
ar
X

iv
:1

00
3.

49
53

v1
 [

he
p-

ph
]

25
 M

ar
 2

01
0

IFJPAN-IV-2010-3

KALEU: a general-purpose
parton-level phase space generator

A. van Hameren

The H. Niewodniczánski Institute of Nuclear Physics
Polisch Academy of Sciences

Radzikowskiego 152, 31-342 Cracow, Poland

hameren@ifj.edu.pl

March 26, 2010

Abstract

KALEU is an independent, true phase space generator. After providing it with
some information about the field theory and the particular multi-particle scatter-
ing process under consideration, it returns importance sampled random phase space
points. Providing it also with the total weight of each generated phase space point, it
further adapts to the integration problem on the fly. It is written in FORTRAN, such
that it can independently deal with several scattering processes in parallel.

1 Introduction

Efficient phase space generation is an important issue in thestudy of multi-particle processes at
collider experiments. Parton-level defined observables are eventually formulated as phase space
integrals, and the evaluation of these is the most time-consuming part of a calculation. The
complicated structure of both the integrand and massive multi-particle phase space enforces the
use of Monte-Carlo methods, setting the total evaluation time to the sum of the generation of
phase space points and the evaluation of the integrand at thephase space points. While it is
important to keep the computing time of each integrand evaluation as low as possible, it is also
important to keep the number of evaluations to reach an acceptable accuracy as low as possible.
The latter is commonly referred to asefficient phase space generation, and eventually is a trade

0This work was partially supported by RTN European Programme, MRTN-CT-2006-035505 (HEPTOOLS,
Tools and Precision Calculations for Physics Discoveries at Colliders)

1

http://arxiv.org/abs/1003.4953v1

off between the number of evaluations and the average computing time for a single generation of
a phase space point.

Since efficient phase space generation should already be settled at leading order (LO) cal-
culations, automatic systems for LO calculations developed over the last decade deal with this
issue [2–11]. Various techniques are used in various combinations. Efficient phase space gen-
eration implies knowledge about the integrand, which is utilized both before the integral is per-
formed, through phase space mappings, and during the integration process, using the actual value
of the integrand at the phase space points. Methods using thelatter are referred to asadaptive
methods, and the ones used within particle physics are basedon adaptive grids dividing phase
space into subspaces [12–16], concern the optimization of the parameters in mixture distribu-
tions (the so-calledadaptive multi-channel method) [17], or combine both [18]. Most important
is, however, to use as much as possible information about theintegrand before performing the
integral, be it just when deciding which underlying phase space mapping to use in adaptive grid
methods.

Eventually, the aim of the game is to have the probability density with which phase space
points are generated look as much as possible as the integrand and to let it have the same peak
structure. The fact that, for parton-level multi-particlecalculations, this structure is essentially
determined by the sum of the squares of the tree-level Feynman graphs contributing to the scat-
tering amplitude is of great help. Since each Feynman graph encodes the phase space mapping
needed for the efficient integration of its own square, the multi-channel method, in which each
graph represents a channel, can be applied for efficient performance of the full integration. The
problem with this approach is that the number of Feynman graphs grows factorially with the
number of final-state particles. This problem was solved forthe calculation of the tree-level
amplitudes themselves through the use of recursive techniques [8, 19–23]. Regarding the phase
space generation, the straightforward solution within themulti-channel method is to keep only a
restricted number of channels with the highest channel weight. However, in order to determine
these, the integration process still has to be started including all channels.

The problem only exists in the calculation of the weight coming with each phase space point.
Only there the sum over all graphs occurs, not in the actual generation of the phase space points,
for each of which only one graph encoding a phase space mapping is chosen. The reason why the
weight cannot be calculated with the same recursive approach like the amplitude is that, within
the multi-channel method, each individual graph has its ownunique weight. And indeed, the
problem is solved by departing from this approach, as was pointed out in [25], and instead giving
individual weights to the vertices. Instead of choosing a whole graph encoding a mapping at
once for each generation of a phase space point, a mapping is composed by choosing respective
branchings. Each branching corresponds to a vertex, and hasits unique weight among the list of
possible branchings at a given stage in the construction of the phase space mapping. The weight
associated with the generated phase space points can then becalculated following recursion
relations analogous to those for the amplitude calculation.

As said, the foregoing works well assuming the peak structure of the integrand is determined
by sum of the squares of the tree-level Feynman graphs contributing to the scattering amplitude,

2

which however is not a gauge-invariant quantity. For processes involving many gluons, other
phase space mappings have been designed [26–28].

Although many implementations of the various methods for efficient phase space generation
exist, most of them are heavily integrated in automatic systems for full multi-particle calcula-
tions, making it difficult to use them separately. This write-up presents a program with which
Kinematics Are Lucidly and Efficiently Utilized1. It makes a number of routines available which
can be used for phase space generation in any given Monte Carlo program. As part of the ini-
tialization, the user has to provide masses and widths of allpossible real and virtual particles in
the multi-particle process under consideration, and a listof interaction vertices. KALEU uses this
information to efficiently map phase space following the method of the Recursive Phase space
Generator described in [25]. The generator is optimized on the fly during the integration pro-
cess, with the option to also optimize the generation of invariants and polar angles further with
PARNI [16]. It is a FORTRAN program, written such that several instances of the programcan
operate in parallel, completely independently of each other. It can be obtained from

http://annapurna.ifj.edu.pl/˜hameren

2 The algorithms

As mentioned before, KALEU uses the algorithm of the Recursive Phase space Generator from
[25]. Like most algorithms, it uses the fact thatn-body phase space can be decomposed in a
sequence of two-body phase spaces, referred to assplittingsin the following.

