
Taverna 2.5.4 Server: Usage and API Guide Page 1 of 31
Copyright © 2010–2014 The University of Manchester

Taverna 2.5.4 Server: Usage and API Guide
This document relates to the fourth public release of Taverna Server 2.5 that is based
on the Taverna 2.5 Platform, from the myGrid team at the University of Manchester.

About
This release is a version of the Taverna 2.5 Server that is provided as a basis for de-
ployments of server-ized Taverna in a multi-user environment.
In addition to its improved performance, this release supports a number of new fea-
tures:

• Major Feature: Support for Taverna Components.

• Major Feature: Support for the Interaction “service”.

• Major Feature: Updated execution engine to Taverna 2.5.0 Enterprise release.

• Major Feature: Workflow runs now produce a run bundle that describes the inputs
and outputs of the run, together with provenance information about the outputs.

• Start a workflow run by supplying a reference to a workflow document.

• Set an arbitrary name for a workflow run.

• Describes system capabilities, so that it is possible to determine whether a workflow
can be run prior to sending that workflow to the server.

• Improved resource management and logging.

This is in addition to these features supported by Taverna Server 2.4.

• Based on Taverna 2.4

• Multiple users, with strong separation between them.

• Limited persistence over service restarts, depending on exact deployment.

• Workflow run introspection capabilities; clients can ask the server what inputs they
should supply and what outputs were provided.

• Workflow run termination notifications through multiple mechanisms (RSS feed,
email, SMS, twitter, etc. depending on deployment).

• Security, both of access to the service and access by the workflow runs to other ser-
vices.

• Administrative REST interface including resource accounting

• Streaming of large files both for download and upload.

And these features of Taverna Server 2.2:

• Upload and Execution of arbitrary Taverna 2 workflows

• Access to Workflow's Interim Output Files; no need to wait for the workflow to
finish if the results are available sooner

o Safe File Management for handling results; workflows cannot interfere with
each others files

• Simple mechanism for Removal of Expired Workflows

Taverna 2.5.4 Server: Usage and API Guide Page 2 of 31
Copyright © 2010–2014 The University of Manchester

• Support for both RESTful and SOAP APIs, for easier tooling

• JMX-based Management API

There remain a number of known-missing features; notably these include:

• Support for execution on a back-end cluster, Cloud or Grid.

• Access to the workflow run provenance information (other than by downloading a
raw Apache Derby database).

• Full access to the workflow run working directory via WebDAV.

Fully surfaced workflow execution model, including to intermediate state information.

Known Limitations
There is a known limitation of 100MB on the size of individual atomic values that
may be present on a workflow port, processor port or datalink of a Workflow. With a
list, this is a restriction on the size of the elements in the list, and not on the total size
of the list’s items, though it is recommended that lists be kept substantially smaller
than this to ensure that they fit in memory. The recommended workaround for this is
to keep large values in files on disk or in a database, and to only pass references to
those files (i.e., filenames) along datalinks.

Taverna 2.5.4 Server: Usage and API Guide Page 3 of 31
Copyright © 2010–2014 The University of Manchester

Conceptual interface
Conceptually, an instance of Taverna Server exists to manage a collection of work-
flow runs, as well as some global information that is provided to all on the server’s
general capabilities. The server also supports an overall Atom feed per user that al-
lows you to find out when your workflows terminate without having to poll each one
separately. This feed is at https://«SERVER:PORT»/taverna-server/feed (with the de-
fault web-application name). The feed is not available to anonymous users, and will
only accept updates from the internal notification mechanism.
Each workflow run is associated with a working directory that is specific to that run;
the name of the working directory is a value that is not repeated for any other run.
Within the working directory, these1 subdirectories will be created:
conf Contains optional additional configuration files for the Taverna execu-

tion engine; empty by default.
externaltool Contains optional additional configuration files for the external tool

plugin; empty by default.
lib Contains additional libraries that will be made available to beanshell

scripts; empty by default.
logs Location that logs will be written to. In particular, will eventually con-

tain the file detail.log, which can be very useful when debugging a
workflow.

out Location that output files will be written to if they are not collected in-
to a Baclava file. This directory is only created during the workflow
run; it should not be made beforehand.

plugins Contains the additional plug-in code that is to be supported for the spe-
cific workflow run.

t2-database Contains the database working files used by the Taverna execution en-
gine. This directory is only created during the workflow run; it should
not be made beforehand.

All file access operations are performed on files and directories beneath the working
directory. The server prevents all access to dxirectories outside of that, so as to pro-
mote proper separation of the workflow runs. (Note in particular that the credential
manager configuration directory will not be accessible; it is managed directly by the
server.)
Associated with each workflow run is a state. The state transition diagram is this:

1 Each run also has repository and var directories created for it; their purpose is not docu-
mented and they are initially empty.

Taverna 2.5.4 Server: Usage and API Guide Page 4 of 31
Copyright © 2010–2014 The University of Manchester

The blue states are the initial and final states, and all states in italic cannot be ob-
served in practice. The black arrows represent automatic state changes, the blue ar-
rows are for manually-triggered transition, and the red arrows are destructions, which
can be done from any state (other than the initial unobservable one) and which may be
either manually or automatically triggered; automatic destruction happens when the
run reaches its expiry time (which you can set but cannot remove). Note that there are
two transitions from Operating to Finished; they are not equivalent. The automatic
transition represents the termination of the workflow execution with such outputs pro-
duced as are going to be generated, whereas the manual transition is where the execu-
tion is killed and outputs may be not generated even if they conceptually existed at
that point. Also note that it is only the transition from Initialized to Operating that
represents the start of the workflow execution engine.
Each workflow run is associated with a unique identifier, which is constant for the life
of the run. This identifier is used directly by the SOAP interface and forms part of the
URI for a run in the REST interface, but it is the same between the two. Any run may
be accessed and manipulated via either interface, so long as the right identifier is used
and you have permission to do the action concerned. The permissions associated with
a run are the ability to read features of the run and files associated with it, the ability
to update features (including creating files), and the ability to control the lifespan of a
run and destroy it, each of which implies the ones before it as well. The owner of a
run (i.e., the user who created it) always has all those permissions, and can also ma-
nipulate the security configuration of the run — these permissions and any credentials
granted to the run such as passwords and X.509 key-pairs — which are otherwise to-
tally shrouded in the execution interface. The permissions of a user to access a partic-
ular run can also be set to none, which removes all granted permissions and restores
the default (no access granted at all).
Associated with each run are a number of listeners. This release of the server only
supports a single listener, “io”, which is applied automatically. This listener is respon-
sible for detecting a number of technical features of the workflow run and exposing
them. In particular, it reports any output produced by the workflow engine on either
stdout or stderr, what the result (“exitcode”) would be, where to send termination no-
tifications to (“notificationAddress”) and what resources were used during the work-
flow run (“usageRecord”).

Initialized

Operating

Finished

Destroyed

Initial

Stopped

Taverna 2.5.4 Server: Usage and API Guide Page 5 of 31
Copyright © 2010–2014 The University of Manchester

The (RESTful) Usage Pattern
The Taverna 2 Server supports both REST and SOAP APIs; you may use either API
to access the service and any of the workflow runs hosted by the service. The full ser-
vice descriptions are available at http://«SERVER:PORT»/taverna-server/services but
to illustrate their use, here's a sample execution using the REST API.

