/***************************************************************************** Copyright (c) 1996, 2009, Innobase Oy. All Rights Reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA *****************************************************************************/ /****************************************************** The transaction Created 3/26/1996 Heikki Tuuri *******************************************************/ #include "trx0trx.h" #ifdef UNIV_NONINL #include "trx0trx.ic" #endif #include "trx0undo.h" #include "trx0rseg.h" #include "log0log.h" #include "que0que.h" #include "lock0lock.h" #include "trx0roll.h" #include "usr0sess.h" #include "read0read.h" #include "srv0srv.h" #include "thr0loc.h" #include "btr0sea.h" #include "os0proc.h" #include "trx0xa.h" #include "api0ucode.h" #include "api0ucode.h" /* TODO: Can we remove this? */ /* Dummy session used currently in client interface */ UNIV_INTERN sess_t* trx_dummy_sess = NULL; /* Number of transactions currently allocated for the client: protected by the kernel mutex */ UNIV_INTERN ulint trx_n_transactions = 0; /* Threads with unknown id. */ UNIV_INTERN os_thread_id_t NULL_THREAD_ID; /************************************************************************** Reset global variables. */ UNIV_INTERN void trx_var_init(void) /*==============*/ { trx_dummy_sess = NULL; trx_n_transactions = 0; } /************************************************************************** Determines if the currently running transaction is in strict_mode. */ UNIV_INTERN ibool trx_is_strict( /*==========*/ /* out: TRUE if strict */ trx_t* trx) /* in: transaction */ { return(FALSE); } /***************************************************************** Set detailed error message for the transaction. */ UNIV_INTERN void trx_set_detailed_error( /*===================*/ trx_t* trx, /* in: transaction struct */ const char* msg) /* in: detailed error message */ { ut_strlcpy(trx->detailed_error, msg, sizeof(trx->detailed_error)); } /******************************************************************** Creates and initializes a transaction object. */ UNIV_INTERN trx_t* trx_create( /*=======*/ /* out, own: the transaction */ sess_t* sess) /* in: session */ { trx_t* trx; ut_ad(mutex_own(&kernel_mutex)); ut_ad(sess); trx = mem_alloc(sizeof(trx_t)); trx->magic_n = TRX_MAGIC_N; trx->op_info = ""; trx->is_purge = 0; trx->is_recovered = 0; trx->conc_state = TRX_NOT_STARTED; trx->start_time = time(NULL); trx->isolation_level = TRX_ISO_REPEATABLE_READ; trx->id = ut_dulint_zero; trx->no = ut_dulint_max; trx->support_xa = TRUE; trx->check_foreigns = TRUE; trx->check_unique_secondary = TRUE; trx->dict_operation = TRX_DICT_OP_NONE; trx->table_id = ut_dulint_zero; trx->client_thd = NULL; trx->client_query_str = NULL; trx->duplicates = 0; trx->n_client_tables_in_use = 0; trx->client_n_tables_locked = 0; mutex_create(&trx->undo_mutex, SYNC_TRX_UNDO); trx->rseg = NULL; trx->undo_no = ut_dulint_zero; trx->last_sql_stat_start.least_undo_no = ut_dulint_zero; trx->insert_undo = NULL; trx->update_undo = NULL; trx->undo_no_arr = NULL; trx->error_state = DB_SUCCESS; trx->error_key_num = 0; trx->detailed_error[0] = '\0'; trx->sess = sess; trx->que_state = TRX_QUE_RUNNING; trx->n_active_thrs = 0; trx->handling_signals = FALSE; UT_LIST_INIT(trx->signals); UT_LIST_INIT(trx->reply_signals); trx->graph = NULL; trx->wait_lock = NULL; trx->was_chosen_as_deadlock_victim = FALSE; UT_LIST_INIT(trx->wait_thrs); trx->lock_heap = mem_heap_create_in_buffer(256); UT_LIST_INIT(trx->trx_locks); UT_LIST_INIT(trx->trx_savepoints); trx->dict_operation_lock_mode = 0; trx->has_search_latch = FALSE; trx->search_latch_timeout = BTR_SEA_TIMEOUT; trx->declared_to_be_inside_innodb = FALSE; trx->n_tickets_to_enter_innodb = 0; trx->global_read_view_heap = mem_heap_create(256); trx->global_read_view = NULL; trx->read_view = NULL; /* Set X/Open XA transaction identification to NULL */ memset(&trx->xid, 0, sizeof(trx->xid)); trx->xid.formatID = -1; return(trx); } /************************************************************************ Creates a transaction object for client. */ UNIV_INTERN trx_t* trx_allocate_for_client( /*====================*/ /* out, own: transaction object */ void* arg) /* in: pointer to client data */ { trx_t* trx; mutex_enter(&kernel_mutex); trx = trx_create(trx_dummy_sess); trx_n_transactions++; UT_LIST_ADD_FIRST(client_trx_list, trx_sys->client_trx_list, trx); mutex_exit(&kernel_mutex); trx->client_thread_id = os_thread_get_curr_id(); trx->client_process_no = os_proc_get_number(); trx->client_thd = arg; return(trx); } /************************************************************************ Creates a transaction object for background operations by the master thread. */ UNIV_INTERN trx_t* trx_allocate_for_background(void) /*=============================*/ /* out, own: transaction object */ { trx_t* trx; mutex_enter(&kernel_mutex); trx = trx_create(trx_dummy_sess); mutex_exit(&kernel_mutex); trx->client_process_no = 0; trx->client_thread_id = NULL_THREAD_ID; return(trx); } /************************************************************************ Releases the search latch if trx has reserved it. */ UNIV_INTERN void trx_search_latch_release_if_reserved( /*=================================*/ trx_t* trx) /* in: transaction */ { if (trx->has_search_latch) { rw_lock_s_unlock(&btr_search_latch); trx->has_search_latch = FALSE; } } /************************************************************************ Frees a transaction object. */ static void trx_free( /*=====*/ trx_t* trx) /* in, own: trx object */ { ut_ad(mutex_own(&kernel_mutex)); if (trx->declared_to_be_inside_innodb) { ut_print_timestamp(ib_stream); ib_logger(ib_stream, " InnoDB: Error: Freeing a trx which is declared" " to be processing\n" "InnoDB: inside InnoDB.