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1. Introduction

2. Renormalization

It is well known that perturbative Quantum Field Theory (QFT) should be renormalized

since its UltraViolet (UV) divergent in loop Feynman integrals should be absorbed into

the redifinition of parameters and fields in the Lagrangian. The so-called bare Lagrangian

turns into a renormalized Lagrangian and all of the physical quantities are free of UV

divergent contributions in any order of perturbation theory. The most widely used method

to perform renormalization order by order in a consistent way is to introduce counterterms

following the general Bogoliubov-Parasiuk-Hepp-Zimmmermann (BPHZ) renormalization

scheme. The UV counterterms are fixed by renormalization conditions as well as the way

of renormalization group running for the corresponding renormalized parameters.

In the electroweak theory, a so-called on-shell renormalization scheme [1,2] is frequently

used to make sure the renormalized parameters (such as masses of particles MW ,MZ ,MH

and Mf ) be equal to the physical parameters. The on-shell renormalization condition

gurantees that the renormalized parameter mR is defined as the real part of the two-point

self-energy function Σ(p2) and the bare parameter m0 via

m2
os = −ReΣ(p2)|p2=m2

os
+m2

0, (2.1)
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and the wavefunction renormalization constant δZos for field is defined as the real part of

its first derivation

δZos = −ReΣ′(p2)|p2=m2
os
. (2.2)

It means that

ReΣos(p
2)|p2=m2

os
= 0,ReΣ′os(p

2)|p2=m2
os

= 0, (2.3)

which requires both loop diagrams and UV counterterms contribute to Σos(p
2). The ad-

vantage of working in on-shell scheme in perturbative computation is to avoid calculating

the Feynman diagrams with the loop corrections to external legs since the renormalization

condition gurantees that the contribution of these diagrams will cancel with those from the

UV counterterm corrections to external legs order by order. We will demonstrate this fact

in the following context of this section.

Let us start from the well-known Lehmann-Symanzik-Zimmermann (LSZ) reduction

formula [3] to calculate the scattering amplitudes. It reads

〈k1, . . . , knout|p1, . . . , pmin〉

=

n∏
i=1

− i(k
2
i −m2

os)√
(2π)3Zos

m∏
j=1

−
i(p2

j −m2
os)√

(2π)3Zos
G(k1, . . . , kn;−p1, . . . ,−pm)|k2

i=m2
os,p

2
j=m

2
os
,(2.4)

where the Green function G(k1, . . . , kn;−p1, . . . ,−pm) can be graphically represented as

G(k1, . . . , kn;−p1, . . . ,−pm) = . (2.5)

The LSZ reduction formula (2.4) is valid in both bare Lagrangian and renormalized La-

grangian, and the scattering amplitude should be the same. With the bare Lagrangian, the

Green function in the rhs of Eq.(2.4) are experessed in bare parameters, while the renormal-

ized parameters are understood if the rhs is computed with the renormalized Lagrangian.

The Green function is understood as the correlation function 〈0|T (φ0(x1) · · ·φ0(xn+m))|0〉
where φ0 is the bare filed but the correlation function is calculated in the specfic Lagrangian.

We have the vacuum to single-particle transition amplitude

〈k|φ0|0〉0 = 〈k|φR|0〉R,
〈k|φ0|0〉R =

√
ZR〈k|φR|0〉R =

√
ZR〈k|φ0|0〉0, (2.6)

where the symbol 〈k|φ0|0〉R denotes the expectation value of filed φ0 is calculated with the

renormalized Lagrangian LR and the corresponding wavefunction renormalization constant
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is ZR. With the bare Lagrangian, the rhs of Eq.(2.4) is

n∏
i=1

− i(k
2
i −m2

os)√
(2π)3Zos

m∏
j=1

−
i(p2

j −m2
os)√

(2π)3Zos
G0(k1, . . . , kn;−p1, . . . ,−pm)|k2

i=m2
os,p

2
j=m

2
os

=

n∏
i=1

− i(k
2
i −m2

os)√
(2π)3Zos

m∏
j=1

−
i(p2

j −m2
os)√

(2π)3Zos
〈0|T (φ0(k1), . . . , φ0(kn);φ0(−p1), . . . , φ0(−pm))|0〉0;k2

i=m2
os,p

2
j=m

2
os
.

(2.7)

The Green function G0(k1, . . . , kn;−p1, . . . ,−pm) should have the diagram with two-point

self-energy function Σ(p2) inserted at the external legs

G0(k1, . . . , kn;−p1, . . . ,−pm) ∼

=
i

p2
1 −m2

0

(iΣ(p2
1))G0,1(k1, . . . , kn;−p1, . . . ,−pm),

where G0,1(k1, . . . , kn;−p1, . . . ,−pm) is the Green function without loop corrections on

external legs and Σ(p2
1) consists of all one-particle irreducible (1PI) two-point Feynman

diagrams. In general, we have

G0(k1, . . . , kn;−p1, . . . ,−pm) ∼ (p2
1 −m2

0)

p2
1 −m2

0 + Σ(p2
1)
G0,1(k1, . . . , kn;−p1, . . . ,−pm),

after taking Dyson-summation. In order to keep unitarity, the imaginary part of Σ(p2
1) is

vanishing because the external particle is stable. With the Talyor expansion relation

Σ(p2
1) = Σ(p2

1)|p2
1=m2

os
+ (p2

1 −m2
os)Σ

′(p2
1)|p2=m2

os
+ (p2

1 −m2
os)

2Σ2(p2
1), (2.8)

we have

G0(k1, . . . , kn;−p1, . . . ,−pm) ∼ (p2
1 −m2

0)

(p2
1 −m2

os)(1− δZos + (p2
1 −m2

os)Σ2(p2
1))

G0,1(k1, . . . , kn;−p1, . . . ,−pm).

(2.9)

We can transfer the bare Green function G0,1(k1, . . . , kn;−p1, . . . ,−pm) into renormalized

Green function

G0,1(k1, . . . , kn;−p1, . . . ,−pm) = (Zos)
−1 p

2
1 −m2

os

p2
1 −m2

0

Gos(k1, . . . , kn;−p1, . . . ,−pm),(2.10)

because of the pole of the external legs in Green functions and the definition of the Green

functions. We can derive the above expression in the following. By definition, we know

Gos(k1, . . . , kn;−p1, . . . ,−pm) = 〈0|T (φ0(k1), . . . , φ0(kn);φ0(−p1), . . . , φ0(−pm))|0〉os,
G0(k1, . . . , kn;−p1, . . . ,−pm) = 〈0|T (φ0(k1), . . . , φ0(kn);φ0(−p1), . . . , φ0(−pm))|0〉0.(2.11)
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With Eq.(eq:phi0val), we have a factor of
√
Zos from external wavefunction,i.e.

〈−p1|φ0(−p1)|0〉os =
√
Zos〈−p1|φos(−p1)|0〉os =

√
Zos〈−p1|φ0(−p1)|0〉0. (2.12)

From vertex renormalization, we have another
√
Zos from the vertex renormalization. For

example, in QED, we have

e0 = ZeeR. (2.13)

The renormalized vertex would proportional to

ZeeR
√
ZR = e0

√
ZR. (2.14)

The uncancelled
√
ZR is one to one correspondent to the external leg. We remind the

reader that the renormalized Green function Gos(k1, . . . , kn;−p1, . . . ,−pm) is free of loop

corrections on external legs. If we defined1

ZR =
1

1− δZR
, (2.15)

and substituted Eqs.(2.9) and (2.10) into Eq.(2.7), we obtained the renormalized form of

LSZ formula Eq.(2.4) in on-shell scheme

n∏
i=1

− i(k
2
i −m2

os)√
(2π)3Zos

m∏
j=1

−
i(p2

j −m2
os)√

(2π)3Zos
Gos(k1, . . . , kn;−p1, . . . ,−pm)|k2

i=m2
os,p

2
j=m

2
os
, (2.16)

where the term Σ2(p2
1) is dropped after put p2

1 on-shell p2
1 = m2

os. Then we recover the

renormalized form of rhs of LSZ reduction formula Eq.(2.4), where we get rid of loop

corrections on external legs in Gos(k1, . . . , kn;−p1, . . . ,−pm). In on-shell scheme, the UV

counterterms for mass and wavefunction δZ cancel with the loop diagrams on the external

legs. The wavefunction renormalization constant δZos in the prefactor will cancel with those

from the Green function via Eq.(2.12). Thus, the remaining wavefunction renormalization

counterterm only comes from the uncancelled vertex renormalization.

If one changes the renormalization conditions, for instance, let us take

m̃2
R = m2

0 − ReΣ(p2)|p2=Q2 ,

δZ̃ = −ReΣ(p2)|p2=Q2 . (2.17)

Here m̃2
R is not the physical pole m2

os anymore. Along the same lines, we have

Σ(p2
1) = Σ(p2

1)|p2
1=Q2 + (p2

1 −Q2)Σ′(p2
1)|p2=Q2 + (p2

1 −Q2)2Σ2(p2
1),

G0(k1, . . . , kn;−p1, . . . ,−pm)

∼ (p2
1 −m2

0)

p2
1 − m̃2

R − (p2
1 −Q2)δZ̃ + (p2

1 −Q2)2Σ2(p2
1)
G0,1(k1, . . . , kn;−p1, . . . ,−pm),

G0,1(k1, . . . , kn;−p1, . . . ,−pm) = (Z̃)−1 p
2
1 − m̃2

R

p2
1 −m2

0

G̃R(k1, . . . , kn;−p1, . . . ,−pm).(2.18)

1This definition is consistent with the BPHZ renormalization procedure byond one-loop.
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The derived rhs of Eq.(2.4) becomes

n∏
i=1

{
− i(k

2
i −m2

os)√
(2π)3Zos

F

}
m∏
j=1

{
−
i(p2

j −m2
os)√

(2π)3Zos
F

}
G̃R(k1, . . . , kn;−p1, . . . ,−pm)|k2

i=m2
os,p

2
j=m

2
os

(2.19)

with

F =
(1− δZ̃)(m2

R − m̃2
R)

m2
R − m̃2

R − (m2
R −Q2)δZ̃ + (m2

R −Q2)2Σ2(m2
R)
, (2.20)

which means one has to calculate the loop diagrams attached on the external particles in

the S-matrix. At the one-loop level, it is

F = 1− δZ̃ +
m2
R −Q2

m2
R − m̃2

R

δZ̃ − (m2
R −Q2)2

m2
R − m̃2

R

Σ2(m2
R) = 1− δZ̃ − Σ(m2

R)− Σ(Q2)

m2
R − m̃2

R

,(2.21)

where − Σ(m2
R)

m2
R−m̃

2
R

corresponds to one-loop diagram on external leg, Σ(Q2)
m2
R−m̃

2
R

corresponds to

mass renormalization insertion diagram on external leg and −δZ̃ corresponds to wave-

function renormalization insertion diagram. That means one has to calculate the loop

corrections as well as the renormalization insertions to external legs. Moreover, one should

keep in mind that the wavefunction renormalization constant from Green function (see

Eq.(2.6)) cannot cancel the on-shell wavefunction renormalization constant in the prefac-

tor directly. Then, we will have another term proportional to
∏ p2−m2

os

p2−m2
R

√
ZR√
Zos

left at the

amplitude level.

2.1 An example: NLO QCD corrections to Z decays into a quark pair

We consider a simple example, i.e. Next-to-Leading Order (NLO) QCD corrections to Z

decays into a quark pair in the Standard Model, to illustrate the above arguments. We will

work in two renormalization schemes: on-shell renormalization scheme and MS scheme.

For simplicity, let us first examine the case of the massless external quark. Independent

of renormalization, it is well known that the (initial helicity averaged) Born amplitude

squared is

|MB|2 =
2Nce

2m2
Z

3c2
ws

2
w

[
(Iq3)

2 − 2Iq3Qqs
2
w + 2Q2

qs
4
w

]
, (2.22)

where cw, sw are cosine and sine of Weinberg angle, Nc = 3 is the color factor, Iq3 and Qq
are the isospin and charge of the quark. Due to the condition of on-shell renormalization

in Eq.(2.3), one can simply ignore to calculate the one-loop diagrams Figs.(1b,1c) and the

corresponding UV counter term diagrams Figs.(1e,1f). The contribution of the vertex UV

counter term Fig.(1d) is2

2Re
{
MUV

os

(
MB

)∗}
= −CF

αs
2π

(
1

εUV
− 1

εIR

)
|MB|2, (2.23)

2We work in Conventional Dimensional Regularization scheme.
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where CF = N2
c−1

2Nc
is the color factor of the quark. In the MS renormalization scheme, be-

sides Figs.(1a,1d), we have to include the non-vanishing contributions of Figs.(1b,1c,1e,1f).