1. The client starts by creating a workflow run. This is done by POSTing a
T2flow document to the service at the address http://«SERVER:PORT»/taverna-
server/rest/runs with the content type application/vnd.taverna.t2flow+xml.
The result of the POST is an HTTP 201 Created that gives the location of the
created run (in a Location header), hereby denoted the «RUN_URI» (it includes
a UUID which you will need to save in order to access the run again, though
the list of known UUIDs can be found above). Note that the run is not yet ac-
tually doing anything.

2. Next, you need to set up the inputs to the workflow ports. This is done by ei-
ther uploading a file that is to be read from, or by directly setting the value.
Directly Setting the Value of an Input

To set the input port, FOO, to have the value BAR, you would PUT a
message like this to the URI «RUN_URI»/input/input/FOO
<t2sr:runInput xmlns:t2sr=
 "http://ns.taverna.org.uk/2010/xml/server/rest/">
 <t2sr:value>BAR</t2sr:value>
</t2sr:runInput>

Uploading a File for One Input
The values for an input port can also be set by means of creating a file
on the server. Thus, if you were staging the value BAR to input port
FOO by means of a file BOO.TXT then you would first POST this
message to «RUN_URI»/wd
<t2sr:upload t2sr:name="BOO.TXT" xmlns:t2sr=
 "http://ns.taverna.org.uk/2010/xml/server/rest/">
 QkFS
</t2sr:upload>

Note that “QkFS” is the base64-encoded form of “BAR”, and that each
workflow run has its own working directory into which uploaded files
are placed; you are never told the name of this working directory.
You can also PUT the contents of the file (as application/octet-stream)
directly to the virtual resource name that you want to create the file as;
for the contents “BAR” that would be three bytes 66, 65, 82 (with ap-
propriate HTTP headers). This particular method supports upload of
very large files if necessary.
Once you've created the file, you can then set it to be the input for the
port by PUTting this message to «RUN_URI»/input/input/FOO
<t2sr:runInput xmlns:t2sr=
 "http://ns.taverna.org.uk/2010/xml/server/rest/">
 <t2sr:file>BOO.TXT</t2sr:file>
</t2sr:runInput>

Taverna 2.5.4 Server: Usage and API Guide Page 6 of 31
Copyright © 2010–2014 The University of Manchester

Note the similarity of the final part of this process to the previous
method for setting an input.
You can also create a directory, e.g., IN, to hold the input files. This is
done by POSTing a different message to «RUN_URI»/wd
<t2sr:mkdir t2sr:name="IN" xmlns:t2sr=
 "http://ns.taverna.org.uk/2010/xml/server/rest/"
 />

With that, you can then create files in the IN subdirectory by sending
the upload message to «RUN_URI»/wd/IN and you can use the file as an
input by using a name such as IN/BOO.TXT. You can also create sub-
subdirectories if required by sending the mkdir message to the natural
URI of the parent directory, just as sending an upload message to that
URI creates a file in that directory.

Using a File Already on the Taverna Server Installation
You can use an existing file attached to a workflow run on the same
server, provided you have permission to access that run. You do this
by using a PUT to set the input to a reference (the actual URL below is
just an example, but it must be the full URL to the file):
<t2sr:runInput xmlns:t2sr=
 "http://ns.taverna.org.uk/2010/xml/server/rest/">
 <t2sr:reference>
 «OTHER_RUN_URI»/wd/file.name
 </t2sr:reference>
</t2sr:runInput>

The data will be copied across efficiently into a run-local file. This ver-
sion of Taverna Server does not support accessing files stored on any
other server or on the general web via this mechanism.

Uploading a Baclava File
The final way of setting up the inputs to a workflow is to upload (using
the same method as above) a Baclava file (e.g., FOOBAR.BACLAVA)
that describes the inputs. This is then set as the provider for all inputs
by PUTting the name of the Baclava file (as plain text) to
«RUN_URI»/input/baclava

3. If your workflow depends on external libraries (e.g., for a beanshell or API
consumer service), these should be uploaded to «RUN_URI»/wd/lib; the name
of the file that you create there should match that which you would use in a lo-
cal run of the service.

4. If the workflow refers to a secured external service, it is necessary to supply
some additional credentials. For a SOAP web-service, these credentials are as-
sociated in Taverna with the WSDL description of the web service. The cre-
dentials must be supplied before the workflow run starts.
To set a username and password for a service, you would POST to
«RUN_URI»/security/credentials a message like this (assuming that the WSDL
address is “https://host/serv.wsdl”, that the username to use is “fred123”, and
that the password is “ThePassWord”):

Taverna 2.5.4 Server: Usage and API Guide Page 7 of 31
Copyright © 2010–2014 The University of Manchester

<t2sr:credential xmlns:t2sr=
 "http://ns.taverna.org.uk/2010/xml/server/rest/"
 xmlns:t2s="http://ns.taverna.org.uk/2010/xml/server/">
 <t2s:userpass>
 <t2s:serviceURI>https://host/serv.wsdl</t2s:serviceURI>
 <t2s:username>fred123</t2s:username>
 <t2s:password>ThePassWord</t2s:password>
 </t2s:userpass>
</t2sr:credential>

For REST services, the simplest way to find the correct security URI to use
with the service is to run a short workflow against the service in the Taverna
Workbench and to then look up the URI in the credential manager.

5. Now you can start the workflow running. This is done by using a PUT to set
«RUN_URI»/status to the plain text value Operating.

6. Now you need to poll, waiting for the workflow to finish. To discover the state
of a run, you can (at any time) do a GET on «RUN_URI»/status; when the
workflow has finished executing, this will return Finished instead of Operat-
ing (or Initialized, the starting state).
There is a fourth state, Stopped, but it is not supported in this release.

7. Every workflow run has an expiry time, after which it will be destroyed and all
resources (i.e., local files) associated with it cleaned up. By default in this re-
lease, this is 24 hours after initial creation. To see when a particular run is
scheduled to be disposed of, do a GET on «RUN_URI»/expiry; you may set the
time when the run is disposed of by PUTting a new time to that same URI.
Note that this includes not just the time when the workflow is executing, but
also when the input files are being created beforehand and when the results are
being downloaded afterwards; you are advised to make your clients regularly
advance the expiry time while the run is in use.

8. The outputs from the workflow are files created in the out subdirectory of the
run's working directory. The contents of the subdirectory can be read by doing
a GET on «RUN_URI»/wd/out which will return an XML document describing
the contents of the directory, with links to each of the files within it. Doing a
GET on those links will retrieve the actual created files (as uninterpreted bina-
ry data).
Thus, if a single output FOO.OUT was produced from the workflow, it would
be written to the file that can be retrieved from «RUN_URI»/wd/out/FOO.OUT
and the result of the GET on «RUN_URI»/wd/out would look something like
this:
<t2sr:directoryContents
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:t2s="http://ns.taverna.org.uk/2010/xml/server/"
 xmlns:t2sr=
 "http://ns.taverna.org.uk/2010/xml/server/rest/">
 <t2s:file xlink:href="«RUN_URI»/wd/out/FOO.OUT"
 t2sr:name="FOO.OUT">out/FOO.OUT</t2s:file>
</t2sr:directoryContents>

9. The standard output and standard error from the T2 Command Line Executor
subprocess can be read via properties of the special I/O listener. To do that, do
a GET on «RUN_URI»/listeners/io/properties/stdout (or .../stderr). Once the

Taverna 2.5.4 Server: Usage and API Guide Page 8 of 31
Copyright © 2010–2014 The University of Manchester

subprocess has finished executing, the I/O listener will provide a third proper-
ty containing the exit code of the subprocess, called exitcode.
Note that the supported set of listeners and properties will be subject to change
in future versions of the server, and should not be relied upon.