2.1 Two-body phase space generation

In each splitting, two new four-momentap1, p2 are generated that sum up to an, possibly pre-
viously generated, existing four-momentumQ = p1 + p2. Depending on whether 0, 1 or 2 of
these momenta are on-shell, 2, 3 or 4 random variables have tobe generated from whichp1, p2

are constructed. Most common is to generate the invariantsp2
1, p

2
2, the cosinez of the polar angle

of ~p1 in the center-of-mass frame (CMF) ofQ, and the the azimuthal angelφ in the same frame.
If any of the momenta is on-shell, and less than 4 random variables have to be generated, we say
“the invariant is generated with a Dirac delta-distribution”.

The azimuthal angle is usually not correlated with any existing kinematical variable, but thez-
variable sometimes is. It may be the cosine of the polar anglew.r.t. to another, already generated,
momentum in the CMF ofQ. The z-variable is then linearly related to the scalar product of
the two momenta. This happens, for example, in the so calledopen antennageneration in [28]
in order to arrive at antenna densities for the efficient integration of multi-gluon amplitudes. It
also happens in the the so-calledt-type generation [1]. In this case, thez-variable is taken to
be the cosine of the polar angle w.r.t. to one of the initial-state momentaq1 in the CMF ofQ,
and is linearly related tot = (p1 − q1)

2 = (Q − q1 − p2)
2. If this generation is formulated as

1 KALEU outranks SARGE.

3

http://annapurna.ifj.edu.pl/~hameren

1: g(6) ←→ d(2) d(4)

2: A(6) ←→ d(2) d(4)

3: Z(6) ←→ d(2) d(4)

4: d(10) ←→ d(2) Z(8)

5: d(12) ←→ d(4) Z(8)

6: u(7) ←→ W(5) d(2) [d(4)]

7: u(7) ←→ W(3) d(4) [d(2)]

8: W(11) ←→ u(9) d(2) [Z(8)]

9: W(11) ←→ W(3) Z(8) [d(2)]

10: W(13) ←→ u(9) d(4) [Z(8)]

11: W(13) ←→ W(5) Z(8) [d(4)]

12: g(14) ←→ d(2) d(12)

13: A(14) ←→ d(2) d(12)

14: Z(14) ←→ d(2) d(12)

15: g(14) ←→ d(4) d(10)

16: A(14) ←→ d(4) d(10)

17: Z(14) ←→ d(4) d(10)

18: u(15) ←→ u(1) g(14)

19: u(15) ←→ u(1) A(14)

20: u(15) ←→ u(1) Z(14)

21: u(15) ←→ W(13) d(2)

22: u(15) ←→ W(13) d(2) [d(12)]

23: u(15) ←→ W(11) d(4)

24: u(15) ←→ W(11) d(4) [d(10)]

25: u(15) ←→ u(7) Z(8)

26: u(15) ←→ u(7) Z(8) [Z(6)]

27: u(15) ←→ u(7) Z(8) [A(6)]

28: u(15) ←→ u(7) Z(8) [g(6)]

29: u(15) ←→ W(3) d(12) [d(2)]

20: u(15) ←→ W(5) d(10) [d(4)]

31: u(15) ←→ u(9) g(6) [Z(8)]

32: u(15) ←→ u(9) A(6) [Z(8)]

33: u(15) ←→ u(9) Z(6) [Z(8)]

Table 1: List of vertices for the processuū→ dd̄Z

(q1, Q
′) → (p1, p2) with Q ′ = Q − q1, these four momenta can be interpreted as the external

legs of at-channel Feynman graph. This is useful for bookkeeping purposes, as it will also be
for KALEU . Both thist-type generation and the “s-type” generation with uncorrelatedz variable
are applied in KALEU .

The mentioned different choices of random variables are applied in order to have control
over the densities following which they are distributed. They should match the behavior of the
the squared matrix element one is trying to integrate. KALEU uses the densities as mentioned for
example in [4].

2.2 Recursive phase space decomposition

We will illustrate how sequences of splittings are composedwith the help of an explicit ex-
ample, namely the processuū → dd̄Z. For this process, KALEU will create the list of split-
tings/mergings, or justvertices, in Table 1. The list contains almost all possible three-point ver-
tices occurring in Feynman graphs for this process,i.e. all three-point vertices to be calculated
in a recursive calculation of the amplitude. A few are missing, as will be explained below, and a
few appear several times with differences in the last column, which will also be explained. The
list only contains three-point vertices, the meaning of theparticles between square brackets is
explained below. There is no distinction between particlesthat only differ in charge since it does
not matter for the kinematics. The number between parentheses encodes the momentum in the
binary representation. The external particles have momentau(1)u(16) → d(2)d(4)Z(8), and
for example the gluon/photon/Z-boson attached to thed(2)d(4) pair has momentum2+ 4 = 6.