The expression of Fig.(1a) in MS scheme is the same as that in on-shell scheme, while the

expression of the UV one Fig.(1d) becomes

2Re
{
MUV

MS,d

(
MB

)∗}
= −CF

αs
2π

(
1

εUV
− 1− γE + log (4π)

)
|MB|2, (2.24)

where γE is the Euler-Mascheroni constant. Meanwhile, the sum of Figs.(1e,1f) is

2Re
{
MUV

MS,e+f

(
MB

)∗}
= CF

αs
π

(
1

εUV
− 1− γE + log (4π)

)
|MB|2, (2.25)

and the sum of Figs.(1b,1c) is

2Re
{
Mone−loop

MS,b+c

(
MB

)∗}
= −CF

αs
π

(
1

εUV
− 1

εIR

)
|MB|2. (2.26)

Moreover, in MS, one has an extra contribution proportional to |∏ p2−m2
os

p2−m2
MS

√
ZMS√
Zos
|2 at the

amplitude squared level. Since the external quark is massless, we have the one-loop level

experssion

mMS = mos = 0,

δZos = −CF
αs
4π

(
1

εUV
− 1

εIR

)
,

δZMS = −CF
αs
4π

(
1

εUV
− γE + log (4π)

)
. (2.27)

At one-loop level, the extra term would be

2×
[
2×

(
1

2
δZMS −

1

2
δZos

)]
|MB|2CDR

= CF
αs
2π

(
− 1

εIR
+ 1 + γE − log (4π)

)
|MB|2 (2.28)

where we use

|MB|2CDR =
(d− 2)

2
|MB|2. (2.29)

The difference between the on-shell renormalization and MS renormalization is

Eq.(2.24)+Eq.(2.25)+Eq.(2.26)+Eq.(2.28)−Eq.(2.23)=0. Thus, from this example, we ex-

plicitly illustrate the necessacity of the term proportional to
∏ √

ZR√
Zos

at the one-loop level.

In order to account for the contribution from the ratio of the propagators
∏ p2−m2

os

p2−m2
R

,

we need to keep the mass of the quark mq. The Born matrix element squared is

|MB(mq)|2 =
2Nce

2

3c2
ws

2
w

[
(Iq3)

2 (
m2
Z −m2

q

)
− 2Iq3Qqs

2
w

(
m2
Z + 2m2

q

)
+ 2Q2

qs
4
w

(
m2
Z + 2m2

q

)]
.

(2.30)
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For simplicity, we just keep trace of the leading pole in 1
p2−m2

q,MS

and the contribution of

the ratio in propagators should be taken in to cancel the leading pole. The sum of the

diagrams Figs.(1b,1c,1e,1f) is

−CF
2αs
π

(
3 log

m2
q

µ2
− 4

)
1

p2 −m2
q,MS

|MB|2 +O(1). (2.31)

On the other hand, the ratio of the propagator can be decomposed into

p2 −m2
q

p2 −m2
q,MS

= 1−
m2
q −m2

q,MS

p2 −m2
q,MS

= 1− (mq +mq,MS)
δmMS − δmos

p2 −m2
q,MS

, (2.32)

where at one-loop level,

δmMS = −3CFmq
αs
4π

(
1

εUV
− γE + log 4π

)
,

δmos = −3CFmq
αs
4π

(
1

εUV
− γE + log 4π + log

µ2

m2
q

+
4

3

)
. (2.33)

Then, it contributes an extra term

2×
[
−2× (mq +mq,MS)

δmMS − δmos

p2 −m2
q,MS

]
|MB|2

= −CF
2αs
π

(
−3 log

m2
q

µ2
+ 4

)
1

p2 −m2
q,MS

|MB|2 +O(1), (2.34)

and it cancles the term in Eq.(2.31).

3. Complex Mass Scheme

However, in the usual perturbative QFT, one encounters the difficulty to handle scattering

processes intermediated with unstable particles, such as EW gauge bosons and top quark

in the Standard Model theory. It is known for a long time that untarity on the Hilbert

space gurantees only when all of the asympotic states are stable [4]. A proper treatment of

unstable particles in the perturbative scattering amplitude requires a summation of two-

point 1PI Feynman diagrams and introduces in a complex pole [5–9] in the denominator

of Feynman propagators. However, a naive summation of such self-energy diagrams might

voilate the gauge invariant in a perturbative theory [10–12].

Despite the fact that there is no fully established treatment of unstable particles in

perturbative theories, such issue is usually overlooked since the widths of unstable parti-

cles are usually small compared to their masses, in which case the leading approximation

(“narrow width approximation” ) is frequently applied to calculate physical quantities as

long as the dressed propagators [13] are well approximated by the Breit-Wigner (BW)

distribution [14]

1

(p2 −M2)2 +M2Γ2
. (3.1)
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(a) Triangle (b) External Bubble I (c) External Bubble II

(d) Vertex UV (e) External UV I (f) External UV II

Figure 1: One-loop Feynman diagrams and UV counter terms for Z → qq̄.

However, finite width effects cannot be ignored anymore when one considers a precision

test or one is interested in exclusive observables like the lineshape.

Two general approaches are introduced to handle the unstable particles in a system-

atical way, which are usually called as Complex Mass Scheme (CMS) [15–17] and unstable-

particle effective theory [18–20]. In this article, we will only focus on the first method,i.e.

complex mass scheme. It is an extension of the on-shell renormalization scheme. The com-

plex mass and field renormalization constant for the unstable particle filed is defined from

the residue of the Dyson-summed propagator

i

p2 −M2
0 + Σ(p2)

, (3.2)

which is demonstrated in the following way

m2
cms = M2 − iΓM,

m2
cms = M2

0 − Σ(m2
cms),

δZcms = −Σ′(p2)|p2=m2
cms

. (3.3)

The Feynman integrals appearing in self-energy contribution Σ(p2) are defined in the second

Riemann sheet [9]. The CMS is a fully gauge-invariant method and it can be applied

straightforwardly to the whole phase space. Hence, it is much suitable to realize automation

in higher-order calculations. Since the scheme is only a reparameterization of the bare

Lagrangian, gauge invariance is assured. However, due to the introduction of complex

parameters in CMS, one should concern the unitarity order by order. The perturbative

unitarity issue in CMS has already been discussed in Refs. [21, 22].
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Since the bare Lagrangian does not change in CMS, in the following we will concern

on how to recover the results in CMS to those in on-shell renormalization scheme. From

Eq.(3.3), we understand that

M2 = M2
0 − ReΣ(M2 − iΓM),

Γ =
ImΣ(M2 − iΓM)

M
. (3.4)

Since the Feynman prescription +iε in p2 = p2 + iε changes to −iε when Γ → 0+, one

should performs the integration in the second Riemann sheet. The second equation in

Eq.(3.4) can be thought as the optical theorem for unstable particles. Because no bare

parameter enters in Γ, one can thought the width Γ is an physical observable that can be

obtained in perturbative computation as long as the coupling is week. In the Standard

Model, the relevant unstable particles are electroweak bosons, Higgs bosons and the heavy

fermions. At leading order, we have

Γ

M
= O(α). (3.5)

The only way to make a comparision between CMS and on-shell renormalization scheme

is by performing coupling constant expansion both in the amplitude and the width Γ.

For simplicity, we only perform the one-loop level comparison though some arguments

can be applied to higher orders. Since no sign of the Feynman prescription changes in

the loop integrals in CMS and on-shell scheme, the contribution of the one-loop Feynman

diagrams in both schemes are the same when taking Γ → 0+, because no internal loop

propagator can be on-shell. Hence, the only difference can be an higher order contribution

because of Eq.(3.5). The only relevant

3.1 A useful expansion

1

(s−M2)2 + Γ2M2
=

π

ΓM
δ(s−M2) + P

(
1

(s−M2)2

)
M2

− πΓM

2
δ(s−M2)

∂2

∂s2
+O

((
Γ

M

)2
)
, (3.6)

where P
(

1
(s−M2)2

)
M2

is the principle integral∫ smax

smin

ds P
(

1

(s−M2)2

)
M2

f(s)

=

∫ M2−

smin

ds

(
1

(s−M2)2

)
f(s) +

∫ smax

M2+
ds

(
1

(s−M2)2

)
f(s). (3.7)

3.2 Spin decorrelation in Narrow-Width Approximation

Let us consider a process with resonant massive vector boson. In the narrow-width ap-

proxiation, we have the amplitude squared to be

|A|2 = |Aµp (−gµν +
qµqν
M2

)Aνd|2
1

(q2 −M2)2 + Γ2M2
. (3.8)
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The spin-averaged amplitude squre is

|A|2 =
[
Aµp (−gµν +

qµqν
M2

)Aν∗p
]
× 1

3

[
Aαd (−gαβ +

qαqβ
M2

)Aβ∗d
]
. (3.9)

The phase space measure

dΦn(P→ k1, · · · ,kn) = (2π)4δ(4)(P−
n∑

i=1

ki)
n∏

i=1

d3k̃i

(2π)32Ei
(3.10)

can be factorized as (without loosing generality, we assum q = k1 + k2)

dΦn(P→ k1, · · · ,kn) = dΦn−1(P→ q,k3, · · · ,kn)× dq2

2π
× dΦ2(q→ k1,k2).(3.11)

Then, after expanding the Breit-Wigner distribution, we have

dΦn(P→ k1, · · · ,kn)|A|2 = dΦn−1(P→ q,k3, · · · ,kn)dΦ2(q→ k1,k2)

× |A
µ
p (−gµν +

qµqν
M2 )Aνd|2

2ΓM

∣∣∣∣∣
q2=M2

. (3.12)

The difference

∆ =

∫
dΦ2(q→ k1,k2)

(
|Aµp(−gµν +

qµqν
M2

)Aνd|2 − |A|2
)

(3.13)

is Lorentz invariant. Hence, we can work it in the rest frame of q,i.e. q = (M,~0). Then,

∆ =

∫ |~k1|2d|~k1|
2E1

δ(M − E1 − E2)

∫
dΩ1

(
|Aµp (−gµν +

qµqν
M2

)Aνd|2 − |A|2
)
|~k1+~k2=~0

.(3.14)

The (−gµν +
qµqν
M2 ) in the rest frame is a diagonal matrix (0, 13). Since the decay amplitude

Aνd = (A0
d,
~Ad) is a Lorentz vector, ~Ad must proportional to ~k1 because there is no other

independent vector in the decay process when q = (M,~0). Take the direction of the

production amplitude ~Ap to be z axis. We have

|Aµp (−gµν +
qµqν
M2

)Aνd|2 = | ~Ap · ~Ad|2 = | ~Ap|2| ~Ad|2 cos2 θ1,

|A|2 =
1

3
| ~Ap|2| ~Ad|2. (3.15)

The integration of the solid angular of Ω1 to be zero because of

| ~Ap|2| ~Ad|2
∫
dφ1

∫ 1

−1
d cos θ1

(
cos2 θ1 −

1

3

)
= 0. (3.16)

Hence, we prove the spin decorrelation of amplitudes in NWA.
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3.3 A general cancellation in the total cross section

The narrow width approximation (NWA) is defined in the usual way,i.e. the total cross

section in NWA is the production coss section multiplied with the branching ratio of the

decay channel.

Let us consider a process of e+νe →W+ → µ+νµ. The comparison of NWA and CMS

is the amplitude squre by multiplying (q2 −M2
W )2. In this section, we will demonstrate

that the difference of

(q2 −M2
W )2|ACMS|2 − (q2 −M2

W )2|ANWA|2 (3.17)

is a pure high-order effect after spin decorrelation. At leading order (LO), it is easy to

see already from the previous discussion. At next-to-leading order (NLO), we have three

classes of topologies in the virtual with CMS. The first one is the factorizable part

ACMS,Virtual = +

= AµCMS,Virtual,p(−gµν +
qµqν
M2

)AνCMS,Born,d

+ AµCMS,Born,p(−gµν +
qµqν
M2

)AνCMS,Virtual,d, (3.18)

where we have suppressed the W propagator 1
(q2−M2

W )−iΓWMW
. Here virtual includes the

triganle loop diagrams and the corresponding UV to the vertex. Up to NLO, we only need

to keep the first expansion term in Eq.(3.6). Similar to the strategy in the previous section,

we can perform the angular integration of µ+ and νµ to get rid of spin correlation between

the production and decay amplitudes. After multiplying the Born amplitude, we get a

form in the NWA approximation,i.e.

2<ACMS,VirtualA∗CMS,Born =
1

3
[σVirtual,pσBorn,d + σBorn,pσVirtual,d] , (3.19)

where

σVirtual,p/d = 2<
{
AµCMS,Virtual,p/d(−gµν +

qµqν
M2

)Aν∗CMS,Born,p/d

}
,

σBorn,p/d =
∣∣∣AµCMS,Born,p/d(−gµν +

qµqν
M2

)Aν∗CMS,Born,p/d

∣∣∣ . (3.20)

We have suppressed “CMS” in σ because the remaining width effect is a pure higher-order

effect3. The argument is valid also for the corresponding real radiation topology following

the same argument.

The non-trivial topology is the bubble/tadpole as well as W mass and wavefunction

renormalization diagrams4. There are two W propagators in the corresponding virtual

3Actually, the W wavefunction renormalization constant in CMS is different to that in NWA. The

imaginary part of the difference is not a higher-order effect. Let us keep it in mind.
4If we substitute difference of the wavefunction renormalization constant in CMS and NWA from the

first class of topology, we can safely replace the wavefunction renormalization constant in CMS to be that

in NWA, and then the difference in the first topology would be a pure higher-order effect.
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diagrams. The amplitude would be

= AµCMS,Born,p(−gµν +
qµqν
M2

)
i

(q2 −M2
W )− iΓWMW

iΣAνCMS,Born,d, (3.21)

where we have suppressed one W propagator i
(q2−M2

W )−iΓWMW
, which will contribute to

the Breit-Wigner distribution after multiplying the Born amplitude in CMS. The loop

contribution to two-point Green function Σ would be Σ(q2 + i0) and the W mass renor-

malization is −Σ(M2
W − iΓWMW ). After including the difference of wavefunction renor-

malization from the first class topology, we have the W wavefunction renormalization to

be δZWos = −<Σ′(M2
W + i0). Remember that the on-shell condition makes sure that5

<Σ(q2 + i0) = <Σ(M2
W + i0) + <Σ′(M2

W + i0)(q2 −M2
W ) +O

(
(q2 −M2

W )2
)
. (3.22)

Hence, the first and the second term in the real part of the loop contribution cancels the

NWA W mass and wavefunction renormalization. The O
(
(q2 −M2

W )2
)

only contributes

to higher-order term since there is no 1
ΓW

enhancement but it has an α suppression6.