10. The run bundle for the run — a specially structured ZIP file — can be re-
trieved by doing a GET on «RUN_URI»/run-bundle. Within the run bundle, the
inputs for the run will be in the inputs directory, the outputs will be in the out-
puts directory, the workflow will be in workflowrun.wfbundle (in SCUFL2
format), and the provenance will be in worflowrun.prov.ttl (encoded as
RDF/Turtle).

11. Once you have finished, destroy the run by doing a DELETE on «RUN_URI».
Once you have done that, none of the resources associated with the run (in-
cluding both input and output files) will exist any more. If the run is still exe-
cuting, this will also cause it to be stopped.

All operations described above have equivalents in the SOAP service interface.

API of the REST Interface

Note that schemas in this document are actually pseudo-schemas. For example, this
shows how the various marks on attributes and elements indicate their cardinality and
type:
<element requiredAttr="xsd:someType">
 <requiredChildElement />
 <zeroOrMoreChildren /> *
 <optionalChild /> ?
 <alternative1 /> | <alternative2 />

 <childWithSimpleStringContent>
 xsd:string
 </childWithSimpleStringContent>
 <childWithUndescribedContent ... />
</element>

To be exact, a suffix of “*” marks an element that can be repeated arbitrarily often, a
suffix of “?” marks an element or attribute that can be either present or absent, and
otherwise exactly one of the element is required (or, for attributes, the attribute must
be present). We never use cardinalities other than these, and order is always respect-
ed. Where there is complex content, it will either be described inline or separately.
Where there is a choice between two elements, they are separated by a “|” character.
Namespaces are always defined as follows; their definitions are omitted from the
pseudoschemas:

Prefix Namespace URI
t2flow http://taverna.sf.net/2008/xml/t2flow

Warning: This document does not include a complete summary of the
REST API of Taverna Server 2.5; some resources and some content types
may be missing from this document. The WADL document for the server
gives a definitive description of the resources and the XML for the docu-
ments consumed and produced by those resources; the JSON is mechani-
cally related to the XML.

Taverna 2.5.4 Server: Usage and API Guide Page 9 of 31
Copyright © 2010–2014 The University of Manchester

t2s http://ns.taverna.org.uk/2010/xml/server/
t2sr http://ns.taverna.org.uk/2010/xml/server/rest/
port http://ns.taverna.org.uk/2010/port/
xlink http://www.w3.org/1999/xlink
xsd http://www.w3.org/2001/XMLSchema

Main Server Resource

Resource: /
Method: GET
Consumes: N/A
Produces: application/xml, application/json
Response codes: 200 OK
Notes: not secured

Retrieves a description of the server as either XML or JSON (determined by
content negotiation) that indicates other locations to find sub-resources.
<t2sr:serverDescription
 t2s:serverVersion="xsd:string"
 t2s:serverRevision="xsd:string"
 t2s:serverBuildTimestamp="xsd:string" >
 <t2sr:runs xlink:href="xsd:anyURI" />
 <t2sr:policy xlink:href="xsd:anyURI" />
 <t2sr:feed xlink:href="xsd:anyURI" />
</t2sr:serverDescription>

The feed element is a pointer to the location of the Atom feed for events issued
to the user about things like the termination of their workflows.

Resource: /runs
Method: GET
Consumes: N/A
Produces: application/xml, application/json
Response codes: 200 OK

Retrieve a list of all runs that the current user can see, as XML or JSON. Note
that the user will not be told about runs that they are not permitted to see (i.e.,
that they didn’t create and haven’t been given permission to see). Deleted runs
will also not be present.
<t2sr:runList>
 <t2sr:run xlink:href="xsd:anyURI" /> *
</t2sr:runList>

Method: POST
Consumes: application/vnd.taverna.t2flow+xml, application/xml
Produces: text/plain
Response codes: 201 Created

Accepts (or not) a request to create a new run executing the given workflow.
The content should normally be a t2flow workflow document with the
t2flow content type, but when the content type is plain XML, the workflow
must be wrapped (in an XML infoset sense) inside an
{http://ns.taverna.org.uk/2010/xml/server/}workflow element.

Taverna 2.5.4 Server: Usage and API Guide Page 10 of 31
Copyright © 2010–2014 The University of Manchester

<t2s:workflow>
 <t2flow:workflow ... />
</t2s:workflow>

The result will be a redirect (via Location: HTML header) to the resource cre-
ated for this particular run; the body of the response will be empty, or a string
describing exactly why the run creation is taking some time. Total failure will
be reported by an HTTP error. The run will be in the Initialized state, with a
default lifetime.

Resource: /policy
Method: GET
Consumes: N/A
Produces: application/xml, application/json
Response codes: 200 OK
Notes: not secured

Describe the (public) parts of the policies of this server, as XML or JSON.
<t2sr:policyDescription
 t2s:serverVersion="xsd:string"
 t2s:serverRevision="xsd:string"
 t2s:serverBuildTimestamp="xsd:string" >
 <t2sr:runLimit xlink:href="xsd:anyURI" />
 <t2sr:permittedWorkflows xlink:href="xsd:anyURI" />
 <t2sr:permittedListeners xlink:href="xsd:anyURI" />
 <t2sr:enabledNotificationFabrics xlink:href="xsd:anyURI" />
 <t2sr:capabilities xlink:href="xsd:anyURI" />
</t2sr:policyDescription>

Resource: /policy/capabilities
Method: GET
Consumes: N/A
Produces: application/xml, application/json
Response codes: 200 OK
Notes: not secured

Gets the list of supported capabilities of the execution engine. This list is a
collection of URIs that describe the abstract capabilities, together with a ver-
sion associated with each of them.

Resource: /policy/enabledNotificationFabrics
Method: GET
Consumes: N/A
Produces: application/xml, application/json
Response codes: 200 OK
Notes: not secured

Gets the list of supported, enabled notification fabrics. Each corresponds (ap-
proximately) to a protocol, e.g., email.

Resource: /policy/permittedListenerTypes
Method: GET
Consumes: N/A

Taverna 2.5.4 Server: Usage and API Guide Page 11 of 31
Copyright © 2010–2014 The University of Manchester

Produces: application/xml, application/json
Response codes: 200 OK
Notes: not secured

Gets the list of permitted event listener types.

Resource: /policy/permittedWorkflows
Method: GET
Consumes: N/A
Produces: application/xml, application/json
Response codes: 200 OK
Notes: not secured

Gets the list of permitted workflows. An empty list indicates that all work-
flows are permitted.

Resource: /policy/runLimit
Method: GET
Consumes: N/A
Produces: text/plain (xsd:int)
Response codes: 200 OK
Notes: not secured

Gets the maximum number of simultaneous runs that the user may create.
Note that this is an upper bound; other resource contention may cause the ac-
tual number to be lower.