4

For a process withn particles in the final state, momentum conservation dictates that initial-state
momentum2n+1 is equal to minus momentum2n+1 − 1 = 1+ 2+ 4+ . . .+ 2n.

To generate a phase space point, the list should be read upside down, and each vertex rep-
resents a splitting. The starting point is the sum of all final-state momenta2 + 4 + 8, plus one
initial-state momentum1. The latter is necessary to includet-type kinematics. Thus a vertex is
chosen among number18 to 33. Each of these carries its own multi-channel weight, which is
updated during the Monte Carlo process. Suppose vertex29 is chosen, havingW(3) , d(12) on
the r.h.s. Then the same is repeated for all vertices withW(3) on the l.h.s. and withd(12) on
the l.h.s.. For the latter, this involves only vertex5. For the former, no such vertex exists in the
list, because it would represent the trivial operation of subtracting the initial-state momentum1
from 3 to obtain the final-state momentum2. Thus the constructed Feynman graph representing
the phase space mapping is given by

u(1) d(2)

d(4)

Z(8)u(15) d(12)

W(3)

29
5 (1)

Vertex 29 represents at-type splitting, as all vertices do with an odd momentum on the l.h.s.,
because they contain momentum1. The first step in at-type splitting is the generation of the
positive invariants, in the example above the squares of momenta12 and2. The latter is actually
external and fixed to the squared mass of thed-quark, so it is “generated following a delta-
distribution”. One of these invariants, in this case the square of momentum2, is beyond the
encoding of the three-point vertex, and has to be listed separately. This is the purpose of the
particles between square brackets in the list of vertices. Splittings of thes-type, like vertex12,
do not have entries in this last column, as well ast-type vertices which give the possibility to be
followed by anothert-type splitting, like vertex25.

u(15)

u(1)

Z(8)

d(4)

d(2)
W(3)

u(7)
7

25

(2)

As mentioned before, vertices representing a splitting involving momentum1 explicitly are omit-
ted. The only exception are vertices with the sum of all final-state momenta on the other leg,i.e.
vertices18, 19 and20, since they are the starting point for pures-type Feynman graphs like

u(1)

u(15)
Z(8)

d(4)

d(2)

d(12)
5

12

18

g(14)

(3)

5

For the calculation of the weight associated with a phase space pointed generated as above,
the list of vertices has to be read in the order as it stands. Each “←→” should now be inter-
preted as “= +” i.e. each vertex represents a contribution to the “off-shell current” labeled by
particle-type and momentum on the l.h.s.. These off-shell currents are probability densities, and
the final density labeled byu(15), obtained after executing the whole list of vertices, is there-
ciprocal of the weight. Each vertex includes the density associated with the variables generated
for the splitting, and the multi-channel weight for the choice of the vertex among the possibilities
contributing to the same off-shell current. This way, the contribution of all Feynman graphs is
included, underlining the recursive character of the algorithm.

3 Usage

KALEU has been designed such that the user can conveniently write his own user-defined routines
suitable for a given Monte Carlo program. Some examples are included in the program. In
particular, an interface to replace PHEGAS with KALEU in the HELAC/PHEGAS system [4,23,24]
is included.

The first thing the user has to do is provide KALEU with all particles and possible vertices.
For the example in Section 2 the following routine would be sufficient:

subroutine my_model(model ,vertx)
use avh_kaleu_model
type(model_type) ,intent(out) :: model
type(vertx_type) ,intent(out) :: vertx
integer :: gluon,photon,wboson,zboson,uquark,dquark

!
parameter(gluon=1)
parameter(photon=2)
parameter(wboson=3)
parameter(zboson=4)
parameter(uquark=5)
parameter(dquark=6)

!
call addparticle(model , gluon ,’g ’ ,0d0 ,0d0)
call addparticle(model ,photon ,’A ’ ,0d0 ,0d0)
call addparticle(model ,wboson ,’W ’ ,80.419d0 ,2.048d0)
call addparticle(model ,zboson ,’Z ’ ,91.188d0 ,2.446d0)
call addparticle(model ,uquark ,’u ’ ,0d0 ,0d0)
call addparticle(model ,dquark ,’d ’ ,0d0 ,0d0)

!
call addvertex(vertx ,uquark,uquark,gluon)
call addvertex(vertx ,dquark,dquark,gluon)
call addvertex(vertx ,uquark,uquark,photon)
call addvertex(vertx ,dquark,dquark,photon)
call addvertex(vertx ,uquark,uquark,zboson)
call addvertex(vertx ,dquark,dquark,zboson)
call addvertex(vertx ,uquark,dquark,wboson)
call addvertex(vertx ,wboson,wboson,zboson)
call addvertex(vertx ,wboson,wboson,photon)
call addvertex(vertx , gluon, gluon,gluon)

!
end subroutine

6

The outputmodel andvertx are of public derived type with private components, so the user
can only declare them and pass them to routines from KALEU , in this caseaddparticle and
addvertex . The input of these routines should be clear, it should only be mentioned that the
order of the particles inaddvertex does not matter. In practise, the user would of course
extend the model to, for example, the full standard model, which was refrained from for brevity
here. Some prepared model routines are included in the program.

