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ABSTRACT: The Muon Ionization Cooling Experiment (MICE) has developed the MICE Analy-
sis User Software (MAUS) to simulate and analyze experimental data. It serves as the primary
codebase for the experiment, providing for offline batch simulation and reconstruction as well as
online data quality checks. The software provides both traditional particle-physics functionalities
such as track reconstruction and particle identification, and accelerator physics functions, such as
calculating transfer matrices and emittances. The code design is object orientated, but has a top-
level structure based on the Map-Reduce model. This allows for parallelization to support live data
reconstruction during data-taking operations. MAUS allows users to develop in either Python or
C++ and provides APIs for both. Various software engineering practices from industry are also
used to ensure correct and maintainable code, including style, unit and integration tests, continuous
integration and load testing, code reviews, and distributed version control. The software framework
and the simulation and reconstruction capabilities are described.
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1. Introduction1

1.1 The MICE experiment2

The Muon Ionization Cooling Experiment (MICE) sited at the STFC Rutherford Appleton Labo-3

ratory (RAL) will deliver the first demonstration of muon ionization cooling – the reduction of the4

phase-space of muon beams. Muon-beam cooling is essential for future facilities based on muon5

acceleration, such as the Neutrino Factory or Muon Collider [1, 2]. The experiment was designed6
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to be built and operated in a staged manner. In the first stage, the muon beamline was commis-7

sioned [3] and characterized [4]. The present configuration shown in figure 1 will be used to study8

the factors that determine the performance of an ionization cooling channel and to observe for the9

first time the reduction in transverse emittance of a muon beam.10

The MICE Muon Beam line is described in detail in [3]. There are 5 different detector sys-11

tems present on the beamline: time-of-flight (TOF) scintillators [5], threshold Cherenkov (CKOV)12

counters [6], scintillating fiber trackers [7], a sampling calorimeter (KL) [4], and the Electron Muon13

Ranger (EMR) – a totally active scintillating calorimeter [8]. The TOF detector system consists of14

three detector stations, TOF0, TOF1 and TOF2, each composed of two orthogonal layers of scintil-15

lator bars. The TOF system is used to determine particle identification (PID) via the time-of-flight16

between the stations. Each station also provides a low resolution image of the beam profile. The17

CKOV system consists of two aerogel threshold Cherenkov stations, CKOVA and CKOVB. The18

KL and EMR detectors, the former using scintillating fibers embedded in lead sheets, and the latter19

scintillating bars, form the downstream calorimeter system.20

The tracker system consists of two scintillating fiber detectors, one upstream of the MICE21

cooling cell, the other downstream, in order to measure the change in emittance across the cooling22

cell. Each detector consists of 5 stations, each station in turn having 3 fiber planes, allowing23

precision measurement of momentum and position to be made on a particle-by-particle basis.24
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Figure 1. Schematic diagram of the configuration of the experiment. The red rectangles represent the coils
of the spectrometer solenoids and focus coil. The individual coils of the spectrometer solenoids are labelled
E1, C, E2, M1 and M2. The various detectors are also represented.

1.2 Software Requirements25

The MICE software must serve both the accelerator-physics and the particle-physics needs of the26

experiment. Traditional particle-physics functionality includes reconstructing particle tracks, iden-27

tifying them, and simulating the response from various detectors, while the accelerator-physics28

aspect includes the calculation of transfer matrices and Twiss parameters and propagating the29

beam envelopes. All of these require a detailed description of the beamline, the geometries of30

the detectors, and the magnetic fields, as well as functionality to simulate the various detectors and31

reconstruct the detector outputs.32

Given the complexity and the time-scale of the experiment, it is essential to ensure that the33

software can be maintained over the long-term. Good performance is also important in order to34
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ensure that the software can reconstruct data with sufficient speed to support live online monitoring35

of the experiment.36

2. MAUS37

The MICE Analysis User Software (MAUS) [9] is the experiment’s simulation, reconstruction, and38

