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Abstract

KALEU is an independent, true phase space generator. After pmgvidwith
some information about the field theory and the particulaftirparticle scatter-
ing process under consideration, it returns importanceplahrandom phase space
points. Providing it also with the total weight of each gexted phase space point, it
further adapts to the integration problem on the fly. It istte@n in FORTRAN, such
that it can independently deal with several scatteringgsses in parallel.

1 Introduction

Efficient phase space generation is an important issue isttitly of multi-particle processes at
collider experiments. Parton-level defined observablegaentually formulated as phase space
integrals, and the evaluation of these is the most timewooingy part of a calculation. The
complicated structure of both the integrand and massivéi4paiticle phase space enforces the
use of Monte-Carlo methods, setting the total evaluatioretio the sum of the generation of
phase space points and the evaluation of the integrand agthidiee space points. While it is
important to keep the computing time of each integrand exedn as low as possible, it is also
important to keep the number of evaluations to reach an &lslepaccuracy as low as possible.
The latter is commonly referred to afficient phase space generatj@md eventually is a trade
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off between the number of evaluations and the average caongpirne for a single generation of
a phase space point.

Since efficient phase space generation should already thedsat leading order (LO) cal-
culations, automatic systems for LO calculations devedapeer the last decade deal with this
issue [2=11]. Various techniques are used in various coatioims. Efficient phase space gen-
eration implies knowledge about the integrand, which ikzetil both before the integral is per-
formed, through phase space mappings, and during the ati@gprocess, using the actual value
of the integrand at the phase space points. Methods usingttee are referred to amdaptive
methods, and the ones used within particle physics are asadaptive grids dividing phase
space into subspaces [12+-16], concern the optimizatioheopairameters in mixture distribu-
tions (the so-calleddaptive multi-channel methdfil 7], or combine both [18]. Most important
is, however, to use as much as possible information abountbgrand before performing the
integral, be it just when deciding which underlying phasacgpmapping to use in adaptive grid
methods.

Eventually, the aim of the game is to have the probabilitysitgrwith which phase space
points are generated look as much as possible as the integnaito let it have the same peak
structure. The fact that, for parton-level multi-partickdculations, this structure is essentially
determined by the sum of the squares of the tree-level Feymraohs contributing to the scat-
tering amplitude is of great help. Since each Feynman grapbdes the phase space mapping
needed for the efficient integration of its own square, thétirsbannel method, in which each
graph represents a channel, can be applied for efficienbipeaince of the full integration. The
problem with this approach is that the number of Feynmantgapows factorially with the
number of final-state particles. This problem was solveditlier calculation of the tree-level
amplitudes themselves through the use of recursive tegbgif$, 19-23]. Regarding the phase
space generation, the straightforward solution withinnthati-channel method is to keep only a
restricted number of channels with the highest channel hteigowever, in order to determine
these, the integration process still has to be starteddirgduall channels.

The problem only exists in the calculation of the weight cegnivith each phase space point.
Only there the sum over all graphs occurs, not in the actuagtion of the phase space points,
for each of which only one graph encoding a phase space n@gghosen. The reason why the
weight cannot be calculated with the same recursive appriteethe amplitude is that, within
the multi-channel method, each individual graph has its awigue weight. And indeed, the
problem is solved by departing from this approach, as wagteoiout in[25], and instead giving
individual weights to the vertices. Instead of choosing allgraph encoding a mapping at
once for each generation of a phase space point, a mappingisosed by choosing respective
branchings. Each branching corresponds to a vertex, anitshasque weight among the list of
possible branchings at a given stage in the constructidmeophase space mapping. The weight
associated with the generated phase space points can thealcléated following recursion
relations analogous to those for the amplitude calculation

As said, the foregoing works well assuming the peak streadfithe integrand is determined
by sum of the squares of the tree-level Feynman graphs batitrg to the scattering amplitude,
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which however is not a gauge-invariant quantity. For preessnvolving many gluons, other
phase space mappings have been designéd [26-28].