Per-Workflow Run Resource
Note that all of these resources require that the user be authenticated and permitted to
(at least) see the run.

Resource: /runs/{id}
Method: GET
Consumes: N/A
Produces: application/xml, application/json
Response codes: 200 OK

Describes the sub-resources associated with this workflow run, as XML or
JSON.
<t2sr:runDescription t2sr:owner="xsd:string"
 t2s:serverVersion="xsd:string"
 t2s:serverRevision="xsd:string"
 t2s:serverBuildTimestamp="xsd:string" >
 <t2sr:expiry xlink:href="xsd:anyURI">
 xsd:string
 </t2sr:expiry>
 <t2sr:creationWorkflow xlink:href="xsd:anyURI" />
 <t2sr:createTime xlink:href="xsd:anyURI" />
 <t2sr:startTime xlink:href="xsd:anyURI" />
 <t2sr:finishTime xlink:href="xsd:anyURI" />
 <t2sr:status xlink:href="xsd:anyURI" />
 <t2sr:workingDirectory xlink:href="xsd:anyURI" />
 <t2sr:inputs xlink:href="xsd:anyURI" />
 <t2sr:output xlink:href="xsd:anyURI" />

Taverna 2.5.4 Server: Usage and API Guide Page 12 of 31
Copyright © 2010–2014 The University of Manchester

 <t2sr:securityContext xlink:href="xsd:anyURI" />
 <t2sr:listeners xlink:href="xsd:anyURI">
 <t2sr:listener xlink:href="xsd:anyURI" /> *
 </t2sr:listeners>
 <t2sr:interaction xlink:href="xsd:anyURI" />
 <t2sr:name xlink:href="xsd:anyURI" />
 <t2sr:stdout xlink:href="xsd:anyURI" />
 <t2sr:stderr xlink:href="xsd:anyURI" />
 <t2sr:usage xlink:href="xsd:anyURI" />
 <t2sr:log xlink:href="xsd:anyURI" />
 <t2sr:run-bundle xlink:href="xsd:anyURI" />
 <t2sr:generate-provenance xlink:href="xsd:anyURI" />
</t2sr:runDescription>

Method: DELETE
Consumes: N/A
Produces: N/A
Response codes: 204 No Content
Notes: requires Destroy permission

Deletes a workflow run, cleaning up all resources associated with that run.

Resource: /runs/{id}/expiry
Method: GET
Consumes: N/A
Produces: text/plain (xsd:dateTime)
Response codes: 200 OK

Gives the time when the workflow run becomes eligible for automatic dele-
tion.

Method: PUT
Consumes: text/plain (xsd:dateTime)
Produces: text/plain (xsd:dateTime)
Response codes: 200 OK
Notes: requires Destroy permission

Sets the time when the workflow run becomes eligible for automatic deletion.
Note that the deletion does not necessarily happen at exactly that time; that
depends on the internal mechanisms of the server.

Resource: /runs/{id}/createTime
Method: GET
Consumes: N/A
Produces: text/plain (xsd:dateTime)
Response codes: 200 OK

Gives the time when the workflow run was first submitted to the server.

Resource: /runs/{id}/finishTime
Method: GET
Consumes: N/A
Produces: text/plain (xsd:dateTime or empty)
Response codes: 200 OK

Taverna 2.5.4 Server: Usage and API Guide Page 13 of 31
Copyright © 2010–2014 The University of Manchester

Gives the time when the workflow run was detected as having finished execut-
ing, or the empty string if the workflow run has not yet finished.

Resource: /runs/{id}/startTime
Method: GET
Consumes: N/A
Produces: text/plain (xsd:dateTime or empty)
Response codes: 200 OK

Gives the time when the workflow run was started, or the empty string if the
workflow run has not yet been started.

Resource: /runs/{id}/status
Method: GET
Consumes: N/A
Produces: text/plain (“Initialized” or “Operating” or “Stopped” or “Finished”)
Response codes: 200 OK

Gives the current status of the workflow run. Note that the “Stopped” state is
not currently used.

Method: PUT
Consumes: text/plain (“Initialized” or “Operating” or “Stopped” or “Finished”)
Produces: text/plain (“Initialized” or “Operating” or “Stopped” or “Finished”)
Response codes: 200 OK

Attempts to update the status of the workflow run. This is the only mechanism
for setting a workflow run operating, and an operating run can be cancelled by
forcing it into the finished state.

Resource: /runs/{id}/workflow
Method: GET
Consumes: N/A
Produces: application/vnd.taverna.t2flow+xml, application/xml,
 application/json
Response codes: 200 OK

Gives the workflow document used to create the workflow run, as raw t2flow,
wrapped XML or wrapped JSON. (Note that the last is not supported for re-
upload.)

Resource: /runs/{id}/input
Method: GET
Consumes: N/A
Produces: application/xml, application/json
Response codes: 200 OK

Describe the sub-URIs relating to workflow inputs.
<t2sr:runInputs
 t2s:serverVersion="xsd:string"
 t2s:serverRevision="xsd:string"
 t2s:serverBuildTimestamp="xsd:string" >
 <t2sr:expected xlink:href="xsd:anyURI" />

Taverna 2.5.4 Server: Usage and API Guide Page 14 of 31
Copyright © 2010–2014 The University of Manchester

 <t2sr:baclava xlink:href="xsd:anyURI" />
 <t2sr:input xlink:href="xsd:anyURI" /> *
</t2sr:runInputs>

Resource: /runs/{id}/input/baclava
Method: GET
Consumes: N/A
Produces: text/plain
Response codes: 200 OK

Gives the Baclava file describing the inputs, or empty if individual files are
used. The name is relative to the main working directory. Use of a Baclava in-
put file will inhibit the generation of a run bundle.

Method: PUT
Consumes: text/plain
Produces: text/plain
Response codes: 200 OK

Sets the Baclava file describing the inputs. The name is relative to the main
working directory, and must not be empty. Use of a Baclava input file will in-
hibit the generation of a run bundle.

Resource: /runs/{id}/input/expected
Method: GET
Consumes: N/A
Produces: application/xml, application/json
Response codes: 200 OK

Describe the expected inputs of this workflow run. They must be supplied by
either per-input specifications or by the baclava file.
<port:inputDescription
 port:workflowId="xsd:string"
 port:workflowRun="xsd:anyURI"
 port:workflowRunId="xsd:string">
 <port:input port:name="xsd:string" port:depth="xsd:int"?
 xlink:href="xsd:anyURI"? /> *
</port:inputDescription>

Resource: /runs/{id}/input/input/{name}
Method: GET
Consumes: N/A
Produces: application/xml, application/json
Response codes: 200 OK

Gives a description of what is used to supply a particular input, which will be
either a literal value or the name of a file in the working directory or a refer-
ence to a file maintained by another workflow run on the same server (which
will be copied efficiently if the user has permission).
<t2sr:runInput t2sr:name="xsd:string"
 t2s:serverVersion="xsd:string"
 t2s:serverRevision="xsd:string"
 t2s:serverBuildTimestamp="xsd:string" >
 <t2sr:file> xsd:string </t2sr:file>

Taverna 2.5.4 Server: Usage and API Guide Page 15 of 31
Copyright © 2010–2014 The University of Manchester

 |
 <t2sr:reference> xsd:anyURI </t2sr:reference>
 |
 <t2sr:value> xsd:string </t2sr:value>
</t2sr:runInput>

Method: PUT
Consumes: application/xml, application/json
Produces: application/xml, application/json
Response codes: 200 OK

Sets the source for a particular input port (and cancels any use of baclava to
supply that port). The document format for both the consumption and produc-
tion side of this operation is as above.

