Agile Documentation
(using tests as documentation)

Grig Gheorghiu
Avamar

PyCon 2006, Feb. 26, Addison, TX

Documentation is no fun

* “No man but a blockhead ever wrote except for money”
-- Samuel Johnson

Documentation is no fun

* This makes me a blockhead with a blog

I Documentation is necessary

I * Documentation is not sufficient, but it sure is necessary

* Feedback-driven documentation: twill

— feedback is one of the main agile tenets

— documentation needs to adapt to changes “imposed” by
users solving real-life problems

— start “virtuous circle” by writing good documentation

— note how more and more people use your software
because of good documentation

— write more documentation

I Everybody likes stories

* Storytelling can make documentation more exciting for
I both writers and readers
* Stories provide context and people tend to remember
them
* More all-around fun when stories are tests

e Stories in agile methodologies
— Joshua Kerievsky's storytests: capturing stories together
with acceptance criteria that validate their implementation
- Mike Cohn's user stories: requirements/features expressed
as stories with associated tests

I Unit tests vs. acceptance tests

I * Unit tests: make sure you write the code right
* Acceptance tests: make sure you write the right code

(Robert Martin, aka “Uncle Bob”)

doctest: unit/functional tests as stories

* doctest: “literate testing” or “executable documentation”

* no API; just copy and paste from the Python interpreter
prompt

* tests are part of docstrings

* encourages storytelling

* documentation in various formats (HTML, epydoc) can
be generated with minimal glue code

FitNesse: acceptance tests as stories

* FitNesse is a functional/acceptance testing framework
based on Ward Cunningham's FIT
* tests expressed in high-level business domain
language
— “business-facing” tests vs. “code-facing tests” (unit tests)
— tests expressed as stories peppered with tables which
specify inputs and expected outputs

— wiki format encourages collaboration between customers,
testers and developers in refining business rules

* FitNesse web site contains its own acceptance test
suite: http:/fitnesse.org/FitNesse.SuiteAcceptanceTests

http://fitnesse.org/FitNesse.SuiteAcceptanceTests

Django approach: doctest + HTML

* Django model functionality tested with doctest
— http://code.djangoproject.com/browser/django/trunk/tests/testapp/models/

* doctest docstrings turned into HTML format via a

custom test runner
— http://code.djangoproject.com/browser/django/trunk/tests/runtests.py

* doctests displayed as API usage examples
— http://www.djangoproject.com/documentation/models/

http://code.djangoproject.com/browser/django/trunk/tests/testapp/models/
http://code.djangoproject.com/browser/django/trunk/tests/runtests.py
http://www.djangoproject.com/documentation/models/

I lan Bicking's approach: Excel
I spreadsheets

I * acceptance tests specified as Excel tables, with free-
form comments that document the requirements
* custom test runner knows how to tie tests into
application code and interpret the results

I MailOnnaStick approach: FitNesse and
I doctest+epydoc

I * MailOnnaStick: mail search and annotation engine
* “pusiness logic” (back-end) acceptance tests
expressed as stories in FitNesse wiki pages
* unit tests written with both nose and doctest
* |esson learned: unit test duplication is sometimes good
* documentation generated with epydoc

I MailOnnaStick: FitNesse stories

I * acceptance tests written as FitNesse stories
* tests expressed in specific domain language:
mailboxes, messages, search results
* tests exercise back-end functionality, bypassing the
GUI
* |esson learned: business-logic tests are very robust in
the presence of Ul changes

MailOnnaStick: doctest + epydoc = unit
testing stories

* doctest unit tests written as stories in docstrings
* minimal markup used to separate testing of specific

pieces of functionality
— http://agile.idyll.org/browser/mail-onna-stick/trunk/tests/doctests/test_db.py

* epydoc processing

— docstrings from test files shown as stories
— http://agilistas.org/mos/epydoc-html/

http://agile.idyll.org/browser/mail-onna-stick/trunk/tests/doctests/test_db.py
http://agilistas.org/mos/epydoc-html/

I MailOnnaStick: test lists

I e Question: what unit tests do we have for module M?

* Answer: look at the test list for M
— test list = set of unit tests for a given module

* test lists automatically generated from doctest
docstrings with minimal code (show gen_tlist.py)
* test lists very easy to see via epydoc

MailOnnaStick: test maps

 Question: where exactly in our unit tests does function
F get exercised, if at all?

* Answer: look at the test map
— test map = set of unit test functions that exercise a given
application function (“static’ coverage analysis)
— automatically generated using a hacked version of Michael
Hudson's docextractor module
— does not work for methods yet (maybe when the new AST
module will be available)

* see at a glance which functionality is not exercised at
all in unit tests; useful combined with coverage reports

I Q&A

— grig@gheorghiu.net

I Contact info:
— http://agiletesting.blogspot.com

mailto:grig@gheorghiu.net
http://agiletesting.blogspot.com/