\n"); trx_print(ib_stream, trx, 600); ib_logger(ib_stream, "\n"); /* This is an error but not a fatal error. We must keep the counters like srv_conc_n_threads accurate. */ srv_conc_force_exit_innodb(trx); } if (trx->n_client_tables_in_use != 0 || trx->client_n_tables_locked != 0) { ut_print_timestamp(ib_stream); ib_logger(ib_stream, " InnoDB: Error: Client is freeing a trx instance\n" "InnoDB: though trx->n_client_tables_in_use is %lu\n" "InnoDB: and trx->client_n_tables_locked is %lu.\n", (ulong)trx->n_client_tables_in_use, (ulong)trx->client_n_tables_locked); trx_print(ib_stream, trx, 600); ut_print_buf(ib_stream, trx, sizeof(trx_t)); ib_logger(ib_stream, "\n"); } ut_a(trx->magic_n == TRX_MAGIC_N); trx->magic_n = 11112222; ut_a(trx->conc_state == TRX_NOT_STARTED); mutex_free(&(trx->undo_mutex)); ut_a(trx->insert_undo == NULL); ut_a(trx->update_undo == NULL); if (trx->undo_no_arr) { trx_undo_arr_free(trx->undo_no_arr); } ut_a(UT_LIST_GET_LEN(trx->signals) == 0); ut_a(UT_LIST_GET_LEN(trx->reply_signals) == 0); ut_a(trx->wait_lock == NULL); ut_a(UT_LIST_GET_LEN(trx->wait_thrs) == 0); ut_a(!trx->has_search_latch); ut_a(trx->dict_operation_lock_mode == 0); if (trx->lock_heap) { mem_heap_free(trx->lock_heap); } ut_a(UT_LIST_GET_LEN(trx->trx_locks) == 0); if (trx->global_read_view_heap) { mem_heap_free(trx->global_read_view_heap); } trx->global_read_view = NULL; ut_a(trx->read_view == NULL); mem_free(trx); } /************************************************************************ Frees a transaction object for client. */ UNIV_INTERN void trx_free_for_client( /*================*/ trx_t* trx) /* in, own: trx object */ { mutex_enter(&kernel_mutex); UT_LIST_REMOVE(client_trx_list, trx_sys->client_trx_list, trx); trx_free(trx); ut_a(trx_n_transactions > 0); trx_n_transactions--; mutex_exit(&kernel_mutex); } /************************************************************************ Frees a transaction object of a background operation of the master thread. */ UNIV_INTERN void trx_free_for_background( /*====================*/ trx_t* trx) /* in, own: trx object */ { mutex_enter(&kernel_mutex); trx_free(trx); mutex_exit(&kernel_mutex); } /******************************************************************** Inserts the trx handle in the trx system trx list in the right position. The list is sorted on the trx id so that the biggest id is at the list start. This function is used at the database startup to insert incomplete transactions to the list. */ static void trx_list_insert_ordered( /*====================*/ trx_t* trx) /* in: trx handle */ { trx_t* trx2; ut_ad(mutex_own(&kernel_mutex)); trx2 = UT_LIST_GET_FIRST(trx_sys->trx_list); while (trx2 != NULL) { if (ut_dulint_cmp(trx->id, trx2->id) >= 0) { ut_ad(ut_dulint_cmp(trx->id, trx2->id) == 1); break; } trx2 = UT_LIST_GET_NEXT(trx_list, trx2); } if (trx2 != NULL) { trx2 = UT_LIST_GET_PREV(trx_list, trx2); if (trx2 == NULL) { UT_LIST_ADD_FIRST(trx_list, trx_sys->trx_list, trx); } else { UT_LIST_INSERT_AFTER(trx_list, trx_sys->trx_list, trx2, trx); } } else { UT_LIST_ADD_LAST(trx_list, trx_sys->trx_list, trx); } } /******************************************************************** Creates trx objects for transactions and initializes the trx list of trx_sys at database start. Rollback segment and undo log lists must already exist when this function is called, because the lists of transactions to be rolled back or cleaned up are built based on the undo log lists. */ UNIV_INTERN void trx_lists_init_at_db_start(void) /*============================*/ { trx_rseg_t* rseg; trx_undo_t* undo; trx_t* trx; UT_LIST_INIT(trx_sys->trx_list); /* Look from the rollback segments if there exist undo logs for transactions */ rseg = UT_LIST_GET_FIRST(trx_sys->rseg_list); while (rseg != NULL) { undo = UT_LIST_GET_FIRST(rseg->insert_undo_list); while (undo != NULL) { trx = trx_create(trx_dummy_sess); trx->is_recovered = TRUE; trx->id = undo->trx_id; trx->xid = undo->xid; trx->insert_undo = undo; trx->rseg = rseg; if (undo->state != TRX_UNDO_ACTIVE) { /* Prepared transactions are left in the prepared state waiting for a commit or abort decision from the client. */ if (undo->state == TRX_UNDO_PREPARED) { ib_logger(ib_stream, "InnoDB: Transaction " TRX_ID_FMT " was in the" " XA prepared state.\n", TRX_ID_PREP_PRINTF(trx->id)); if (srv_force_recovery == 0) { trx->conc_state = TRX_PREPARED; } else { ib_logger(ib_stream, "InnoDB: Since" " force_recovery" " > 0, we will" " rollback it" " anyway.\n"); trx->conc_state = TRX_ACTIVE; } } else { trx->conc_state = TRX_COMMITTED_IN_MEMORY; } /* We give a dummy value for the trx no; this should have no relevance since purge is not interested in committed transaction numbers, unless they are in the history list, in which case it looks the number from the disk based undo log structure */ trx->no = trx->id; } else { trx->conc_state = TRX_ACTIVE; /* A running transaction always has the number field inited to ut_dulint_max */ trx->no = ut_dulint_max; } if (undo->dict_operation) { trx_set_dict_operation( trx, TRX_DICT_OP_TABLE); trx->table_id = undo->table_id; } if (!undo->empty) { trx->undo_no = ut_dulint_add(undo->top_undo_no, 1); } trx_list_insert_ordered(trx); undo = UT_LIST_GET_NEXT(undo_list, undo); } undo = UT_LIST_GET_FIRST(rseg->update_undo_list); while (undo != NULL) { trx = trx_get_on_id(undo->trx_id); if (NULL == trx) { trx = trx_create(trx_dummy_sess); trx->is_recovered = TRUE; trx->id = undo->trx_id; trx->xid = undo->xid; if (undo->state != TRX_UNDO_ACTIVE) { /* Prepared transactions are left in the prepared state waiting for a commit or abort decision from the client. */ if (undo->state == TRX_UNDO_PREPARED) { ib_logger(ib_stream, "InnoDB: Transaction " TRX_ID_FMT " was in the" " XA prepared state.