A routine as above would typically be called in a user-definedinitialization routine to be
called in the Monte Carlo program. A complete set of such user-defined routines could look as
follows:

module my_kaleu
use avh_kaleu
use avh_kaleu_model
use avh_kaleu_kinem
type(model_type) ,save :: mdl ! Masses and widths
type(kinem_type) ,save :: kin ! Kinematics
type(kaleu_type) ,save :: obj ! Instance of the phase space g enerator

end module

subroutine my_init(process ,nfinst ,ecm ,nbatch,nstep,t hrs)
use my_kaleu
integer ,intent(in) :: process(-2:17),nfinst,nbatch,ns tep
real(kind(1d0)) ,intent(in) :: ecm,thrs
type(vertx_type) :: vtx
call my_model(mdl,vtx)
call kaleu_put_process(mdl,vtx,kin,obj ,process ,nfins t ,ecm)
call kaleu_init_adapt(mdl,obj ,nbatch,nstep,thrs)

end subroutine

subroutine my_gnrt(discard ,pkaleu)
use my_kaleu
logical ,intent(out) :: discard
real(kind(1d0)) ,intent(out) :: pkaleu(0:3,-2:17)
call kaleu_gnrt(mdl,kin,obj ,discard ,pkaleu)

end subroutine

subroutine my_wght(weight)
use my_kaleu
real(kind(1d0)) ,intent(out) :: weight
call kaleu_wght(mdl,kin,obj ,weight)

end subroutine

subroutine my_collect(weight)
use my_kaleu
real(kind(1d0)) ,intent(in) :: weight
call kaleu_collect(obj ,weight)

end subroutine

The modulemy_kaleu contains essentially what in a traditional FORTRAN program would
be the common blocks. The items are of public derived type with private components, so the
user can only declare them and pass them to routines from KALEU . By declaring them as arrays,
several instances of the program can be created. The user-defined routines above are wrappers
of KALEU-routines which need the items inmy_module as arguments.

The initialisation routinemy_init takes the process as input, and the particles should
have the same integer labelling as in the user-definedmy_model . The entries−2 and−1 of

7

process are the initial-state particles, the (strictly) positive entries contain the final-state par-
ticles. The integernfinst is the number of final-state particles. The inputecm is the center-
of-mass energy. The numbersnbatch , nstep and thrs are related to the multi-channel
optimization. This happens innstep steps ofnbatch non-zero weight events. After these
nstep steps, each channel with a weight smaller thanthrs times the average channel weight
at the off-shell current it belongs to is discarded.

KALEU determines limits on two-particle invariants based on the masses of final-state par-
ticles, but these may be equal zero and in a practical calculation there will be phase space cuts
present. The user may translate these into two-particle invariant mass cuts, and feed them to
KALEU for more efficient phase space generation with

call kinem_updt_smin(kin ,smin)

The entriessmin(1:nfinst,1:nfinst) of the arraysmin(-2:17,-2:17) should be
minima to final-final state two-particle invariants, and theentriessmin(-2:-1,1:nfinst)

should be negative, and should be maxima to final-initial state two-particle invariants. The array
is considered to be symmetric.

All arguments of the generation routinemy_gnrt are output. If the logicaldiscard is
true, the phase space point should get weight zero, and the array pkaleu must not be used. If
discard is false,pkaleu contains the momenta, including those of the initial-stateparticles.
The third routinemy_wght returns the weight associated with the most recently generated phase
space point, and the final routinemy_collect takes the full weight, including the integrand,
as input for optimization purposes.

The routines above would suffice to deal withe+e− scattering. In case the user would like to
generate events for hadron-hadron scattering, initial-state momenta can be provided to KALEU

for each event with

call kinem_inst(kin ,discard ,pkaleu)

This routine should be called just beforekaleu_gnrt . The arraypkaleu has the same for-
mat as before, but is input here. The entriespkaleu(0:3,-2) andpkaleu(0:3,-1) are
taken as the initial-state momenta. The logicaldiscard is output, and is true if something
is wrong with the momenta. Alternatively, the user can let KALEU deal with thex-variables
within collinear factorization. For this option, one item should be added to the module, and a
few routine calls should be added. An example is given in Appendix A. The optimization of the
generation of thex-variables is performed with the help of PARNI.

An example of the use of more instances of the program is givenin Appendix B.

4 Results

In order to assess the performance and applicability of KALEU , some results existing in literature
are reproduced.

8

Final state AMEGIC++ H/PHEGAS H/KALEU(
√
10σ)(1σ) Neval

bb̄ud̄ dū 49.74(21) 50.20(13) 50.33(17)(05) 7.186e+6
bb̄uū gg 9.11(13) 8.83(04) 8.80(09)(03) 4.846e+6
bb̄ gggg 24.09(18) 23.80(17) 23.80(33)(10) 3.627e+6
bb̄ud̄ e−ν̄e 17.486(66) 17.492(41) 17.527(58)(18) 8.357e+6
bb̄ e+νe e

−ν̄e 5.954(55) 5.963(11) 5.938(18)(06) 8.453e+6
bb̄ e+νe µ

−ν̄µ 5.865(24) 5.868(10) 5.864(19)(06) 7.812e+6
bb̄ µ+νµ µ

−ν̄µ 5.840(30) 5.839(12) 5.829(19)(06) 8.069e+6

Table 2: Cross sections in [fb] for somee+ e− → 6f processes as in [29]. The numbers in the
column “AMEGIC++” and “H/PHEGAS” are taken directly from that paper. The numberNeval

refers to the run with “H/KALEU”.