Although many implementations of the various methods fbcieht phase space generation
exist, most of them are heavily integrated in automaticesystfor full multi-particle calcula-
tions, making it difficult to use them separately. This watfe presents a program with which
Kinematics Are Lucidly and Efficiently Utiliz@i It makes a number of routines available which
can be used for phase space generation in any given Monte @agram. As part of the ini-
tialization, the user has to provide masses and widths giogl$ible real and virtual particles in
the multi-particle process under consideration, and afistteraction vertices. KLEU uses this
information to efficiently map phase space following the moelt of the Recursive Phase space
Generator described in [25]. The generator is optimizedhenfly during the integration pro-
cess, with the option to also optimize the generation ofriaveis and polar angles further with
PARNI [16]. It is a FORTRAN program, written such that several instances of the progiam
operate in parallel, completely independently of eachrothean be obtained from
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2 Thealgorithms

As mentioned before, KLEU uses the algorithm of the Recursive Phase space Generator fr
[25]. Like most algorithms, it uses the fact thatbody phase space can be decomposed in a
sequence of two-body phase spaces, referred $plasngsin the following.

2.1 Two-body phase space generation

In each splitting, two new four-moments, p, are generated that sum up to an, possibly pre-
viously generated, existing four-moment{n= p; + p,. Depending on whether O, 1 or 2 of
these momenta are on-shell, 2, 3 or 4 random variables hawe generated from whicpy, p,
are constructed. Most common is to generate the invarignts, the cosine of the polar angle
of p; in the center-of-mass frame (CMF) @, and the the azimuthal angélin the same frame.
If any of the momenta is on-shell, and less than 4 randomasahave to be generated, we say
“the invariant is generated with a Dirac delta-distribatio

The azimuthal angle is usually not correlated with any exgstinematical variable, but the
variable sometimesiis. It may be the cosine of the polar angle to another, already generated,
momentum in the CMF of). The z-variable is then linearly related to the scalar product of
the two momenta. This happens, for example, in the so calbeth antenngeneration in[[28]
in order to arrive at antenna densities for the efficientgragon of multi-gluon amplitudes. It
also happens in the the so-calledype generation [1]. In this case, thevariable is taken to
be the cosine of the polar angle w.r.t. to one of the inittatessmomentay; in the CMF of Q,
and is linearly related to = (p; — q1)* = (Q — q; — p2)?. If this generation is formulated as

1 KALEU outranks 3RGE.


http://annapurna.ifj.edu.pl/~hameren

; f\((?) : Sg; 383 18: u(15) «— u(1) g(14)
3 706 i da 190 u(15) «—  u(l) A(14)
4: d(10) o d(z) z(s) 20: u(15) «— u(1l) Z(14)
5: d(12) . d(4) 2(8) 21: u(15) «— W(13) d(2)
©odi2) e dil) - Z(8) 22 u(15) «— W(13) d(2) [d(12)]
6 w7 e WO d2) 1di) 23: u(15) «— W(I11) d4)
pooun e WAl ) 24: u(15) «— W(11) d(4) [d(10)]
8: W(1) «— u(9) d2) I[Z(8)] % s o w2
O W) = W) Z(8)  1d2) 26: u(15) «— u(7)  Z(8) [Z(6)]
10: W(13) «— u(9) d4) [Z(8)] 27 wi5) o w28  [AE]
11: W(13) «— W((5E) Z(8)  [d(4)] e DA S
ﬁ g((]]?) : jgi 382 29: w(15) «— W(3) d(12) [d(2)]
14: (14 d2) d(12 200 u(15) «— W(5) d(10) [d(4)]
15: ((14)) : dE4§ dE10§ 3L wu(15) «—  w(9) g(6) [Z(8)]
16: ,2\(14) —— d4)  d(10) 320 u(15) «—  u(9) A(e) [Z(8)]
7204 e a dto 33 u(15) «— w9 z(6) [Z(8)]

Table 1: List of vertices for the processt — ddZ

(q1,Q’) — (p1,p2) With Q' = Q — gy, these four momenta can be interpreted as the external
legs of at-channel Feynman graph. This is useful for bookkeeping gaegp, as it will also be

for KALEU. Both thist-type generation and tha-type” generation with uncorrelatedvariable

are applied in KLEU.