Resource: /runs/{id}/output
Method: GET
Consumes: N/A
Produces: application/xml, application/json
Response codes: 200 OK

Gives a description of the outputs (in XML or JSON) as currently understood.
Note that only very limited understanding of the outputs will be present before
the workflow is run; the majority of information is generated during the exe-
cution of the run.
<port:workflowOutputs
 port:workflowId="xsd:string"
 port:workflowRun="xsd:anyURI"
 port:workflowRunId="xsd:string">
 <port:output port:name="xsd:string"
 port:depth="xsd:int"? >
 <port:value xlink:href="xsd:anyURI"?
 port:fileName="xsd:string"
 port:contentType="xsd:string"
 port:byteLength="xsd:int" />
 |
 <port:list xlink:href="xsd:anyURI"?
 port:length="xsd:int"? >
 <!-- Sequence of values, just as for a port -->
 </port:list>
 |
 <port:error xlink:href="xsd:anyURI"?
 port:depth="xsd:int"? />
 |
 <port:absent xlink:href="xsd:anyURI"? />
 </port:output> *
</port:workflowOutputs>

Method: GET
Consumes: N/A
Produces: text/plain
Response codes: 200 OK

Gives the Baclava file where output will be written (relative to the working di-
rectory); empty means use multiple simple files in the out directory. Use of a
Baclava output file will inhibit the generation of a run bundle.

Taverna 2.5.4 Server: Usage and API Guide Page 16 of 31
Copyright © 2010–2014 The University of Manchester

Method: PUT
Consumes: text/plain
Produces: text/plain
Response codes: 200 OK

Sets the Baclava file where output will be written (relative to the working di-
rectory); empty means use multiple simple files (in a directory structure where
lists of lists are involved) in the out directory. Use of a Baclava output file will
inhibit the generation of a run bundle.

Resource: /runs/{id}/run-bundle
Method: GET
Consumes: N/A
Produces: application/vnd.wf4ever.robundle+zip
Response codes: 200 OK, 404 Not Found

Get the run bundle for the workflow run, which includes any provenance in-
formation generated for the run. This is not guaranteed to exist until after the
workflow run finishes, and directing inputs to come from or outputs to go to a
Baclava file will prevent the generation of a run bundle at all. The run bundle
will not be generated if the generate-provenance option (see below) is disa-
bled.

Resource: /runs/{id}/generate-provenance
Method: GET
Consumes: N/A
Produces: text/plain
Response codes: 200 OK

Get whether the run/provenance bundle for the workflow run will be generated
(a string rendering of a boolean). There is no set default value for this; it de-
pends on the system configuration.

Method: PUT
Consumes: text/plain
Produces: text/plain
Response codes: 200 OK

Sets whether the run/provenance bundle for the workflow run will be generat-
ed. The value must be a string that can be interpreted as a boolean.

Resource: /runs/{id}/stdout
Method: GET
Consumes: N/A
Produces: text/plain
Response codes: 200 OK

Get the standard output from the execution engine used during the workflow’s
running. This is empty before the workflow run starts.

Taverna 2.5.4 Server: Usage and API Guide Page 17 of 31
Copyright © 2010–2014 The University of Manchester

Resource: /runs/{id}/stderr
Method: GET
Consumes: N/A
Produces: text/plain
Response codes: 200 OK

Get the standard error from the execution engine used during the workflow’s
running. This is empty before the workflow run starts.

Resource: /runs/{id}/log
Method: GET
Consumes: N/A
Produces: text/plain
Response codes: 200 OK

Get the content of the execution engine’s log file. This is empty before the
workflow run starts.

Resource: /runs/{id}/usage
Method: GET
Consumes: N/A
Produces: application/xml
Response codes: 200 OK, 204 No content

Get a description of the resources used during the running of the workflow in
Usage Record 1.0 format. Before the workflow finishes, this is empty and re-
sults in a “204 No content” response code being used instead of “200 OK”.

Resource: /runs/{id}/listeners
The current implementation does not permit installing new listeners, and comes with a
single listener called io which provides the stdout, stderr and exitcode properties, all
of which do not permit update. This means that the standard output of the workflow
run is available at /runs/{id}/listeners/io/properties/stdout. (It is also surfaced as
/runs/{id}/stdout from Taverna Server 2.5 onwards.)

Method: GET
Consumes: N/A
Produces: application/xml, application/json
Response codes: 200 OK

Get a list of the listeners installed in the workflow run.
<t2sr:listeners
 t2s:serverVersion="xsd:string"
 t2s:serverRevision="xsd:string"
 t2s:serverBuildTimestamp="xsd:string" >
 <t2sr:listener xlink:href="xsd:anyURI"
 t2sr:name="xsd:string"

Compatibility Note: The listener interfaces are likely to be removed en-
tirely from a future version of Taverna Server; the structure of the func-
tionality intended to be surfaced by them has evolved in a different way to
what was originally expected.

Taverna 2.5.4 Server: Usage and API Guide Page 18 of 31
Copyright © 2010–2014 The University of Manchester

 t2sr:type="xsd:string"
 t2s:serverVersion="xsd:string"
 t2s:serverRevision="xsd:string"
 t2s:serverBuildTimestamp="xsd:string">
 <t2sr:configuration xlink:href="xsd:anyURI" />
 <t2sr:properties>
 <t2sr:property xlink:href="xsd:anyURI"
 t2sr:name="xsd:string" /> *
 </t2sr:properties>
 </t2sr:listener> *
</t2sr:listeners>

Method: POST
Consumes: application/xml, application/json
Produces: N/A
Response codes: 201 Created
Notes: Identity of created listener provided through Location header in response.

Add a new event listener to the named workflow run of the given type and un-
der the conditions imposed by the contents of the configuration document (the
body of the element). Note that the configuration cannot be changed after crea-
tion.
<t2sr:listenerDefinition t2sr:type="xsd:string">
 xsd:string
</t2sr:listenerDefinition>

Resource: /runs/{id}/listeners/{name}
Method: GET
Consumes: N/A
Produces: application/xml, application/json
Response codes: 200 OK

Get the description of a particular listener attached to a workflow run.
<t2sr:listener xlink:href="xsd:anyURI"
 t2sr:name="xsd:string"
 t2sr:type="xsd:string"
 t2s:serverVersion="xsd:string"
 t2s:serverRevision="xsd:string"
 t2s:serverBuildTimestamp="xsd:string">
 <t2sr:configuration xlink:href="xsd:anyURI" />
 <t2sr:properties>
 <t2sr:property xlink:href="xsd:anyURI"
 t2sr:name="xsd:string" /> *
 </t2sr:properties>
</t2sr:listener>

Resource: /runs/{id}/listeners/{name}/configuration
Method: GET
Consumes: N/A
Produces: text/plain
Response codes: 200 OK

Get the configuration document for the given event listener that is attached to
a workflow run.

