~cspiel/enblend/staging

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
/*
 * Copyright (C) 2004-2007 Andrew Mihal
 *
 * This file is part of Enblend.
 *
 * Enblend is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * Enblend is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Enblend; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#ifndef __ENBLEND_H__
#define __ENBLEND_H__

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <iostream>
#include <list>
#include <stdio.h>

#include <boost/static_assert.hpp>

#include "common.h"
#include "openmp.h"
#include "numerictraits.h"
#include "fixmath.h"
#include "assemble.h"
#include "blend.h"
#include "bounds.h"
#include "mask.h"
#include "pyramid.h"

#include "vigra/impex.hxx"
#include "vigra/initimage.hxx"
#include "vigra/transformimage.hxx"

using std::cout;
using std::endl;
using std::list;
using std::pair;

using vigra::BasicImage;
using vigra::CachedFileImage;
using vigra::CachedFileImageDirector;
using vigra::ImageExportInfo;
using vigra::ImageImportInfo;
using vigra::initImage;
using vigra::initImageIf;
using vigra::NumericTraits;
using vigra::VigraFalseType;
using vigra::VigraTrueType;

namespace enblend {

/** Enblend's main blending loop. Templatized to handle different image types.
 */
template <typename ImagePixelType>
void enblendMain(const list<char*>& anInputFileNameList,
                 const list<ImageImportInfo*>& anImageInfoList,
                 ImageExportInfo& anOutputImageInfo,
                 Rect2D& anInputUnion)
{
    typedef typename EnblendNumericTraits<ImagePixelType>::ImagePixelComponentType ImagePixelComponentType;
    typedef typename EnblendNumericTraits<ImagePixelType>::ImageType ImageType;
    typedef typename EnblendNumericTraits<ImagePixelType>::AlphaPixelType AlphaPixelType;
    typedef typename EnblendNumericTraits<ImagePixelType>::AlphaType AlphaType;
    typedef typename EnblendNumericTraits<ImagePixelType>::MaskPixelType MaskPixelType;
    typedef typename EnblendNumericTraits<ImagePixelType>::MaskType MaskType;
    typedef typename EnblendNumericTraits<ImagePixelType>::ImagePyramidPixelType ImagePyramidPixelType;
    typedef typename EnblendNumericTraits<ImagePixelType>::ImagePyramidType ImagePyramidType;
    typedef typename EnblendNumericTraits<ImagePixelType>::MaskPyramidPixelType MaskPyramidPixelType;
    typedef typename EnblendNumericTraits<ImagePixelType>::MaskPyramidType MaskPyramidType;

    enum {ImagePyramidIntegerBits = EnblendNumericTraits<ImagePixelType>::ImagePyramidIntegerBits};
    enum {ImagePyramidFractionBits = EnblendNumericTraits<ImagePixelType>::ImagePyramidFractionBits};
    enum {MaskPyramidIntegerBits = EnblendNumericTraits<ImagePixelType>::MaskPyramidIntegerBits};
    enum {MaskPyramidFractionBits = EnblendNumericTraits<ImagePixelType>::MaskPyramidFractionBits};
    typedef typename EnblendNumericTraits<ImagePixelType>::SKIPSMImagePixelType SKIPSMImagePixelType;
    typedef typename EnblendNumericTraits<ImagePixelType>::SKIPSMAlphaPixelType SKIPSMAlphaPixelType;
    typedef typename EnblendNumericTraits<ImagePixelType>::SKIPSMMaskPixelType SKIPSMMaskPixelType;

    list<ImageImportInfo*> imageInfoList(anImageInfoList);

    // Create the initial black image.
    Rect2D blackBB;
    pair<ImageType*, AlphaType*> blackPair =
        assemble<ImageType, AlphaType>(imageInfoList, anInputUnion, blackBB);

    if (Checkpoint) {
        checkpoint(blackPair, anOutputImageInfo);
    }

    // mem usage before = 0
    // mem xsection = OneAtATime: anInputUnion*imageValueType + anInputUnion*AlphaValueType
    //                !OneAtATime: 2*anInputUnion*imageValueType + 2*anInputUnion*AlphaValueType
    // mem usage after = anInputUnion*ImageValueType + anInputUnion*AlphaValueType