The mentioned different choices of random variables ardiegpn order to have control
over the densities following which they are distributed.eytshould match the behavior of the
the squared matrix element one is trying to integrateL KU uses the densities as mentioned for
example in([4].

2.2 Recursive phase space decomposition

We will illustrate how sequences of splittings are compoa@ti the help of an explicit ex-
ample, namely the procesar — ddZ. For this process, KLEU will create the list of split-
tings/mergings, or justertices in Table 1. The list contains almost all possible threaipoer-
tices occurring in Feynman graphs for this proceéssall three-point vertices to be calculated
in a recursive calculation of the amplitude. A few are migsas will be explained below, and a
few appear several times with differences in the last colunimch will also be explained. The
list only contains three-point vertices, the meaning of paeticles between square brackets is
explained below. There is no distinction between partitias only differ in charge since it does
not matter for the kinematics. The number between pareathesscodes the momentum in the
binary representation. The external particles have mamefit)u(16) — d(2)d(4)Z(8), and
for example the gluon/photai/boson attached to th#2)d(4) pair has momenturd + 4 = 6.



For a process with particles in the final state, momentum conservation distttat initial-state
momentum2™*! is equal to minus momentud® ' —1 =142 +4+... + 2™

To generate a phase space point, the list should be readeug®ch, and each vertex rep-
resents a splitting. The starting point is the sum of all fstate momenta + 4 + 8, plus one
initial-state momentum. The latter is necessary to inclutkdype kinematics. Thus a vertex is
chosen among numbés to 33. Each of these carries its own multi-channel weight, whgh i
updated during the Monte Carlo process. Suppose véftéxchosen, havingV(3) , d(12) on
the r.h.s. Then the same is repeated for all vertices Witl3) on the |.h.s. and withi(12) on
the L.h.s.. For the latter, this involves only vertexFor the former, no such vertex exists in the
list, because it would represent the trivial operation difteacting the initial-state momentuin
from 3 to obtain the final-state momentuin Thus the constructed Feynman graph representing
the phase space mapping is given by

U(15) d(12) ,,,' 2(8)
29 ‘
\ 1
wa O d@ @
u) — T~ d)

Vertex 29 represents a-type splitting, as all vertices do with an odd momentum amlth.s.,
because they contain momentudm The first step in a-type splitting is the generation of the
positive invariants, in the example above the squares of emtai2 and2. The latter is actually
external and fixed to the squared mass of dhguark, so it is “generated following a delta-
distribution”. One of these invariants, in this case theasguf momentun, is beyond the
encoding of the three-point vertex, and has to be listedraggdg. This is the purpose of the
particles between square brackets in the list of verticesttiBgs of thes-type, like vertexi2,
do not have entries in this last column, as weltdgpe vertices which give the possibility to be
followed by anothet-type splitting, like vertex5.

u(15) —x----- 7(8)
—— d(4) (2)

W(3)
u(1) ‘ d(2)
As mentioned before, vertices representing a splittingliimg momentum explicitly are omit-

ted. The only exception are vertices with the sum of all fstate momenta on the other leg.
verticesl18, 19 and20, since they are the starting point for purgype Feynman graphs like

L 2(8)

u(15)
d(4) (3)
u(1)




For the calculation of the weight associated with a phaseespainted generated as above,
the list of vertices has to be read in the order as it standsh Ea—" should now be inter-
preted as = +” i.e. each vertex represents a contribution to the “off-sheltent’ labeled by
particle-type and momentum on the |.h.s.. These off-shetienits are probability densities, and
the final density labeled by(15), obtained after executing the whole list of vertices, isrfe
ciprocal of the weight. Each vertex includes the densitpeissed with the variables generated
for the splitting, and the multi-channel weight for the ad®of the vertex among the possibilities
contributing to the same off-shell current. This way, thatabution of all Feynman graphs is
included, underlining the recursive character of the atyor.

3 Usage

KALEU has been designed such that the user can conveniently verderh user-defined routines
suitable for a given Monte Carlo program. Some examplesrari@ded in the program. In
particular, an interface to replacelPGAs with KALEU in the HELAC/PHEGAS system|[4,23,24]
is included.