analysis software framework. MAUS provides a Monte Carlo (MC) simulation of the experiment,39

reconstruction of tracks and identification of particles from simulations and real data, and provides40

monitoring and diagnostics while running the experiment.41

Installation is by a set of shell scripts with SCons [10] as the build tool. The codebase is main-42

tained with the GNU Bazaar revision control system [11] and is hosted on Launchpad [12]. MAUS43

has a number of dependencies on standard packages such as Python, ROOT [13] and GEANT4 [14]44

which are built as "third party" external libraries during the installation process. The officially sup-45

ported platform is Scientific Linux 6 [15] though developers successfully build on CentOS [16],46

Fedora [17], and Ubuntu [18] distributions.47

Each of the MICE detector systems, described in section 1.1, are represented within MAUS.48

Their data-structures are described in section 2.2 and their simulation and reconstruction algorithms49

in section 4. MAUS also provides “global” reconstruction routines, which combine data from50

individual detector systems to identify particle species by the likelihood method and a global track51

fit. These algorithms are also described in section 4.52

2.1 Code design53

MAUS is written in a mixture of Python and C++. C++ is used for complex or low-level algorithms54

where processing time is important, while Python is used for simple or high-level algorithms where55

development time is a more stringent requirement. Developers are allowed to write in either Python56

or C++ and Python bindings to C++ are handled through internal abstractions or SWIG [19]. In57

practice, all the reconstruction modules are written in C++ but support is provided for legacy mod-58

ules written in Python.59

MAUS has an Application Programming Interface (API) that provides a framework on which60

developers can hang individual routines. The MAUS API provides MAUS developers with a well-61

defined environment for developing reconstruction code, while allowing independent development62

of the back-end and code-sharing of common elements, such as error handling and data-wrangling.63

The MAUS data processing model is inspired by the Map-Reduce framework [20], which64

forms the core of the API design. Map-Reduce, illustrated in figure 2 is a useful model for paral-65

lelizing data processing on a large scale. For MAUS, the API was simplified to use transformers66

in place of maps, though these modules have retained the name map. A map process takes a sin-67

gle object as an input, which remains unaltered, and returns a new object as the output, whereas68

a transformer process alters the input object in place (in the case of MAUS this object is the spill69

class, see Section 2.2).70

A Module is the basic building block of the MAUS API framework. Four types of module71

exist within MAUS:72

1. Inputters generate input data either by reading data from files or sockets, or by generating73

an input beam;74
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2. Mappers modify the input data, for example by reconstructing signals from detectors, or75

tracking particles to generate MC hits;76

3. Reducers collate the mapped data and allow functionality that requires access to the entire77

data set; and78

4. Outputters save the data either by streaming over a socket or writing data to disk.79
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Figure 2. A Map-Reduce framework.

Each module type follows a common, extensible, object-orientated class heirarchy, shown for the80

case of the map and reduce modules in figure 3.81

There are some objects that sit outside the scope of this modular framework but are never-82

theless required by several of the modules. For instance, the detector geometries, magnetic fields,83

and calibrations are required by the reconsruction and simulation modules, and objects such as84

the electronics cabling maps are required to unpack data from the data acquisition (DAQ) source,85

and error handling functionality is required by all of the modules. All these objects are accessed86

through a static singleton globals class.87

MAUS has two execution concepts. A job refers to a single execution of the code, while a run88

refers to the processing of data for a DAQ run or MC run. A job may contain many runs. Since data89

are typically accessed from a single source and written to a single destination, Inputters and Out-90

putters are initialized and destroyed at the beginning and end of a job. On the other hand, Mappers91

and Reducers are initialized at the beginning of a run in order to allow run-specific information92

such as electronic cabling maps, fields, and calibrations to be loaded.93

The principal data type in MAUS, which is passed from module to module, is the spill. A94

single spill corresponds to data from the particle burst associated with a dip of the MICE target95