Taverna 2.5.4 Server: Usage and API Guide Page 19 of 31
Copyright © 2010–2014 The University of Manchester

Resource: /runs/{id}/listeners/{name}/properties
Method: GET
Consumes: N/A
Produces: application/xml, application/json
Response codes: 200 OK

Get the list of properties supported by a given event listener attached to a
workflow run.
<t2sr:properties>
 <t2sr:property xlink:href="xsd:anyURI"
 t2sr:name="xsd:string" /> *
</t2sr:properties>

Resource: /runs/{id}/listeners/{name}/properties/{propName}
Method: GET
Consumes: N/A
Produces: text/plain
Response codes: 200 OK

Get the value of the particular property of an event listener attached to a
workflow run.

Method: PUT
Consumes: text/plain
Produces: text/plain
Response codes: 200 OK

Set the value of the particular property of an event listener attached to a work-
flow run.

Resource: /runs/{id}/security
Method: GET
Consumes: N/A
Produces: application/xml, application/json
Response codes: 200 OK

Gives a description of the security information supported by the workflow run.
<t2sr:securityDescriptor
 t2s:serverVersion="xsd:string"
 t2s:serverRevision="xsd:string"
 t2s:serverBuildTimestamp="xsd:string">
 <t2sr:owner> xsd:string </t2sr:owner>
 <t2sr:permissions xlink:href="xsd:anyURI" />
 <t2sr:credentials xlink:href="xsd:anyURI">
 <t2sr:credential> ... </t2sr:credential> *
 </t2sr:credentials>
 <t2sr:trusts xlink:href="xsd:anyURI">
 <t2sr:trust> ... </t2sr> *
 </t2sr:trusts>
</t2sr:securityDescriptor>

Resource: /runs/{id}/security/credentials
Method: GET
Consumes: N/A

Taverna 2.5.4 Server: Usage and API Guide Page 20 of 31
Copyright © 2010–2014 The University of Manchester

Produces: application/xml, application/json
Response codes: 200 OK

Gives a list of credentials supplied to this workflow run.
<t2sr:credentials
 t2s:serverVersion="xsd:string"
 t2s:serverRevision="xsd:string"
 t2s:serverBuildTimestamp="xsd:string">
 <t2s:userpass xlink:href="xsd:anyURI">
 ...
 </t2s:userpass> *
 <t2s:keypair xlink:href="xsd:anyURI">
 ...
 </t2s:keypair> *
</t2sr:credentials>

For more description of the contents of the userpass and keypair elements, see
below.

Method: POST
Consumes: application/xml, application/json
Produces: N/A
Response codes: 201 Created
Notes: Identity of created credential is in Location header of response.

Creates a new credential. Multiple types supported. Note that none of these
should have their xlink:href attributes set when they are POSTed; those will be
supplied by the service. Take particular care with the serviceURI elements,
which must define the URI as expected by the Taverna Credential Manager.
Password credential:
<t2s:userpass>
 <ts2:serviceURI> xsd:anyURI </t2s:serviceURI>
 <t2s:username> xsd:string </t2s:username>
 <t2s:password> xsd:string </t2s:password>
</t2s:userpass>

Key credential (note that one of the credentialFile and credentialBytes ele-
ments should be supplied, but not both):
<t2s:keypair>
 <ts2:serviceURI> xsd:anyURI </t2s:serviceURI>
 <t2s:credentialName> xsd:string </t2s:credentialName>
 <t2s:credentialFile> xsd:string </t2s:credentialFile> ?
 <t2s:fileType> xsd:string </t2s:fileType> ?
 <t2s:unlockPassword> xsd:string </t2s:unlockPassword> ?
 <t2s:credentialBytes>
 xsd:base64Binary
 </t2s:credentialBytes> ?
</t2s:keypair>

Method: DELETE
Consumes: N/A
Produces: N/A
Response codes: 204 No content

Deletes all credentials.

Taverna 2.5.4 Server: Usage and API Guide Page 21 of 31
Copyright © 2010–2014 The University of Manchester

Resource: /runs/{id}/security/credentials/{credID}
Method: GET
Consumes: N/A
Produces: application/xml, application/json
Response codes: 200 OK

Describes a particular credential. Will be one of the elements userpass, key-
pair and cagridproxy as outlined above.

Method: PUT
Consumes: application/xml, application/json
Produces: application/xml, application/json
Response codes: 200 OK

Updates (i.e., replaces) a particular credential. Will be one of the elements
userpass, keypair and cagridproxy as outlined above.

Method: DELETE
Consumes: N/A
Produces: application/xml, application/json
Response codes: 204 No content

Deletes a particular credential.

Resource: /runs/{id}/security/owner
Method: GET
Consumes: N/A
Produces: text/plain
Response codes: 200 OK

Gives the identity of who owns the workflow run.

Resource: /runs/{id}/security/permissions
Method: GET
Consumes: N/A
Produces: application/xml, application/json
Response codes: 200 OK

Gives a list of all non-default permissions associated with the enclosing work-
flow run. By default, nobody has any access at all except for the owner of the
run.
<t2sr:permissionsDescriptor
 t2s:serverVersion="xsd:string"
 t2s:serverRevision="xsd:string"
 t2s:serverBuildTimestamp="xsd:string">
 <t2sr:permission xlink:href="xsd:anyURI">
 <t2sr:userName> xsd:string </t2sr:userName>
 <t2sr:permission>
 none|read|update|destroy
 </t2sr:permission>
 </t2sr:permission> *
</t2sr:permissionsDescriptor>

Method: POST
Consumes: application/xml, application/json

Taverna 2.5.4 Server: Usage and API Guide Page 22 of 31
Copyright © 2010–2014 The University of Manchester

Produces: N/A
Response codes: 201 Created
Notes: Identity of created permission is in Location header of response.

Creates a new assignment of permissions to a particular user.
<t2sr:permissionUpdate>
 <t2sr:userName> xsd:string </t2sr:userName>
 <t2sr:permission>
 none|read|update|destroy
 </t2sr:permission>
</t2sr:permissionUpdate>

Resource: /runs/{id}/security/permissions/{user}
Method: GET
Consumes: N/A
Produces: text/plain (one of: none, read, update, destroy)
Response codes: 200 OK

Describes the permission granted to a particular user.
Method: PUT
Consumes: text/plain (one of: none, read, update, destroy)
Produces: text/plain (one of: none, read, update, destroy)
Response codes: 200 OK

Updates the permissions granted to a particular user.
Method: DELETE
Consumes: N/A
Produces: N/A
Response codes: 204 No content

Deletes (by resetting to default, i.e., none) the permissions associated with a
particular user.