The first thing the user has to do is providelu with all particles and possible vertices.
For the example in Sectidn 2 the following routine would bffisient:

subroutine my_model( model ,vertx )

use avh_kaleu_model

type(model_type) ,intent(out) :: model
type(vertx_type) ,intent(out) :: vertx

integer :: gluon,photon,wboson,zboson,uquark,dquark

parameter( gluon=1 )
parameter( photon=2 )
parameter( wboson=3 )
parameter( zboson=4 )
parameter( uquark=5 )
parameter( dquark=6 )

call addparticle( model , gluon ,’g ' ,0d0 ,0d0 )
call addparticle( model ,photon ,’A ' ,0d0 ,0d0 )
call addparticle( model ,wboson ,'W ' ,80.419d0 ,2.048d0 )
call addparticle( model ,zboson ,’Z ’ ,91.188d0 ,2.446d0 )

call addparticle( model ,uquark ,'u ' ,0d0 ,0d0 )
call addparticle( model ,dquark ,’d ' ,0d0 ,0d0 )

call addvertex( vertx ,uquark,uquark,gluon )
call addvertex( vertx ,dquark,dquark,gluon )
call addvertex( vertx ,uquark,uquark,photon )
call addvertex( vertx ,dquark,dquark,photon )
call addvertex( vertx ,uquark,uquark,zboson )
call addvertex( vertx ,dquark,dquark,zboson )
call addvertex( vertx ,uquark,dquark,wboson )
call addvertex( vertx ,wboson,wboson,zboson )
call addvertex( vertx ,wboson,wboson,photon )
call addvertex( vertx , gluon, gluon,gluon )

end subroutine



The outputmodel andvertx are of public derived type with private components, so the us
can only declare them and pass them to routines framgg, in this caseaddparticle and
addvertex . The input of these routines should be clear, it should oelynentioned that the
order of the particles imddvertex does not matter. In practise, the user would of course
extend the model to, for example, the full standard modeickvivas refrained from for brevity
here. Some prepared model routines are included in thegrogr

A routine as above would typically be called in a user-defimetialization routine to be
called in the Monte Carlo program. A complete set of such-dséned routines could look as
follows:

module my_kaleu
use avh_kaleu
use avh_kaleu_model
use avh_kaleu_kinem
type(model_type) ,save :: mdl ! Masses and widths
type(kinem_type) ,save : kin ! Kinematics

type(kaleu_type) ,save :: obj ! Instance of the phase space g enerator
end module
subroutine my_init( process ,nfinst ,ecm ,nbatch,nstep,t hrs )

use my_kaleu

integer ,intent(in) 1 process(-2:17),nfinst,nbatch,ns tep

real(kind(1d0)) ,intent(in) :: ecm,thrs
type(vertx_type) :: vix
call my_model( mdl,vtx )
call kaleu_put_process( mdl,vtx,kin,obj ,process ,nfins t ,ecm )
call kaleu_init_adapt( mdl,obj ,nbatch,nstep,thrs )
end subroutine

subroutine my_gnrt( discard ,pkaleu )
use my_kaleu
logical ,intent(out) :: discard
real(kind(1d0)) ,intent(out) :: pkaleu(0:3,-2:17)
call kaleu_gnrt( mdl,kin,obj ,discard ,pkaleu )
end subroutine

subroutine my_wght( weight )
use my_kaleu
real(kind(1d0)) ,intent(out) :: weight
call kaleu_wght( mdl,kin,obj ,weight )
end subroutine

subroutine my_collect( weight )
use my_kaleu
real(kind(1d0)) ,intent(in) :: weight
call kaleu_collect( obj ,weight )
end subroutine
The modulany_kaleu contains essentially what in a traditionadRTRAN program would
be the common blocks. The items are of public derived typé pitvate components, so the
user can only declare them and pass them to routines frang . By declaring them as arrays,
several instances of the program can be created. The ueedieoutines above are wrappers
of KALEU-routines which need the itemsiny_module as arguments.
The initialisation routinemy_init  takes the process as input, and the particles should

have the same integer labelling as in the user-defmgdmodel. The entries—2 and—1 of
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process are the initial-state particles, the (strictly) positiverges contain the final-state par-
ticles. The integenfinst  is the number of final-state particles. The inpatnis the center-
of-mass energy. The numbembatch , nstep andthrs are related to the multi-channel
optimization. This happens instep steps ofnbatch non-zero weight events. After these
nstep steps, each channel with a weight smaller tttas times the average channel weight
at the off-shell current it belongs to is discarded.