    #ifdef ENBLEND_CACHE_IMAGES
    if (Verbose > VERBOSE_CFI_MESSAGES) {
        CachedFileImageDirector& v = CachedFileImageDirector::v();
        cerr << command
             << ": info: image cache statistics after loading black image\n";
        v.printStats(cerr, command + ": info:     blackImage", blackPair.first);
        v.printStats(cerr, command + ": info:     blackAlpha", blackPair.second);
        v.printStats(cerr, command + ": info: ");
        v.resetCacheMisses();
    }
    #endif

    const unsigned numberOfImages = imageInfoList.size();

    // Main blending loop.
    unsigned m = 0;
    list<char*>::const_iterator inputFileNameIterator(anInputFileNameList.begin());
    while (!imageInfoList.empty()) {
        // Create the white image.
        Rect2D whiteBB;
        pair<ImageType*, AlphaType*> whitePair =
            assemble<ImageType, AlphaType>(imageInfoList, anInputUnion, whiteBB);

        // mem usage before = anInputUnion*ImageValueType + anInputUnion*AlphaValueType
        // mem xsection = OneAtATime: anInputUnion*imageValueType + anInputUnion*AlphaValueType
        //                !OneAtATime: 2*anInputUnion*imageValueType + 2*anInputUnion*AlphaValueType
        // mem usage after = 2*anInputUnion*ImageValueType + 2*anInputUnion*AlphaValueType

        #ifdef ENBLEND_CACHE_IMAGES
        if (Verbose > VERBOSE_CFI_MESSAGES) {
            CachedFileImageDirector& v = CachedFileImageDirector::v();
            cerr << command
                 <<": info: image cache statistics after loading white image\n";
            v.printStats(cerr, command + ": info:     blackImage", blackPair.first);
            v.printStats(cerr, command + ": info:     blackAlpha", blackPair.second);
            v.printStats(cerr, command + ": info:     whiteImage", whitePair.first);
            v.printStats(cerr, command + ": info:     whiteAlpha", whitePair.second);
            v.printStats(cerr, command + ": info: ");
            v.resetCacheMisses();
        }
        #endif

        // Union bounding box of whiteImage and blackImage.
        Rect2D uBB = blackBB | whiteBB;

        if (Verbose > VERBOSE_UBB_MESSAGES) {
            cerr << command
                 << ": info: image union bounding box: "
                 << uBB
                 << endl;
        }

        // Intersection bounding box of whiteImage and blackImage.
        Rect2D iBB = blackBB & whiteBB;
        bool iBBValid = !iBB.isEmpty();

        if (Verbose > VERBOSE_IBB_MESSAGES) {
            cerr << command << ": info: image intersection bounding box: ";
            if (iBBValid) {
                cerr << iBB;
            } else {
                cerr << "(no intersection)";
            }
            cerr << endl;
        }

        // Determine what kind of overlap we have.
        Overlap overlap = inspectOverlap(uBB.apply(srcImageRange(*(blackPair.second))),
                                         uBB.apply(srcImage(*(whitePair.second))));

        // If white image is redundant, skip it and go to next images.
        if (overlap == CompleteOverlap) {
            // White image is redundant.
            delete whitePair.first;
            delete whitePair.second;
            cerr << command << ": warning: some images are redundant and will not be blended"
                 << endl;
            continue;
        }
        else if (overlap == NoOverlap && ExactLevels == 0) {
            // Images do not actually overlap.
            cerr << command << ": images do not overlap - they will be combined without blending\n"
                 << command << ": use the \"-l\" flag to force blending with a certain number of levels"
                 << endl;