Therefore in CMS, the remaining term would be7

Σ(q2 + i0)− Σ(M2
W − iΓWMW )−<Σ′(M2

W + i0)|s2w→<sw2,c2w→<cw2(q2 −M2
W + iΓWMW )

= i=Σ(q2 + i0)−
(
Σ(M2

W − iΓWMW )−<Σ(M2
W + i0)

)
− iΓWMW<Σ′(M2

W + i0)|s2w→<sw2,c2w→<cw2

= i=Σ(M2
W + i0) + i=Σ′(M2

W + i0)(q2 −M2
W ) +O

(
(q2 −M2

W )2
)

−
(
i=Σ(M2

W + i0)− iΓWMW=Σ′(M2
W + i0)|s2w→<sw2,c2w→<cw2 +O(α3)

)
= i=Σ′(M2

W + i0)(q2 −M2
W ) + iΓWMW=Σ′(M2

W + i0)|s2w→<sw2,c2w→<cw2

+ O(α3) +O(α)O
((
q2 −M2

W

)2)
=
[
i=Σ′(M2

W + i0)(q2 −M2
W + iΓWMW )

]∣∣
s2w→<sw2,c2w→<cw2 +O(α3)

= i
ΓW
MW

(q2 −M2
W + iΓWMW ) +O(α3). (3.23)

This contribution is a pure imaginary contribution, which should be zero if there is no

imaginary part in the Born amplitude, such as in a 2 → 2 process. Here, except the last

equation, ΓW is not necessary to be the exact decay width as long as it is O(α). In the

5There might still remaining some terms that coming from the expansion of the coupling c2w. However,

such remaining term will cancel with the coupling effect in the corresponding UV.
6Remember that the LO is α2MW

ΓW
∼ α and the NLO should be α2.

7The effect from the complex coupling c2w will cancel exactly between the loop and UV (also in the

imaginary part). The effect from the complex couling c2w for Σ′(M2
W + i0)(q2 −M2

W ) is also a higher-order

effect.
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NWA,

Σ(q2 + i0)−<Σ(M2
W + i0)−<Σ′(M2

W + i0)(q2 −M2
W )

= i=Σ(q2 + i0) = iΓWMW + i
ΓW
MW

(q2 −M2
W ) +O(α3), (3.24)

where s2
w → <sw2, c2

w → <cw2 is implied. Again, the imaginary part should be zero if there

is no imaginary part in the Born amplitude.

An exception happens when there is one loop propagator can be soft and the other

loop propagator to be on-shell, e.g.

W, on− shell W, on− shell

W

γ, soft

∼ Σ(M2
W + i0)

∼ i
α

π3
B0

(
M2
W + i0, 0,M2

W − iΓWMW

)
= −α

π

[
1

εUV
+

(
2− γE − log π + log

µ2

M2
W − iΓWMW

)
− iΓWMW

M2
W

log
−iΓWMW

M2
W − iΓWMW

]
. (3.25)

However, in the UV CT, we take Σ(M2
W−iΓWMW ). It will result in missing of iΓWMW

M2
W

log −iΓWMW

M2
W−iΓWMW

term, which means such term cannot be cancelled by combining loop+UV. Such term will

contribute log− iΓW
MW

since its prefactor iΓWMW will cancel one of the W propagator when

the W is on-shell.

The third topology is the interference term between the production part and the decay

part. Such term will contribute a higher-order effect except one the boson in the loop can

be soft8,i.e.

⊗ = O(α3), (3.26)

when there is no loop propagator can be soft. If one propagator can be soft, then we will

have a box integral

D0

(
0, 0, 0, 0, p2, t, 0, 0,M2

W − iΓWMW , 0
)
∝ 1

(p2 −M2
W ) + iΓWMW

. (3.27)

In the soft region, we have the loop integral [23](
p2 −M2

W + iΓWMW

M2
W − iΓWMW

)d−4
1

(p2 −M2
W ) + iΓWMW

C0 (0, t, 0, 0, 0, 0) , (3.28)

8Remember that here the LO is O(α) and the NLO is O(α2).
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which cancels all of the divergences as well as log (p2 −M2
W + iΓWMW )

in D0

(
0, 0, 0, 0, p2, t, 0, 0,M2

W − iΓWMW , 0
)

in the leading term in the expansion of p2 →
M2
W . However, there are still remaining leading terms 1

p2−M2
W+iΓWMW

left that can never

be cancelled. This fact can also be understood from the Feynman Tree Theoreom (see e.g.

Eq.(22) in Ref. [24]). The singularity term from the on-shell photon propagator can be

cancelled with the corresponding contribution from the real emission diagrams. However,

there are remaining terms from the on-shell fermion propagator(s) only. All these remaining

terms can be thought as the finite-width contributions.

The remaining contribution from Born amplitude squared,i.e.

|AµCMS,Born,p(−gµν +
qµqν

M2
W − iΓWMW

)AνCMS,Born,d|2P
1

(q2 −M2
W )2

(3.29)

is a pure finite-width effect,which is also a NLO piece. As long as A0
CMS,Born,p/d and

~ACMS,Born,p/d have the same phase, the second expansion term of ΓW
MW

in−gµν+
qµqν

M2
W−iΓWMW

is a pure imaginary contribution, which will cancel with its complex conjugate one. The

second expansion term in the second class of topology would be zero when q2 = M2
W since

qµ(−gµν +
qµqν

M2
W−iΓWMW

) = 0. If q2 6= M2
W , the term only contribute to a higher-order

piece,i.e. NNLO piece.

3.4 Discussions of the differential distributions

The NWA contribution is defined as the amplitude without any width and the renormaliza-

tion is performed in the on-shell scheme,i.e. applying real part to all of the renormalization

constants.

3.4.1 Non-resonance region

In the region that |q2 −M2
W | � ΓWMW , the Breit-Wigner distribution can be expanded

in ΓWMW

q2−M2
W

,.i.e.

1

(q2 −M2
W )2 + Γ2

WM
2
W

=
1

(q2 −M2
W )2

(
1− Γ2

WM
2
W

(q2 −M2
W )2

+O(α4)

)
, (3.30)

or

1

(q2 −M2
W ) + iΓWMW

=
1

(q2 −M2
W )
− i ΓWMW

(q2 −M2
W )2

+O(α2). (3.31)

In the Born, we need to expand the Breit-Wigner distribution up to second term in Rξ
gauge,i.e.

⊗

= |AµCMS,Born,p

(
−gµν + (1− ξ) qµqν

q2 − ξM2
W + ξiΓWMW

)
Aν∗CMS,Born,d|2

1

(q2 −M2
W )2 + Γ2

WM
2
W

= σα
2

Born

1

(q2 −M2
W )2

− σα2

Born

Γ2
WM

2
W

(q2 −M2
W )4

+O(α5), (3.32)
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or at the amplitude level

= AµCMS,Born,p

(
−gµν + (1− ξ) qµqν

q2 − ξM2
W + ξiΓWMW

)
Aν∗CMS,Born,d

1

(q2 −M2
W ) + iΓWMW

= AµCMS,Born,p

(
−gµν + (1− ξ) qµqν

q2 − ξM2
W + ξiΓWMW

)
Aν∗CMS,Born,d

×
[

1

(q2 −M2
W )
− i ΓWMW

(q2 −M2
W )2

+O(α2)

]
= AµCMS,Born,p

(
−gµν + (1− ξ) qµqν

q2 − ξM2
W

− (1− ξ)i ξΓWMW

q2 − ξM2
W

qµqν
q2 − ξM2

W

+O(α2)

)
Aν∗CMS,Born,d

×
[

1

(q2 −M2
W )
− i ΓWMW

(q2 −M2
W )2

+O(α2)

]
. (3.33)

Next, for simplicity, let us work in Feynman gauge,i.e.ξ = 1. In the first class of virtual,

we only need to keep the first expansion of the W propagator,i.e.

+

=
[
AµCMS,Virtual,p (−gµν)AνCMS,Born,d +AµCMS,Born,p (−gµν)AνCMS,Virtual,d

]
× 1

(q2 −M2
W )

. (3.34)

All of the finite-width effect is a pure higher-order effect except the W wavefunction renor-

malization. Similar argument applies to the third class of the virtual.

In the second class of virtual, we have

= AµCMS,Born,p (−gµα) (−gβν)AνCMS,Born,d

1

(q2 −M2
W ) + iΓWMW

× i

(q2 −M2
W ) + iΓWMW

i

[(
−gαβ +

qαqβ
q2

)
Σ(q2 + i0)− qαqβ

q2
ΣL(q2 + i0)

+ gαβΣ(M2
W − iΓWMW ) + gαβ<Σ′(M2

W + i0)(q2 −M2
W + iΓWMW )

]
,(3.35)

where we have replaced the W wavefunction renormalization constant to be the NWA form

in the first class of virtual, and take the corresponding contribution into here. Correspond-
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ingly, in NWA, we have

= AµNWA,Born,p (−gµα) (−gβν)AνNWA,Born,d

1

(q2 −M2
W )

× i

(q2 −M2
W )

i

[(
−gαβ +

qαqβ
q2

)
Σ(q2 + i0)− qαqβ

q2
ΣL(q2 + i0)

+ gαβ<Σ(M2
W + i0) + gαβ<Σ′(M2

W + i0)(q2 −M2
W )
]
. (3.36)

The difference between Eq.(3.35) and Eq.(3.36) would be proportional to

Σ(M2
W − iΓWMW )−<Σ(M2

W + i0) = i=Σ(M2
W − i0) +O(α2)

= iΓWMW +O(α2). (3.37)

The expansion of ΓW
MW

in the other pieces is just adding a higher-order effect. Then,

Eq.(3.35)−Eq.(3.36) is

AµCMS,Born,p (−gµν)AνCMS,Born,d

iΓWMW

(q2 −M2
W )2

, (3.38)

where we used the fact that the difference between AµCMS,Born,p/d and AµNWA,Born,p/d in the

above equation would only result in a higher-order effect. The above term just cancels the

term −i ΓWMW

(q2−M2
W )2 in Eq.(3.33). In this case, one has to make sure that the LO width is

exactly correct to gurantee the cancellation.

The amplitude level cross check can be performed in the non-resonance region after

including the Born and virtual contributions.

Method of cross check: In order to avoid the complication of color-structure and

helicity dependence of the amplitude, we are trying to multiply the amplitude with the

corresponding complex-conjugated Born amplitude and to avoid to adding its complex-

conjugated piece. In general, we want to obtain the to be checked piece via

AXVirtualAX∗Born, (3.39)

where X=CMS or NWA. In a 2 → 2 process up to an arbitary phase, we know one can

have

=ANWA
Born = 0, (3.40)

and

<ACMS
Born = <ANWA

Born (1 +O(α)) ,

=ACMS
Born = <ANWA

Born O(α). (3.41)

The cancellation gurantees that

<ACMS
Virtual/UV = <ANWA

Virtual/UV (1 +O(α)) ,

=ACMS
Virtual/UV = =ANWA

Virtual/UV (1 +O(α))−=ACMS
Born. (3.42)
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Remember that AXVirtual/UV ∼ <AXBornO(α). Up to NLO accuracy, we have

<
(
ANWA

VirtualANWA∗
Born

)
= <ANWA

Virtual<ANWA
Born (1 +O(α))

= <ACMS
Virtual<ACMS

Born (1 +O(α))

= <
(
ACMS

VirtualACMS∗
Born

)
. (3.43)

Hence, the consistent check for the real part of a 2 → 2 process is trivial. On the other

hand, the imaginary parts are

=
(
ANWA

VirtualANWA∗
Born

)
= =ANWA

Virtual<ANWA
Born (1 +O(α)) ,

=
(
ACMS

VirtualACMS∗
Born

)
= =ACMS

Virtual<ACMS
Born (1 +O(α))

= =ANWA
Virtual<ANWA

Born (1 +O(α))−=ACMS
Born<ANWA

Born . (3.44)

One solution is to add an extra term

=ACMS
BornANWA∗

Born = =ACMS
Born<ANWA

Born (3.45)

to the CMS one.9

However, the situation looks not so simple, because the imaginary part from the cou-

pling constant renormalization (for example e =
√

4πα or in this case Weinberg angles

sw and cw) can contribute the imaginary part of ACMS
VirtualACMS∗

Born (which are not necessary

to be proportional to O( ΓW
MW

)), which should be cancelled out because the coupling con-

stant (at least for e) is factorized out. Hence its imaginary part will not contribute after

taking the real of the amplitude squared at NLO level. This situation is not satisfied in

AXCMS
VirtualACMS∗

Born , however. We need to take them to be zero at least for the coupling constant

renormalization δZe.

3.4.2 Resonance region

In the resonance region |q2−M2
W | � ΓWMW , the expansion of

ΓNLO
W

ΓLO
W

in ΓW = ΓLO
W +ΓNLO

W is

necessary to gurantee the NLO accuracy. The NWA in this region is ill-defined. However,

the NWA amplitude is still well-defined by multiplying
(q2−M2

W )
iΓWMW

and it can be used to

compare with the CMS amplitude square in this region.