KALEU determines limits on two-particle invariants based on tlesses of final-state par-
ticles, but these may be equal zero and in a practical caionléhere will be phase space cuts
present. The user may translate these into two-partickeriemt mass cuts, and feed them to
KALEU for more efficient phase space generation with

call kinem_updt_smin( kin ,smin )

The entriessmin(1:nfinst,1:nfinst) of the arraysmin(-2:17,-2:17) should be
minima to final-final state two-particle invariants, and #mriessmin(-2:-1,1:nfinst)

should be negative, and should be maxima to final-initidestao-particle invariants. The array
is considered to be symmetric.

All arguments of the generation routimey _gnrt are output. If the logicatliscard is
true, the phase space point should get weight zero, andtinepkaleu  must not be used. If
discard is false,pkaleu contains the momenta, including those of the initial-spatdicles.
The third routinemy_wght returns the weight associated with the most recently gésphase
space point, and the final routimey_collect takes the full weight, including the integrand,
as input for optimization purposes.

The routines above would suffice to deal withe™ scattering. In case the user would like to
generate events for hadron-hadron scattering, initetbsnomenta can be provided ta\Keu
for each event with

call kinem_inst( kin ,discard ,pkaleu )

This routine should be called just befdtaleu_gnrt . The arraypkaleu has the same for-
mat as before, but is input here. The entp&aleu(0:3,-2) andpkaleu(0:3,-1) are
taken as the initial-state momenta. The logidecard is output, and is true if something
is wrong with the momenta. Alternatively, the user can letLKu deal with thex-variables
within collinear factorization. For this option, one iternoaild be added to the module, and a
few routine calls should be added. An example is given in AplpdAl The optimization of the
generation of the-variables is performed with the help oARNI.

An example of the use of more instances of the program is givAppendixB.

4 Resaults

In order to assess the performance and applicabilityafd, some results existing in literature
are reproduced.



Final state MEGIC++ H/PHEGAS H/KALEU(vV100)(16)  Neval

bbud du 49.74(21)  50.20(13) 50.33(17)(05) 7.186e+6
bbuilgg 9.11(13) 8.83(04) 8.80(09)(03) 4.846e+6
bb gggg 24.09(18)  23.80(17) 23.80(33)(10) 3.627e+6
bbude v, 17.486(66)  17.492(41) 17.527(58)(18) 8.357e+6
bbetvee v,  5.954(55)  5.963(11) 5.938(18)(06) 8.453e+6
bbetv,u v, 5.865(24)  5.868(10) 5.864(19)(06) 7.812e+6
bbutv,u v, 5.840(30)  5.839(12) 5.829(19)(06) 8.069e+6

Table 2: Cross sections in [fb] for someeé e~ — 6f processes as in [29]. The numbers in the
column “AMEGIC++” and “H/PHEGAS’ are taken directly from that paper. The numbés,
refers to the run with “H/KALEU".

Table2, Tablel3, Tabl€ 4 and Table 5 show some results'for — 6f processes as presented
in [29]. It concerns all processesgs = 500 GeV, and “with QCD” if applicable. The numbers
in the columns “AMEGIC++” and “H/PHEGAS’ are taken from that paper. The numbers in the
column “H/KALEU” were obtained by replacingHEGAS with KALEU in the HELAC/PHEGAS
system. In[[29] results where obtained usiid§ phase space points before cuts. It is, however,
not clear whether this includes an optimization phase. €kalts with KALEU were obtained
with 107 phase space points before clitsudingoptimization. In order to compare the perfor-
mances, both the standard deviatioand /10 o are presented explicitly for the latter. Some
results with “H/FHEGAS’ have been rounded further than in the original paper fortgiaThis
leads to an ambiguity for one value, which has been higléghtThe optimization was per-
formed in10 steps of50 x 10° phase space points after cuts. These were not included in the
estimation of the cross section. The last column in the taptesents the total number of phase
space points passing the cuts and leading to a matrix eleswahiation, including th&00 x 10°
evaluations used for optimization.