Resource: /runs/{id}/security/trusts
Method: GET
Consumes: N/A
Produces: application/xml, application/json
Response codes: 200 OK

Gives a list of trusted identities supplied to this workflow run.
<t2sr:trustedIdentities
 t2s:serverVersion="xsd:string"
 t2s:serverRevision="xsd:string"
 t2s:serverBuildTimestamp="xsd:string">
 <t2sr:trust xlink:href="xsd:anyURI">
 <t2s:certificateFile>
 xsd:string
 </t2s:certificateFile> ?
 <t2s:fileType> xsd:string </t2s:fileType> ?
 <t2s:certificateBytes>
 xsd:base64Binary
 </t2s:certificateBytes> ?
 </t2sr:trust> *
</t2sr:trustedIdentities>

Taverna 2.5.4 Server: Usage and API Guide Page 23 of 31
Copyright © 2010–2014 The University of Manchester

Method: POST
Consumes: application/xml, application/json
Produces: N/A
Response codes: 201 Created

Adds a new trusted identity. The xlink:href attribute of the trust element will
be ignored if supplied, and one of certificateFile and certificateBytes should be
supplied. The fileType can normally be omitted, as it is assumed to be X.509
by default (the only type seen in practice).
<t2sr:trust>
 <t2s:certificateFile> xsd:string </t2s:certificateFile> ?
 <t2s:fileType> xsd:string </t2s:fileType> ?
 <t2s:certificateBytes>
 xsd:base64Binary
 </t2s:certificateBytes> ?
</t2sr:trust>

Method: DELETE
Consumes: N/A
Produces: N/A
Response codes: 204 No content

Deletes all trusted identities.

Resource: /runs/{id}/security/trusts/{trustID}
Method: GET
Consumes: N/A
Produces: application/xml, application/json
Response codes: 200 OK

Describes a particular trusted identity.
<t2sr:trust xlink:href="xsd:anyURI">
 <t2s:certificateFile> xsd:string </t2s:certificateFile> ?
 <t2s:fileType> xsd:string </t2s:fileType> ?
 <t2s:certificateBytes>
 xsd:base64Binary
 </t2s:certificateBytes> ?
</t2sr:trust>

Method: PUT
Consumes: application/xml, application/json
Produces: application/xml, application/json
Response codes: 200 OK

Updates (i.e., replaces) a particular trusted identity. The xlink:href attribute
will be ignored if supplied. The fileType can normally be omitted, as it is as-
sumed to be X.509 by default (the only type seen in practice).
<t2sr:trust>
 <t2s:certificateFile> xsd:string </t2s:certificateFile> ?
 <t2s:fileType> xsd:string </t2s:fileType> ?
 <t2s:certificateBytes>
 xsd:base64Binary
 </t2s:certificateBytes> ?
</t2sr:trust>

Taverna 2.5.4 Server: Usage and API Guide Page 24 of 31
Copyright © 2010–2014 The University of Manchester

Method: DELETE
Consumes: N/A
Produces: N/A
Response codes: 204 No content

Deletes a particular trusted identity.

Resource: /runs/{id}/wd
Resource: /runs/{id}/wd/{path…}
Note that everything following the /wd is the path beneath the working directory of
the workflow run; this is mapped onto the filesystem. An empty path is the same as
talking about the working directory itself.
Be aware! Much of the selection between operations is done on the basis of the nego-
tiated content type and the nature of the entity to which the path name matches.
Method: GET
Consumes: N/A
Produces: application/xml, application/json
Response codes: 200 OK
Notes: This only applies to directories.

Gives a description of the working directory or a named directory in or be-
neath the working directory of the workflow run. The contents of the dir and
file elements are the equivalent pathname (for use in the SOAP interface or to
be appended to …/wd to generate a URI).
<t2sr:directoryContents>
 <t2s:dir xlink:href="xsd:anyURI" t2s:name="xsd:string">
 xsd:string
 </t2s:dir> *
 <t2s:file xlink:href="xsd:anyURI" t2s:name="xsd:string">
 xsd:string
 </t2s:file> *
</t2sr:directoryContents>

Method: GET
Consumes: N/A
Produces: application/zip
Response codes: 200 OK
Notes: This only applies to directories.

Retrieves the contents of the given directory (including all its subdirectories)
as a ZIP file.

Method: GET
Consumes: N/A
Produces: application/octet-stream, */*
Response codes: 200 OK
Notes: This only applies to files. Supports the Range header applied to bytes.

Retrieves the contents of a file. The actual content type retrieved will be that
which is auto-detected, and the bytes delivered will be those that exist on the
underlying disk file.

Method: PUT
Consumes: application/octet-stream

Taverna 2.5.4 Server: Usage and API Guide Page 25 of 31
Copyright © 2010–2014 The University of Manchester

Produces: N/A
Response codes: 200 OK
Notes: This only applies to files.

Creates a file or replaces the contents of a file with the given bytes.
Method: POST
Consumes: application/xml, application/json
Produces: N/A
Response codes: 201 Created
Notes: This only applies to directories. The Location header says what was made.

Creates a directory in the filesystem beneath the working directory of the
workflow run, or creates or updates a file's contents, where that file is in or be-
low the working directory of a workflow run. The location that this is POSTed
to determines what the parent directory of the created entity is, and the name
attribute determines its name. The operation done depends on the element
passed, which should be one of these:
<t2sr:mkdir t2sr:name="xsd:string" />

<t2sr:upload t2sr:name="xsd:string">
 xsd:base64Binary
</t2sr:upload>

Note that the upload operation is deprecated; directly PUTting the data is pre-
ferred, as that has no size restrictions.

Method: DELETE
Consumes: N/A
Produces: N/A
Response codes: 204 No content

Deletes a file or directory that is in or below the working directory of a work-
flow run. The working directory itself cannot be deleted (other than by de-
stroying the whole run).

Taverna 2.5.4 Server: Usage and API Guide Page 26 of 31
Copyright © 2010–2014 The University of Manchester

API of the SOAP Interface

Taverna 2 Server supports a SOAP interface to the majority of its user-facing func-
tionality. The operations that it supports are divided into a few groups:

• Global Settings

• Basic Workflow Operations

• Input and Output Control

• File Operations

• Event Listeners

• Security Configuration
The connection itself is done (under recommended deployment patterns) by HTTPS,
and is authenticated via Basic HTTP username and password at the connection level.
All information reported is only necessarily true for a particular user; no guarantee is
made that it will be the same for any other user.
Note that the information below is just a summary. The WSDL document for the
server should be consulted for the full definition of the messages used with each oper-
ation.

Global Settings
These operations describe things that are across all the workflow runs owned by the
connecting user on the server.
getCapabilities

This obtains the description of the abstract capabilities (and their versions) of
the execution engine that is hosted inside the service.

getEnabledNotificationFabrics
This obtains the names of the protocols supported for registration for active
notification. Note that the Atom feed support is always enabled as it is built in-
to the service itself.

getMaxSimultaneousRuns
This obtains the maximum number of runs that may be executed at once by
the current user; note that this limit might not be reachable by any one user if
it is due to a global limit on the number of runs and other users have several
runs of their own.

Warning: This document does not include a complete summary of the
SOAP API of Taverna Server 2.5; some operations are missing from this
document and some messages have been altered from previous versions of
Taverna Server to promote improved interoperability. The complete list of
operations and exact descriptions of the messages sent and received by
those operations is given in the WSDL description published by the ser-
vice.

Taverna 2.5.4 Server: Usage and API Guide Page 27 of 31
Copyright © 2010–2014 The University of Manchester

getPermittedWorkflows
Get a list of workflows that are permitted to be instantiated; if the list is empty,
there is no restriction on what workflows may have runs created of them.

getPermittedListenerTypes
Get a list of types of listeners that may be explicitly attached to a workflow
run.

listRuns
Get a list of all workflow runs on the server that the user has access to.
(Workflows that they do not have permission to access even for reading will
be not returned by this operation.)