In CMS, we have the Born amplitude

= AµCMS,Born,p

(
−gµν +

qµqν
M2
W − iΓWMW

)
Aν∗CMS,Born,d

1

iΓWMW

= AµCMS,Born,p

(
−gµν +

qµqν
M2
W

+ i
ΓWMW

M2
W

qµqν
M2
W

+O(α2)

)
Aν∗CMS,Born,d

1

iΓWMW
.,(3.46)

9However, the situation would be more complicated because there is also imaginary part from the

Weinberg angles sw and cw. One should keep these imaginary part in ANWA∗
Born but only take M2

W − iΓWMW

to be M2
W in the W propagator.
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while in NWA, it is

(q2 −M2
W )

iΓWMW
×

= AµNWA,Born,p

(
−gµν +

qµqν
M2
W

)
Aν∗NWA,Born,d

1

iΓWMW
., (3.47)

Let us consider the non-trivial second class of virtual topology. In this region, the

Eq.(3.35) in unitarity gauge becomes

= AµCMS,Born,p

(
−gµα +

qµqα
M2
W − iΓWMW

)

×
(
−gβν +

qβqν

M2
W − iΓWMW

)
AνCMS,Born,d

1

iΓWMW

× i

iΓWMW
i

[(
−gαβ +

qαqβ
M2
W

)
Σ(M2

W + i0)− qαqβ
M2
W

ΣL(M2
W + i0)

+ gαβΣ(M2
W − iΓWMW ) + gαβ<Σ′(M2

W + i0)(iΓWMW )
]
. (3.48)

With qµ(−gµν +
qµqν
M2
W

) = 010 when q2 = M2
W , there is a term

Σ(M2
W + i0)− Σ(M2

W − iΓWMW )−<Σ′(M2
W + i0)(iΓWMW ), (3.49)

which can be simplified following the way of Eq.(3.23)

i=Σ′(M2
W + i0, s2

w)(iΓWMW ) +O(α3) = iΓ2
W +O(α3). (3.50)

Similarly, the NWA term is

(
(q2 −M2

W )

iΓWMW

)
×

= AµNWA,Born,p

(
−gµα +

qµqα
M2
W

)
×
(
−gβν +

qβqν

M2
W

)
AνNWA,Born,d

1

iΓWMW

× i

iΓWMW
i

[(
−gαβ +

qαqβ
M2
W

)
Σ(M2

W + i0)− qαqβ
M2
W

ΣL(M2
W + i0)

+ gαβΣ(M2
W + i0)

]
× iΓWMW

q2 −M2
W

. (3.51)

10It is guranteed by guage invariance.
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With the help of Eq.(3.24), we simplify the corresponding term to be

Σ(q2 + i0)−<Σ(M2
W + i0)−<Σ(M2

W + i0)(q2 −M2
W )

= i=Σ(q2 + i0) +O((q2 −M2
W )2)

= iΓWMW + i=Σ′(M2
W + i0)(q2 −M2

W ) +O((q2 −M2
W )2). (3.52)

Such realization can be performed with the ε-offshellness method introduced later. One

should subtract the iΓWMW from the NWA virtual amplitude and then can be compared

with the CMS virtual amplitude.

As we already discussed, an exception occures when there is one loop propagator can

be soft and the other loop propagator to be on-shell. For example, in CMS, we have

W, on− shell W, on− shell

W

γ, soft

∼ Σ(M2
W + i0)

∼ i
α

π3
B0

(
M2
W + i0, 0,M2

W − iΓWMW

)
= −α

π

[
1

εUV
+

(
2− γE − log π + log

µ2

M2
W − iΓWMW

)
− iΓWMW

M2
W

log
−iΓWMW

M2
W − iΓWMW

]
. (3.53)

However, in the UV CT, we take Σ(M2
W−iΓWMW ). It will result in missing of iΓWMW

M2
W

log −iΓWMW

M2
W−iΓWMW

term, which means such term cannot be cancelled by combining loop+UV. Such term will

contribute log− iΓW
MW

since its prefactor iΓWMW will cancel one of the W propagator when

the W is on-shell. On the other hand, in NWA, we will have

W, on− shell W, on− shell

W

γ, soft

∼ Σ(M2
W + ε)

∼ i
α

π3
B0

(
M2
W + ε, 0,M2

W − i0
)

= −α
π

[
1

εUV
+

(
2− γE − log π + log

µ2

M2
W − i0

)
− ε

M2
W + ε

log
ε

M2
W − i0

]
. (3.54)

Meanwhile, in the UV CT, we have Σ(M2
W ). Hence, the leading term in the expansion of ε

in loop+UV would be ε
M2
W

log ε
M2
W−i0

. The prefactor ε cancels with one W propagator. We

arrives log ε
M2
W−i0

in NWA. These contributions should be treated properly. For example,
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one can take mass in the W mass in the loop to be M2
W instead of M2

W − iΓWMW in CMS

and to take ε to be under the on-shell threshold in NWA.

However, in the third class of the topology, we might have the type of

⊗ , (3.55)

where one propagator can be soft and it result in a box integral

D0

(
0, 0, 0, 0, p2, t, 0, 0,M2

W − iΓWMW , 0
)
∝ 1

(p2 −M2
W ) + iΓWMW

. (3.56)

In this case, we will have logarithms like log
(
p2 −M2

W + iΓWMW

)
( or in NWA we have

log ε)11. Such logarithms can not be cancelled between CMS and NWA. In the first class

of the topology, if the photon loop propagator in the triangle soft

W, on− shell
W

γ, soft

+

W, on− shell
W

γ, soft


⊗ ,(3.57)

we will also have logarithms like log
(
p2 −M2

W + iΓWMW

)
( or in NWA we have log ε).

All of these type of diagrams should not be included in the following ε-offshellness method.

3.4.3 ε-offshellness method

The ε-offshellness is performed by ε = q2−M2
W � ΓWMW and expansion everything in ε.

Σ(M2
W − iΓWMW )|f1f̄2

=

WW

f1

f̄2

=
α(M2

W − iΓWMW )Nf1
c

12πs2
w

[
1

εUV
+ (−γE + log 4π +

5

3
)

− log− (−M
2
W − iΓWMW

µ2
)

]
, (3.58)

11Actually, we will have log2.
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where we have defined

log± z = log z ± 2iπθ(−<z)θ(∓=z), (3.59)

which has the relation

log± z = − log∓
1

z
. (3.60)

We also have the partial width of W → f1f̄2

ΓW (W → f1f̄2) =
αMWN

f1
c

12<s2
w

. (3.61)

Then, we have

=Σ(M2
W − iΓWMW )|f1f̄2

= ΓW (W → f1f̄2)
MW

π
(−π + 2π) +O(α2). (3.62)

Therefore, the extra universal term from this imaginary part when setting W on shell is

W W

f1

f̄2

Aµ
1 Aν

2

µ ν

= A1
i

iΓW (W → f1f̄2)MW

[
i(−i=Σ(M2

W − iΓWMW )|f1f̄2
)
]

× i

iΓW (W → f1f̄2)MW
A2 = A1(+1)

i

iΓW (W → f1f̄2)MW
A2

= ABorn. (3.63)

After multiplied the conjugated of Born amplitude and take a factor of 2 to the real part

of the amplitude squre, we have the universal extra term as

+2|ABorn|2, (3.64)

which should be cancelled with the Born term.
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In the off-shellness by a small p2 = M2
W + ε, we have the loop contribution

Σ(M2
W + ε+ i0)|f1f̄2

=

WW

f1

f̄2

=
α(M2

W + ε)Nf1
c

12π<s2
w

[
1

εUV
+ (−γE + log 4π +

5

3
)

− log (−M
2
W + ε+ i0

µ2
)

]
, (3.65)

while the UV in Narrow-Width Approximation is −<Σ(M2
W + i0)|f1f̄2

. The sum would be

ε

M2
W

[
<Σ(M2

W + i0)|f1f̄2
− MWΓW (W → f1f̄2)

π

]
+ iΓW (W → f1f̄2)MW (1 +

ε

M2
W

).(3.66)

The UV in Complex-Mass Scheme is −Σ(M2
W − iΓWMW )|f1f̄2

with the expansion

i=Σ(M2
W − iΓWMW )|f1f̄2

= iΓW (W → f1f̄2)MW − i
ΓW (W → f1f̄2)

MW
<Σ(M2

W + i0)|f1f̄2

+ i
ΓW (W → f1f̄2)

MW

ΓW (W → f1f̄2)MW

π

− i
<c2

w

<s2
w

ΓW (W → f1f̄2)

MW

(
1− ΓZ

ΓW (W → f1f̄2)
<cw

)
× <Σ(M2

W + i0)|f1f̄2
+O(α3), (3.67)

and

<Σ(M2
W − iΓWMW )|f1f̄2

= <Σ(M2
W + i0)|f1f̄2

+ ΓW (W → f1f̄2)2

+ ΓW (W → f1f̄2)2<c2
w

<s2
w

(
1− ΓZ

ΓW (W → f1f̄2)
<cw

)
+ O(α3), (3.68)

where

s2
w = 1− M2

W − iΓWMW

M2
Z − iΓZMZ

,

<sw2 = 1− M2
W

M2
Z

,

<cw2 = 1−<sw2. (3.69)
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The loop contribution can be expanded as

i=Σ(M2
W + i0, s2

w)|f1f̄2
= iΓW (W → f1f̄2)MW

− i
<c2

w

<s2
w

ΓW (W → f1f̄2)

MW

(
1− ΓZ

ΓW (W → f1f̄2)
<cw

)
× <Σ(M2

W + i0)|f1f̄2
+O(α3),

<Σ(M2
W + i0, s2

w)|f1f̄2
= <Σ(M2

W + i0)|f1f̄2

+ ΓW (W → f1f̄2)2<c2
w

<s2
w

(
1− ΓZ

ΓW (W → f1f̄2)
<cw

)
+ O(α3). (3.70)

After combining UV and loop contributions, we have

− ΓW (W → f1f̄2)2

+ i
ΓW (W → f1f̄2)

MW
<Σ(M2

W + i0)|f1f̄2

− i
ΓW (W → f1f̄2)

MW

ΓW (W → f1f̄2)MW

π
+O(α3). (3.71)

In NWA,

W W

f1

f̄2

Aµ
1 Aν

2

µ ν

= A1
i

ε
i

{
ε

M2
W

[
<Σ(M2

W + i0)|f1f̄2
− MWΓW (W → f1f̄2)

π

]
+ iΓW (W → f1f̄2)MW (1 +

ε

M2
W

)

}
× i

ε
A2. (3.72)

For the 2→ 2, there is no imaginary part and the Born amplitude is12

ACMS
Born

iΓWMW

ε
= ANWA

Born = A1
i

ε
A2. (3.73)

12The difference from the coupling c2w =
M2

W−iΓWMW

M2
Z
−iΓZMZ

and <cw2 =
M2

W

M2
Z

is still possible. However, at

the ampltidue square level, it would become |c2w|2 =
M4

W +Γ2
WM2

W

M4
Z

+Γ2
Z
M2

Z
and <cw2 =

M4
W

M4
Z

. The difference is a

next-to-next-to-leading order effect.
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Hence, we can drop the term iΓW (W → f1f̄2)MW (1 + ε
M2
W

). The final result after multi-

plying ε2/Γ2
W /M

2
W would be

− 1

M2
W

[
<Σ(M2

W + i0)|f1f̄2
− MWΓW (W → f1f̄2)

π

+ iΓW (W → f1f̄2)MW

(
M2
W

ε
+ 1

)]
|ACMS

Born|2. (3.74)

In CMS13,

W W

f1

f̄2

Aµ
1 Aν

2

µ ν

= A1
i

iΓWMW
i

{
i

ΓW
MW
<Σ(M2

W + i0)|f1f̄2

− i
ΓW
MW

ΓWMW

π
− Γ2

W +O(α3)

}
i

iΓWMW
A2. (3.75)

We obtain

− 1

M2
W

[
<Σ(M2

W + i0)|f1f̄2
− MWΓW (W → f1f̄2)

π
+ iΓW (W → f1f̄2)MW

]
|ACMS

Born|2.(3.76)

Hence, in general, one should subtract

− iΓW
MW

M2
W

ε
|ACMS

Born|2 (3.77)

from the NWA virtual amplitude squared. Here, we don’t need to use the exact width

since the comparison does not involve the Born amplitude.

3.5 An example: top quark decay width

In this section, we are trying to determine at which level of the top quark decay width

is needed to gurantee the NLO accuracy by demonstrating the top quark decay process,

which is already the most complicated decay process in the Standard Model at parton level.

From above discussions, we know that in order to gurantee the NLO accuracy in the whole

phase space, one should keep the NLO accuracy width at least. For simplify, let us first

consider QCD corrections to top quark decay width.