[3]. A spill lasts ∼ 3 ms and contains several DAQ triggers. Data from a given trigger defines a96

single MICE event. In the language of the Input-Map-Reduce-Output framework, an Input module97

creates an instance of spill data, a Map module processes the spill (simulating, reconstructing, etc),98

a Reduce module acts on a collection of spills when all the mappers finish, and finally an Output99

module records the data to a given file format.100
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IModule
+ virtual birth(string) : void 
+ virtual death() : void 

IMap
+ process(T*) : void 
+ virtual process_pyobj(PyObject*) : PyObject* 

 public virtual

ModuleBase
+ birth(string) 
+ death() : void 
- virtual birth(string) : void 
- virtual death() : void 

 public virtual

IReduce
+ process(T*) : void 
+ virtual process_pyobj(PyObject*) : PyObject* 

 public virtual

MapBase
+ _process(T*) : void 
- process(T*) : void 
- process_pyobj(PyObject*) : PyObject* 

 public virtual

ISpecialisedMap
 

 public virtual  public

ReduceBase
+ _process(T*) : void 
- process(T*) : void 
- process_pyobj(PyObject*) : PyObject* 

 public  public virtual

MyMap
- _birth(string) : void 
- _death() : void 
- _process(T*) : void 

 public

SpecialisedMapBase
 

 public

MyReduce
- _birth(string) : void 
- _death() : void 
- _process(T*) : void 

 public public virtual

Figure 3. The MAUS API class hierarchy for Map and Reduce modules. The input and output modules
follow a related design. T represents a templated argument. “+” indicates the introduction of a virtual void
method, defining an interface, while “-” indicates a class implements that method, fulfilling that aspect of the
interface. The functions process_pyobj are the main entry points for Python applications, process the entry
points for C++ applications. The framework can be extended as many times as is neccessary, as exmplified
by the “SpecialisedMap” classes.

Modules can exchange spill data either as C++ pointers or JSON [21] objects. In Python, the101

data format can be changed by using a converter module and in C++, mappers are templated to a102

MAUS data type and an API handles any necessary conversion to that type (see Fig. 3).103

Data contained within the MAUS data structure (see Section 2.2) can be saved to permanent104

storage in one of two formats. The default data format is a ROOT [13] binary and the secondary105

format is JSON. ROOT is a standard high-energy physics analysis package, distributed with MAUS,106

through which many of the analyses on MICE are performed. Each spill is stored as a single entry107

in a ROOT TTree object. JSON is an ASCII data-tree format. Specific JSON parsers are available108

– for example, the Python json library, and the C++ JsonCpp [22] parser come prepackaged with109

MAUS.110

In addition to storing the output from the Map modules, MAUS is also capable of storing111

the data by produced by the Reducer modules using a special Image class. This class is used by112

Reducers to store images of monitoring histograms, efficiency plots, etc. Image data may only be113

saved in JSON format.114
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2.2 Data Structure115

2.2.1 Physics Data116

At the top of the MAUS data structure is the spill class which contains all the data from the simu-117

lation, raw real data and the reconstructed data. The spill is passed between modules and written118

to permanent storage. The data within a spill is organized into arrays of three possible event types:119

a MCEvent contains data which represents the simulation of a single particle traversing the exper-120

iment and the simulated detector responses; a DAQEvent corresponds to the real data for a single121

trigger; and a ReconEvent corresponds to the data reconstructed for a single particle event (either122

arising from a MC particle or a real data trigger). These different branches of the MAUS data123

structure are shown diagrammatically in figures. 4–9.124

The sub-structure of the the MC event class is shown in figure 5. The class is subdivided into125

events containing sensitive-detector hits (energy deposited, position, momentum) for each of the126

