~dinko-metalac/calculus-app2/trunk

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
"""
Finite difference weights
=========================

This module implements an algorithm for efficient generation of finite
difference weights for ordinary differentials of functions for
derivatives from 0 (interpolation) up to arbitrary order.

The core algorithm is provided in the finite difference weight generating
function (finite_diff_weights), and two convenience functions are provided
for:

- estimating a derivative (or interpolate) directly from a series of points
    is also provided (``apply_finite_diff``).
- making a finite difference approximation of a Derivative instance
    (``as_finite_diff``).

"""

from sympy import S
from sympy.core.compatibility import iterable


def finite_diff_weights(order, x_list, x0):
    """
    Calculates the finite difference weights for an arbitrarily
    spaced one-dimensional grid (x_list) for derivatives at 'x0'
    of order 0, 1, ..., up to 'order' using a recursive formula.

    Parameters
    ==========

    order : int
        Up to what derivative order weights should be calculated.
        0 corresponds to interpolation.
    x_list: sequence
        Strictly monotonically increasing sequence of values for
        the independent variable.
    x0: Number or Symbol
        At what value of the independent variable the finite difference
        weights should be generated.

    Returns
    =======

    list
        A list of sublists, each corresponding to coefficients for
        increasing derivative order, and each containing lists of
        coefficients for increasing accuracy.

    Examples
    ========

    >>> from sympy import S
    >>> from sympy.calculus import finite_diff_weights
    >>> finite_diff_weights(1, [-S(1)/2, S(1)/2, S(3)/2, S(5)/2], 0)
    [[[1, 0, 0, 0],
    [1/2, 1/2, 0, 0],
    [3/8, 3/4, -1/8, 0],
    [5/16, 15/16, -5/16, 1/16]],
    [[0, 0, 0, 0], [-1, 1, 0, 0], [-1, 1, 0, 0], [-23/24, 7/8, 1/8, -1/24]]]

    the result is two subslists, the first is for the 0:th derivative
    (interpolation) and the second for the first derivative (we gave
    1 as the parameter of order so this is why we get no list for
    a higher order derivative). Each sublist contains the most accurate
    formula in the end (all points used).

    Beware of the offset in the lower accuracy formulae when looking at a
    centered difference:

    >>> from sympy import S
    >>> from sympy.calculus import finite_diff_weights
    >>> finite_diff_weights(1, [-S(5)/2, -S(3)/2, -S(1)/2, S(1)/2,
    ...    S(3)/2, S(5)/2], 0) #doctest: +NORMALIZE_WHITESPACE
    [[[1, 0, 0, 0, 0, 0],
      [-3/2, 5/2, 0, 0, 0, 0],
      [3/8, -5/4, 15/8, 0, 0, 0],
      [1/16, -5/16, 15/16, 5/16, 0, 0],
      [3/128, -5/32, 45/64, 15/32, -5/128, 0],
      [3/256, -25/256, 75/128, 75/128, -25/256, 3/256]],
     [[0, 0, 0, 0, 0, 0],
      [-1, 1, 0, 0, 0, 0],
      [1, -3, 2, 0, 0, 0],
      [1/24, -1/8, -7/8, 23/24, 0, 0],
      [0, 1/24, -9/8, 9/8, -1/24, 0],
      [-3/640, 25/384, -75/64, 75/64, -25/384, 3/640]]]


    The capability to generate weights at arbitrary points can be
    used e.g. to minimize Runge's phenomenon by using Chebyshev nodes:

    >>> from sympy import cos, symbols, pi, simplify
    >>> from sympy.calculus import finite_diff_weights
    >>> N, (h, x) = 4, symbols('h x')
    >>> x_list = [x+h*cos(i*pi/(N)) for i in range(N,-1,-1)] # chebyshev nodes
    >>> print(x_list)
    [-h + x, -sqrt(2)*h/2 + x, x, sqrt(2)*h/2 + x, h + x]
    >>> mycoeffs = finite_diff_weights(1, x_list, 0)[1][4]
    >>> [simplify(c) for c in  mycoeffs] #doctest: +NORMALIZE_WHITESPACE
    [(h**3/2 + h**2*x - 3*h*x**2 - 4*x**3)/h**4,
    (-sqrt(2)*h**3 - 4*h**2*x + 3*sqrt(2)*h*x**2 + 8*x**3)/h**4,
    6*x/h**2 - 8*x**3/h**4,
    (sqrt(2)*h**3 - 4*h**2*x - 3*sqrt(2)*h*x**2 + 8*x**3)/h**4,
    (-h**3/2 + h**2*x + 3*h*x**2 - 4*x**3)/h**4]

    Notes
    =====

    If weights for a finite difference approximation
    of the 3rd order derivative is wanted, weights for 0th, 1st
    and 2nd order are calculated "for free", so are formulae using
    fewer and fewer of the parameters. This is something one can
    take advantage of to save computational cost.