            // Copy white image into black image verbatim.
            copyImageIf(srcImageRange(*(whitePair.first)),
                        maskImage(*(whitePair.second)),
                        destImage(*(blackPair.first)));
            copyImageIf(srcImageRange(*(whitePair.second)),
                        maskImage(*(whitePair.second)),
                        destImage(*(blackPair.second)));

            delete whitePair.first;
            delete whitePair.second;

            // Checkpoint results.
            if (Checkpoint) {
                if (Verbose > VERBOSE_CHECKPOINTING_MESSAGES) {
                    cerr << command << ": info: ";
                    if (imageInfoList.empty()) {
                        cerr << "writing final output" << endl;
                    } else {
                        cerr << "checkpointing" << endl;
                    }
                }
                checkpoint(blackPair, anOutputImageInfo);
            }

            blackBB = uBB;
            continue;
        }

        // Estimate memory requirements.
        if (Verbose > VERBOSE_MEMORY_ESTIMATION_MESSAGES) {
            long long bytes = 0;

            // Input images
            bytes += 2 * uBB.area() * sizeof(ImagePixelType);

            // Input alpha channels
            bytes += 2 * uBB.area() * sizeof(AlphaPixelType);

            // Mem used during mask generation:
            long long nftBytes = 0;
            if (LoadMasks) {
                nftBytes = 0;
            } else if (CoarseMask) {
                nftBytes =
                    2 * 1/8 * uBB.area() * sizeof(MaskPixelType)
                    + 2 * 1/8 * uBB.area() * sizeof(UInt32);
            } else {
                nftBytes =
                    2 * uBB.area() * sizeof(MaskPixelType)
                    + 2 * uBB.area() * sizeof(UInt32);
            }

            long long optBytes = 0;
            if (LoadMasks) {
                optBytes = 0;
            } else if (!OptimizeMask) {
                optBytes = 0;
            } else if (CoarseMask) {
                optBytes = 1/2 * iBB.area() * sizeof(UInt8);
            } else {
                optBytes = iBB.area() * sizeof(UInt8);
            }
            if (VisualizeSeam) {
                optBytes *= 2;
            }

            const long long bytesDuringMask = bytes + std::max(nftBytes, optBytes);
            const long long bytesAfterMask = bytes + uBB.area() * sizeof(MaskPixelType);

            bytes = std::max(bytesDuringMask, bytesAfterMask);

            cerr << command << ": info: estimated space required for mask generation: "
                 << static_cast<int>(ceil(bytes / 1000000.0))
                 << "MB" << endl;
        }

        // Create the blend mask.
        const bool wraparoundForMask =
            WrapAround != OpenBoundaries &&
            uBB.width() == anInputUnion.width();

        MaskType* mask =
            createMask<ImageType, AlphaType, MaskType>(whitePair.first, blackPair.first,
                                                       whitePair.second, blackPair.second,
                                                       uBB, iBB, wraparoundForMask,
                                                       numberOfImages,
                                                       inputFileNameIterator, m);

        // Calculate bounding box of seam line.
        Rect2D mBB;
        maskBounds(mask, uBB, mBB);

        if (SaveMasks) {
            const std::string maskFilename =
                enblend::expandFilenameTemplate(SaveMaskTemplate,
                                                numberOfImages,
                                                *inputFileNameIterator,
                                                OutputFileName,
                                                m);
            if (maskFilename == *inputFileNameIterator) {
                cerr << command
                     << ": will not overwrite input image \""
                     << *inputFileNameIterator
                     << "\" with mask file"
                     << endl;
                exit(1);
            } else if (maskFilename == OutputFileName) {
                cerr << command
                     << ": will not overwrite output image \""
                     << OutputFileName
                     << "\" with mask file"
                     << endl;
                exit(1);
            } else {
                if (Verbose > VERBOSE_MASK_MESSAGES) {
                    cerr << command
                         << ": info: saving mask \"" << maskFilename << "\"" << endl;
                }
                ImageExportInfo maskInfo(maskFilename.c_str());
                maskInfo.setXResolution(ImageResolution.x);
                maskInfo.setYResolution(ImageResolution.y);
                maskInfo.setPosition(uBB.upperLeft());
                maskInfo.setCompression(MASK_COMPRESSION);
                exportImage(srcImageRange(*mask), maskInfo);
            }
        }