MICE detectors (see Section 1.1). The event also contains information about the primary particle127

that created the hits in the detectors.128

The sub-structure of the the reconstruction event class is shown in figure 6. The class is again129

subdivided into events representing each of the MICE detectors, together with the data from the130

trigger, and data for the global event reconstruction. Each detector class and the global reconstruc-131

tion class has several further layers of reconstruction data. This is shown in figures 7–9.132
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Figure 4. The MAUS output structure for a spill event. The top label in each box is the name of the C++
class and the bottom label is the json branch name.
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Figure 5. The MAUS data structure for MC events. The top label in each box is the name of the C++ class
and the bottom label is the json branch name. [] indicates that child objects are array items.
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ReconEventArray

recon_events

ReconEvent

[]

CkovEvent

ckov_event

EMREvent
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KLEvent

kl_event
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scifi_event
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Figure 6. The MAUS data structure for reconstruction events. The top label in each box is the name of the
C++ class and the bottom label is the json branch name.
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[]
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A
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B

EMREvent

emr_event
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[]
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Figure 7. The MAUS data structure for CKOV (left), EMR (middle) and KL (right) reconstruction events.
The top label in each box is the name of the C++ class and the bottom label is the json branch name. []
indicates that child objects are array items.
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SciFiEvent
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Figure 8. The MAUS data structure for the tracker. The top label in each box is the name of the C++ class
and the bottom label is the json branch name. [] indicates that child objects are array items.
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Figure 9. The MAUS data structure for the TOFs. The top label in each box is the name of the C++ class
and the bottom label is the json branch name. [] indicates that child objects are array items.
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2.2.2 Top Level Data Organisation133

In addition to the spill data, MAUS also contains structures for storing supplementary information134

for each run and job. These are referred to as JobHeader and JobFooter, and RunHeader and135

RunFooter. The former represents data from the start and end of a job, such as the MAUS release136

version used to create it, and the latter data from the start and end of a run, such as the geometry137

ID used for the data processing. This may be saved to permanent storage along with the spill.138

In order to interface with ROOT, particularly in order to save data in the ROOT format, thin139

wrappers for each of the top level classes, and a templated base class, were introduced. This140

allows the ROOT TTree, in which the output data is stored (see Section 2.2.1), to be given a single141

memory address to read from. The wrapper for Spill is called Data, while for each of RunHeader,142

RunFooter, JobHeader and JobFooter, the respective wrapper class is just given the original class143

name with “Data” appended e.g. RunHeaderData. The base class for each of the wrappers is called144

MAUSEvent. The class hierarchy is illustrated in Figure 10.145

MAUSEvent
+ virtual GetEvent() : T*
+ virtual SetEvent(T*) : void 

Data
- virtual GetEvent() : Spill*
- virtual SetEvent(Spill*) : void 

public 
 <<bind>> 
 T -> Spill

JobHeaderData
- virtual GetEvent() : JobHeader*
- virtual SetEvent(JobHeader*) : void 

public 
 <<bind>> 

 T -> JobHeader

JobFooterData
- virtual GetEvent() : JobFooter*
- virtual SetEvent(JobFooter*) : void 

public 
 <<bind>> 

 T -> JobFooter

RunHeaderData
- virtual GetEvent() : RunHeader*
- virtual SetEvent(RunHeader*) : void 

public 
 <<bind>> 

 T -> RunHeader

RunFooterData
- virtual GetEvent() : RunFooter*
- virtual SetEvent(RunFooter*) : void 

public 
 <<bind>> 

 T -> RunFooter

Figure 10. Class hierarchy for the wrappers and base class of the top-level classes of the MAUS data
structure.