Table[6 shows some results fere~ — 8f processes as presented [inl[30]. It concerns
some processes withy = 130 GeV andm; = 174.3GeV, aty/s = 800 GeV and with QCD.
The numbers in the column ‘KRLOMAT” are directly taken from that paper. The numbers in
the column “HELAC/KALEU” were again obtained by replacingiPGAs with KALEU in the
HELAC/PHEGAS system. They were obtained with® phase space points before cuts, including
optimization. The optimization was performedlid steps ofl 00 x 10® phase space points after
cuts, which were not included in the estimation of the cressisn. The last column in the tables
presents the total number of phase space points passingtthard leading to a matrix element
evaluation.

In order to present some results for hadron-hadron catissi'ckALEU has been connected
with ALPGEN [7]. This program deals with partonic subprocesses in hratiadron collisions
in one Monte Carlo run, making an optimized choice of a subgse to be generated for each
event. Because KLEU can provide an independent generator for each subprotess), easily



Final state MEGIC++  H/PHEGAS H/KALEU(V100)(T6)  Neval
e eturdd 1.237(15) 1.265(05) 1.274(25)(08) 5.625e+6
e etulte et 6.58(23)e-3  6.61(08)e-3 6.55(41)(13)e-3 4.364e+6
with | e"efutwp pt  9.25(17)e-3  9/B|(07)e-3 9.17(18)(06)e-3 4.164e+6
Higgs | veve ud di 2.36(7) 2.43(1) 2.46(3)(1) 7.141e+6
veveude v,  0.916(30) 0.912(05) 0.910(16)(05) 7.660e+6
Veveudp v,  0.878(27) 0.889(05) 0.897(11)(03) 8.516e+6
e eturdd 1.0514(97)  1.0445(51) 1.0561(68)(21) 5.076e+6
e etulte et 4.082(56)e-3 4.214(46)e-3  4.174(77)(24)e-3  3.377e+6
no e etutp put 5.805(67)e-3 5.828(49)e-3  5.852(83)(26)e-3  2.991e+6
Higgs | veve ud di 0.4755(21)  0.4711(24) 0.4745(18)(06) 7.135e+6
veveude v,  0.16033(63) 0.16011(78) 0.16123(47)(15) 9.018e+6
Veveudp v,  0.14383(53)  0.14439(65) 0.14367(36)(11) 9.239e+6

Table 3: Cross sections in [fb] for somee e~ — 6f processes as in [29]. The numbers in the
column “AMEGIC++” and “H/PHEGAS’ are taken directly from that paper. The numbés,
refers to the run with “H/KALEU".

Final state MEGIC++ H/PHEGAS  H/KALEU(vV/100)(10) Neval
wptpveetve  0.03747(29) 0.03749(32) 0.03740(31)(10) 4.868e+6
with Wt ud e Ve 0.1106(22) 0.1090(07) 0.1083(10)(03) 5.245e+6
Higgs | w u" pute et 2.731(065)e-3 2.691(042)e-3 2.737(108)(034)e-3 2.285e+
et uu dd 0.2634(22) 0.2642(15) 0.2638(22)(07) 5.218e+6
TR TRAETAVR VST 8.767(65)e-3  8.978(58)e-3 8.882(87)(28)e-3 3.614e+6
pwptpveetve  0.03054(23) 0.03092(19) 0.03079(22)(07) 4.512e+6
no Wt ud e Ve 0.08911(53) 0.08925(48) 0.08932(51)(16) 4.800e+6
Higgs | w umuwute et 2.280(66)e-3 2.277(62)e-3 2.224(82)(26)e-3 1.847e+6
wptuu dd 0.2092(12) 0.2075(13) 0.2092(10)(03) 5.152e+6
TR TRAETAVR VST 6.134(29)e-3  6.108(27)e-3 6.072(41)(13)e-3 3.907e+6