Basic Workflow Operations
An ID string identifies every workflow run. All operations on a workflow run take the
ID as one their arguments. (Implementation note: This ID is a UUID.)
submitWorkflow

Submit a workflow to create a run, returning the ID of the run. Newly submit-
ted workflows start in the Initializing state so that you can upload all the re-
quired support files before starting the run.

destroyRun
Destroy the given workflow run. This kills the workflow execution if the run
was in the Operating state removes all files associated with a run.

getRunExpiry
Get the time that a workflow run will become eligible for automated destruc-
tion. The default lifespan of a workflow run is 24 hours.

setRunExpiry
Set the time that a workflow run will become eligible for automated destruc-
tion.

getRunCreationTime
Get the time that a workflow run was created (by the submitWorkflow opera-
tion).

getRunStartTime
Get the time that a workflow run started executing (i.e., transitioned to the Op-
erating state) or null if that has not yet occurred.

getRunFinishTime
Get the time that a workflow run stopped executing (i.e., transitioned to the
Finished state) or null if that has not yet occurred.

getRunWorkflow
Get the workflow document that was used to create a workflow run.

getRunStatus

Taverna 2.5.4 Server: Usage and API Guide Page 28 of 31
Copyright © 2010–2014 The University of Manchester

Get the current state of a workflow run. In the current implementation, this is
one of Initializing, Operating and Finished. (Technically, there's also a
Stopped state but no run implementation currently supports it, and there's con-
ceptually a Destroyed state too, but the service cannot say so as it will instead
give a fault stating that the run does not exist.)

setRunStatus
Set the current state of a workflow run, which is necessary to start it Operat-
ing. The execution can be finished early by manually moving it to Finished,
though the run will automatically progress to that state once it terminates natu-
rally. It's always legal to set a run to its current state, and it's always legal to
set the state to Finished.

getRunBundle
Get the run bundle for a workflow run, which is only present if provenance
generation is enabled (see getRunGenerateProvenance). Note that this method
uses a transfer format that supports the use of MTOM.

getRunGenerateProvenance
Get whether the run bundle for a workflow run (which contains the prove-
nance information) will be generated. Note that the system administrator can
set the default value of this abstract property.

setRunGenerateProvenance
Set whether the run bundle for a workflow run (which contains the provenance
information) will be generated. There is no point in setting this abstract prop-
erty after setting the workflow run operating.

getRunStdout
Get the standard output from the execution engine. An empty string when the
execution engine has not yet started.

getRunStderr
Get the standard error from the execution engine. An empty string when the
execution engine has not yet started.

getRunLog
Get the detailed log contents from the execution engine. An empty string when
the execution engine has not yet started.

getRunUsageRecord
Get the resource usage description of the execution engine, or null when the
execution engine has not yet finished.

Input and Output Control
getRunInputDescriptor

Returns a description of what inputs are expected by a particular workflow.
getRunInputs

Taverna 2.5.4 Server: Usage and API Guide Page 29 of 31
Copyright © 2010–2014 The University of Manchester

Returns a list of what inputs have been configured on a particular workflow,
including what file they are to be taken from or what value they are to use.

setRunInputPortFile
Configure an input to take its value from a file in/beneath the job's working di-
rectory.

setRunInputPortValue
Configure an input to take its value directly from the supplied string. (Imple-
mentation note: Not all values work well when provided this way due to a
known issue in the Apache command line library.)

setRunInputBaclavaFile
Configure a run to take all its inputs from a Baclava file. The Baclava file
should be uploaded to the run’s working directory prior to the state being set
to Operating.

getRunOutputDescription
Get a description of what outputs have been provided.

setRunOutputBaclavaFile
Arrange for the run outputs to be written as a Baclava file. If this is not called,
outputs will be written into files in the out subdirectory of the workflow run's
working directory.

getRunOutputBaclavaFile
Get the name of the Baclava file that will have the run outputs written to it.

File Operations
Every workflow run has a working directory that is private to itself. That working di-
rectory will be the current directory when the workflow run is executing.
getRunDirectoryContents

List the contents of a directory. The workflow run's working directory is de-
noted by the empty filename, and only that directory or its subdirectories may
be listed.

destroyRunDirectoryEntry
Delete a subdirectory or file.

getRunDirectoryAsZip
Given a directory, return that directory plus all its contents (files, subdirecto-
ries) as a ZIP file.

makeRunDirectory
Create a subdirectory of a directory. Note, you should not create the out subdi-
rectory; that will be created by the workflow engine.

getRunFileContents
Get the contents of a file, as XML-wrapped base-64 encoded data. (Implemen-
tation note: Consider fetching large files by the REST interface, which can

Taverna 2.5.4 Server: Usage and API Guide Page 30 of 31
Copyright © 2010–2014 The University of Manchester

handle much more data by virtue of using data streaming, or via the MTOM-
enabled operation.)

getRunFileContentsMTOM
Get the contents of a file. (MTOM-enabled.)

getRunFileType
Get an estimate of the content type of a file.

getRunFileLength
Get the length of the contents of a file.

makeRunFile
Create an empty file.

setRunFileContents
Set the contents of an existing file from XML-wrapped base-64 encoded data.
(Implementation note: Consider uploading large files by the REST interface,
which can handle much more data by virtue of using data streaming, or via the
MTOM-enabled operation.)

setRunFileContentsMTOM
Set the contents of an existing file. (MTOM-enabled.)

Event Listeners

getRunListeners

Get a list of listeners attached to a particular run.
addRunListener

Attach a new listener to a particular run. The listener must be of a recognised
type.

getRunListenerConfiguration
Get the configuration document of a particular listener. The configuration doc-
ument can only be read, not written.

getRunListenerProperties
Get the list of properties supported by a particular listener.

getRunListenerProperty
setRunListenerProperty

Get and set the values of individual properties; properties are always strings.
There is one standard listener, io, which is attached by default. This listener has an
empty configuration document, and provides access to a number of properties. The
properties are:

Compatibility Note: The listener interfaces are likely to be removed en-
tirely from a future version of Taverna Server; the structure of the func-
tionality intended to be surfaced by them has evolved in a different way to
what was originally expected.

Taverna 2.5.4 Server: Usage and API Guide Page 31 of 31
Copyright © 2010–2014 The University of Manchester

stdout
The standard output stream from the workflow executor process.

stderr
The standard error stream from the workflow executor process.

exitcode
The exit code of the workflow executor process. Empty if not yet exit-
ed.

notificationAddress
The URI to push termination notifications to. If empty, no notifications
are pushed (but they are always made available by the Atom stream).

usageRecord
If non-empty, a UR1.0-format usage record describing resources con-
sumed during the execution of the workflow.

Per-Run Security Configuration
Note that all of the operations below are restricted to the owner of the run except for
discovering the identity of the owner of the run.
getRunOwner

Get the identity of the owner of the run. Note that the owner always has full
permission to modify and read the run.

listRunPermissions
List the non-deny permissions granted by the owner.

setRunPermission
Grant a particular permission to a user.

getRunCredentials
List the credentials given to a run to use when contacting other services.

setRunCredential
Give a credential to a run to use when contacting other services.

deleteRunCredential
Stop a run from using a particular credential when contacting other services.

getRunCertificates
List the server certificates that will be trusted when contacting other services.

setRunCertificates
Add to/update the server certificates that will be trusted when contacting other
services.

deleteRunCertificates
Remove from the server certificates that will be trusted when contacting other
services.