2.3 Data Flow146

The MAUS data flow, showing the reconstruction chain for data originating from MC or real data,147

is shown in figure 11. Each item in the diagram is implemented as an individual module. The148

data flow is grouped into three principal areas: the simulation data flow used to generate digits149

(electronics signals) from particle tracking; the real data flow used to generate digits from real150

detector data; and the reconstruction data flow which illustrates how digits are built into higher151

level objects and converted to parameters of interest. The reconstruction data flow is the same for152

digits from real data and simulation. In the case of raw data, separate input modules are provided153

to read either directly from the DAQ, or from archived data stored on disk. A reducer module for154

each detector provides functionality to create summary histograms.155

2.4 Testing156

MAUS has a set of tests at the unit level and the integration level, together with code-style tests for157

both Python and C++. Unit tests are implemented against a single function, while integration tests158

operate against a complete workflow. Unit tests check that each function operates as intended by159

the developer and achieve a high level of code coverage and good test complexity. Integration tests160
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Figure 11. Data flow for the MAUS project. The data flow is color-coded by detector: Ckov - green, EMR
- purple, KL - orange, TOF - blue, Tracker - red.

allow the overall performance of the code to be checked against specifications. The MAUS team161

provides unit test coverage that executes 70–80 % of the total code base. This level of coverage162

typically results in a code that performs the major workflows without any problem.163

The MAUS codebase is built and tested using a Jenkins [23] continuous integration environ-164

ment deployed on a cluster of servers. Builds and tests of the development branch are automatically165

triggered when there is a change to the codebase. Developers are asked to perform a build and test166

on a personal branch of the codebase using the test server before requesting a merge with the de-167

velopment trunk. This enables the MAUS team to make frequent clean releases. Typically MAUS168

works on a 4–8 week major-release cycle.169

3. Monte Carlo170

A MC simulation of MICE encompasses beam generation, geometrical description of detectors and171

fields, tracking of particles through detectors and digitization of the detectors’ response to particle172

interactions.173

3.1 Beam generation174

Several options are provided to generate an incident beam. Routines are provided to sample parti-175

cles from a multivariate gaussian distribution or generate ensembles of identical particles ("pencil"176

beams). In addition, it is possible to produce time distributions that are either rectangular or trian-177

gular in time to give a simplistic representation of the MICE time distribution. Parameters, con-178

trolled by datacards, are available to control random seed generation, relative weighting of particle179
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species and the transverse-longitudinal coupling in the beam. MAUS also allows the generation of180

a polarized beam by generating a spin vector from beam distributions.181

Beam particles can also be read in from an external file created by G4Beamline [24] or ICOOL182

[25], as well as files in user-defined formats. In order to generate beams which are more realistic183

taking into account the geometry and fields of the actual MICE beamline, we use G4Beamline to184

model the MICE beam line from the target to a point upstream of the second quad triplet (upstream185

of Q4). The beam line settings e.g. magnetic field strengths and number of particles to generate, are186

controlled through data-cards. The magnetic field strengths have been tuned to produce beams that187

are reasonably accurate descriptions of the real beam. Scripts to install G4Beamline are shipped188

with MAUS.189

Once the beam is generated, the tracking and interactions of particles as they traverse the rest190

of the beamline and the MICE detectors is performed using GEANT4.191

3.2 GEANT4192

The MICE Muon Beam line consists of a quadrupole triplet that captures pions produced when193

the MICE target intersects the ISIS proton beam, a pion-momentum-selection dipole, a supercon-194

ducting solenoid to focus and transport the particles to a second dipole that is used to select the195

muon-beam momentum and a transport channel composed of a further two quadrupole triplets. The196

GEANT4 simulation within MAUS starts 1 m downstream of the second beamline dipole magnet197

(D2). GEANT4 bindings are encoded in the Simulation module. GEANT4 groups particles by run,198

event and track. A GEANT4 run maps to a MICE spill; a GEANT4 event maps to a single inbound199

particle from the beamline; and a GEANT4 track corresponds to a single particle in the experiment.200

GEANT provides a variety of reference physics processes to model the interactions of particles201

with matter. The default process in MAUS is “QGSP_BERT” which causes GEANT4 to model202

hadron interactions using a Bertini cascade model up to 10 GeV/c. MAUS provides methods203

to setup the GEANT4 physical processes which allows the user to control processes with data-204

cards. Routines are also provided to interface the internal geometry representation in MAUS with205

