;

#ifdef HAS_ECVT
    char *p = ecvt(val, count, &decimal, &sign);
#else
    char *p = (char *) g_strdup_printf("%.0f", val);
    // asprintf(&p, "%.0f", val);
#endif

#ifdef DEBUG
    fprintf(stderr, "*** string rep is %s\n", p);
    fprintf(stderr, "*** decimal is %s\n", itos(decimal).c_str());
    fprintf(stderr, "*** sign is %s\n", itos(sign).c_str());
#endif

    // Count the number of relevant digits in the resultant number
    int dig = countDigs(p);
    if (dig < sigfig) dig = sigfig;

#ifdef DEBUG
    fprintf(stderr, "*** digs is %s\n", itos(dig).c_str());
#endif

    // Determine number of digits to put on left side of the decimal point
    int lhs=0;
    // For 'g' mode, decide whether to use 'e' or 'f' format.
    if (mode=='g') mode = (decimal>6 || decimal<-3)? 'e' : 'f';
    switch (mode) {
        case 'e':
            lhs = 1;                   // only need one char on left side
            useExponent = true;        // force exponent use
            break;

        case 'f':
            lhs = (decimal<1)? 1 : decimal;
                                       // use one char on left for num < 1,
                                       // otherwise, use the number of decimal places.
            useExponent = false;       // don't want exponent for 'f' format
            break;

        case 'h':
            if (val==0.0)              // special case for if value is zero exactly.
                lhs = 0;               // this prevents code from returning '000.0'
            else
                lhs = (decimal<=0)? (decimal)%3 + 3  :  (decimal-1)%3+1;
            useExponent = !(lhs==decimal);   // only use exponent if we really need it
            break;

        default:
            g_free(p);
            return "**bad mode**";
    }

#ifdef DEBUG
    fprintf(stderr, "*** lhs is %s\n", itos(lhs).c_str());
#endif

    // Figure out the number of digits to show in the right hand side
    int rhs=0;
    if (precision>=0)
        rhs = precision;
    else if (val == 0.0)
        rhs = 0;
    else if (useExponent || decimal>0)
        rhs = dig-lhs;
    else
        rhs = dig-decimal;

    // can't use a negative rhs value, so turn it to zero if that is the case
    if (rhs<0) rhs = 0;

#ifdef DEBUG
    fprintf(stderr, "*** rhs is", itos(rhs).c_str());
#endif

    // Determine the exponent
    int exponent = decimal - lhs;
    if (val==0.0) exponent=0;          // prevent zero from getting an exponent
#ifdef DEBUG
    fprintf(stderr, "*** exponent is %s\n", itos(exponent).c_str());
#endif

    string ascii;

    // output the sign
    if (sign) ascii += "-";
    else if (forcePlus) ascii += "+";

    // output the left hand side
    if (!useExponent && decimal<=0)    // if fraction, put the 0 out front
        ascii += '0';
    else                               // is either exponential or >= 1, so write the lhs
        for (; lhs>0; lhs--)
            ascii += (*p)? *p++ : int('0'); // now fill in the numbers before decimal

#ifdef DEBUG
    fprintf(stderr, "*** ascii + sign + lhs is %s\n", ascii.c_str());
#endif

    // output the decimal point
    if (forceDecimal || rhs>0)
        ascii += '.';

    // output the right hand side
    if (!useExponent && rhs>0)         // first fill in zeros after dp and before numbers
        while (decimal++ <0 && rhs-->0)
            ascii += '0';
    for (; rhs>0 ; rhs--)              // now fill in the numbers after decimal
        ascii += (*p)? *p++ : int('0');

#ifdef DEBUG
    fprintf(stderr, "*** ascii + . + rhs is %s\n", ascii.c_str());
#endif

    if (forceExponent || useExponent)  // output the entire exponent if required
    {
        ascii += E;                    // output the E or X
        if (forcex10) ascii += "10^";  // if using 'x10^' format, output the '10^' part