    See also
    ========

    sympy.calculus.finite_diff.apply_finite_diff


    References
    ==========

    .. [1] Generation of Finite Difference Formulas on Arbitrarily Spaced
            Grids, Bengt Fornberg; Mathematics of computation; 51; 184;
            (1988); 699-706; doi:10.1090/S0025-5718-1988-0935077-0

    """
    # The notation below closely corresponds to the one used in the paper.
    if order < 0:
        raise ValueError("Negative derivative order illegal.")
    if int(order) != order:
        raise ValueError("Non-integer order illegal")
    M = order
    N = len(x_list) - 1
    delta = [[[0 for nu in range(N+1)] for n in range(N+1)] for
             m in range(M+1)]
    delta[0][0][0] = S(1)
    c1 = S(1)
    for n in range(1, N+1):
        c2 = S(1)
        for nu in range(0, n):
            c3 = x_list[n]-x_list[nu]
            c2 = c2 * c3
            if n <= M:
                delta[n][n-1][nu] = 0
            for m in range(0, min(n, M)+1):
                delta[m][n][nu] = (x_list[n]-x0)*delta[m][n-1][nu] -\
                    m*delta[m-1][n-1][nu]
                delta[m][n][nu] /= c3
        for m in range(0, min(n, M)+1):
            delta[m][n][n] = c1/c2*(m*delta[m-1][n-1][n-1] -
                                    (x_list[n-1]-x0)*delta[m][n-1][n-1])
        c1 = c2
    return delta


def apply_finite_diff(order, x_list, y_list, x0):
    """
    Calculates the finite difference approximation of
    the derivative of requested order at x0 from points
    provided in x_list and y_list.

    Parameters
    ==========

    order: int
        order of derivative to approximate. 0 corresponds to interpolation.
    x_list: sequence
        Strictly monotonically increasing sequence of values for
        the independent variable.
    y_list: sequence
        The function value at corresponding values for the independent
        variable in x_list.
    x0: Number or Symbol
        At what value of the independent variable the derivative should be
        evaluated.

    Returns
    =======

    sympy.core.add.Add or sympy.core.numbers.Number
        The finite difference expression approximating the requested
        derivative order at x0.

    Examples
    ========

    >>> from sympy.calculus import apply_finite_diff
    >>> cube = lambda arg: (1.0*arg)**3
    >>> xlist = range(-3,3+1)
    >>> apply_finite_diff(2, xlist, map(cube, xlist), 2) - 12 # doctest: +SKIP
    -3.55271367880050e-15

    we see that the example above only contain rounding errors.
    apply_finite_diff can also be used on more abstract objects:

    >>> from sympy import IndexedBase, Idx
    >>> from sympy.calculus import apply_finite_diff
    >>> x, y = map(IndexedBase, 'xy')
    >>> i = Idx('i')
    >>> x_list, y_list = zip(*[(x[i+j], y[i+j]) for j in range(-1,2)])
    >>> apply_finite_diff(1, x_list, y_list, x[i])
    (-1 + (x[i + 1] - x[i])/(-x[i - 1] + x[i]))*y[i]/(x[i + 1] - x[i]) + \
(-x[i - 1] + x[i])*y[i + 1]/((-x[i - 1] + x[i + 1])*(x[i + 1] - x[i])) - \
(x[i + 1] - x[i])*y[i - 1]/((-x[i - 1] + x[i + 1])*(-x[i - 1] + x[i]))


    Notes
    =====

    Order = 0 corresponds to interpolation.
    Only supply so many points you think makes sense
    to around x0 when extracting the derivative (the function
    need to be well behaved within that region). Also beware
    of Runge's phenomenon.