13We can drop the term −ΓW (W → f1f̄2)2 in Eq.(3.71) for a 2 → 2 process but may be not for a

2→ n, n > 2 process, where the amplitude itself has a imagniary part in the same order as the real part.
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3.5.1 NLO QCD corrections

There are two loop diagrams in the first class of topology, i.e. the factorized one. We have

t

b

f1

f̄2

= Aµloop(t→ bW+)

(
−gµν +

pµpν
M2
W − iΓWMW

)

× AνBorn(W+ → f1f̄2)
i

p2 −M2
W + iΓWMW

(3.78)

and

t

b

f1

f̄2

= AµBorn(t→ bW+)

(
−gµν +

pµpν
M2
W − iΓWMW

)

× Aνloop(W+ → f1f̄2)
i

p2 −M2
W + iΓWMW

. (3.79)

Hence, Eq.(3.78) plus its corresponding UV and the real emission diagrams from top quark

or bottom quark contribute the NLO QCD corrections to

AµNLO(t→ bW+ +X)

(
−gµν +

pµpν
M2
W − iΓWMW

)
AνBorn(W+ → f1f̄2)

i

p2 −M2
W + iΓWMW

,(3.80)

where p = pf1 +pf̄2
. The amplitude squred (after expanding Breit-Wigner distribution and

making spin decorrelation) would be

|ANLO(t→ bW+ +X)|2|ABorn(W+ → f1f̄2)|2 π

ΓWMW
δ(p2 −M2

W ), (3.81)

which after integrating the phase space to f1 and f̄2 is

|ANLO(t→ bW+ +X)|2 ΓBorn
W (W+ → f1f̄2)

ΓW
. (3.82)

Similarly, we have Eq.(3.79) plus its UV and the real emission diagrams from f1 and f̄2

AµBorn(t→ bW+)

(
−gµν +

pµpν
M2
W − iΓWMW

)
AνNLO(W+ → f1f̄2 +X)

i

p2 −M2
W + iΓWMW

,(3.83)

where p = pt − pb. The amplitude squred (after expanding Breit-Wigner distribution and

making spin decorrelation) is

|ABorn(t→ bW+)|2|ANLO(W+ → f1f̄2 +X)|2 π

ΓWMW
δ(p2 −M2

W ). (3.84)
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Therefore, one arrives at

|ABorn(t→ bW+)|2 ΓNLO
W (W+ → f1f̄2 +X)

ΓW
, (3.85)

after phase space integration to f1,f̄2 (and the gluon in real). In the above, we take NLO

as the pure NLO QCD correction term, which does not include the Born contributions.

This form is one can expect from the NLO QCD corrections to top quark decay width in

NWA. It means that if one exhausting all possible f1 and f̄2 and take ΓW to be NLO QCD

accuracy, we will have

Σf1,f̄2

{
|ABorn(t→ bW+)|2 ΓBorn

W (W+ → f1f̄2)

ΓBorn
W + ΓNLO

W

+ |ANLO(t→ bW+ +X)|2 ΓBorn
W (W+ → f1f̄2)

ΓBorn
W + ΓNLO

W

+ |ABorn(t→ bW+)|2 ΓNLO
W (W+ → f1f̄2 +X)

ΓBorn
W + ΓNLO

W

}
= |ANLO(t→ bW+ +X)|2 ΓBorn

W

ΓBorn
W + ΓNLO

W

+ |ABorn(t→ bW+)|2 ΓBorn
W + ΓNLO

W

ΓBorn
W + ΓNLO

W

=
(
|ABorn(t→ bW+)|2 + |ANLO(t→ bW+ +X)|2

)
+ |ANLO(t→ bW+ +X)|2 −ΓNLO

W

ΓBorn
W + ΓNLO

W

=
(
|ABorn(t→ bW+)|2 + |ANLO(t→ bW+ +X)|2

)
+O(αα2

S), (3.86)

Hence, we recover the result with NLO QCD corrections in NWA.14 However, there are

still other terms missing in CMS, which can be thought as the pure finite width effects.

The first one is the second expansion of the Born amplitude squared,i.e.

t

b

f1

f̄2

⊗
t

b

f1

f̄2

= |ABorn(t→ bW+)|2|ABorn(W+ → f1f̄2)|2 1

(p2 −M2
W )2 + Γ2

WM
2
W

= |ABorn(t→ bW+)|2|ABorn(W+ → f1f̄2)|2
(

π

ΓWMW
δ(p2 −M2

W )

+ P
(

1

(p2 −M2
W )2

)
M2
W

+O(α2) +O(ααS)

)
. (3.87)

However,because in the Standard Model, the LO W width is O(α), such finite width effects

will not contribute to the result at NLO QCD accuracy but at NLO EW corrections, one

should take into account such effect.

14We have dropped the width dependence from the Weinberg angles sw,cw, since they can be factorized

out in Born amplitude and the finite width effect in |sw|2 and |c2w| is a NNLO effect.

– 27 –



Due to the color-flow, the interference term of virtual/real gluon exchanging between

the t− b fermion line and the f1 − f̄2 fermion line is zero. Hence, there is no contribution

from the third class of topology diagrams in NLO QCD corrections. The second class of

topology is zero because W boson is color-singlet.

Hence, we have conclusion that: up to NLO QCD accuracy, we only need to

calculate the top quark width in NWA up to NLO QCD level.

3.5.2 NLO EW corrections

With the same argument in the previous section, for the factorizable topology, we have

Σf1,f̄2

{
|ABorn(t→ bW+)|2 ΓBorn

W (W+ → f1f̄2)

ΓBorn
W + ΓNLO

W

+ |ANLO(t→ bW+ +X)|2 ΓBorn
W (W+ → f1f̄2)

ΓBorn
W + ΓNLO

W

+ |ABorn(t→ bW+)|2 ΓNLO
W (W+ → f1f̄2 +X)

ΓBorn
W + ΓNLO

W

}
= |ANLO(t→ bW+ +X)|2 ΓBorn

W

ΓBorn
W + ΓNLO

W

+ |ABorn(t→ bW+)|2 ΓBorn
W + ΓNLO

W

ΓBorn
W + ΓNLO

W

=
(
|ABorn(t→ bW+)|2 + |ANLO(t→ bW+ +X)|2

)
+ |ANLO(t→ bW+ +X)|2 −ΓNLO

W

ΓBorn
W + ΓNLO

W

=
(
|ABorn(t→ bW+)|2 + |ANLO(t→ bW+ +X)|2

)
+O(αα2

S), (3.88)

up to NLO EW accuracy, where we take NLO as the pure NLO EW correction term here

instead. The complication appears in the following diagrams

W

t

b

γ
f1

f̄2

⊗
t

b

f1

f̄2

∼
∫
ddq

1

(q2 + i0) ((q + pb)2 + i0)
(
(q − pf1 − pf̄2

)2 −M2
W + iΓWMW

) . (3.89)

We consider this Feynman integral via threshold expansion [25]. In the hard region, we

know (q − pf1 − pf̄2
)2 −M2

W = q2 − 2q · (pf1 + pf̄2
) 6= 0. Hence, the width can be a small

parameter to perform the expansion of iΓWMW
q2+2q(pf1+pf̄2

)
. Hence, the finite width effect is just

a higher-order effect. The situation should be taken care of when

(q − pf1 − pf̄2
)2 −M2

W = q2 − 2q · (pf1 + pf̄2
)→ 0. (3.90)

The first consideration is the soft region, i.e.

q0 ∼ λ, |~q| ∼ λ, (3.91)
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where λ is a small parameter. The integral becomes∫
ddq

1

(q2 + i0) (2q · pb + i0)
(
−2q · (pf1 + pf̄2

) + iΓWMW

) . (3.92)

One can change the Feynman propagator GF (q) = 1
q2+i0

to the advanced propagator

GA(q) = 1
q2+i0q0 via [24]

GA(q) = GF (q) + 2iπθ(q0)δ(q2), (3.93)

which is a direct consequence of the relation

1

x± i0 = P
(

1

x

)
∓ iπδ(x). (3.94)

Hence, Eq.(3.92) becomes∫
ddq

1

(q2 + i0q0) (2q · pb + i0(q + pb)0)
(
−2q · (pf1 + pf̄2

) + iΓWMW

)
− 2iπ

∫
ddqθ(q0)δ(q2)

1

(2q · pb + i0)
(
−2q · (pf1 + pf̄2

) + iΓWMW

)
− 2iπ

∫
ddqθ((q + pb)

0)δ((q + pb)
2)

1

(q2 + i0)
(
−2q · (pf1 + pf̄2

) + iΓWMW

) (3.95)

The first term is zero because all of the residues for q0 integration are located in the upper-

half plane, while the second term will be cancelled by the corresponding real emission

diagrams. If the photon is located in the collinear region to pb, i.e.

q ∼ βpb + λn, n · pb = 0, n2 = −1, (3.96)

in such as, however, because of

(q − pf1 − pf̄2
)2 −M2

W = q2 − 2q · (pf1 + pf̄2
)

= −2βpb · (pf1 + pf̄2
) = −β(m2

t −M2
W ) 6= 0, (3.97)

the finite width effect is still a higher-order effect.

Let us work in a more direct manner, i.e. to consider the difference

C0(0,m2
t ,M

2
W , 0, 0,M

2
W − iΓWMW )− C0(0,m2

t ,M
2
W , 0, 0,M

2
W )

iπ2−εΓ(1− ε)2Γ(1 + ε)Γ(1− 2ε)−1

= − 1

2(m2
t −M2

W )

1

ε2IR
+

1

2(m2
t −M2

W )
log

(
−Γ2

W

µ2

)
1

εIR

+
1

2(m2
t −M2

W )

(
−π

2

2
− 1

2
log2

(
−Γ2

W

µ2

))
. (3.98)
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Correspondingly, the real emission in the soft region would be

W

t

b

γ
f1

f̄2

⊗

W

t

b

γ
f1

f̄2

Real±(ΓW ) = (2iπ)
2MW

m2
t −M2

W

∫
dd−1~q

2|~q|
1

2|~q|(1− cos θ) (−2|~q|MW ± iΓWMW )

= (2iπ)
π1−ε√π
−2εIR

1

Γ(1
2 − ε)

2MW

m2
t −M2

W

∫
d|~q| |~q|−2ε

−2|~q|MW ± iΓWMW

= (2iπ)
π1−ε√π
−2εIR

1

Γ(1
2 − ε)

22ε ×



(
m2
t−M

2
W

MWµ

)−2ε

2(m2
t−M2

W )
1
εIR

when ΓW = 0

log
∓iΓWMW
m2
t−M

2
W

m2
t−M2

W
− ε when ΓW 6= 0

×
π2

3
+log

(
− m2

t−M
2
W

±iΓWMW

)
log

(
− M2

Wµ2

±iΓWMW (m2
t−M

2
W

)

)
m2
t−M2

W

.(3.99)

Therefore,

Real±(ΓW )− Real±(0)

iπ2−εΓ(1− ε)2Γ(1 + ε)Γ(1− 2ε)−1
(3.100)

=

(
− 1

εIR
+
π2ε

6

)
×

− 1

2(m2
t −M2

W )

1

εIR
+

1

2(m2
t −M2

W )
log

(
−Γ2

W

µ2

)
− ε

π2

3 +
log2

(
−Γ2

W
µ2

)
4

m2
t −M2

W

 .

Hence, the real emission and the virtual cancels exactly. This conclusion should be true to

other triangle diagrams with one photon loop propagator.

The finite width effect from the second expansion term of Eq.(3.87) should be added

to the top quark decay width at NLO EW accuracy. It can be guranteed by subtracting

the LO top quark width in NWA from the LO top quark width in CMS with the LO W
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width, because of

Σf1,f̄2
|ABorn(t→ bW+)|2

(
ΓBorn
W (W+ → f1f̄2)

ΓBorn
W + ΓNLO

W

+

∫
dΦ(W+ → f1f̄2)P

(
1

(p2 −M2
W )2

)
|ABorn(W+ → f1f̄2)|2

)
+O(αnαmS , n+m ≥ 3)

− Σf1,f̄2
|ABorn(t→ bW+)|2 ΓBorn

W (W+ → f1f̄2)

ΓBorn
W + ΓNLO

W

= Σf1,f̄2
|ABorn(t→ bW+)|2

(
ΓBorn
W (W+ → f1f̄2)

ΓBorn
W

+

∫
dΦ(W+ → f1f̄2)P

(
1

(p2 −M2
W )2

)
|ABorn(W+ → f1f̄2)|2

)∣∣∣∣
ΓW=ΓBorn

W

+O(αnαmS , n+m ≥ 3)

− Σf1,f̄2
|ABorn(t→ bW+)|2 ΓBorn

W (W+ → f1f̄2)

ΓBorn
W

= Σf1,f̄2
ΓCMS

Born(t→ bW+ → bf1f̄2)|ΓW=ΓBorn
W
− ΓNWA

Born (t→ bW+)

=

[
Σf1,f̄2

ΓCMS
Born(t→ bW+ → bf1f̄2)− ΓNWA

Born (t→ bW+)
ΓBorn
W

ΓW

]∣∣∣∣
ΓW=ΓBorn

W +ΓNLO
W

. (3.101)

Now, let us consider the interference pieces from the third class of topology. The box

diagram cannot have any M
Γ enhancement except one loop propagator can be soft,e.g. one

can be a photon in this case.

t

b

f1

f̄2

∼ D0(0, 0,m2
t , 0,M

2
W , t, 0, 0,M

2
W − iΓWMW , 0)

t→m2
t−M2

W∼ iπ2

m2
t −M2

W

1

iΓWMW
π−ε

Γ(1− ε)2Γ(1 + ε)

Γ(1− 2ε)

×

 1

ε2IR
− 1

εIR
log

(
−Γ2

W

µ2

)
+
π2

2
+

log2
(
−Γ2

W
µ2

)
2

 ,
(3.102)

where t→ m2
t −M2

W means f1 and b is back-to-back. Hence, the pure log
(
−Γ2

W
µ2

)
term is

universal and should be cancelled by the real emission (in the soft region) with (pf1 +pf̄ )2 =
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M2
W

15

W

t

b

γ
f1

f̄2

⊗

W

t

b

f1

f̄2

γ

= Real(ΓW )

= (−2iπ)

∫
ddqθ(q0)δ(q2)

1

(q + pb)2(q + pf1)2((q + pf1 + pf̄2
)2 −M2

W − iΓWMW )

× 1

(pf1 + pf̄1
)2 −M2

W + iΓWMW

t→m2
t−M2

W∼ 1

iΓWMW

(−2iπ)

m2
t −M2

W

∫
dd−1~q

2|~q|
1

|~q|2(2|~q|MW − iΓWMW )(1− cos2 θ)

=
1

iΓWMW

−iπ
m2
t −M2

W

2π1−ε

Γ(1− ε)

√
πΓ(−ε)

Γ(1
2 − ε)

∫
d|~q| |~q|d−5

2|~q|MW − iΓWMW

=
1

iΓWMW

−iπ
m2
t −M2

W

2π1−ε

Γ(1− ε)

√
πΓ(−ε)

Γ(1
2 − ε)

i

(
− 1

2ΓWMW

1

εIR

+
log
(
−Γ2

W
4µ2

)
2ΓWMW

− ε

π2

3 +
log2

(
−Γ2

W
4µ2

)
4


ΓWMW

+O(1)


= − 1

Γ2
WM

2
W

iπ2

m2
t −M2

W

π−ε
Γ(1− ε)2Γ(1 + ε)

Γ(1− 2ε)

×

 1

ε2IR
− 1

εIR
log

(
−Γ2

W

µ2

)
+
π2

2
+

log2
(
−Γ2

W
µ2

)
2

 . (3.103)

Therefore, Real(ΓW )+loop× 1
−iΓWMW

cancels exactly. The universal term of log
(
−Γ2

W
µ2

)
is a global prefactor (Γ2

µ2 )ε to the leading singularity (i.e. 1
ε2IR

in the above trian-

gle/box examples) of the difference between CMS and NWA virtual/loop/real

amplitudes.