Table 2, Table 3, Table 4 and Table 5 show some results fore+e− → 6f processes as presented
in [29]. It concerns all processes at

√
s = 500GeV, and “with QCD” if applicable. The numbers

in the columns “AMEGIC++” and “H/PHEGAS” are taken from that paper. The numbers in the
column “H/KALEU” were obtained by replacing PHEGAS with KALEU in the HELAC/PHEGAS

system. In [29] results where obtained using106 phase space points before cuts. It is, however,
not clear whether this includes an optimization phase. The results with KALEU were obtained
with 107 phase space points before cuts,includingoptimization. In order to compare the perfor-
mances, both the standard deviationσ and

√
10 σ are presented explicitly for the latter. Some

results with “H/PHEGAS” have been rounded further than in the original paper for clarity. This
leads to an ambiguity for one value, which has been highlighted. The optimization was per-
formed in10 steps of50 × 103 phase space points after cuts. These were not included in the
estimation of the cross section. The last column in the tables presents the total number of phase
space points passing the cuts and leading to a matrix elementevaluation, including the500×103

evaluations used for optimization.
Table 6 shows some results fore+e− → 8f processes as presented in [30]. It concerns

some processes withmH = 130GeV andmt = 174.3GeV, at
√
s = 800GeV and with QCD.

The numbers in the column “CARLOMAT ” are directly taken from that paper. The numbers in
the column “HELAC/KALEU” were again obtained by replacing PHEGAS with KALEU in the
HELAC/PHEGAS system. They were obtained with108 phase space points before cuts, including
optimization. The optimization was performed in10 steps of100× 103 phase space points after
cuts, which were not included in the estimation of the cross section. The last column in the tables
presents the total number of phase space points passing the cuts and leading to a matrix element
evaluation.

In order to present some results for hadron-hadron collisions, KALEU has been connected
with ALPGEN [7]. This program deals with partonic subprocesses in hadron-hadron collisions
in one Monte Carlo run, making an optimized choice of a subprocess to be generated for each
event. Because KALEU can provide an independent generator for each subprocess, it can easily

9

Final state AMEGIC++ H/PHEGAS H/KALEU(
√
10σ)(1σ) Neval

e−e+ uūdd̄ 1.237(15) 1.265(05) 1.274(25)(08) 5.625e+6
e−e+ uū e−e+ 6.58(23)e-3 6.61(08)e-3 6.55(41)(13)e-3 4.364e+6

with e−e+ uūµ−µ+ 9.25(17)e-3 9.15 (07)e-3 9.17(18)(06)e-3 4.164e+6
Higgs νeν̄e ud̄ dū 2.36(7) 2.43(1) 2.46(3)(1) 7.141e+6

νeν̄e ud̄ e−ν̄e 0.916(30) 0.912(05) 0.910(16)(05) 7.660e+6
νeν̄e ud̄ µ−ν̄µ 0.878(27) 0.889(05) 0.897(11)(03) 8.516e+6

e−e+ uūdd̄ 1.0514(97) 1.0445(51) 1.0561(68)(21) 5.076e+6
e−e+ uū e−e+ 4.082(56)e-3 4.214(46)e-3 4.174(77)(24)e-3 3.377e+6

no e−e+ uūµ−µ+ 5.805(67)e-3 5.828(49)e-3 5.852(83)(26)e-3 2.991e+6
Higgs νeν̄e ud̄ dū 0.4755(21) 0.4711(24) 0.4745(18)(06) 7.135e+6

νeν̄e ud̄ e−ν̄e 0.16033(63) 0.16011(78) 0.16123(47)(15) 9.018e+6
νeν̄e ud̄ µ−ν̄µ 0.14383(53) 0.14439(65) 0.14367(36)(11) 9.239e+6

Table 3: Cross sections in [fb] for somee+ e− → 6f processes as in [29]. The numbers in the
column “AMEGIC++” and “H/PHEGAS” are taken directly from that paper. The numberNeval

refers to the run with “H/KALEU”.