    See also
    ========

    sympy.calculus.finite_diff.finite_diff_weights

    References
    ==========

    Fortran 90 implementation with Python interface for numerics: finitediff_

    .. _finitediff: https://github.com/bjodah/finitediff

    """

    # In the original paper the following holds for the notation:
    # M = order
    # N = len(x_list) - 1

    N = len(x_list) - 1
    if len(x_list) != len(y_list):
        raise ValueError("x_list and y_list not equal in length.")

    delta = finite_diff_weights(order, x_list, x0)

    derivative = 0
    for nu in range(0, len(x_list)):
        derivative += delta[order][N][nu]*y_list[nu]
    return derivative


def as_finite_diff(derivative, points=1, x0=None, wrt=None):
    """
    Returns an approximation of a derivative of a function in
    the form of a finite difference formula. The expression is a
    weighted sum of the function at a number of discrete values of
    (one of) the independent variable(s).

    Parameters
    ==========

    derivative: a Derivative instance (needs to have an variables
        and expr attribute).

    points: sequence or coefficient, optional
        If sequence: discrete values (length >= order+1) of the
        independent variable used for generating the finite
        difference weights.
        If it is a coefficient, it will be used as the step-size
        for generating an equidistant sequence of length order+1
        centered around x0. default: 1 (step-size 1)

    x0: number or Symbol, optional
        the value of the independent variable (wrt) at which the
        derivative is to be approximated. default: same as wrt

    wrt: Symbol, optional
        "with respect to" the variable for which the (partial)
        derivative is to be approximated for. If not provided it
        is required that the Derivative is ordinary. default: None


    Examples
    ========

    >>> from sympy import symbols, Function, exp, sqrt, Symbol, as_finite_diff
    >>> x, h = symbols('x h')
    >>> f = Function('f')
    >>> as_finite_diff(f(x).diff(x))
    -f(x - 1/2) + f(x + 1/2)

    The default step size and number of points are 1 and ``order + 1``
    respectively. We can change the step size by passing a symbol
    as a parameter:

    >>> as_finite_diff(f(x).diff(x), h)
    -f(-h/2 + x)/h + f(h/2 + x)/h

    We can also specify the discretized values to be used in a sequence:

    >>> as_finite_diff(f(x).diff(x), [x, x+h, x+2*h])
    -3*f(x)/(2*h) + 2*f(h + x)/h - f(2*h + x)/(2*h)

    The algorithm is not restricted to use equidistant spacing, nor
    do we need to make the approximation around x0, but we can get
    an expression estimating the derivative at an offset:

    >>> e, sq2 = exp(1), sqrt(2)
    >>> xl = [x-h, x+h, x+e*h]
    >>> as_finite_diff(f(x).diff(x, 1), xl, x+h*sq2)
    2*h*((h + sqrt(2)*h)/(2*h) - (-sqrt(2)*h + h)/(2*h))*f(E*h + x)/\
((-h + E*h)*(h + E*h)) + (-(-sqrt(2)*h + h)/(2*h) - \
(-sqrt(2)*h + E*h)/(2*h))*f(-h + x)/(h + E*h) + \
(-(h + sqrt(2)*h)/(2*h) + (-sqrt(2)*h + E*h)/(2*h))*f(h + x)/(-h + E*h)

    Partial derivatives are also supported:

    >>> y = Symbol('y')
    >>> d2fdxdy=f(x,y).diff(x,y)
    >>> as_finite_diff(d2fdxdy, wrt=x)
    -f(x - 1/2, y) + f(x + 1/2, y)

    See also
    ========

    sympy.calculus.finite_diff.apply_finite_diff
    sympy.calculus.finite_diff.finite_diff_weights

    """
    if wrt is None:
        wrt = derivative.variables[0]
        # we need Derivative to be univariate to guess wrt
        if any(v != wrt for v in derivative.variables):
            raise ValueError('if the function is not univariate' +
                             ' then `wrt` must be given')

    order = derivative.variables.count(wrt)

    if x0 is None:
        x0 = wrt

    if not iterable(points):
        # points is simply the step-size, let's make it a
        # equidistant sequence centered around x0
        if order % 2 == 0:
            # even order => odd number of points, grid point included
            points = [x0 + points*i for i
                      in range(-order//2, order//2 + 1)]
        else:
            # odd order => even number of points, half-way wrt grid point
            points = [x0 + points*i/S(2) for i
                      in range(-order, order + 1, 2)]

    if len(points) < order+1:
        raise ValueError("Too few points for order %d" % order)
    return apply_finite_diff(order, points, [
        derivative.expr.subs({wrt: x}) for x in points], x0)