The second class of topology is also the new topology in CMS. There is no such

contribution in NWA because of the on-shell renormalization condition. In order to make

the equivalence between CMS and NWA, we still include loop+UV on the W propagator.

First, let us consider the virtual one. With the exactly same argument in the W production

15Note, to gurantee the same phase space point, one should write one W propagator to be
1

(q+pf1
+pf̄2

)2−M2
W
−iΓWMW

instead of 1
(pt−pb)2−M2

W
−iΓWMW

.
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case, the result between CMS and NWA are same. The only “exception” can be the photon

in the loop propagator. We will demonstrate that this “exception” is also not an exception

after including the corresponding soft real emission. For this diagram, the difference of the

corresponding UV is beyond NLO level. Let us apply the similar argument in Sec.D. For

example, the loop diagram have

W

t

b

f1

f̄2

γ ∼ 1

iΓWMW
B0(M2

W , 0,M
2
W − iΓWMW )

=
1

iΓWMW
iπ2

(
1

εUV
− γE + 2− log π + log

µ2

M2
W − iΓWMW

− iΓW
MW

log
−iΓWMW

M2
W − iΓWMW

)
. (3.104)

The real part would be cancelled by W mass UV (though not the same as that in NWA),

while the term − iΓW
MW

log −iΓWMW

M2
W−iΓWMW

is an extra term in CMS. Moreover, one should also

include the W wavefunction renormalization, which is

− 1

iΓWMW
iΓWMW iπ

2

[
d

dp2

∫
ddq

1

q2((q + p)2 −M2
W + iΓWMW )

]∣∣∣∣
p2→M2

W−iΓWMW

= − 1

iΓWMW
iΓWMW iπ

2

[∫
dd+2q

1

q4((q + p)2 −M2
W + iΓWMW )2

]∣∣∣∣
p2→M2

W−iΓWMW

(3.105)

= − 1

iΓWMW
iΓWMW iπ

2 1

2(M2
W − iΓWMW )

(
− 1

εIR
+ γE − 2 + log π − log

µ2

M2
W − iΓWMW

)
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Let us consider the corresponding real emission diagrams

W

t

b

γ
f1

f̄2

⊗

W

t

b

γ
f1

f̄2

Real(ΓW ) ∼ (−2iπ)

∫
ddqθ(q0)δ(q2)

1

(p− q)2 −M2
W + iΓWMW

1

(p− q)2 −M2
W − iΓWMW

= (−2iπ)

∫
dd−1~q

2|~q|
1(

(p− q)2 −M2
W

)2
+ Γ2

WM
2
W

= (−2iπ)

∫
d|~q|dd−1Ω

2

|~q|d−3

4|~q|2M2
W + Γ2

WM
2
W

= (−2iπ)
π1−ε√π
4M2

W

1

Γ(3
2 − ε)

22ε ×

−
(
m2
t−M2

W
MWµ

)−2ε
1

2εIR
when ΓW = 0

log
m2
t−M2

W
ΓWMW

when ΓW 6= 0
, (3.106)

Therefore, Eq.(3.104)+Eq.(3.106)+Real(ΓW )-Real(0) plus mass UV in CMS would cancel

out completely. We should note that when p2 = (pt − pb)2 = M2
W the real emission is

corresponding to EW corrections in the decay process in NWA, while when p2 = (pf1 +

pf̄2
)2 = M2

W the real emission corresponds to EW corrections in the production process in

NWA. The different two phase space point would also contribute a factor of 2 in the real

emission and it will compensant the factor 2 in the virtual pieces.

In conclusion, we illustrated that : up to NLO QED accuracy, we only need to

calculate the top quark width in NWA up to NLO QED level plus the finite W

width effect via Σf1,f̄2
ΓCMS

Born(t→ bW+ → bf1f̄2)|ΓW=ΓBorn
W
− ΓNWA

Born (t→ bW+).

3.5.3 NNLO QCD corrections

Similar excercise can be generalized to higher-order, where we consider NNLO QCD correc-

tions, in which we have With the same argument in the previous section, for the factorizable
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topology, we have

Σf1,f̄2

{
|ABorn(t→ bW+)|2 ΓBorn

W (W+ → f1f̄2)

ΓBorn
W + ΓNLO

W + ΓNNLO
W

+ |ANLO(t→ bW+ +X)|2 ΓBorn
W (W+ → f1f̄2)

ΓBorn
W + ΓNLO

W + ΓNNLO
W

+ |ABorn(t→ bW+)|2 ΓNLO
W (W+ → f1f̄2 +X)

ΓBorn
W + ΓNLO

W + ΓNNLO
W

+ |ANNLO(t→ bW+ +X)|2 ΓBorn
W (W+ → f1f̄2)

ΓBorn
W + ΓNLO

W + ΓNNLO
W

+ |ANLO(t→ bW+ +X)|2 ΓNLO
W (W+ → f1f̄2)

ΓBorn
W + ΓNLO

W + ΓNNLO
W

+ |ABorn(t→ bW+ +X)|2 ΓNNLO
W (W+ → f1f̄2)

ΓBorn
W + ΓNLO

W + ΓNNLO
W

}
= |ANLO(t→ bW+ +X)|2 ΓBorn

W + ΓNLO
W

ΓBorn
W + ΓNLO

W + ΓNNLO
W

+ |ABorn(t→ bW+)|2 ΓBorn
W + ΓNLO

W + ΓNNLO
W

ΓBorn
W + ΓNLO

W + ΓNNLO
W

+ |ANNLO(t→ bW+ +X)|2 ΓBorn
W

ΓBorn
W + ΓNLO

W + ΓNNLO
W

=
(
|ABorn(t→ bW+)|2 + |ANLO(t→ bW+ +X)|2 + |ANNLO(t→ bW+ +X)|2

)
+ |ANLO(t→ bW+ +X)|2 −ΓNNLO

W

ΓBorn
W + ΓNLO

W + ΓNNLO
W

+ |ANNLO(t→ bW+ +X)|2 −ΓNLO
W − ΓNNLO

W

ΓBorn
W + ΓNLO

W + ΓNNLO
W

=
(
|ABorn(t→ bW+)|2 + |ANLO(t→ bW+ +X)|2 + |ANNLO(t→ bW+ +X)|2

)
+ O(αnαmS , n+m ≥ 4). (3.107)

Hence, the finite width effect at NNLO level in general would be{
Σf1,f̄2

|ABorn(t→ bW+)|2
(

ΓBorn
W (W+ → f1f̄2) + ΓNLO

W (W+ → f1f̄2)

ΓBorn
W + ΓNLO

W + ΓNNLO
W

+

∫
dΦ(W+ → f1f̄2 +X)P

(
1

(p2 −M2
W )2

)(
|ABorn(W+ → f1f̄2)|2 + |ANLO(W+ → f1f̄2)|2

)
−
∫
dΦ(W+ → f1f̄2)

πΓWMW

2
δ(p2 −M2

W )

(
∂

∂p2

)2

|ABorn(W+ → f1f̄2)|2
)

+O(αnαmS , n+m ≥ 4)

− Σf1,f̄2
|ABorn(t→ bW+)|2 ΓBorn

W (W+ → f1f̄2) + ΓNLO
W (W+ → f1f̄2)

ΓBorn
W + ΓNLO

W + +ΓNNLO
W

}
+

{
Σf1,f̄2

|ANLO(t→ bW+)|2
(

ΓBorn
W (W+ → f1f̄2)

ΓBorn
W + ΓNLO

W + ΓNNLO
W

+

∫
dΦ(W+ → f1f̄2)P

(
1

(p2 −M2
W )2

)
|ABorn(W+ → f1f̄2)|2

)
− Σf1,f̄2

|ANLO(t→ bW+)|2 ΓBorn
W (W+ → f1f̄2)

ΓBorn
W + ΓNLO

W + ΓNNLO
W

}
= Σf1,f̄2

ΓCMS
Born+NLO(t→ bW+ → bf1f̄2 +X)|ΓW=ΓBorn

W +ΓNLO
W
− ΓNWA

Born+NLO(t→ bW+). (3.108)

However, because of ΓBorn
W ∼ O(α) only, such finite width effect need at least one EW/QED

corrections,i.e. at NNLO level, it only appears when performing NNLO EW/QED cor-
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rections or NLO QCD⊗NLO EW/QED corrections. In the later case, one just replace

NLO=NLO QCD+NLO EW/QED and NNLO=NLO QCD⊗NLO EW/QED.

4. Finite width effects at NNLO QCD level

4.1 top quark decay width

4.2 W production in hadronic collisions

4.3 Z production in hadronic collisions

5. SMWidth: A package for calculating decay widths of particles in the

Standard Model with NNLO QCD and NLO EW accuracy

5.1 A quick guide

5.2 Illustrative results

The parameter setup in α(MZ) renormalization scheme is:

Parameter value Parameter value

Gµ 1.1987498350461625 · 10−5 α(MZ)−1 128.930

mt 173.3 yt 173.3

MW 80.419 MZ 91.188

MH 125.0 Vij δij

We have presented the widths for W, Z and top quark from SMWidth in α(MZ)

renormalization scheme in Tab.1, where we have defined

ΓW = ΓLO
W

(
1 + δαS + δα + δmf

)
,

ΓZ = ΓLO
Z

(
1 + δαS + δα + δmf

)
,

Γt = ΓLO
t

(
1 + δαS + δα + δmf + δΓW

)
. (5.1)

Here, δαS ,α,mf ,ΓW represent the QCD corrections, EW corrections, finite fermion mass effect

and finite width effect respectively. For the renormalization of αS(µR), we have setting µR
to be the mother particle’s mass. In the finite fermion mass effect, we have taken them to

be:

Parameter value Parameter value

mb 4.49 mc 1.42

mτ 1.77684 mµ 0.105658367

Similarly, in the Gµ renormalization scheme, we use the same parameter setup except

using

Gµ = 1.16639 · 10−5 → α−1
Gµ

= 132.23. (5.2)

The corresponding results are presented in Fig.2. To the Z boson width, the contribution

from Z →W±f1f̄2 is negeligible because of the phase space suppression.
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ΓLO [GeV] δαS (%) δα (%) δmf (%) δΓW (%)

W± 2.10490 2.55 −3.51 −0.0238 -

Z 2.51376 2.61 −3.34 −0.0374 -

t 1.54624 −8.58 −1.41 −0.239 −1.58

Table 1: The widths calculated by SMWidth in α(MZ) renormalization scheme.

ΓLO [GeV] δαS (%) δα (%) δmf (%) δΓW (%)

W± 2.04808 2.55 −0.364 −0.0238 -

Z 2.44591 2.61 −0.197 −0.0374 -

t 1.50450 −8.58 1.68 −0.239 −1.54

Table 2: The widths calculated by SMWidth in Gµ renormalization scheme.
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A. 2-point scalar integrals

In the physical region,i.e.

p2 → p2 + i0,m2
i → m2

i − i0, (A.1)

we have

p2 p2

m1

m2

= B0(p2,m2
1,m

2
2)

= µ2ε

{
1

εUV
+ 2− log (p2 + i0) +

1∑
i=0

[
γi log

γi − 1

γi
− log (γi − 1)

]}
, (A.2)

where γ0 and γ1 are the two roots of the quadratic equation

−γ(1− γ)p2 + γm2
2 + (1− γ)m2

1 = 0, (A.3)

which are

γi =
p2 −m2

2 +m2
1 + (−)i

√
λ(p2,m2

1,m
2
2)

2p2
,

λ(a, b, c) = a2 + b2 + c2 − 2ab− 2ac− 2bc. (A.4)

Without losing generality, we can assume m1 ≥ m2. For the relevat to the complex mass

scheme, we have

<p2 ≥ 0,<m2
i ≥ 0,=m2

i ≤ 0, (A.5)

and =p2 � <p2,=m2
i � <m2

i .

The critierion is that p2 + i0 → p2 − i0 will not flip the sign of the imaginary part of

the loop integral.