        // mem usage here = MaskType*ubb +
        //                  2*anInputUnion*ImageValueType +
        //                  2*anInputUnion*AlphaValueType

#ifdef ENBLEND_CACHE_IMAGES
        if (Verbose > VERBOSE_CFI_MESSAGES) {
            CachedFileImageDirector& v = CachedFileImageDirector::v();
            cerr << command
                 << ": info: image cache statistics after mask generation\n";
            v.printStats(cerr, command + ": info:     blackImage", blackPair.first);
            v.printStats(cerr, command + ": info:     blackAlpha", blackPair.second);
            v.printStats(cerr, command + ": info:     whiteImage", whitePair.first);
            v.printStats(cerr, command + ": info:     whiteAlpha", whitePair.second);
            v.printStats(cerr, command + ": info:     mask", mask);
            v.printStats(cerr, command + ": info: ");
            v.resetCacheMisses();
        }
#endif

        // Calculate ROI bounds and number of levels from mBB.
        // ROI bounds must be at least mBB but not to extend uBB.
        Rect2D roiBB;
        const unsigned int numLevels =
            roiBounds<ImagePixelComponentType>(anInputUnion,
                                               iBB, mBB, uBB, roiBB,
                                               wraparoundForMask);
        const bool wraparoundForBlend =
            WrapAround != OpenBoundaries &&
            roiBB.width() == anInputUnion.width();

        // Estimate memory requirements for this blend iteration
        if (Verbose > VERBOSE_MEMORY_ESTIMATION_MESSAGES) {
            // Maximum utilization is when all three pyramids have been built
            // mem xsection = 4 * roiBB.width() * SKIPSMImagePixelType
            //                + 4 * roiBB.width() * SKIPSMAlphaPixelType
            // mem usage after = anInputUnion*ImageValueType + 2*anInputUnion*AlphaValueType
            //      + (4/3)*roiBB*MaskPyramidType
            //      + 2*(4/3)*roiBB*ImagePyramidType
            long long bytes =
                anInputUnion.area() * (sizeof(ImagePixelType) + 2 * sizeof(AlphaPixelType))
                + (4/3) * roiBB.area() * (sizeof(MaskPyramidPixelType)
                                          + 2 * sizeof(ImagePyramidPixelType))
                + (4 * roiBB.width()) * (sizeof(SKIPSMImagePixelType)
                                         + sizeof(SKIPSMAlphaPixelType));

            cerr << command << ": info: estimated space required for this blend step: "
                 << static_cast<int>(ceil(bytes / 1000000.0))
                 << "MB" << endl;
        }

        // Create a version of roiBB relative to uBB upperleft corner.
        // This is to access roi within images of size uBB.
        // For example, the mask.
        Rect2D roiBB_uBB = roiBB;
        roiBB_uBB.moveBy(-uBB.upperLeft());

        // Build Gaussian pyramid from mask.
        vector<MaskPyramidType*> *maskGP =
            gaussianPyramid<MaskType, MaskPyramidType,
            MaskPyramidIntegerBits, MaskPyramidFractionBits,
            SKIPSMMaskPixelType>(numLevels, wraparoundForBlend,
                                 roiBB_uBB.apply(srcImageRange(*mask)));
        //exportPyramid(maskGP, "mask");
        // mem usage before = MaskType*ubb + 2*anInputUnion*ImageValueType + 2*anInputUnion*AlphaValueType
        // mem usage xsection = 3 * roiBB.width * MaskPyramidType
        // mem usage after = MaskType*ubb + 2*anInputUnion*ImageValueType + 2*anInputUnion*AlphaValueType
        //                   + (4/3)*roiBB*MaskPyramidType