        // output the exponent's sign
        if (exponent < 0) {            // Negative exponent
            exponent = -exponent;      // make exponent positive if needed
            ascii += '-';              // output negative sign
        }
        else if (forceExpPlus)         // We only want the '+' if it is asked for explicitly
            ascii += '+';

        // output the exponent
        if (forceHundredExpZero || exponent >= 100)
            ascii += ( (exponent/100) % 10 + '0' );
        if (forceHundredExpZero || forceExpZero || exponent >= 10)
            ascii += ( (exponent/10) % 10 + '0' );
        ascii += ( exponent % 10 + '0' );

#ifdef DEBUG
        fprintf(stderr, "*** ascii + exp is %s\n", ascii.c_str());
#endif
    }

#ifdef DEBUG
    fprintf(stderr, "*** End of ftos with ascii = ", ascii.c_str());
#endif
    /* finally, we can return */
	g_free(p);
    return ascii;
}

#ifdef TESTFTOS

int main()
{
  cout << "Normal (g): " << endl;
  cout << "1.0   = " << ftos(1.0)   << endl;
  cout << "42    = " << ftos(42)    << endl;
  cout << "3.141 = " << ftos(3.141) << endl;
  cout << "0.01  = " << ftos(0.01)  << endl;
  cout << "1.0e7 = " << ftos(1.0e7) << endl;
  cout << endl;

  cout << "Scientific (e): " << endl;
  cout << "1.0   = " << ftos(1.0,   'e')   << endl;
  cout << "42    = " << ftos(42,    'e')   << endl;
  cout << "3.141 = " << ftos(3.141, 'e') << endl;
  cout << "0.01  = " << ftos(0.01,  'e')  << endl;
  cout << "1.0e7 = " << ftos(1.0e7, 'e') << endl;
  cout << endl;

  cout << "Fixed (f): " << endl;
  cout << "1.0   = " << ftos(1.0,   'f')   << endl;
  cout << "42    = " << ftos(42,    'f')   << endl;
  cout << "3.141 = " << ftos(3.141, 'f') << endl;
  cout << "0.01  = " << ftos(0.01,  'f')  << endl;
  cout << "1.0e7 = " << ftos(1.0e7, 'f') << endl;
  cout << endl;

  cout << "Engineering (h): " << endl;
  cout << "1.0   = " << ftos(1.0,   'h')   << endl;
  cout << "42    = " << ftos(42,    'h')    << endl;
  cout << "3.141 = " << ftos(3.141, 'h') << endl;
  cout << "0.01  = " << ftos(0.01,  'h')  << endl;
  cout << "1.0e7 = " << ftos(1.0e7, 'h') << endl;
  cout << endl;

  cout << "Sigfigs: " << endl;
  cout << "2 sf = " << ftos(1234, 'g', 2) << "  "
       << ftos(12.34,     'g', 2) << "  "
       << ftos(0,         'g', 2) << "  "
       << ftos(123.4e-11, 'g', 2) << endl;
  cout << "4 sf = " << ftos(1234, 'g', 4) << "  "
       << ftos(12.34,     'g', 4) << "  "
       << ftos(0,         'g', 4) << "  "
       << ftos(123.4e-11, 'g', 4) << endl;
  cout << "8 sf = " << ftos(1234, 'g', 8) << "  "
       << ftos(12.34,     'g', 8) << "  "
       << ftos(0,         'g', 8) << "  "
       << ftos(123.4e-11, 'g', 8) << endl;
  cout << endl;

  cout << "x10 mode: " << endl;
  cout << "1234 = " << ftos(1234, 'e', 4, -1, FORCE_X10 | FORCE_EXP) << endl;
  cout << "1.01e10 = " << ftos(1.01e10, 'h', -1, -1, FORCE_X10 | FORCE_EXP) << endl;
  cout << endl;

  cout << "itos tests..." << endl;
  cout << "42   = " << itos(42) << endl;
  cout << endl;

  return 0;
}

#endif // TESTFTOS