Case 1:

<λ(p2,m2
1,m

2
2) ≥ 0, i.e.<p2 ≥ (<m1 + <m2)2 or <p2 ≤ (<m1 −<m2)2. (A.6)

Case 1.1, when

<p2 ≤ (<m1 −<m2)2, (A.7)

we have

<γ0 − 1

γ0
= <(m1 −m2)(m1 +m2)− p2 +

√
λ(p2,m2

1,m
2
2)

(m1 −m2)(m1 +m2) + p2 +
√
λ(p2,m2

1,m
2
2)
≥ 0,

<(γ0 − 1) = <(m1 −m2)(m1 +m2)− p2 +
√
λ(p2,m2

1,m
2
2)

2p2
≥ 0, (A.8)

– 38 –



and

<γ1 − 1

γ1
= <(m1 −m2)(m1 +m2)− p2 −

√
λ(p2,m2

1,m
2
2)

(m1 −m2)(m1 +m2) + p2 −
√
λ(p2,m2

1,m
2
2)
≥ 0,

<(γ1 − 1) = <(m1 −m2)(m1 +m2)− p2 −
√
λ(p2,m2

1,m
2
2)

2p2
≥ 0. (A.9)

Hence, in this case, logarithm is the normal one.

Case 1.2, when

<p2 ≥ (<m1 + <m2)2, (A.10)

we have

m2
1 −m2

2 − p2 ≤ −
√
λ(p2,m2

1,m
2
2)

→ <γ0 ≥
1

2
,<γ0 − 1 ≤ 0, (A.11)

and

m2
1 −m2

2 + p2 ≥
√
λ(p2,m2

1,m
2
2)

→ <γ1 ≥ 0,<γ1 − 1 ≤ 0. (A.12)

If <p2 ≥ 2(<m2
1 + <m2

2), we have

1

2
≥ <γ1 ≥ 0, (A.13)

while <p2 ≤ 2(<m2
1 + <m2

2), we have

1 ≥ <γ1 ≥
1

2
. (A.14)

We can also expand the imaginary part to the first order,i.e.

=γ0 = −<γ0
=p2

<p2
+
=m2

1 −=m2
2 + =p2

2<p2
− g(p2,m2

1,m
2
2)

2<p2
√
λ(<p2,<m2

1,<m2
2)
, (A.15)

where

g(a, b, c) = =a<(b+ c− a) + =b<(a+ c− b) + =c<(a+ b− c) (A.16)

In this case, the logarithms should be generalized to log− defined in Eq.3.59 only when

the sign of the imaginary part is determined by the imaginary part of =p2. This condition

makes it is easier to use the =p2 expansion only. However, in Standard Model, we have such

condition only happens when t→ W + b, where we have =m2
2 = 0 and <m2

2 � <m2
1,<p2.

Then

=γ0 = (1−<γ0)
=p2

<p2
≥ 0, (A.17)
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where it is appropiate that take log→ log− when p2 + i0→ p2 − i0. Similarly, we have

=γ1 = −<γ1
=p2

<p2
+
=m2

1 −=m2
2 + =p2

2<p2
+

g(p2,m2
1,m

2
2)

2<p2
√
λ(<p2,<m2

1,<m2
2)
. (A.18)

In Standard Model, we have m2
t > 2m2

W ,i.e. 1
2 ≥ <γ1 ≥ 0, then

=γ1 = −<γ1
=p2

<p2
+
=m2

1

<p2
, (A.19)

which were made to be very complicated. In <m2
2 � <m2

1,<p2, then <γ1 → 0 and one

just applies the normal logarithm to the logarithms of γ1 related.

Case 2:

λ(<p2,<m2
1,<m2

2) ≤ 0, i.e.(<m1 −<m2)2 ≤ <p2 ≤ (<m1 + <m2)2. (A.20)

Case 2.1:

(<m1 −<m2)2 ≤ <p2 ≤ (<m2
1 −<m2

2)

→ <γ0 ≥ 1,<γ1 ≥ 1. (A.21)

Case 2.2:

(<m2
1 −<m2

2) ≤ <p2 ≤ (<m1 + <m2)2

→ 0 ≤ <γ0 ≤ 1, 0 ≤ <γ1 ≤ 1. (A.22)

In all above cases, the logarithm should be the normal log since the imaginary part is

determined by the real part of p2,m2
1,m

2
2.

B. Dangerous in Taylor expansions of renormalization constant in Com-

plex Mass Scheme

As proposed in Ref. [15], one can avoid the complication of choosing Riemann sheet if

one expands the self-energy function Σ(p2)|p2→M2−iΓM via Taylor expansion of p2 → M2

and keep the first two expansion terms, while the remaining terms are thought as higher-

order terms since O( Γ
M ) ∼ O(α). However, the simply using of such techniques might be

dangerous in some sepcific cases when one loop propagator can be soft and it makes the

other loop propagator on-shell. For example, for W self-energy, we have

W, on− shell W, on− shell

W

γ, soft

∼ B0

(
p2, 0,M2

W − iΓWMW

)
|p2→M2

W−iΓWMW

= iπ2

[
1

εUV
+

(
2− γE − log π + log

µ2

M2
W − iΓWMW

)
− p2 −M2

W + iΓWMW

p2
log

M2
W − iΓWMW − p2

M2
W − iΓWMW

]∣∣∣∣
p2→M2

W−iΓWMW

= iπ2

[
1

εUV
+

(
2− γE − log π + log

µ2

M2
W − iΓWMW

)]
. (B.1)
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However, in the Taylor expansion, we have

B0

(
M2
W + i0, 0,M2

W − iΓWMW

)
+(M2

W − iΓWMW −M2
W )B′0

(
p2, 0,M2

W − iΓWMW

)
|p2→M2

W+i0

+O
(
(M2

W − iΓWMW −M2
W )2

)
. (B.2)

The difference between Eq.(B.2) and B0

(
M2
W − iΓWMW , 0,M

2
W − iΓWMW

)
would be

−
π2ΓW

[
MW − iΓW log

(
− iΓW
MW−iΓW

)]
M2
W

+O
((

ΓW
MW

)2
)

=
π2ΓW
MW

+O
((

ΓW
MW

)2
)
, (B.3)

which means they are not the same up to O
((

ΓW
MW

))
. The problem comes from the

the term
p2−M2

W+iΓWMW

p2 log
M2
W−iΓWMW−p2

M2
W−iΓWMW

. Because the derivation of the logarithm will

result in 1
p2−M2

W+iΓWMW
,i.e. 1

iΓWMW
when p2 = M2

W . Hence, one should also include the

higher-order expansions from the above Taylor expansion Eq.(B.2). If we expand it up to

the next term, i.e.

B0

(
M2
W + i0, 0,M2

W − iΓWMW

)
+(M2

W − iΓWMW −M2
W )B′0

(
p2, 0,M2

W − iΓWMW

)
|p2→M2

W+i0

+
(M2

W − iΓWMW −M2
W )2

2
B′′0
(
p2, 0,M2

W − iΓWMW

)
|p2→M2

W+i0

+O
(
(M2

W − iΓWMW −M2
W )3

)
. (B.4)

In this case, the difference between Eq.(B.4) and B0

(
M2
W − iΓWMW , 0,M

2
W − iΓWMW

)
would become

−π
2ΓW

2MW
+O

((
ΓW
MW

)2
)
. (B.5)

In general, if one expands to O((M2
W − iΓWMW −M2

W )n), the difference would reduce to

−π
2ΓW
nMW

+O
((

ΓW
MW

)2
)
. (B.6)

Hence, only when one includes all order Taylor expansion, one can get the correct result

for the UV renormalization constant in complex mass scheme.

This fact is indeed has been noticed in the Erratum of Ref. [15], where it was proposed

to use two methods to cure it:

1. Do not expand the counterterm Σ(p2,M2
W − iΓWMW ) at least for diagrams with

photon or gluon exchange.
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2. Add the missing term back to the expanded counterterm.

Hence, the Taylor expansion method can be used directly only satisfy the following two

conditions

1. The width is O(α) and its coefficients to the coupling constant α is O(1), where α is

the perturbative expansion coupling constant we are considering. In other words, it

will not be applied if the width is not small, e.g. the Higgs boson with mass larger

than 400 GeV.

2. There is Feynman diagrams with branching cuts at p2 = M2−iΓM , which is the case

when one loop propagator can be soft and the other loop propagator can be on-shell

(at the level no width effect or q2 →M2).

C. A general strategy for choosing Riemann sheet

We propose a general strategy for choosing a correct Riemann sheet in UV/logarithms

without the Taylor expansion as proposed in Ref. [15]. The necesscity to do so relies on

the motivation for a general implementation of complex-mass scheme in SM and BSM. It

based on the fact that the logarithms are in the first Riemann sheet if one is in the physical

region, i.e. in

p2 → p2 + i0,m2 → m2 − i0. (C.1)

Let us consider a general case log f({p2
i }, {m2

i − iγimi}, µ2 − i0). The choosing of the Rie-

mann sheet in principle depends on all scales enters into function f . Hence, in general,

based on the mass spectrum, the log should be changed to log+,log− or the normal log-

arithm (in the first Riemann sheet). For simplicity, first let us assume the real part of

f({p2
i }, {m2

i − iΓimi}, µ2 − i0) will not change from p2
i = M2

i + i0 to p2
i = M2

i − iΓiMi,

which is the usual case when Γi � Mi.
16 In this case, one can always use f({M2

i +

i0}, {m2
i − iγimi}, µ2 − i0) as a reference. One should use log± only when one encounters

the following two cases with the real part <f({M2
i + i0}, {m2

i − iγimi}, µ2 − i0) < 0:

1. when =f({M2
i + i0}, {m2

i − iγimi}, µ2 − i0) is negative and

=f({M2
i − iΓiMi}, {m2

i − iγimi}, µ2 − i0) is positive, one should continue log to log−;

2. when =f({M2
i + i0}, {m2

i − iγimi}, µ2 − i0) is positive and

=f({M2
i − iΓiMi}, {m2

i − iγimi}, µ2 − i0) is negative, one should continue log to

log+.

16For a compicated cases when <f({M2
i + i0}, {m2

i − iγimi}, µ2 − i0) and

<f({M2
i − iΓiMi}, {m2

i − iγimi}, µ2 − i0) are not in same sign. One should in principle use another

reference p2
i in the physical region.
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D. Cancellation of α log Γ between virtual and real

As we already discussed in section 3.4.2, after combing loop+UV=virtual, there are still

remaing α log ΓW terms, which might spoil the perturbation convergence since ΓW is small.

In this section, we will illustrate that such logarithms will be cancelled by including the

real emission contributions. For example, we have

2<


W, on− shell W, on− shell

W

γ, soft

⊗


∼ 2

1

iΓWMW
B0

(
M2
W + i0, 0,M2

W − iΓWMW

)
∼ −2iπ2

M2
W

log ΓW . (D.1)

Correspondingly, in the real emission, we have



γ, soft

p2 = M2
W

q

p− q
⊗

γ, soft

p2 = M2
W

q

p− q


∼ (−2iπ)

∫
d4qθ(q0)δ(q2)

1

(p− q)2 −M2
W + iΓWMW

1

(p− q)2 −M2
W − iΓWMW

= (−2iπ)

∫
d3~q

2|~q|
1(

(p− q)2 −M2
W

)2
+ Γ2

WM
2
W

q soft∼ (−2iπ)

∫
d|~q|dΩ

2

|~q|
4|~q|2M2

W + Γ2
WM

2
W

∼ iπ2

M2
W

log ΓW , (D.2)
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and



γ, soft

p2 = M2
W

q

q + p
⊗

γ, soft

p2 = M2
W

q

q + p


∼ (−2iπ)

∫
d4qθ(q0)δ(q2)

1

(q + p)2 −M2
W + iΓWMW

1

(q + p)2 −M2
W − iΓWMW

= (−2iπ)

∫
d3~q

2|~q|
1(

(q + p)2 −M2
W

)2
+ Γ2

WM
2
W

q soft∼ (−2iπ)

∫
d|~q|dΩ

2

|~q|
4|~q|2M2

W + Γ2
WM

2
W

∼ iπ2

M2
W

log ΓW . (D.3)

Therefore, the log ΓW cancels in Eq.(D.1)+Eq.(D.2)+Eq.(D.3). We would like to emphasize

that Eq.(D.2) and Eq.(D.3) represent two different phase space regions.

Similarly, I would expect that the log ΓW term would cancel in

2<


W, on− shell

γ, soft

⊗



+


W, on− shell

γ, soft

⊗
W, on− shell

γ, soft



+


W, on− shell

γ, soft

⊗
W, on− shell

γ, soft


(D.4)
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and in

2<





W, on− shell
W

γ, soft

+

W, on− shell
W

γ, soft


⊗



+

W, on− shell

γ, soft

⊗

γ, soft

p2 = M2
W

q

q + p

+

γ, soft

p2 = M2
W

q

q + p
⊗

W, on− shell

γ, soft

+
W, on− shell

γ, soft

⊗

γ, soft

p2 = M2
W

q

p− q

+

γ, soft

p2 = M2
W

q

p− q
⊗ W, on− shell

γ, soft

. (D.5)
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E. Cross Checks

E.1 e+νe →W+ → µ+νm

E.1.1 Non-resonance region

As we already discussed, in a 2 → 2 process, there is no imaginary part in the Born

amplitude. Hence, the cross check for the real part of virtual is a trivial cross check. We

have shown it in Fig.2. The symbols in Fig.2 are defined as

CMS =
2<ACMS

VirtualACMS∗
Born

αew|ANWA
Born |2

,

NWA =
2<ANWA

VirtualANWA∗
Born

αew|ANWA
Born |2

,

diff = (CMS−NWA)/αew. (E.1)

We define the following notations for comparision between the results in CMS and

NWA:

CMS× αew|ANWA
Born |2 = 2=ACMS

VirtualACMS∗
Born |δZe=0,δsw=0

+ 2=ACMS
Born

(
ACMS∗

Born |(ΓW=0 in W propagator only)

)
,

NWA× αew|ANWA
Born |2 = 2=ANWA

VirtualANWA∗
Born ,

diff = (CMS−NWA)/αew. (E.2)

E.1.2 Resonance region:ε-offshellness method

We define the following notations for comparision between the results in CMS and NWA:

CMS = 2<
(
ACMS

Virtual

)
ACMS∗

Born /αew

NWA = 2<ANWA
VirtualANWA∗

Born /αew ×
ε2

Γ2
WM

2
W

,

diff = (CMS−NWA)/αew, (E.3)

where the virtual amplitudes in CMS and NWA have been excluded the corresponding

photon exchange diagrams in Eqs.(D.4,D.5) and add the piece B0(M2
W −iΓWMW , 0,M

2
W −

iΓWMW )−B0(M2
W , 0,M

2
W − iΓWMW ) in W mass renormalization constant.

Due to the reason that in the numerical calculations, it would be quite difficult to keep

the very small offshellness, here we can not get the consistent result between CMS and

NWA.