#ifdef ENBLEND_CACHE_IMAGES
        if (Verbose > VERBOSE_CFI_MESSAGES) {
            CachedFileImageDirector& v = CachedFileImageDirector::v();
            cerr << command
                 << ": info: image cache statistics after calculating mask pyramid\n";
            v.printStats(cerr, command + ": info:     blackImage", blackPair.first);
            v.printStats(cerr, command + ": info:     blackAlpha", blackPair.second);
            v.printStats(cerr, command + ": info:     whiteImage", whitePair.first);
            v.printStats(cerr, command + ": info:     whiteAlpha", whitePair.second);
            v.printStats(cerr, command + ": info:     mask", mask);
            for (unsigned int i = 0; i < maskGP->size(); i++) {
                v.printStats(cerr, command + ": info:     maskGP", i, (*maskGP)[i]);
            }
            v.printStats(cerr, command + ": info: ");
            v.resetCacheMisses();
        }
#endif

        // Now it is safe to make changes to mask image.
        // Black out the ROI in the mask.
        // Make an roiBounds relative to uBB origin.
        initImage(roiBB_uBB.apply(destImageRange(*mask)),
                  NumericTraits<MaskPyramidPixelType>::zero());

        // Copy pixels inside whiteBB and inside white part of mask into black image.
        // These are pixels where the white image contributes outside of the ROI.
        // We cannot modify black image inside the ROI yet because we haven't built the
        // black pyramid.
        copyImageIf(uBB.apply(srcImageRange(*(whitePair.first))),
                    maskImage(*mask),
                    uBB.apply(destImage(*(blackPair.first))));

        // We no longer need the mask.
        delete mask;
        // mem usage after = 2*anInputUnion*ImageValueType +
        //                   2*anInputUnion*AlphaValueType +
        //                   (4/3)*roiBB*MaskPyramidType

        // Build Laplacian pyramid from white image.
        vector<ImagePyramidType*>* whiteLP =
            laplacianPyramid<ImageType, AlphaType, ImagePyramidType,
            ImagePyramidIntegerBits, ImagePyramidFractionBits,
            SKIPSMImagePixelType, SKIPSMAlphaPixelType>("whiteGP",
                                                        numLevels, wraparoundForBlend,
                                                        roiBB.apply(srcImageRange(*(whitePair.first))),
                                                        roiBB.apply(maskImage(*(whitePair.second))));

#ifdef ENBLEND_CACHE_IMAGES
        if (Verbose > VERBOSE_CFI_MESSAGES) {
            CachedFileImageDirector& v = CachedFileImageDirector::v();
            cerr << command
                 << ": info: image cache statistics after calculating white pyramid\n";
            v.printStats(cerr, command + ": info:     blackImage", blackPair.first);
            v.printStats(cerr, command + ": info:     blackAlpha", blackPair.second);
            v.printStats(cerr, command + ": info:     whiteImage", whitePair.first);
            v.printStats(cerr, command + ": info:     whiteAlpha", whitePair.second);
            for (unsigned int i = 0; i < maskGP->size(); i++) {
                v.printStats(cerr, command + ": info:     maskGP", i, (*maskGP)[i]);
            }
            for (unsigned int i = 0; i < whiteLP->size(); i++) {
                v.printStats(cerr, command + ": info:     whiteLP", i, (*whiteLP)[i]);
            }
            v.printStats(cerr, command + ": info: ");
            v.resetCacheMisses();
        }
#endif
        // mem usage after = 2*anInputUnion*ImageValueType + 2*anInputUnion*AlphaValueType
        //                   + (4/3)*roiBB*MaskPyramidType + (4/3)*roiBB*ImagePyramidType
        // mem xsection = 4 * roiBB.width() * SKIPSMImagePixelType
        //                + 4 * roiBB.width() * SKIPSMAlphaPixelType

        // We no longer need the white rgb data.
        delete whitePair.first;
        // mem usage after = anInputUnion*ImageValueType + 2*anInputUnion*AlphaValueType
        //                   + (4/3)*roiBB*MaskPyramidType + (4/3)*roiBB*ImagePyramidType