Final state AMEGIC++ H/PHEGAS H/KALEU(
√
10σ)(1σ) Neval

µ−µ+ µ−ν̄µ e
+νe 0.03747(29) 0.03749(32) 0.03740(31)(10) 4.868e+6

with µ−µ+ ud̄ e−ν̄e 0.1106(22) 0.1090(07) 0.1083(10)(03) 5.245e+6
Higgs µ−µ+ µ−µ+ e−e+ 2.731(065)e-3 2.691(042)e-3 2.737(108)(034)e-3 2.285e+6

µ−µ+ uū dd̄ 0.2634(22) 0.2642(15) 0.2638(22)(07) 5.218e+6
µ−µ+ uū uū 8.767(65)e-3 8.978(58)e-3 8.882(87)(28)e-3 3.614e+6

µ−µ+ µ−ν̄µ e
+νe 0.03054(23) 0.03092(19) 0.03079(22)(07) 4.512e+6

no µ−µ+ ud̄ e−ν̄e 0.08911(53) 0.08925(48) 0.08932(51)(16) 4.800e+6
Higgs µ−µ+ µ−µ+ e−e+ 2.280(66)e-3 2.277(62)e-3 2.224(82)(26)e-3 1.847e+6

µ−µ+ uū dd̄ 0.2092(12) 0.2075(13) 0.2092(10)(03) 5.152e+6
µ−µ+ uū uū 6.134(29)e-3 6.108(27)e-3 6.072(41)(13)e-3 3.907e+6

Table 4: Cross sections in [fb] for somee+ e− → 6f processes as in [29]. The numbers in the
column “AMEGIC++” and “H/PHEGAS” are taken directly from that paper. The numberNeval

refers to the run with “H/KALEU”.

10

Final state AMEGIC++ H/PHEGAS H/KALEU(
√
10σ)(1σ) Neval

with Higgs µ−µ+ bb̄bb̄ 30.96(0.60)e-3 30.19(0.43)e-3 29.96(1.42)(0.45)e-3 3.153e+6

no Higgs µ−µ+ bb̄bb̄ 6.308(24)e-3 6.364(21)e-3 6.377(26)(08)e-3 4.918e+6

Table 5: Cross sections in [fb] for somee+ e− → 6f processes as in [29]. The numbers in the
column “AMEGIC++” and “H/PHEGAS” are taken directly from that paper. The numberNeval

refers to the run with “H/KALEU”.

Final state CARLOMAT HELAC/KALEU Neval

bb̄ bb̄ νµµ
+ τ−ν̄τ 35.9(1) 36.17(15) 18.12e+6

bb̄ bb̄ νee
+ e−ν̄e 36.1(1) 36.37(18) 16.82e+6

bb̄ bb̄ ud̄ µ−ν̄µ 100.6(2) 100.50(46) 13.21e+6
bb̄ bb̄ cs̄ e−ν̄e 100.5(3) 100.52(47) 12.63e+6
bb̄ bb̄ ud̄ sc̄ 314(2) 314.1(1.4) 13.50e+6
bb̄ bb̄ ud̄ dū 314(1) 320.1(1.9) 13.36e+6

Table 6: Cross sections in [ab] for somee+ e− → 8f processes as in [30]. The numbers in the
column “CARLOMAT ” are taken directly from that paper. The numberNeval refers to the run with
“H ELAC/KALEU”.

be merged into the structure of ALPGEN. This has been done such, that ALPGEN still makes
the choice of a subprocess for each event, and that, given thesubprocess, KALEU generates the
variablesx1, x2 for the PDFs and the final-state momenta. It should be noted, however, that for
the purpose of this write-up, the connection between the twoprograms has been established only
to the level of cross section calculation and not, for example, to full event un-weighting. Table 7
presents results for processes of the typepp→ tt̄+Njets andpp→ tt̄ bb̄+Njets. The numbers
in the column “ALPGEN” are taken directly from [7]. The user of ALPGEN chooses the number
of matrix element evaluations for a Monte Carlo run, not the number of generated phase space
points before cuts. The last column presents the number of evaluations for the run with KALEU ,
including those used for optimization but omitted for the estimation of the cross section.

5 Summary

The program KALEU for parton-level phase space generation was presented. Given the masses
and widths of all real and virtual particles, it generates importance sampled phase space points
for the scattering process under consideration. Given the total weight of each event, including the
value of the integrand, it optimizes further to this integrand on the fly. It is written in FORTRAN,
such that it can independently deal with several scatteringprocesses in parallel.

11

Final state ALPGEN ALPGEN/KALEU Neval

tt̄+ 2jets 255(1) 254.38(73) 11.4e+6
tt̄+ 3jets 111.5(5) 111.09(43) 11.4e+6
tt̄+ 4jets 42.4(4) 42.72(45) 11.6e+6
tt̄+ 5jets 14.07(16) 14.36(13) 11.6e+6
tt̄+ 6jets 4.36(8) 4.369(43) 13.0e+6
tt̄ bb̄ 1.35(1) 1.3490(21) 10.2e+6
tt̄ bb̄+ 1jet 1.47(2) 1.4624(42) 10.4e+6
tt̄ bb̄+ 2jets 0.94(2) 0.9280(40) 10.6e+6
tt̄ bb̄+ 3jets 0.457(8) 0.4522(28) 10.6e+6
tt̄ bb̄+ 4jets 0.189(4) 0.1851(14) 6.2e+6

Table 7: Cross sections in [pb] for somepp collision processes at LHC as in [7]. The numbers
in the column “ALPGEN” are taken directly from that paper. The numberNeval refers to the run
with “A LPGEN/KALEU”.

Acknowledgments

The author would like to thank C.G. Papadopoulos for useful discussions.

References

[1] E. Byckling and K. Kajantie, “Particle Kinematics”, Wiley & Sons. , London (1973) 328p.