Table 4: Cross sections in [fb] for somee e~ — 6f processes as in [29]. The numbers in the
column “AMEGIC++” and “H/PHEGAS’ are taken directly from that paper. The numbés,
refers to the run with “H/KALEU".
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| Final state MEGICH+ H/PHEGAS  H/KALEU(V100)(16)  Neva
with Higgs | p~ " bbbb  30.96(0.60)e-3 30.19(0.43)e-3  29.96(1.42)(0.45)e-3 5316

noHiggs | p p"bbbb  6.308(24)e-3  6.364(21)e-3 6.377(26)(08)e-3  4.918e+6

Table 5: Cross sections in [fb] for somee e~ — 6f processes as in [29]. The numbers in the
column “AMEGIC++” and “H/PHEGAS’ are taken directly from that paper. The numbés
refers to the run with “H/KALEU".

Final state GRLOMAT HELAC/KALEU Neval

bbbbv,ut T v,  35.9(1) 36.17(15) 18.12e+6
bbbbveet eV, 36.1(1) 36.37(18) 16.82e+6
bbbbud v, 100.6(2) 100.50(46)  13.21e+6
bbbbcse v, 100.5(3) 100.52(47)  12.63e+6
bbbbudsc 314(2) 314.1(1.4) 13.50e+6
bbbbud dr 314(1) 320.1(1.9) 13.36e+6

Table 6: Cross sections in [ab] for soraee™ — 8f processes as in [30]. The numbers in the
column “CARLOMAT” are taken directly from that paper. The numbé&, refers to the run with
“HELAC/KALEU”.

be merged into the structure ofLAGEN. This has been done such, thatGEN still makes
the choice of a subprocess for each event, and that, givesuthprocess, KLEU generates the
variablesx, x, for the PDFs and the final-state momenta. It should be notedever, that for
the purpose of this write-up, the connection between thepwgrams has been established only
to the level of cross section calculation and not, for examtal full event un-weighting. Table 7
presents results for processes of the type— tt-+Njets andpp — tfb‘t;thets. The numbers
in the column “ALPGEN’ are taken directly from[[[7]. The user ofi®®GEN chooses the number
of matrix element evaluations for a Monte Carlo run, not thenber of generated phase space
points before cuts. The last column presents the numberatdi&ions for the run with KLEU,
including those used for optimization but omitted for théreation of the cross section.

S5 Summary

The program KLEU for parton-level phase space generation was presenteén @ie masses
and widths of all real and virtual particles, it generatepamtance sampled phase space points
for the scattering process under consideration. Giverotlaéweight of each event, including the
value of the integrand, it optimizes further to this intagtan the fly. It is written in BRTRAN,
such that it can independently deal with several scattgningesses in parallel.
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Final state APGEN ALPGENKALEU Neval

tt + 2jets 255(1) 254.38(73) 11.4e+6
tt + 3jets 111.5(5) 111.09(43) 11.4e+6
tt + 4jets 42.4(4) 42.72(45) 11.6e+6
tt + 5jets 14.07(16) 14.36(13) 11.6e+6
tt + 6jets 4.36(8) 4.369(43) 13.0e+6
ttbb 1.35(1) 1.3490(21) 10.2e+6
ttbb + ljet  1.47(2) 1.4624(42) 10.4e+6
ttbb + 2jets  0.94(2) 0.9280(40) 10.6e+6

ttbb + 3jets  0.457(8) 0.4522(28) 10.6e+6
ttbb 4 4jets  0.189(4) 0.1851(14) 6.2e+6

Table 7: Cross sections in [pb] for some collision processes at LHC as in [7]. The numbers
in the column “ALPGEN’ are taken directly from that paper. The numbés,, refers to the run
with “ALPGEN'KALEU".
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A Generation of x-variables

An example of user-defined routines which can be used forehemtion of events for hadron-

hadron scattering within collinear factorization.