GEANT4 descriptions. Finally, MAUS provides routines to extract particle data from the GEANT206

tracks at user-defined locations.207

3.3 Geometry208

MAUS uses an online Configurations Database to store all of its geometries. These geometries209

have been extracted from CAD drawings which are updated based on the most recent surveys and210

technical drawings available. The CAD drawings are translated to a geometry-specific subset of211

XML, the Geometry Description Markup Language (GDML) [26] prior to being recorded in the212

configuration database through the use of the FastRAD [27] commercial software package.213

The GDML formatted description contains the beam-line elements and the positions of the de-214

tector survey points. Beam-line elements are described using tessellated solids to define the shapes215

of the physical volumes. The detectors themselves are described using an independently generated216

set of GDML files using GEANT4 standard volumes. An additional XML file is appended to the217

geometry description that assigns magnetic fields and associates the detectors to their locations in218

the GDML files. This file is initially written by the geometry maintainers and formatted to contain219

run-specific information during download.220
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The GDML format has a number of benefits. The files can be read via a number of libraries in221

GEANT4 and ROOT for the purpose of independent validation. Because it is a subset of XML, the222

data contained in the GDML files are readily accessible through the application of the libxml2 [28]223

python extension. The GDML files are in turn translated into the MAUS readable geometry files224

either by directly accessing the data using the python extension (which is the method applied225

to the detector objects) or through the use of EXtensible Stylesheet Language Transformations226

(XSLT) [29].227

3.4 Tracking, field maps and beam optics228

MAUS tracking is performed using GEANT4. By default, MAUS uses 4th order Runge-Kutta229

(RK4) for tracking, although other routines are available. RK4 has been shown to have very good230

precision relative to the MICE detector resolutions, even for step sizes of several cm.231

Magnetic field maps are implemented in a series of overlapping regions. On each tracking232

step, MAUS iterates over the list of fields, transforms to the local coordinate system of the field233

map, and calculates the field. The field values are transformed back into the global coordinate234

system, summed and passed to GEANT4.235

Numerous field types have been implemented within the MAUS framework. Solenoid fields236

can be calculated numerically from cylindrically symmetric 2D field maps, by taking derivatives237

of an on-axis solenoidal field or by using the sum of fields from a set of cylindrical current sheets.238

Multipole fields can be calculated from a 3D field map, or by taking derivatives from the usual239

multipole expansion formulae. Linear, quadratic and cubic interpolation routines have been imple-240

mented for field maps. Pillbox fields can be calculated by using the Bessel functions appropriate241

for a TM010 cavity or by reading a cylindrically symmetric field map.242

Matrix transport routines for propagating particles and beams through these field maps have243

been implemented. Transport matrices are calculated by taking the numerical derivative of the244

tracking output and can be used to transport beam ellipses and single particles.245

The accelerator modeling routines in MAUS have been validated against ICOOL and G4Beamline246

and have been used to model a number of beamlines and rings, including a "neutrino factory" front-247

end.248

3.5 Detector response and digitization249

The modelling of the detector response and electronics enables MAUS to provide data to test re-250

construction algorithms and estimate the uncertainties introduced by a detector and its readout.251

The interaction of particles in material is modeled using GEANT4. A “sensitive detector” class252

for each detector processes GEANT4 hits in active detector volumes and stores hit information253

such as the volume that was hit, the energy deposited and the time of the hit. Each detector’s254

digitization routine then simulates the electronics’ response to these hits, modeling processes such255

as the photo-electron yield from a scintillator bar, attenuation in light guides and the pulse shape256

in the electronics. The data structure of the outputs from the digitizers are designed to match the257

output from the unpacking of real data from the DAQ.258
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4. Reconstruction259