[2] E. E. Boos, M. N. Dubinin, V. A. Ilyin, A. E. Pukhov and V. I.Savrin,
arXiv:hep-ph/9503280.

[3] F. Yuasaet al., Prog. Theor. Phys. Suppl.138 (2000) 18 [arXiv:hep-ph/0007053].

[4] C. G. Papadopoulos, Comput. Phys. Commun.137 (2001) 247 [arXiv:hep-ph/0007335].

[5] F. Krauss, R. Kuhn and G. Soff, JHEP0202 (2002) 044 [arXiv:hep-ph/0109036].

[6] S. Dittmaier and M. Roth, Nucl. Phys. B642 (2002) 307 [arXiv:hep-ph/0206070].

[7] M. L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A. D. Polosa, JHEP0307 (2003)
001 [arXiv:hep-ph/0206293].

[8] M. Moretti, T. Ohl and J. Reuter, arXiv:hep-ph/0102195.

[9] W. Kilian, LC-TOOL-2001-039.

[10] F. Maltoni and T. Stelzer, JHEP0302 (2003) 027 [arXiv:hep-ph/0208156].

12

http://arxiv.org/abs/hep-ph/9503280
http://arxiv.org/abs/hep-ph/0007053
http://arxiv.org/abs/hep-ph/0007335
http://arxiv.org/abs/hep-ph/0109036
http://arxiv.org/abs/hep-ph/0206070
http://arxiv.org/abs/hep-ph/0206293
http://arxiv.org/abs/hep-ph/0102195
http://arxiv.org/abs/hep-ph/0208156

[11] B. P. Kersevan and E. Richter-Was, arXiv:hep-ph/0405247.

[12] G. P. Lepage, J. Comput. Phys.27 (1978) 192.

[13] S. Kawabata, package BASES/SPRING,” Comput. Phys. Commun.88 (1995) 309.

[14] S. Jadach, Comput. Phys. Commun.152 (2003) 55 [arXiv:physics/0203033].

[15] T. Hahn, Nucl. Instrum. Meth. A559 (2006) 273 [arXiv:hep-ph/0509016].

[16] A. van Hameren, Acta Phys. Polon. B40 (2009) 259 [arXiv:0710.2448 [hep-ph]].

[17] R. Kleiss and R. Pittau, Comput. Phys. Commun.83 (1994) 141 [arXiv:hep-ph/9405257].

[18] T. Ohl, Comput. Phys. Commun.120 (1999) 13 [arXiv:hep-ph/9806432].

[19] F. A. Berends and W. T. Giele, Nucl. Phys. B306 (1988) 759.

[20] F. Caravaglios and M. Moretti, Phys. Lett. B358 (1995) 332. [arXiv:hep-ph/9507237].

[21] P. Draggiotis, R. H. P. Kleiss and C. G. Papadopoulos, Phys. Lett. B 439 (1998) 157.
[arXiv:hep-ph/9807207].

[22] F. Caravaglios, M. L. Mangano, M. Moretti and R. Pittau,Nucl. Phys. B539 (1999) 215.
[arXiv:hep-ph/9807570].

[23] A. Kanaki and C. G. Papadopoulos, Comput. Phys. Commun.132 (2000) 306.
[arXiv:hep-ph/0002082].

[24] A. Cafarella, C. G. Papadopoulos and M. Worek, Comput. Phys. Commun.180 (2009)
1941 [arXiv:0710.2427 [hep-ph]].

[25] T. Gleisberg and S. Hoche, JHEP0812 (2008) 039 [arXiv:0808.3674 [hep-ph]].

[26] P. D. Draggiotis, A. van Hameren and R. Kleiss, Phys. Lett. B 483 (2000) 124
[arXiv:hep-ph/0004047].

[27] A. van Hameren and R. Kleiss, Eur. Phys. J. C17 (2000) 611 [arXiv:hep-ph/0008068].

[28] A. van Hameren and C. G. Papadopoulos, Eur. Phys. J. C25 (2002) 563
[arXiv:hep-ph/0204055].

[29] T. Gleisberg, F. Krauss, C. G. Papadopoulos, A. Schaelicke and S. Schumann, Eur. Phys. J.
C 34 (2004) 173 [arXiv:hep-ph/0311273].

[30] K. Kolodziej and S. Szczypinski, Eur. Phys. J. C64 (2009) 645 [arXiv:0903.4606 [hep-ph]].

13

http://arxiv.org/abs/hep-ph/0405247
http://arxiv.org/abs/physics/0203033
http://arxiv.org/abs/hep-ph/0509016
http://arxiv.org/abs/0710.2448
http://arxiv.org/abs/hep-ph/9405257
http://arxiv.org/abs/hep-ph/9806432
http://arxiv.org/abs/hep-ph/9507237
http://arxiv.org/abs/hep-ph/9807207
http://arxiv.org/abs/hep-ph/9807570
http://arxiv.org/abs/hep-ph/0002082
http://arxiv.org/abs/0710.2427
http://arxiv.org/abs/0808.3674
http://arxiv.org/abs/hep-ph/0004047
http://arxiv.org/abs/hep-ph/0008068
http://arxiv.org/abs/hep-ph/0204055
http://arxiv.org/abs/hep-ph/0311273
http://arxiv.org/abs/0903.4606