        // Build Laplacian pyramid from black image.
        vector<ImagePyramidType*>* blackLP =
            laplacianPyramid<ImageType, AlphaType, ImagePyramidType,
            ImagePyramidIntegerBits, ImagePyramidFractionBits,
            SKIPSMImagePixelType, SKIPSMAlphaPixelType>("blackGP",
                                                        numLevels, wraparoundForBlend,
                                                        roiBB.apply(srcImageRange(*(blackPair.first))),
                                                        roiBB.apply(maskImage(*(blackPair.second))));

#ifdef ENBLEND_CACHE_IMAGES
        if (Verbose > VERBOSE_CFI_MESSAGES) {
            CachedFileImageDirector& v = CachedFileImageDirector::v();
            cerr << command
                 << ": info: image cache statistics after calculating black pyramid\n";
            v.printStats(cerr, command + ": info:     blackImage", blackPair.first);
            v.printStats(cerr, command + ": info:     blackAlpha", blackPair.second);
            v.printStats(cerr, command + ": info:     whiteAlpha", whitePair.second);
            for (unsigned int i = 0; i < maskGP->size(); i++) {
                v.printStats(cerr, command + ": info:     maskGP", i, (*maskGP)[i]);
            }
            for (unsigned int i = 0; i < whiteLP->size(); i++) {
                v.printStats(cerr, command + ": info:     whiteLP", i, (*whiteLP)[i]);
            }
            for (unsigned int i = 0; i < blackLP->size(); i++) {
                v.printStats(cerr, command + ": info:     blackLP", i, (*blackLP)[i]);
            }
            v.printStats(cerr, command + ": info: ");
            v.resetCacheMisses();
        }
#endif
        //exportPyramid(blackLP, "enblend_black_lp");

        // Peak memory xsection is here!
        // mem xsection = 4 * roiBB.width() * SKIPSMImagePixelType
        //                + 4 * roiBB.width() * SKIPSMAlphaPixelType
        // mem usage after = anInputUnion*ImageValueType + 2*anInputUnion*AlphaValueType
        //      + (4/3)*roiBB*MaskPyramidType
        //      + 2*(4/3)*roiBB*ImagePyramidType

        // Make the black image alpha equal to the union of the
        // white and black alpha channels.
        initImageIf(whiteBB.apply(destImageRange(*(blackPair.second))),
                    whiteBB.apply(maskImage(*(whitePair.second))),
                    NumericTraits<AlphaPixelType>::max());

        // We no longer need the white alpha data.
        delete whitePair.second;

        // mem usage after = anInputUnion*ImageValueType + anInputUnion*AlphaValueType
        //      + (4/3)*roiBB*MaskPyramidType + 2*(4/3)*roiBB*ImagePyramidType

        // Blend pyramids
        ConvertScalarToPyramidFunctor<MaskPixelType, MaskPyramidPixelType, MaskPyramidIntegerBits, MaskPyramidFractionBits> whiteMask;
        blend(maskGP, whiteLP, blackLP, whiteMask(NumericTraits<MaskPixelType>::max()));
#ifdef ENBLEND_CACHE_IMAGES
        if (Verbose > VERBOSE_CFI_MESSAGES) {
            CachedFileImageDirector& v = CachedFileImageDirector::v();
            cerr << command
                 << ": info: image cache statistics after blending pyramids\n";
            v.printStats(cerr, command + ": info:     blackImage", blackPair.first);
            v.printStats(cerr, command + ": info:     blackAlpha", blackPair.second);
            for (unsigned int i = 0; i < maskGP->size(); i++) {
                v.printStats(cerr, command + ": info:     maskGP", i, (*maskGP)[i]);
            }
            for (unsigned int i = 0; i < whiteLP->size(); i++) {
                v.printStats(cerr, command + ": info:     whiteLP", i, (*whiteLP)[i]);
            }
            for (unsigned int i = 0; i < blackLP->size(); i++) {
                v.printStats(cerr, command + ": info:     blackLP", i, (*blackLP)[i]);
            }
            v.printStats(cerr, command + ": info: ");
            v.resetCacheMisses();
        }
#endif