The reconstruction chain takes as its input either digitized hits from the MC or DAQ digits from260

real data. Regardless, the detector reconstruction algorithms, by requirement and design, operate261

the same way on both MC and real data.262

4.1 Time of flight263

There are three time-of-flight detectors in MICE which serve to distinguish particle type. The264

detectors are made of plastic scintillator and in each station there are orthogonal x and y planes265

with 7 or 10 slabs in each plane.266

Each GEANT4 hit in the TOF is associated with a physical scintillator slab. The energy de-267

posited by a hit in is first converted to units of photo-electrons. The photo-electron yield from a hit268

accounts for the light attenuation corresponding to the distance of the hit from the photomultiplier269

tube (PMT) and is then smeared by the photo-electron resolution. The yields from all hits in a270

given slab are then summed and the resultant yield is converted to ADC counts.271

The time of the hit in the slab is propagated to the PMTs at either end of the slab. The propa-272

gated time is then smeared by the PMT’s time resolution and converted to TDC counts. Calibration273

corrections based on real data are then added to the TDC values so that, at the reconstruction stage,274

they can be corrected just as is done with real data.275

The reconstruction proceeds in two main steps. First, the slab-hit-reconstruction takes indi-276

vidual PMT digits and associates them to reconstruct the hit in the slab. If there are multiple hits277

associated with a PMT, the hit which is earliest in time is taken to be the real hit. Then, if both278

PMTs on a slab have fired, the slab is considered to have a valid hit. The TDC values are converted279

to time and the hit time and charge associated with the slab hit are taken to be the average of the two280

PMT times and charges respectively. In addition, the product of the PMT charges is also calculated281

and stored. Secondly, individual slab hits are used to form space-points. A space point in the TOF282

is a combination of x and y slab hits. All combinations of x and y slab hits in a given station are283

treated as space point candidates. Calibration corrections, stored in the Configurations Database,284

are applied to these hit times and if the reconstructed space-point is consistent with the resolution285

of the detector, the combination is said to be a valid space point. The TOF has been shown to286

provide good time resolutions at the 60 ps level [5].287

4.2 Scintillating fiber trackers288

The scintillating fiber trackers are the central piece of the reconstruction. As mentioned in Sec-289

tion 1.1, there are two trackers, one upsteam and the other downstream of an absorber, situated290

within solenoidal magnetic fields. The trackers measure the emittance before and after particles291

pass through the absorber.292

The tracker software algorithms and performance are described in detail in [30]. Digits are293

the most basic unit fed into the main reconstruction module, each digit representing a signal from294

one channel. Digits from adjacent channels are assumed to come from the same particle and are295

grouped to form clusters. Clusters from channels which intersect each other, in at least two planes296

from the same station, are used to form space-points, giving x and y positions where a particle297

intersected a station. Once space-points have been found, they are associated with individual tracks298
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through pattern recognition (PR), giving straight or helical PR tracks. These tracks, and the space-299

points associated with them, are then sent to the final track fit. To avoid biases that may come from300

space-point reconstruction, the Kalman filter uses only reconstructed clusters as input.301

4.3 KL calorimeter302

Hit-level reconstruction of the KL is implemented in MAUS. Individual PMT hits are unpacked303

from the DAQ or simulated from MC and the reconstruction associates them to identify the slabs304

that were hit and calculates the charge and charge-product corresponding to each slab hit. The KL305

has been used successfully to estimate the pion contamination in the MICE muon beamline [31].306