module my_kaleu
use avh_kaleu
use avh_kaleu_model
use avh_kaleu_kinem
type(model_type) ,save ::
type(kinem_type) ,save ::
type(kaleu_type) ,save ::
type(strf_type) ,save ::
end module

mdl ! Masses and widths

kin ! Kinematics

obj ! Instance of the phase space g
str ! Concerns the generation of x1

subroutine my_init( process ,nfinst ,ecm ,nbatch,nstep,t
use my_kaleu
integer ,intent(in) . process(-2:17),nfinst,nbatch,ns
real(kind(1d0)) ,intent(in) :: ecm,thrs
type(vertx_type) :: vix
call my_model( mdl,vtx )
call kaleu_put_process( mdl,vtx,kin,obj ,process ,nfins
call kaleu_init_adapt( mdl,obj ,nbatch,nstep,thrs )
call kaleu_init_strf( str,kin ,0d0 )
end subroutine

subroutine my_gnrt( discard ,xlkaleu,x2kaleu,pkaleu )
use my_kaleu
logical ,intent(out) :: discard
real(kind(1d0)) ,intent(out) :: ,xlkaleu,x2kaleu,pkale
call kaleu_gnrt_strf( str,kin ,discard ,x1kaleu,x2kaleu
call kaleu_gnrt( mdl,kin,obj ,discard ,pkaleu )

end subroutine

subroutine my_wght( weight )
use my_kaleu
real(kind(1d0)) ,intent(out) :: weight
real(kind(1d0)) :: ww
call kaleu_wght( mdl,kin,obj ,weight )
call kaleu_wght_strf( str ,ww )
weight = weight *ww

end subroutine

subroutine my_collect( weight )
use my_kaleu
real(kind(1d0)) ,intent(in) :: weight
call kaleu_collect( obj ,weight )
call kaleu_collect_strf( str ,weight )
end subroutine

The last argument dfaleu_init_strf

enerator
X2

hrs )

tep

t ,ecm )

u(0:3,-2:17)
)

is a minimum value for ar-variable. If this number

is smaller than the number dictated by kinematical limits,latter is used. The outpxikaleu
andx2kaleu of the generation routine are the values at which the PDFsldie evaluated.
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B Exampleof the use of moreinstances

As an example of the use of more instances of the program sirecould want to treat several
subprocesses in one Monte Carlo run, choosing anotheretdgs for each event. Then the user-
defined routines could get one more integer input varigislec  determining the subprocess,

and could look like

module my_kaleu
use avh_kaleu
use avh_kaleu_model
use avh_kaleu_kinem
integer ,parameter :: nmax = 20;
type(model_type) ,save :: mdl I Masses and widths
type(kinem_type) ,save :: kin(nmax) ! Kinematics
type(kaleu_type) ,save : obj(nmax) ! Instance of the phase
type(strf_type) ,save :: str(nmax) ! Concerns the generati
end module

subroutine my_init( iproc ,process ,nfinst ,ecm ,nbatch,n
use my_kaleu
integer ,intent(in) .. iproc,process(-2:17),nfinst,nba
real(kind(1d0)) ,intent(in) :: ecm,thrs
type(vertx_type) :: vix
call my_model( mdl,vtx )
call kaleu_put_process( mdl,vtx,kin(iproc),obj(iproc)
call kaleu_init_adapt( mdl,obj(iproc) ,nbatch,nstep,th
call kaleu_init_strf( str(iproc),kin(iproc) ,0d0 )
end subroutine

subroutine my_gnrt( iproc ,discard ,xlkaleu,x2kaleu,pka
use my_kaleu
integer ,intent(in) :: iproc
logical ,intent(out) :: discard
real(kind(1d0)) ,intent(out) :: ,xlkaleu,x2kaleu,pkale
call kaleu_gnrt_strf( str(iproc),kin(iproc) ,discard ,x
call kaleu_gnrt( mdl,kin(iproc),obj(iproc) ,discard ,pk
end subroutine

subroutine my_wght( iproc ,weight )
use my_kaleu
integer Jintent(in) :: iproc
real(kind(1d0)) ,intent(out) :: weight
real(kind(1d0)) :: ww
call kaleu_wght( mdl,kin(iproc),obj(iproc) ,weight )
call kaleu_wght_strf( str(iproc) ,ww )
weight = weight *ww

end subroutine

subroutine my_collect( iproc ,weight )
use my_kaleu
integer ,intent(in) :: iproc
real(kind(1d0)) ,intent(in) :: weight
call kaleu_collect( obj(iproc) ,weight )
call kaleu_collect_strf( str(iproc) ,weight )
end subroutine
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