E.2 e+e− → Z/γ∗ → µ+µ−

E.2.1 Non-resonance region

For the trivial cross checks with the symbols defined in Eq.(E.1) are presented in Fig.9.
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Figure 2: Trivial cross checks of the real part of the virtual for e+νe →W+ → µ+νm in the

non-resonance region with the correct LO width ΓLO
W (upper-left pannel), with the normal

logarithm (upper-right pannel), with the width ΓW = 1.2ΓLO
W (lower pannel).

The remaining cross checks we define the following notations for comparision between
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Figure 3: Cross checks for e+νe → W+ → µ+νm in the non-resonance region with the

correct LO width ΓLO
W .

the results in CMS and NWA:

CMS× αew|ANWA
Born |2 = 2=ACMS

VirtualACMS∗
Born |δZe=0,δsw=0

+ 2=ABorn
Virtual

(
ACMS∗

Born |(ΓZ=0 in Z propagator only)

)
,

NWA× αew|ANWA
Born |2 = 2=ANWA

VirtualANWA∗
Born ,

diff = (CMS−NWA)/αew. (E.4)

E.2.2 Resonance region: ε-offshellness method

Similarly, we have the following notations for comparision between the results in CMS and

NWA:

CMS = 2<
(
ACMS

Virtual

)
ACMS∗

Born /αew

NWA = 2<ANWA
VirtualANWA∗

Born /αew ×
ε2

Γ2
ZM

2
Z

,

diff = (CMS−NWA)/αew, (E.5)
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Figure 4: Cross checks for e+νe → W+ → µ+νm in the non-resonance region with the

wrong LO width,i.e. ΓW = 1.2ΓLO
W .

where the virtual amplitudes in CMS and NWA have been excluded the corresponding

photon exchange box diagrams at least with one Z like

γ

Z

e−

e+

µ−

µ+

(E.6)

E.3 e+νe → tb̄→W+bb̄

E.3.1 Non-resonance region

For this 2 → 3 process, the direct comparison between CMS and NWA of the real part
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Figure 5: Cross checks for e+νe → W+ → µ+νm in the non-resonance region with the

correct LO width but using the normal logarithms.

in the amplitude squred would not be a trivial cross check. Hence, we can defined the

following variables:

CMS =
[
2<
(
ACMS

VirtualACMS∗
Born

)
+ |ACMS

Born|2 − |ANWA
Born |2

]
/
(
αew|ANWA

Born |2
)

NWA = 2<
(
ANWA

VirtualANWA∗
Born

)
/
(
αew|ANWA

Born |2
)
,

diff = (CMS−NWA)/αew, (E.7)

Because the resonance in this process we want to check is the top quark resonance only17,

we take all of the widths except top quark are zero. Especially, since W+ is a final state,

we should take it to be stable (i.e. ΓW = 0) in order to maintain the unitarity of the

amplitude. In Fig.15, we perform a direct comparison with the UV CTs in CMS but

taking ΓW±,Z,H,G0,G± = 0. Apparently, CMS is not equal to NWA when Γt, αew → 0. The

reason because one should take the NWA form (i.e. take the real part of it) of W mass and

wavefunction renormalization constant and Z mass renormalization constant and Weinberg

angle sw, cw renormalization constants instead of the CMS ones.

17There is also Z resonance, which we have e+νe →W+Z →W+bb̄.
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Figure 6: Cross checks for e+νe → W+ → µ+νm in the resonance region with the correct

LO width ΓLO
W (left pannel) and ΓW = 10−2 × ΓLO

W (right pannel), where we take the

offshellness to be ε = p2 −M2
W = 10−2 × Γmin

W MW .

E.4 ud̄→W+ + γ → e+νe + γ

Similar to the Eq.(E.7), we can directly compare the following variables

CMS =
[
2<
(
ACMS

VirtualACMS∗
Born

)
+ |ACMS

Born|2 − |ANWA
Born |2

]
/
(
αew|ANWA

Born |2
)

NWA = 2<
(
ANWA

VirtualANWA∗
Born

)
/
(
αew|ANWA

Born |2
)
,

diff = (CMS−NWA)/αew. (E.8)

Here, we don’t need to take any special treatment because all of the final states are stable

states.

E.4.1 Non-resonance region

E.5 uū→ Z/γ∗ + γ → e+e− + γ

E.5.1 Non-resonance region

Similar to the Eq.(E.7), we can directly compare the following variables

CMS =
[
2<
(
ACMS

VirtualACMS∗
Born

)
+ |ACMS

Born|2 − |ANWA
Born |2

]
/
(
αew|ANWA

Born |2
)

NWA = 2<
(
ANWA

VirtualANWA∗
Born

)
/
(
αew|ANWA

Born |2
)
,

diff = (CMS−NWA)/αew. (E.9)

Here, we don’t need to take any special treatment because all of the final states are stable

states. Here, one can take W’s width to be zero only when its mass renormalization constant
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Figure 7: Cross checks for e+νe → W+ → µ+νm in the resonance region with the correct

LO width ΓLO
W but using the normal logarithms, where we also take ε = p2 − M2

W =

10−2 × Γmin
W MW .

as well as δsw,δcw to be in the NWA case (i.e. take the real part to the corresponding W

mass renormalization in δsw,δcw). In order to avoid this problem, we keep the exact LO

W width as well as the LO Z width.

E.6 e+νe → µ+νµbb̄

E.6.1 Non-resonance region

Similar to the Eq.(E.7), we can directly compare the following variables

CMS =
[
2<
(
ACMS

VirtualACMS∗
Born

)
+ |ACMS

Born|2 − |ANWA
Born |2

]
/
(
αew|ANWA

Born |2
)

NWA = 2<
(
ANWA

VirtualANWA∗
Born

)
/
(
αew|ANWA

Born |2
)
,

diff = (CMS−NWA)/αew. (E.10)
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Figure 8: Cross checks for e+νe → W+ → µ+νm in the resonance region with the cor-

rect LO width ΓLO
W without adding the term B0(M2

W − iΓWMW , 0,M
2
W − iΓWMW ) −

B0(M2
W , 0,M

2
W − iΓWMW ) in W mass renormalization constant.

Here, we don’t need to take any special treatment because all of the final states are stable

states. Because there are top quark, W and Z resonances, we keep the exact LO Z, W, and

top quark widths here.

E.7 gg → µ+νµbµ
−ν̄µb̄

E.7.1 Non-resonance region

Similar to the Eq.(E.7), we can directly compare the following variables

CMS =
[
2<
(
ACMS

VirtualACMS∗
Born

)
+ |ACMS

Born|2 − |ANWA
Born |2

]
/
(
αew|ANWA

Born |2
)

NWA = 2<
(
ANWA

VirtualANWA∗
Born

)
/
(
αew|ANWA

Born |2
)
,

diff = (CMS−NWA)/αew. (E.11)
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Figure 9: Trivial cross checks of the real part of the virtual for e+e− → Z/γ∗ → µ+µ−

in the non-resonance region with the correct LO width ΓLO
Z (upper-left pannel), with the

normal logarithm (upper-right pannel), with the width ΓZ = 1.2ΓLO
Z (lower pannel).

Here, we don’t need to take any special treatment because all of the final states are stable

states. Because there are top quark, W and Z resonances, we keep the exact LO Z, W, and

top quark widths here.
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Figure 10: Cross checks for e+e− → Z/γ∗ → µ+µ− in the non-resonance region with the

correct LO width ΓLO
Z .

E.8 bγ → µ+νµbµ
−ν̄µ

E.8.1 Non-resonance region

Similar to the Eq.(E.7), we can directly compare the following variables

CMS =
[
2<
(
ACMS

VirtualACMS∗
Born

)
+ |ACMS

Born|2 − |ANWA
Born |2

]
/
(
αew|ANWA

Born |2
)

NWA = 2<
(
ANWA

VirtualANWA∗
Born

)
/
(
αew|ANWA

Born |2
)
,

diff = (CMS−NWA)/αew. (E.12)

Here, we don’t need to take any special treatment because all of the final states are stable

states. Because there are top quark, W and Z resonances, we keep the exact LO Z, W, and

top quark widths here.
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Figure 16: Cross checks for e+νe → tb̄ → W+bb̄ in the non-resonance region with the

correct LO width ΓLO
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Figure 17: Cross checks for e+νe → tb̄→W+bb̄ in the non-resonance region with the wrong

LO width,i.e. Γt = 1.2ΓLO
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Figure 18: Cross checks for e+νe → tb̄ → W+bb̄ in the non-resonance region with the

correct LO width but using the normal logarithms.
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Figure 19: Cross checks for e+νe → tb̄ → W+bb̄ in the non-resonance region with the

correct LO width without Born contributions.
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Figure 20: Cross checks for ud̄ → W+ + γ → e+νe + γ in the non-resonance region with

the correct LO width ΓLO
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Figure 21: Cross checks for ud̄ → W+ + γ → e+νe + γ in the non-resonance region with

the wrong LO width,i.e. ΓW = 1.2ΓLO
W .
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Figure 22: Cross checks for ud̄ → W+ + γ → e+νe + γ in the non-resonance region with

the correct LO width but using the normal logarithms.
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Figure 23: Cross checks for ud̄ → W+ + γ → e+νe + γ in the non-resonance region with

the correct LO width without Born contributions.
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Figure 24: Cross checks for uū→ Z/γ∗ + γ → e+e− + γ in the non-resonance region with

the correct LO widths ΓLO
Z and ΓLO

W .
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Figure 25: Cross checks for uū→ Z/γ∗ + γ → e+e− + γ in the non-resonance region with

the wrong LO widths, i.e. ΓZ = 1.2ΓLO
Z (left pannel) and ΓW = 1.2ΓLO

W (right pannel).
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Figure 26: Cross checks for uū→ Z/γ∗ + γ → e+e− + γ in the non-resonance region with

the correct LO widths but using the normal logarithms.
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Figure 27: Cross checks for uū→ Z/γ∗ + γ → e+e− + γ in the non-resonance region with

the correct LO widths without Born contributions.
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Figure 28: Cross checks for e+νe → µ+νµbb̄ in the non-resonance region with the correct

LO widths ΓLO
Z , ΓLO

W and ΓLO
t .
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Figure 29: Cross checks for e+νe → µ+νµbb̄ in the non-resonance region with the wrong

LO widths, i.e. Γt = 1.2ΓLO
t (upper-left pannel), ΓW = 1.2ΓLO

W (upper-right pannel) and

ΓZ = 1.2ΓLO
Z (lower pannel).
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Figure 30: Cross checks for e+νe → µ+νµbb̄ in the non-resonance region with the correct

LO widths but using the normal logarithms.
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Figure 31: Cross checks for e+νe → µ+νµbb̄ in the non-resonance region with the correct

LO widths without Born contributions.
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Figure 32: Cross checks for gg → µ+νµbµ
−ν̄µb̄ in the non-resonance region with the correct

LO widths ΓLO
Z , ΓLO

W and ΓLO
t .
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Figure 33: Cross checks for gg → µ+νµbµ
−ν̄µb̄ in the non-resonance region with the wrong

LO widths, i.e. Γt = 1.2ΓLO
t (upper-left pannel), ΓW = 1.2ΓLO

W (upper-right pannel) and

ΓZ = 1.2ΓLO
Z (lower pannel).
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Figure 34: Cross checks for gg → µ+νµbµ
−ν̄µb̄ in the non-resonance region with the correct

LO widths but using the normal logarithms.
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Figure 35: Cross checks for gg → µ+νµbµ
−ν̄µb̄ in the non-resonance region with the correct

LO widths without Born contributions.
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Figure 36: Cross checks for bγ → µ+νµbµ
−ν̄µ in the non-resonance region with the correct

LO widths ΓLO
Z , ΓLO

W and ΓLO
t .
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Figure 37: Cross checks for bγ → µ+νµbµ
−ν̄µ in the non-resonance region with the wrong

LO widths, i.e. Γt = 1.2ΓLO
t (upper-left pannel), ΓW = 1.2ΓLO

W (upper-right pannel) and

ΓZ = 1.2ΓLO
Z (lower pannel).
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Figure 38: Cross checks for bγ → µ+νµbµ
−ν̄µ in the non-resonance region with the correct

LO widths but using the normal logarithms.
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Figure 39: Cross checks for bγ → µ+νµbµ
−ν̄µ in the non-resonance region with the correct

LO widths without Born contributions.
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