\n", TRX_ID_PREP_PRINTF( trx->id)); if (srv_force_recovery == 0) { trx->conc_state = TRX_PREPARED; } else { ib_logger(ib_stream, "InnoDB: Since" " force_recovery" " > 0, we will" " rollback it" " anyway.\n"); trx->conc_state = TRX_ACTIVE; } } else { trx->conc_state = TRX_COMMITTED_IN_MEMORY; } /* We give a dummy value for the trx number */ trx->no = trx->id; } else { trx->conc_state = TRX_ACTIVE; /* A running transaction always has the number field inited to ut_dulint_max */ trx->no = ut_dulint_max; } trx->rseg = rseg; trx_list_insert_ordered(trx); if (undo->dict_operation) { trx_set_dict_operation( trx, TRX_DICT_OP_TABLE); trx->table_id = undo->table_id; } } trx->update_undo = undo; if ((!undo->empty) && (ut_dulint_cmp(undo->top_undo_no, trx->undo_no) >= 0)) { trx->undo_no = ut_dulint_add(undo->top_undo_no, 1); } undo = UT_LIST_GET_NEXT(undo_list, undo); } rseg = UT_LIST_GET_NEXT(rseg_list, rseg); } } /********************************************************************** Assigns a rollback segment to a transaction in a round-robin fashion. Skips the SYSTEM rollback segment if another is available. */ UNIV_INLINE ulint trx_assign_rseg(void) /*=================*/ /* out: assigned rollback segment id */ { trx_rseg_t* rseg = trx_sys->latest_rseg; ut_ad(mutex_own(&kernel_mutex)); loop: /* Get next rseg in a round-robin fashion */ rseg = UT_LIST_GET_NEXT(rseg_list, rseg); if (rseg == NULL) { rseg = UT_LIST_GET_FIRST(trx_sys->rseg_list); } /* If it is the SYSTEM rollback segment, and there exist others, skip it */ if ((rseg->id == TRX_SYS_SYSTEM_RSEG_ID) && (UT_LIST_GET_LEN(trx_sys->rseg_list) > 1)) { goto loop; } trx_sys->latest_rseg = rseg; return(rseg->id); } /******************************************************************** Starts a new transaction. */ UNIV_INTERN ibool trx_start_low( /*==========*/ /* out: TRUE */ trx_t* trx, /* in: transaction */ ulint rseg_id)/* in: rollback segment id; if ULINT_UNDEFINED is passed, the system chooses the rollback segment automatically in a round-robin fashion */ { trx_rseg_t* rseg; ut_ad(mutex_own(&kernel_mutex)); ut_ad(trx->rseg == NULL); ut_ad(trx->magic_n == TRX_MAGIC_N); if (trx->is_purge) { trx->id = ut_dulint_zero; trx->conc_state = TRX_ACTIVE; trx->start_time = time(NULL); return(TRUE); } ut_ad(trx->conc_state != TRX_ACTIVE); if (rseg_id == ULINT_UNDEFINED) { rseg_id = trx_assign_rseg(); } rseg = trx_sys_get_nth_rseg(trx_sys, rseg_id); trx->id = trx_sys_get_new_trx_id(); /* The initial value for trx->no: ut_dulint_max is used in read_view_open_now: */ trx->no = ut_dulint_max; trx->rseg = rseg; trx->conc_state = TRX_ACTIVE; trx->start_time = time(NULL); UT_LIST_ADD_FIRST(trx_list, trx_sys->trx_list, trx); return(TRUE); } /******************************************************************** Starts a new transaction. */ UNIV_INTERN ibool trx_start( /*======*/ /* out: TRUE */ trx_t* trx, /* in: transaction */ ulint rseg_id)/* in: rollback segment id; if ULINT_UNDEFINED is passed, the system chooses the rollback segment automatically in a round-robin fashion */ { ibool ret; /* Update the info whether we should skip XA steps that eat CPU time For the duration of the transaction trx->support_xa is not reread from thd so any changes in the value take effect in the next transaction. This is to avoid a scenario where some undo generated by a transaction, has XA stuff, and other undo, generated by the same transaction, doesn't. */ /* FIXME: This requires an API change to support */ /* trx->support_xa = ib_supports_xa(trx->client_thd); */ mutex_enter(&kernel_mutex); ret = trx_start_low(trx, rseg_id); mutex_exit(&kernel_mutex); return(ret); } /******************************************************************** Commits a transaction. */ UNIV_INTERN void trx_commit_off_kernel( /*==================*/ trx_t* trx) /* in: transaction */ { page_t* update_hdr_page; ib_uint64_t lsn = 0; trx_rseg_t* rseg; trx_undo_t* undo; mtr_t mtr; ut_ad(mutex_own(&kernel_mutex)); rseg = trx->rseg; if (trx->insert_undo != NULL || trx->update_undo != NULL) { mutex_exit(&kernel_mutex); mtr_start(&mtr); /* Change the undo log segment states from TRX_UNDO_ACTIVE to some other state: these modifications to the file data structure define the transaction as committed in the file based world, at the serialization point of the log sequence number lsn obtained below. */ mutex_enter(&(rseg->mutex)); if (trx->insert_undo != NULL) { trx_undo_set_state_at_finish( rseg, trx, trx->insert_undo, &mtr); } undo = trx->update_undo; if (undo) { mutex_enter(&kernel_mutex); trx->no = trx_sys_get_new_trx_no(); mutex_exit(&kernel_mutex); /* It is not necessary to obtain trx->undo_mutex here because only a single OS thread is allowed to do the transaction commit for this transaction. */ update_hdr_page = trx_undo_set_state_at_finish( rseg, trx, undo, &mtr); /* We have to do the cleanup for the update log while holding the rseg mutex because update log headers have to be put to the history list in the order of the trx number. */ trx_undo_update_cleanup(trx, update_hdr_page, &mtr); } mutex_exit(&(rseg->mutex)); /* The following call commits the mini-transaction, making the whole transaction committed in the file-based world, at this log sequence number. The transaction becomes 'durable' when we write the log to disk, but in the logical sense the commit in the file-based data structures (undo logs etc.) happens here. NOTE that transaction numbers, which are assigned only to transactions with an update undo log, do not necessarily come in exactly the same order as commit lsn's, if the transactions have different rollback segments. To get exactly the same order we should hold the kernel mutex up to this point, adding to to the contention of the kernel mutex. However, if a transaction T2 is able to see modifications made by a transaction T1, T2 will always get a bigger transaction number and a bigger commit lsn than T1. */ /*--------------*/ mtr_commit(&mtr); /*--------------*/ lsn = mtr.end_lsn; mutex_enter(&kernel_mutex); } ut_ad(trx->conc_state == TRX_ACTIVE || trx->conc_state == TRX_PREPARED); ut_ad(mutex_own(&kernel_mutex)); /* The following assignment makes the transaction committed in memory and makes its changes to data visible to other transactions. NOTE that there is a small discrepancy from the strict formal visibility rules here: a human user of the database can see modifications made by another transaction T even before the necessary log segment has been flushed to the disk. If the database happens to crash before the flush, the user has seen modifications from T which will never be a committed transaction. However, any transaction T2 which sees the modifications of the committing transaction T, and which also itself makes modifications to the database, will get an lsn larger than the committing transaction T. In the case where the log flush fails, and T never gets committed, also T2 will never get committed. */ /*--------------------------------------*/ trx->conc_state = TRX_COMMITTED_IN_MEMORY; /*--------------------------------------*/ /* If we release kernel_mutex below and we are still doing recovery i.e.: back ground rollback thread is still active then there is a chance that the rollback thread may see this trx as COMMITTED_IN_MEMORY and goes adhead to clean it up calling trx_cleanup_at_db_startup(). This can happen in the case we are committing a trx here that is left in PREPARED state during the crash. Note that commit of the rollback of a PREPARED trx happens in the recovery thread while the rollback of other transactions happen in the background thread. To avoid this race we unconditionally unset the is_recovered flag from the trx. */ trx->is_recovered = FALSE; lock_release_off_kernel(trx); if (trx->global_read_view) { read_view_close(trx->global_read_view); mem_heap_empty(trx->global_read_view_heap); trx->global_read_view = NULL; } trx->read_view = NULL; if (lsn) { mutex_exit(&kernel_mutex); if (trx->insert_undo != NULL) { trx_undo_insert_cleanup(trx); } /* NOTE that we could possibly make a group commit more efficient here: call os_thread_yield here to allow also other trxs to come to commit! */ /*-------------------------------------*/ /* Depending on the config options, we may now write the log buffer to the log files, making the transaction durable if the OS does not crash. We may also flush the log files to disk, making the transaction durable also at an OS crash or a power outage. The idea in InnoDB's group commit is that a group of transactions gather behind a trx doing a physical disk write to log files, and when that physical write has been completed, one of those transactions does a write which commits the whole group. Note that this group commit will only bring benefit if there are > 2 users in the database. Then at least 2 users can gather behind one doing the physical log write to disk. */ if (srv_flush_log_at_trx_commit == 0) { /* Do nothing */ } else if (srv_flush_log_at_trx_commit == 1) { if (srv_unix_file_flush_method == SRV_UNIX_NOSYNC) { /* Write the log but do not flush it to disk */ log_write_up_to(lsn, LOG_WAIT_ONE_GROUP, FALSE); } else { /* Write the log to the log files AND flush them to disk */ log_write_up_to(lsn, LOG_WAIT_ONE_GROUP, TRUE); } } else if (srv_flush_log_at_trx_commit == 2) { /* Write the log but do not flush it to disk */ log_write_up_to(lsn, LOG_WAIT_ONE_GROUP, FALSE); } else { ut_error; } trx->commit_lsn = lsn; /*-------------------------------------*/ mutex_enter(&kernel_mutex); } /* Free all savepoints */ trx_roll_free_all_savepoints(trx); trx->conc_state = TRX_NOT_STARTED; trx->rseg = NULL; trx->undo_no = ut_dulint_zero; trx->last_sql_stat_start.least_undo_no = ut_dulint_zero; trx->client_query_str = NULL; ut_ad(UT_LIST_GET_LEN(trx->wait_thrs) == 0); ut_ad(UT_LIST_GET_LEN(trx->trx_locks) == 0); UT_LIST_REMOVE(trx_list, trx_sys->trx_list, trx); } /******************************************************************** Cleans up a transaction at database startup. The cleanup is needed if the transaction already got to the middle of a commit when the database crashed, andf we cannot roll it back. */ UNIV_INTERN void trx_cleanup_at_db_startup( /*======================*/ trx_t* trx) /* in: transaction */ { if (trx->insert_undo != NULL) { trx_undo_insert_cleanup(trx); } trx->conc_state = TRX_NOT_STARTED; trx->rseg = NULL; trx->undo_no = ut_dulint_zero; trx->last_sql_stat_start.least_undo_no = ut_dulint_zero; UT_LIST_REMOVE(trx_list, trx_sys->trx_list, trx); } /************************************************************************ Assigns a read view for a consistent read query. All the consistent reads within the same transaction will get the same read view, which is created when this function is first called for a new started transaction. */ UNIV_INTERN read_view_t* trx_assign_read_view( /*=================*/ /* out: consistent read view */ trx_t* trx) /* in: active transaction */ { ut_ad(trx->conc_state == TRX_ACTIVE); if (trx->read_view) { return(trx->read_view); } mutex_enter(&kernel_mutex); if (!trx->read_view) { trx->read_view = read_view_open_now( trx->id, trx->global_read_view_heap); trx->global_read_view = trx->read_view; } mutex_exit(&kernel_mutex); return(trx->read_view); } /******************************************************************** Commits a transaction. NOTE that the kernel mutex is temporarily released. */ static void trx_handle_commit_sig_off_kernel( /*=============================*/ trx_t* trx, /* in: transaction */ que_thr_t** next_thr) /* in/out: next query thread to run; if the value which is passed in is a pointer to a NULL pointer, then the calling function can start running a new query thread */ { trx_sig_t* sig; trx_sig_t* next_sig; ut_ad(mutex_own(&kernel_mutex)); trx->que_state = TRX_QUE_COMMITTING; trx_commit_off_kernel(trx); ut_ad(UT_LIST_GET_LEN(trx->wait_thrs) == 0); /* Remove all TRX_SIG_COMMIT signals from the signal queue and send reply messages to them */ sig = UT_LIST_GET_FIRST(trx->signals); while (sig != NULL) { next_sig = UT_LIST_GET_NEXT(signals, sig); if (sig->type == TRX_SIG_COMMIT) { trx_sig_reply(sig, next_thr); trx_sig_remove(trx, sig); } sig = next_sig; } trx->que_state = TRX_QUE_RUNNING; } /*************************************************************** The transaction must be in the TRX_QUE_LOCK_WAIT state. Puts it to the TRX_QUE_RUNNING state and releases query threads which were waiting for a lock in the wait_thrs list. */ UNIV_INTERN void trx_end_lock_wait( /*==============*/ trx_t* trx) /* in: transaction */ { que_thr_t* thr; ut_ad(mutex_own(&kernel_mutex)); ut_ad(trx->que_state == TRX_QUE_LOCK_WAIT); thr = UT_LIST_GET_FIRST(trx->wait_thrs); while (thr != NULL) { que_thr_end_wait_no_next_thr(thr); UT_LIST_REMOVE(trx_thrs, trx->wait_thrs, thr); thr = UT_LIST_GET_FIRST(trx->wait_thrs); } trx->que_state = TRX_QUE_RUNNING; } /*************************************************************** Moves the query threads in the lock wait list to the SUSPENDED state and puts the transaction to the TRX_QUE_RUNNING state. */ static void trx_lock_wait_to_suspended( /*=======================*/ trx_t* trx) /* in: transaction in the TRX_QUE_LOCK_WAIT state */ { que_thr_t* thr; ut_ad(mutex_own(&kernel_mutex)); ut_ad(trx->que_state == TRX_QUE_LOCK_WAIT); thr = UT_LIST_GET_FIRST(trx->wait_thrs); while (thr != NULL) { thr->state = QUE_THR_SUSPENDED; UT_LIST_REMOVE(trx_thrs, trx->wait_thrs, thr); thr = UT_LIST_GET_FIRST(trx->wait_thrs); } trx->que_state = TRX_QUE_RUNNING; } /*************************************************************** Moves the query threads in the sig reply wait list of trx to the SUSPENDED state. */ static void trx_sig_reply_wait_to_suspended( /*============================*/ trx_t* trx) /* in: transaction */ { trx_sig_t* sig; que_thr_t* thr; ut_ad(mutex_own(&kernel_mutex)); sig = UT_LIST_GET_FIRST(trx->reply_signals); while (sig != NULL) { thr = sig->receiver; ut_ad(thr->state == QUE_THR_SIG_REPLY_WAIT); thr->state = QUE_THR_SUSPENDED; sig->receiver = NULL; UT_LIST_REMOVE(reply_signals, trx->reply_signals, sig); sig = UT_LIST_GET_FIRST(trx->reply_signals); } } /********************************************************************* Checks the compatibility of a new signal with the other signals in the queue. */ static ibool trx_sig_is_compatible( /*==================*/ /* out: TRUE if the signal can be queued */ trx_t* trx, /* in: trx handle */ ulint type, /* in: signal type */ ulint sender) /* in: TRX_SIG_SELF or TRX_SIG_OTHER_SESS */ { trx_sig_t* sig; ut_ad(mutex_own(&kernel_mutex)); if (UT_LIST_GET_LEN(trx->signals) == 0) { return(TRUE); } if (sender == TRX_SIG_SELF) { if (type == TRX_SIG_ERROR_OCCURRED) { return(TRUE); } else if (type == TRX_SIG_BREAK_EXECUTION) { return(TRUE); } else { return(FALSE); } } ut_ad(sender == TRX_SIG_OTHER_SESS); sig = UT_LIST_GET_FIRST(trx->signals); if (type == TRX_SIG_COMMIT) { while (sig != NULL) { if (sig->type == TRX_SIG_TOTAL_ROLLBACK) { return(FALSE); } sig = UT_LIST_GET_NEXT(signals, sig); } return(TRUE); } else if (type == TRX_SIG_TOTAL_ROLLBACK) { while (sig != NULL) { if (sig->type == TRX_SIG_COMMIT) { return(FALSE); } sig = UT_LIST_GET_NEXT(signals, sig); } return(TRUE); } else if (type == TRX_SIG_BREAK_EXECUTION) { return(TRUE); } else { ut_error; return(FALSE); } } /******************************************************************** Sends a signal to a trx object. */ UNIV_INTERN void trx_sig_send( /*=========*/ trx_t* trx, /* in: trx handle */ ulint type, /* in: signal type */ ulint sender, /* in: TRX_SIG_SELF or TRX_SIG_OTHER_SESS */ que_thr_t* receiver_thr, /* in: query thread which wants the reply, or NULL; if type is TRX_SIG_END_WAIT, this must be NULL */ trx_savept_t* savept, /* in: possible rollback savepoint, or NULL */ que_thr_t** next_thr) /* in/out: next query thread to run; if the value which is passed in is a pointer to a NULL pointer, then the calling function can start running a new query thread; if the parameter is NULL, it is ignored */ { trx_sig_t* sig; trx_t* receiver_trx; ut_ad(trx); ut_ad(mutex_own(&kernel_mutex)); if (!trx_sig_is_compatible(trx, type, sender)) { /* The signal is not compatible with the other signals in the queue: die */ ut_error; } /* Queue the signal object */ if (UT_LIST_GET_LEN(trx->signals) == 0) { /* The signal list is empty: the 'sig' slot must be unused (we improve performance a bit by avoiding mem_alloc) */ sig = &(trx->sig); } else { /* It might be that the 'sig' slot is unused also in this case, but we choose the easy way of using mem_alloc */ sig = mem_alloc(sizeof(trx_sig_t)); } UT_LIST_ADD_LAST(signals, trx->signals, sig); sig->type = type; sig->sender = sender; sig->receiver = receiver_thr; if (savept) { sig->savept = *savept; } if (receiver_thr) { receiver_trx = thr_get_trx(receiver_thr); UT_LIST_ADD_LAST(reply_signals, receiver_trx->reply_signals, sig); } if (trx->sess->state == SESS_ERROR) { trx_sig_reply_wait_to_suspended(trx); } if ((sender != TRX_SIG_SELF) || (type == TRX_SIG_BREAK_EXECUTION)) { ut_error; } /* If there were no other signals ahead in the queue, try to start handling of the signal */ if (UT_LIST_GET_FIRST(trx->signals) == sig) { trx_sig_start_handle(trx, next_thr); } } /******************************************************************** Ends signal handling. If the session is in the error state, and trx->graph_before_signal_handling != NULL, then returns control to the error handling routine of the graph (currently just returns the control to the graph root which then will send an error message to the client). */ UNIV_INTERN void trx_end_signal_handling( /*====================*/ trx_t* trx) /* in: trx */ { ut_ad(mutex_own(&kernel_mutex)); ut_ad(trx->handling_signals == TRUE); trx->handling_signals = FALSE; trx->graph = trx->graph_before_signal_handling; if (trx->graph && (trx->sess->state == SESS_ERROR)) { que_fork_error_handle(trx, trx->graph); } } /******************************************************************** Starts handling of a trx signal. */ UNIV_INTERN void trx_sig_start_handle( /*=================*/ trx_t* trx, /* in: trx handle */ que_thr_t** next_thr) /* in/out: next query thread to run; if the value which is passed in is a pointer to a NULL pointer, then the calling function can start running a new query thread; if the parameter is NULL, it is ignored */ { trx_sig_t* sig; ulint type; loop: /* We loop in this function body as long as there are queued signals we can process immediately */ ut_ad(trx); ut_ad(mutex_own(&kernel_mutex)); if (trx->handling_signals && (UT_LIST_GET_LEN(trx->signals) == 0)) { trx_end_signal_handling(trx); return; } if (trx->conc_state == TRX_NOT_STARTED) { trx_start_low(trx, ULINT_UNDEFINED); } /* If the trx is in a lock wait state, moves the waiting query threads to the suspended state */ if (trx->que_state == TRX_QUE_LOCK_WAIT) { trx_lock_wait_to_suspended(trx); } /* If the session is in the error state and this trx has threads waiting for reply from signals, moves these threads to the suspended state, canceling wait reservations; note that if the transaction has sent a commit or rollback signal to itself, and its session is not in the error state, then nothing is done here. */ if (trx->sess->state == SESS_ERROR) { trx_sig_reply_wait_to_suspended(trx); } /* If there are no running query threads, we can start processing of a signal, otherwise we have to wait until all query threads of this transaction are aware of the arrival of the signal. */ if (trx->n_active_thrs > 0) { return; } if (trx->handling_signals == FALSE) { trx->graph_before_signal_handling = trx->graph; trx->handling_signals = TRUE; } sig = UT_LIST_GET_FIRST(trx->signals); type = sig->type; if (type == TRX_SIG_COMMIT) { trx_handle_commit_sig_off_kernel(trx, next_thr); } else if ((type == TRX_SIG_TOTAL_ROLLBACK) || (type == TRX_SIG_ROLLBACK_TO_SAVEPT)) { trx_rollback(trx, sig, next_thr); /* No further signals can be handled until the rollback completes, therefore we return */ return; } else if (type == TRX_SIG_ERROR_OCCURRED) { trx_rollback(trx, sig, next_thr); /* No further signals can be handled until the rollback completes, therefore we return */ return; } else if (type == TRX_SIG_BREAK_EXECUTION) { trx_sig_reply(sig, next_thr); trx_sig_remove(trx, sig); } else { ut_error; } goto loop; } /******************************************************************** Send the reply message when a signal in the queue of the trx has been handled. */ UNIV_INTERN void trx_sig_reply( /*==========*/ trx_sig_t* sig, /* in: signal */ que_thr_t** next_thr) /* in/out: next query thread to run; if the value which is passed in is a pointer to a NULL pointer, then the calling function can start running a new query thread */ { trx_t* receiver_trx; ut_ad(sig); ut_ad(mutex_own(&kernel_mutex)); if (sig->receiver != NULL) { ut_ad((sig->receiver)->state == QUE_THR_SIG_REPLY_WAIT); receiver_trx = thr_get_trx(sig->receiver); UT_LIST_REMOVE(reply_signals, receiver_trx->reply_signals, sig); ut_ad(receiver_trx->sess->state != SESS_ERROR); que_thr_end_wait(sig->receiver, next_thr); sig->receiver = NULL; } } /******************************************************************** Removes a signal object from the trx signal queue. */ UNIV_INTERN void trx_sig_remove( /*===========*/ trx_t* trx, /* in: trx handle */ trx_sig_t* sig) /* in, own: signal */ { ut_ad(trx && sig); ut_ad(mutex_own(&kernel_mutex)); ut_ad(sig->receiver == NULL); UT_LIST_REMOVE(signals, trx->signals, sig); sig->type = 0; /* reset the field to catch possible bugs */ if (sig != &(trx->sig)) { mem_free(sig); } } /************************************************************************* Creates a commit command node struct. */ UNIV_INTERN commit_node_t* commit_node_create( /*===============*/ /* out, own: commit node struct */ mem_heap_t* heap) /* in: mem heap where created */ { commit_node_t* node; node = mem_heap_alloc(heap, sizeof(commit_node_t)); node->common.type = QUE_NODE_COMMIT; node->state = COMMIT_NODE_SEND; return(node); } /*************************************************************** Performs an execution step for a commit type node in a query graph. */ UNIV_INTERN que_thr_t* trx_commit_step( /*============*/ /* out: query thread to run next, or NULL */ que_thr_t* thr) /* in: query thread */ { commit_node_t* node; que_thr_t* next_thr; node = thr->run_node; ut_ad(que_node_get_type(node) == QUE_NODE_COMMIT); if (thr->prev_node == que_node_get_parent(node)) { node->state = COMMIT_NODE_SEND; } if (node->state == COMMIT_NODE_SEND) { mutex_enter(&kernel_mutex); node->state = COMMIT_NODE_WAIT; next_thr = NULL; thr->state = QUE_THR_SIG_REPLY_WAIT; /* Send the commit signal to the transaction */ trx_sig_send(thr_get_trx(thr), TRX_SIG_COMMIT, TRX_SIG_SELF, thr, NULL, &next_thr); mutex_exit(&kernel_mutex); return(next_thr); } ut_ad(node->state == COMMIT_NODE_WAIT); node->state = COMMIT_NODE_SEND; thr->run_node = que_node_get_parent(node); return(thr); } /************************************************************************** Does the transaction commit for client. */ UNIV_INTERN ulint trx_commit( /*=======*/ /* out: DB_SUCCESS or error number */ trx_t* trx) /* in: trx handle */ { /* Because we do not do the commit by sending an Innobase sig to the transaction, we must here make sure that trx has been started. */ ut_a(trx); trx->op_info = "committing"; mutex_enter(&kernel_mutex); trx_commit_off_kernel(trx); mutex_exit(&kernel_mutex); trx->op_info = ""; return(DB_SUCCESS); } /************************************************************************** Marks the latest SQL statement ended. */ UNIV_INTERN void trx_mark_sql_stat_end( /*==================*/ trx_t* trx) /* in: trx handle */ { ut_a(trx); if (trx->conc_state == TRX_NOT_STARTED) { trx->undo_no = ut_dulint_zero; } trx->last_sql_stat_start.least_undo_no = trx->undo_no; } /************************************************************************** Prints info about a transaction to the given file. The caller must own the kernel mutex, unless he knows that the client or InnoDB cannot meanwhile change the info printed here. */ UNIV_INTERN void trx_print( /*======*/ ib_stream_t ib_stream, /* in: output stream */ trx_t* trx, /* in: transaction */ ulint max_query_len) /* in: max query length to print, or 0 to use the default max length */ { ibool newline; ib_logger(ib_stream, "TRANSACTION " TRX_ID_FMT, TRX_ID_PREP_PRINTF(trx->id)); switch (trx->conc_state) { case TRX_NOT_STARTED: ib_logger(ib_stream, ", not started"); break; case TRX_ACTIVE: ib_logger(ib_stream, ", ACTIVE %lu sec", (ulong)difftime(time(NULL), trx->start_time)); break; case TRX_PREPARED: ib_logger(ib_stream, ", ACTIVE (PREPARED) %lu sec", (ulong)difftime(time(NULL), trx->start_time)); break; case TRX_COMMITTED_IN_MEMORY: ib_logger(ib_stream, ", COMMITTED IN MEMORY"); break; default: ib_logger(ib_stream, " state %lu", (ulong) trx->conc_state); } #ifdef UNIV_LINUX ib_logger(ib_stream, ", process no %lu", trx->client_process_no); #endif ib_logger(ib_stream, ", OS thread id %lu", (ulong) os_thread_pf(trx->client_thread_id)); if (*trx->op_info) { ib_logger(ib_stream, " %s", trx->op_info); } if (trx->is_recovered) { ib_logger(ib_stream, " recovered trx"); } if (trx->is_purge) { ib_logger(ib_stream, " purge trx"); } if (trx->declared_to_be_inside_innodb) { ib_logger(ib_stream, ", thread declared inside InnoDB %lu", (ulong) trx->n_tickets_to_enter_innodb); } ib_logger(ib_stream, "\n"); if (trx->n_client_tables_in_use > 0 || trx->client_n_tables_locked > 0) { ib_logger(ib_stream, "Client tables in use %lu, locked %lu\n", (ulong) trx->n_client_tables_in_use, (ulong) trx->client_n_tables_locked); } newline = TRUE; switch (trx->que_state) { case TRX_QUE_RUNNING: newline = FALSE; break; case TRX_QUE_LOCK_WAIT: ib_logger(ib_stream, "LOCK WAIT "); break; case TRX_QUE_ROLLING_BACK: ib_logger(ib_stream, "ROLLING BACK "); break; case TRX_QUE_COMMITTING: ib_logger(ib_stream, "COMMITTING "); break; default: ib_logger(ib_stream, "que state %lu ", (ulong) trx->que_state); } if (0 < UT_LIST_GET_LEN(trx->trx_locks) || mem_heap_get_size(trx->lock_heap) > 400) { newline = TRUE; ib_logger(ib_stream, "%lu lock struct(s), heap size %lu," " %lu row lock(s)", (ulong) UT_LIST_GET_LEN(trx->trx_locks), (ulong) mem_heap_get_size(trx->lock_heap), (ulong) lock_number_of_rows_locked(trx)); } if (trx->has_search_latch) { newline = TRUE; ib_logger(ib_stream, ", holds adaptive hash latch"); } if (!ut_dulint_is_zero(trx->undo_no)) { newline = TRUE; ib_logger(ib_stream, ", undo log entries %lu", (ulong) ut_dulint_get_low(trx->undo_no)); } if (newline) { ib_logger(ib_stream, "\n"); } } /*********************************************************************** Compares the "weight" (or size) of two transactions. Transactions that have edited non-transactional tables are considered heavier than ones that have not. */ UNIV_INTERN int trx_weight_cmp( /*===========*/ /* out: <0, 0 or >0; similar to strcmp(3) */ const trx_t* a, /* in: the first transaction to be compared */ const trx_t* b) /* in: the second transaction to be compared */ { ibool a_notrans_edit; ibool b_notrans_edit; /* If client_thd is NULL for a transaction we assume that it has not edited non-transactional tables. */ a_notrans_edit = a->client_thd != NULL; b_notrans_edit = b->client_thd != NULL; if (a_notrans_edit && !b_notrans_edit) { return(1); } if (!a_notrans_edit && b_notrans_edit) { return(-1); } /* Either both had edited non-transactional tables or both had not, we fall back to comparing the number of altered/locked rows. */ #if 0 ib_logger(ib_stream, "%s TRX_WEIGHT(a): %lld+%lu, TRX_WEIGHT(b): %lld+%lu\n", __func__, ut_conv_dulint_to_longlong(a->undo_no), UT_LIST_GET_LEN(a->trx_locks), ut_conv_dulint_to_longlong(b->undo_no), UT_LIST_GET_LEN(b->trx_locks)); #endif return(ut_dulint_cmp(TRX_WEIGHT(a), TRX_WEIGHT(b))); } /******************************************************************** Prepares a transaction. */ UNIV_INTERN void trx_prepare_off_kernel( /*===================*/ trx_t* trx) /* in: transaction */ { page_t* update_hdr_page; trx_rseg_t* rseg; ib_uint64_t lsn = 0; mtr_t mtr; ut_ad(mutex_own(&kernel_mutex)); rseg = trx->rseg; if (trx->insert_undo != NULL || trx->update_undo != NULL) { mutex_exit(&kernel_mutex); mtr_start(&mtr); /* Change the undo log segment states from TRX_UNDO_ACTIVE to TRX_UNDO_PREPARED: these modifications to the file data structure define the transaction as prepared in the file-based world, at the serialization point of lsn. */ mutex_enter(&(rseg->mutex)); if (trx->insert_undo != NULL) { /* It is not necessary to obtain trx->undo_mutex here because only a single OS thread is allowed to do the transaction prepare for this transaction. */ trx_undo_set_state_at_prepare(trx, trx->insert_undo, &mtr); } if (trx->update_undo) { update_hdr_page = trx_undo_set_state_at_prepare( trx, trx->update_undo, &mtr); } mutex_exit(&(rseg->mutex)); /*--------------*/ mtr_commit(&mtr); /* This mtr commit makes the transaction prepared in the file-based world */ /*--------------*/ lsn = mtr.end_lsn; mutex_enter(&kernel_mutex); } ut_ad(mutex_own(&kernel_mutex)); /*--------------------------------------*/ trx->conc_state = TRX_PREPARED; /*--------------------------------------*/ if (lsn) { /* Depending on the config options, we may now write the log buffer to the log files, making the prepared state of the transaction durable if the OS does not crash. We may also flush the log files to disk, making the prepared state of the transaction durable also at an OS crash or a power outage. The idea in InnoDB's group prepare is that a group of transactions gather behind a trx doing a physical disk write to log files, and when that physical write has been completed, one of those transactions does a write which prepares the whole group. Note that this group prepare will only bring benefit if there are > 2 users in the database. Then at least 2 users can gather behind one doing the physical log write to disk. */ mutex_exit(&kernel_mutex); if (srv_flush_log_at_trx_commit == 0) { /* Do nothing */ } else if (srv_flush_log_at_trx_commit == 1) { if (srv_unix_file_flush_method == SRV_UNIX_NOSYNC) { /* Write the log but do not flush it to disk */ log_write_up_to(lsn, LOG_WAIT_ONE_GROUP, FALSE); } else { /* Write the log to the log files AND flush them to disk */ log_write_up_to(lsn, LOG_WAIT_ONE_GROUP, TRUE); } } else if (srv_flush_log_at_trx_commit == 2) { /* Write the log but do not flush it to disk */ log_write_up_to(lsn, LOG_WAIT_ONE_GROUP, FALSE); } else { ut_error; } mutex_enter(&kernel_mutex); } } /************************************************************************** Does the transaction prepare for client. */ UNIV_INTERN ulint trx_prepare( /*========*/ /* out: 0 or error number */ trx_t* trx) /* in: trx handle */ { /* Because we do not do the prepare by sending an Innobase sig to the transaction, we must here make sure that trx has been started. */ ut_a(trx); trx->op_info = "preparing"; mutex_enter(&kernel_mutex); trx_prepare_off_kernel(trx); mutex_exit(&kernel_mutex); trx->op_info = ""; return(0); } /************************************************************************** This function is used to find number of prepared transactions and their transaction objects for a recovery. This function is used to recover any X/Open XA distributed transactions */ UNIV_INTERN int trx_recover( /*========*/ /* out: number of prepared transactions stored in xid_list */ XID* xid_list, /* in/out: prepared transactions */ ulint len) /* in: number of slots in xid_list */ { trx_t* trx; ulint count = 0; ut_ad(xid_list); ut_ad(len); /* We should set those transactions which are in the prepared state to the xid_list */ mutex_enter(&kernel_mutex); trx = UT_LIST_GET_FIRST(trx_sys->trx_list); while (trx) { if (trx->conc_state == TRX_PREPARED) { xid_list[count] = trx->xid; if (count == 0) { ut_print_timestamp(ib_stream); ib_logger(ib_stream, " InnoDB: Starting recovery for" " XA transactions...\n"); } ut_print_timestamp(ib_stream); ib_logger(ib_stream, " InnoDB: Transaction " TRX_ID_FMT " in" " prepared state after recovery\n", TRX_ID_PREP_PRINTF(trx->id)); ut_print_timestamp(ib_stream); ib_logger(ib_stream, " InnoDB: Transaction contains changes" " to %lu rows\n", (ulong) ut_conv_dulint_to_longlong( trx->undo_no)); count++; if (count == len) { break; } } trx = UT_LIST_GET_NEXT(trx_list, trx); } mutex_exit(&kernel_mutex); if (count > 0){ ut_print_timestamp(ib_stream); ib_logger(ib_stream, " InnoDB: %lu transactions in prepared state" " after recovery\n", (ulong) count); } return ((int) count); } /*********************************************************************** This function is used to find one X/Open XA distributed transaction which is in the prepared state */ UNIV_INTERN trx_t* trx_get_trx_by_xid( /*===============*/ /* out: trx or NULL */ XID* xid) /* in: X/Open XA transaction identification */ { trx_t* trx; if (xid == NULL) { return (NULL); } mutex_enter(&kernel_mutex); trx = UT_LIST_GET_FIRST(trx_sys->trx_list); while (trx) { /* Compare two X/Open XA transaction id's: their length should be the same and binary comparison of gtrid_lenght+bqual_length bytes should be the same */ if (xid->gtrid_length == trx->xid.gtrid_length && xid->bqual_length == trx->xid.bqual_length && memcmp(xid->data, trx->xid.data, xid->gtrid_length + xid->bqual_length) == 0) { break; } trx = UT_LIST_GET_NEXT(trx_list, trx); } mutex_exit(&kernel_mutex); if (trx) { if (trx->conc_state != TRX_PREPARED) { return(NULL); } return(trx); } else { return(NULL); } }