A Generation of x-variables

An example of user-defined routines which can be used for the generation of events for hadron-
hadron scattering within collinear factorization.

module my_kaleu
use avh_kaleu
use avh_kaleu_model
use avh_kaleu_kinem
type(model_type) ,save :: mdl ! Masses and widths
type(kinem_type) ,save :: kin ! Kinematics
type(kaleu_type) ,save :: obj ! Instance of the phase space g enerator
type(strf_type) ,save :: str ! Concerns the generation of x1 ,x2

end module

subroutine my_init(process ,nfinst ,ecm ,nbatch,nstep,t hrs)
use my_kaleu
integer ,intent(in) :: process(-2:17),nfinst,nbatch,ns tep
real(kind(1d0)) ,intent(in) :: ecm,thrs
type(vertx_type) :: vtx
call my_model(mdl,vtx)
call kaleu_put_process(mdl,vtx,kin,obj ,process ,nfins t ,ecm)
call kaleu_init_adapt(mdl,obj ,nbatch,nstep,thrs)
call kaleu_init_strf(str,kin ,0d0)

end subroutine

subroutine my_gnrt(discard ,x1kaleu,x2kaleu,pkaleu)
use my_kaleu
logical ,intent(out) :: discard
real(kind(1d0)) ,intent(out) :: ,x1kaleu,x2kaleu,pkale u(0:3,-2:17)
call kaleu_gnrt_strf(str,kin ,discard ,x1kaleu,x2kaleu)
call kaleu_gnrt(mdl,kin,obj ,discard ,pkaleu)

end subroutine

subroutine my_wght(weight)
use my_kaleu
real(kind(1d0)) ,intent(out) :: weight
real(kind(1d0)) :: ww
call kaleu_wght(mdl,kin,obj ,weight)
call kaleu_wght_strf(str ,ww)
weight = weight * ww

end subroutine

subroutine my_collect(weight)
use my_kaleu
real(kind(1d0)) ,intent(in) :: weight
call kaleu_collect(obj ,weight)
call kaleu_collect_strf(str ,weight)

end subroutine

The last argument ofkaleu_init_strf is a minimum value for anx-variable. If this number
is smaller than the number dictated by kinematical limits, the latter is used. The outputx1kaleu

andx2kaleu of the generation routine are the values at which the PDFs should be evaluated.

14

B Example of the use of more instances

As an example of the use of more instances of the program, the user could want to treat several
subprocesses in one Monte Carlo run, choosing another subprocess for each event. Then the user-
defined routines could get one more integer input variableiproc determining the subprocess,
and could look like

module my_kaleu
use avh_kaleu
use avh_kaleu_model
use avh_kaleu_kinem
integer ,parameter :: nmax = 20;
type(model_type) ,save :: mdl ! Masses and widths
type(kinem_type) ,save :: kin(nmax) ! Kinematics
type(kaleu_type) ,save :: obj(nmax) ! Instance of the phase space generator
type(strf_type) ,save :: str(nmax) ! Concerns the generati on of x1,x2

end module

subroutine my_init(iproc ,process ,nfinst ,ecm ,nbatch,n step,thrs)
use my_kaleu
integer ,intent(in) :: iproc,process(-2:17),nfinst,nba tch,nstep
real(kind(1d0)) ,intent(in) :: ecm,thrs
type(vertx_type) :: vtx
call my_model(mdl,vtx)
call kaleu_put_process(mdl,vtx,kin(iproc),obj(iproc) ,process ,nfinst ,ecm)
call kaleu_init_adapt(mdl,obj(iproc) ,nbatch,nstep,th rs)
call kaleu_init_strf(str(iproc),kin(iproc) ,0d0)

end subroutine

subroutine my_gnrt(iproc ,discard ,x1kaleu,x2kaleu,pka leu)
use my_kaleu
integer ,intent(in) :: iproc
logical ,intent(out) :: discard
real(kind(1d0)) ,intent(out) :: ,x1kaleu,x2kaleu,pkale u(0:3,-2:17)
call kaleu_gnrt_strf(str(iproc),kin(iproc) ,discard ,x 1kaleu,x2kaleu)
call kaleu_gnrt(mdl,kin(iproc),obj(iproc) ,discard ,pk aleu)

end subroutine

subroutine my_wght(iproc ,weight)
use my_kaleu
integer ,intent(in) :: iproc
real(kind(1d0)) ,intent(out) :: weight
real(kind(1d0)) :: ww
call kaleu_wght(mdl,kin(iproc),obj(iproc) ,weight)
call kaleu_wght_strf(str(iproc) ,ww)
weight = weight * ww

end subroutine

subroutine my_collect(iproc ,weight)
use my_kaleu
integer ,intent(in) :: iproc
real(kind(1d0)) ,intent(in) :: weight
call kaleu_collect(obj(iproc) ,weight)
call kaleu_collect_strf(str(iproc) ,weight)

end subroutine

15

	1 Introduction
	2 The algorithms
	2.1 Two-body phase space generation
	2.2 Recursive phase space decomposition

	3 Usage
	4 Results
	5 Summary
	A Generation of x-variables
	B Example of the use of more instances