4.4 Electron-muon ranger307

Hit-level reconstruction of the EMR is implemented in MAUS. The integrated ADC count and308

time over threshold are calculated for each bar that was hit. The EMR reconstructs a wide range of309

variables that can be used for particle identification and momentum reconstruction. The software310

and performance of the detector are described in detail in [32].311

4.5 Cherenkov312

The CKOV reconstruction takes the raw flash-ADC data, subtracts pedestals, calculates the charge313

and applies calibrations to determine the photo-electron yield.314

4.6 Global reconstruction315

The aim of the Global Reconstruction is to take the reconstructed outputs from individual detectors316

and to tie them together to form a global track. A likelihood for each particle hypothesis is also317

calculated.318

4.6.1 Global Track Matching319

Global track matching is performed by collating particle hits (TOFs 0, 1 and 2, KL and Ckov) and320

tracks (Trackers and EMR) from each detector using their individual reconstruction and combining321

them using a RK4 method to propagate particles between these detectors.The tracking is performed322

outwards from the cooling channel; the upstream tracker through TOF0; and downstream tracker323

through EMR. It is also available as a commissioning tool providing through-going tracks from324

TOF1 to EMR, in the absence of magnetic fields. Track points are matched to form tracks using325

a RK4 method. Initially this is done independently for the upstream and downstream (i.e. either326

side of the absorber) sections of the beamline. As the trackers provide the most accurate position327

reconstruction, they are used as starting points for track matching, propagating hits outwards into328

the other detectors and then comparing the propagated position to the measured hit in the detector.329

The acceptance criterion for a hit belonging to a track is an agreement within the detector’s solution330

with an additional allowance for multiple scattering. Track matching is currently performed for all331

TOFs, KL and EMR.332

The RK4 propagation requires the mass and charge of the particle to be known. Hence, it is333

necessary to perform track matching for all particle types (muons, pions, and electrons). Tracks for334

all possible PID hypotheses are then passed to the Global PID algorithms.335
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4.6.2 Global PID336

DR note: This is not used/tested in MAUS production – should this stay? Comments?337

Global particle identification in MICE typically requires the combination of several detectors.338

The time-of-flight between TOF detectors can be used to calculate velocity, which is compared339

with the momentum measured in the trackers to identify the particle type. For all but very low pt340

events, charge can be determined from the direction of helical motion in the trackers. Additional341

information can be obtained from the CKOV, KL and EMR detectors. The global particle identi-342

fication framework is designed to tie this disparate information into a set of hypotheses of particle343

types, with an estimate of the likelihood of each hypothesis.344

The Global PID in MAUS uses a log-likelihood method to identify the particle species of a345

global track. It is based upon a framework of PID variables. Simulated tracks are used to produce346

probability density functions (PDFs) of the PID variables. These are then compared with the PID347

variables for tracks in real data to obtain a set of likelihoods for the PIDs of the track.348

The input to the Global PID is a number of potential tracks from global track matching. Each349

of these tracks was matched for a given particle hypothesis. The Global PID then takes each track350

and determines the most likely PID following a series of steps:351

1. Each track is copied into an intermediate track;352

2. For each potential PID hypothesis x, the log-likelihood is calculated using the PID variables;353

3. The track is assigned an object containing the log-likelihood for each hypothesis;354

4. From the log-likelhoods, the confidence level, C.L., for a track having a PID x is calculated355

and the PID is set to the hypothesis with the the best C.L.356

4.7 Online reconstruction357

During data taking, it is essential to visualize a detector’s performance and have diagnostic tools358

to identify and debug unexpected behavior. This is accomplished through summary histograms359

of high and low-level quantities from detectors. The implementation is through a custom multi-360

threaded application based on a producer–consumer pattern with thread-safe FIFO buffers. Raw361

data produced by the DAQ is streamed through a network and consumed by individual detector362

mappers described in section 3. The reconstructed outputs produced by the mappers, are in turn363

consumed by the reducers. The mappers and reducers are distributed between the threads to bal-364

ance the load. Finally, outputs from the reducers are written as histogram images. Though the365

framework for the online reconstruction is based on parallelized processing of spills, the recon-366

struction modules are the same as those used for offline processing. A lightweight tool based on367

Django [33] provides live web-based visualization of the histogram images as and when they are368

created.369
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