        // delete mask pyramid
        //exportPyramid(maskGP, "enblend_mask_gp");
        for (unsigned int i = 0; i < maskGP->size(); i++) {
            delete (*maskGP)[i];
        }
        delete maskGP;

        // mem usage after = anInputUnion*ImageValueType + anInputUnion*AlphaValueType + 2*(4/3)*roiBB*ImagePyramidType

        // delete white pyramid
        //exportPyramid(whiteLP, "enblend_white_lp");
        for (unsigned int i = 0; i < whiteLP->size(); i++) {
            delete (*whiteLP)[i];
        }
        delete whiteLP;

        // mem usage after = anInputUnion*ImageValueType + anInputUnion*AlphaValueType + (4/3)*roiBB*ImagePyramidType

        //exportPyramid(blackLP, "enblend_blend_lp");
        // collapse black pyramid
        collapsePyramid<SKIPSMImagePixelType>(wraparoundForBlend, blackLP);
#ifdef ENBLEND_CACHE_IMAGES
        if (Verbose > VERBOSE_CFI_MESSAGES) {
            CachedFileImageDirector& v = CachedFileImageDirector::v();
            cerr << command
                 << ": info: image cache statistics after collapsing black pyramid\n";
            v.printStats(cerr, command + ": info:     blackImage", blackPair.first);
            v.printStats(cerr, command + ": info:     blackAlpha", blackPair.second);
            for (unsigned int i = 0; i < blackLP->size(); i++) {
                v.printStats(cerr, command + ": info:     blackLP", i, (*blackLP)[i]);
            }
            v.printStats(cerr, command + ": info: ");
            v.resetCacheMisses();
        }
#endif

        // copy collapsed black pyramid into black image ROI, using black alpha mask.
        copyFromPyramidImageIf<ImagePyramidType, MaskType, ImageType,
            ImagePyramidIntegerBits, ImagePyramidFractionBits>(
                                                               srcImageRange(*((*blackLP)[0])),
                                                               roiBB.apply(maskImage(*(blackPair.second))),
                                                               roiBB.apply(destImage(*(blackPair.first))));

        // delete black pyramid
        for (unsigned int i = 0; i < blackLP->size(); i++) {
            delete (*blackLP)[i];
        }
        delete blackLP;

        // mem usage after = anInputUnion*ImageValueType + anInputUnion*AlphaValueType

        // Checkpoint results.
        if (Checkpoint) {
            if (Verbose > VERBOSE_CHECKPOINTING_MESSAGES) {
                cerr << command << ": info: ";
                if (imageInfoList.empty()) {
                    cerr << "writing final output" << endl;
                } else {
                    cerr << "checkpointing" << endl;
                }
            }
            checkpoint(blackPair, anOutputImageInfo);
        }

#ifdef ENBLEND_CACHE_IMAGES
        if (Verbose > VERBOSE_CFI_MESSAGES) {
            CachedFileImageDirector& v = CachedFileImageDirector::v();
            cerr << command
                 << ": info: image cache statistics after checkpointing\n";
            v.printStats(cerr, command + ": info:     blackImage", blackPair.first);
            v.printStats(cerr, command + ": info:     blackAlpha", blackPair.second);
            v.printStats(cerr, command + ": info: ");
            v.resetCacheMisses();
        }
#endif

        // Now set blackBB to uBB.
        blackBB = uBB;

        ++m;
        ++inputFileNameIterator;
    } // end main blending loop

    if (!Checkpoint) {
        if (Verbose > VERBOSE_CHECKPOINTING_MESSAGES) {
            cerr << command << ": info: writing final output" << endl;
        }
        checkpoint(blackPair, anOutputImageInfo);
    }

    delete blackPair.first;
    delete blackPair.second;
}

} // namespace enblend

#endif /* __ENBLEND_H__ */

// Local Variables:
// mode: c++
// End: