~cern-kicad/kicad/kicad-pns-tom

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
/********************************************************************************
*  Copyright (C) 2004 Sjaak Priester
*
*  This is free software; you can redistribute it and/or modify
*  it under the terms of the GNU General Public License as published by
*  the Free Software Foundation; either version 2 of the License, or
*  (at your option) any later version.
*
*  This file is distributed in the hope that it will be useful,
*  but WITHOUT ANY WARRANTY; without even the implied warranty of
*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
*  GNU General Public License for more details.
*
*  You should have received a copy of the GNU General Public License
*  along with Tinter; if not, write to the Free Software
*  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
********************************************************************************/

// SutherlandHodgman
// Class to perform polygon clipping against an upright rectangular boundary window.
// Implementation of Sutherland-Hodgman algorithm (1974).
//
// Version 1.0 (C) 2004, Sjaak Priester, Amsterdam.
// mailto:sjaak@sjaakpriester.nl
// http://www.sjaakpriester.nl

#ifndef __SUTHERLAND_HODGMAN_H__
#define __SUTHERLAND_HODGMAN_H__


#include <vector>
#include <functional>

using namespace std;
#ifndef _GDIPLUS_H

// I designed this with GDI+ in mind. However, this particular code doesn't
// use GDI+ at all, only some of it's variable types.
// These definitions are substitutes for those of GDI+.
typedef double REAL;
class PointF
{
public:
    REAL X;
    REAL Y;

    PointF() : X( 0 )
        , Y( 0 )                   { }
    PointF( const PointF& p ) : X( p.X )
        , Y( p.Y ) { }
    PointF( REAL x, REAL y ) : X( x )
        , Y( y )     { }
    PointF operator+( const PointF& p ) const { return PointF( X + p.X, Y + p.Y ); }
    PointF operator-( const PointF& p ) const { return PointF( X - p.X, Y - p.Y ); }
    bool Equals( const PointF& p )            { return (X == p.X) && (Y == p.Y); }
};

class RectF
{
public:
    REAL X;
    REAL Y;
    REAL Width;
    REAL Height;

    RectF() { X = 0, Y = 0, Height = 0, Width = 0; }
    RectF( const RectF& r )
    {
        X = r.X; Y = r.Y; Height = r.Height, Width = r.Width;
    }


    RectF( REAL x, REAL y, REAL w, REAL h ) : X( x ), Y( y ),Width( w ), Height( h )
    { }
    REAL GetLeft() const { return X; }
    REAL GetTop() const { return Y; }
    REAL GetRight() const { return X + Width; }
    REAL GetBottom() const { return Y + Height; }
};

#endif // _GDIPLUS_H

typedef vector<PointF>                 pointVector;
typedef vector<PointF>::iterator       pointIterator;
typedef vector<PointF>::const_iterator cpointIterator;

class SutherlandHodgman
{
public:

    // Constructor. Parameter is the boundary rectangle.
    // SutherlandHodgman expects a 'normalized' boundary rectangle, meaning
    // that boundaries.GetRight() > boundaries.GetLeft() and
    // boundaries.GetBottom() > boundaries.GetTop().
    // In other words: boundary.Width > 0 and boundaries.Height > 0.
    // If this is violated, nothing will be output.
    SutherlandHodgman( RectF& boundaries ) :
        m_stageBottom( m_stageOut, boundaries.GetBottom() )
        , /* Initialize each stage */ m_stageLeft( m_stageBottom, boundaries.GetLeft() )
        , /* with its next stage and */ m_stageTop( m_stageLeft, boundaries.GetTop() )
        , /* the boundary position. */ m_stageRight( m_stageTop, boundaries.GetRight() )
    {
    }


    void Clip( pointVector& input, pointVector& clipped )
    {
        clipped.clear();
        m_stageOut.SetDestination( &clipped );

        // Clip each input vertex.
        for( cpointIterator it = input.begin(); it != input.end(); ++it )
            m_stageRight.HandleVertex( *it );

        // Do the final step.
        m_stageRight.Finalize();
    }


private:

    // Implementation of a horizontal boundary (top or bottom).
    // Comp is a std::binary_function object, comparing its two parameters, f.i. std::less.

    template <class Comp>

    class BoundaryHor
    {
public:
        BoundaryHor( REAL y ) : m_Y( y ) { }
        bool IsInside( const PointF& pnt ) const
        {
            return Comp ()( pnt.Y, m_Y );
        }                                       // return true if pnt.Y is at the inside of the boundary
        PointF Intersect( const PointF& p0, const PointF& p1 ) const            // return intersection point of line p0...p1 with boundary
        {                                                                       // assumes p0...p1 is not strictly horizontal
            PointF d      = p1 - p0;
            REAL   xslope = d.X / d.Y;

            PointF r;

            r.Y = m_Y;
            r.X = p0.X + xslope * (m_Y - p0.Y);
            return r;
        }


private:
        REAL m_Y;
    };

    // Implementation of a vertical boundary (left or right).
    template <class Comp>
    class BoundaryVert
    {
public:
        BoundaryVert( REAL x ) : m_X( x )
        { }
        bool IsInside( const PointF& pnt ) const
        {
            return Comp() ( pnt.X, m_X );
        }
        PointF Intersect( const PointF& p0, const PointF& p1 ) const      // assumes p0...p1 is not strictly vertical
        {
            PointF d      = p1 - p0;
            REAL   yslope = d.Y / d.X;

            PointF r;

            r.X = m_X;
            r.Y = p0.Y + yslope * (m_X - p0.X);
            return r;
        }


private:
        REAL m_X;
    };

    // This template class is the workhorse of the algorithm. It handles the clipping against one boundary.
    // Boundary is either BoundaryHor or BoundaryVert, Stage is the next ClipStage, or the output stage.
    template <class Boundary, class Stage>
    class ClipStage : private Boundary
    {
public:
        ClipStage( Stage& nextStage, REAL position ) :
            Boundary( position ) , m_NextStage( nextStage ), m_bFirst( true )
        { }
        void HandleVertex( const PointF& pntCurrent )           // Function to handle one vertex
        {
            bool bCurrentInside = this->IsInside( pntCurrent );       // See if vertex is inside the boundary.

            if( m_bFirst )                                      // If this is the first vertex...
            {
                m_pntFirst = pntCurrent;                        // ... just remember it,...

                m_bFirst = false;
            }
            else                                // Common cases, not the first vertex.
            {
                if( bCurrentInside )            // If this vertex is inside...
                {
                    if( !m_bPreviousInside )    // ... and the previous one was outside
                        m_NextStage.HandleVertex( this->Intersect( m_pntPrevious, pntCurrent ) );

                    // ... first output the intersection point.

                    m_NextStage.HandleVertex( pntCurrent );     // Output the current vertex.
                }
                else if( m_bPreviousInside )                    // If this vertex is outside, and the previous one was inside...
                    m_NextStage.HandleVertex( this->Intersect( m_pntPrevious, pntCurrent ) );

                // ... output the intersection point.

                // If neither current vertex nor the previous one are inside, output nothing.
            }
            m_pntPrevious     = pntCurrent; // Be prepared for next vertex.
            m_bPreviousInside = bCurrentInside;
        }


        void Finalize()
        {
            HandleVertex( m_pntFirst );         // Close the polygon.
            m_NextStage.Finalize();             // Delegate to the next stage.
        }


private:
        Stage& m_NextStage;         // the next stage
        bool   m_bFirst;            // true if no vertices have been handled
        PointF m_pntFirst;          // the first vertex
        PointF m_pntPrevious;       // the previous vertex
        bool   m_bPreviousInside;   // true if the previous vertex was inside the Boundary
    };

    class OutputStage
    {
public:
        OutputStage() : m_pDest( 0 )  { }
        void SetDestination( pointVector* pDest ) { m_pDest = pDest; }
        void HandleVertex( const PointF& pnt )    { m_pDest->push_back( pnt ); }    // Append the vertex to the output container.
        void Finalize() { }                                                         // Do nothing.
private:
        pointVector* m_pDest;
    };

    // These typedefs define the four boundaries. In keeping up with the GDI/GDI+ interpretation of
    // rectangles, we include the left and top boundaries, but not the right and bottom boundaries.
    // In other words: a vertex on the left boundary is considered to be inside, but a vertex
    // on the right boundary is considered to be outside.
    typedef BoundaryVert < less<REAL> >               BoundaryRight;
    typedef BoundaryHor < greater_equal<REAL> >       BoundaryTop;
    typedef BoundaryVert < greater_equal<REAL> >      BoundaryLeft;
    typedef BoundaryHor < less<REAL> >                BoundaryBottom;

    // Next typedefs define the four stages. First template parameter is the boundary,
    // second template parameter is the next stage.
    typedef ClipStage<BoundaryBottom, OutputStage>  ClipBottom;
    typedef ClipStage<BoundaryLeft, ClipBottom>     ClipLeft;
    typedef ClipStage<BoundaryTop, ClipLeft>        ClipTop;
    typedef ClipStage<BoundaryRight, ClipTop>       ClipRight;

    // Our data members.
    OutputStage m_stageOut;
    ClipBottom  m_stageBottom;
    ClipLeft    m_stageLeft;
    ClipTop     m_stageTop;
    ClipRight   m_stageRight;
};

#endif