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1 Introduction

Multi-jet final states play an important role in the study of high-energy collisions. They provide
in fact interesting signatures for several phenomena, both within the Standard Model (e.g. top-
pair production), and beyond it (e.g. multi-jet decays of supersymmetric particles such as gluinos
and squarks). The accurate determination of the properties of these phenomena requires a good
understanding of the properties of the usually large multi-jet QCD backgrounds, which can distort
the shapes of signal distributions and affect the measurement of quantities such as resonances’
masses. In the past few years, several theoretical developments have allowed the calculation of very
complicated multi-parton processes in QCD (for a review, see [1]) 3. For example, the complete
set of leading-order (LO) background processes to the production and decay of top-quark pairs in
hadronic collisions is known for both the fully hadronic decays [2], and the eν+4-jet decays [3].

While significant progress has been made in the field of one-loop corrections (for a review
see [4]), quantitative studies of multi-jet processes (with n > 3) can only be done today using
tree-level results, which are the subject of the present work. There are several reasons for wanting
to improve the tools currently available to perform these calculations.

1. First of all, interesting final states with larger jet multiplicities will become available with
the next generation of colliders (LHC and NLC). This will hold both for standard QCD
processes, where the huge available phase-space will allow production of many high-ET

jets, and for potential signals of new physics (a good example being cascade decays of heavy
squarks or gluinos with R-parity non-conservation, where final states with over 10 jets would
be a typical signature). This calls for improved algorithms, to allow the calculation of cross-
sections for complicated processes within reasonable amounts of computer time.

2. Secondly, one would like to be able to complement the calculation of parton-level matrix
elements with the evaluation of the full hadronic structure of the final state. This is a
key ingredient for a satisfactory study of both signal and background components and for
a complete comparison between theory and data. It involves the consistent merging of
the matrix-element computation with the parton-shower evolution, a problem which has not
been considered in the development of previous tools for the evaluation of multi-jet processes.

While relations are known [5] which allow to systematically evaluate high-order tree-level
processes in a recursive fashion, the complexity of the algorithm grows very quickly and makes
progress beyond the processes listed above very hard. Several approximations have therefore been
introduced [6, 7], to evaluate with rather low computing time and acceptable accuracy cross-
sections for many partons in the final state. Nevertheless, the knowledge of the exact parton level
matrix elements will always be needed, in order to assess the reliability of the approximations
used.

In this work we present an approach to the calculation of tree-level matrix elements for multi-
parton final states which addresses both of the above problems, and therefore improves on the
currently available algorithms. The key element of this proposal is the use of the algorithm ALPHA,
developed by two of us [8] for the evaluation of arbitrary multi-parton matrix elements. This
algorithm determines the matrix elements from a (numerical) Legendre transform of the effective

3We shall include under the label QCD also all processes with the emission of electro-weak gauge bosons, such
as associated production of W ’s and jets.
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Process n = 7 n = 8 n = 9 n = 10

g g → n g 559,405 10,525,900 224,449,225 5,348,843,500

qq̄ → n g 231,280 4,016,775 79,603,720 1,773,172,275

Table 1: Number of Feynman diagrams corresponding to amplitudes with different num-
bers of quarks and gluons.

action, using a recursive procedure which does not make explicit use of Feynman diagrams. The
algorithm has a complexity growing like a power in the number of particles, compared to the
factorial-like growth that one expects from naive diagram counting. This is a necessary feature of
any attempt to evaluate matrix elements for processes with large numbers of external particles,
since the number of Feynman diagrams grows very quickly beyond any reasonable value. For
example, the number of tree-level Feynamn diagrams corresponding to a process with ng gluons
and nq pairs of quarks (with nq = 0, 1), is given by the following formula 4:

Ndiag =





(

y
∂

∂x
+ xy3 ∂

∂y
+ z2y

∂

∂z

)ng+2nq−3

x1−nq y3−2nq z2nq





x=y=z=1

(1)

A similar formula can be constructed for processes with more than 1 quark pair. The number
of diagrams relevant for some of the examples considered in this paper are collected in Table 1.
These numbers clearly illustrate the problems encountered when trying to evaluate the amplitudes
by calculating each individual diagram, whether by algebraic or by numerical means.

ALPHA has been shown to operate very successfully in the case of purely electroweak pro-
cesses [9], and will be reviewed here in Section 2. Its application to the case of QCD, although
straightforward, requires some care due to the rapid increase of the number of colour configurations
with the number of external coloured particles. Furthermore, the choice of how to organise the
sum over colour structures has important implications for the possibility to merge the evaluation
of a given matrix element with the successive parton-shower QCD evolution. Several options are
available, in principle, to deal with the summation over all possible colour configurations. They
will be discussed in Section 3, where our strategy for an efficient generation of Monte-Carlo events,
combined with the possibility to generate colour configurations suitable for a parton-shower evo-
lution, will be presented. Some numerical examples of applications of this tecnique to the case
of 2 → 8 parton processes in hadronic collisions are given in Section 4. A more complete study,
including the treatment of associated production of jets and electroweak gauge bosons and the de-
scription of a complete event generator interfaced to a parton-shower program such as HERWIG [10],
will be presented in the future.

4 The formula can be easily derived as follows. For a given diagram consider the triplet (p, q, g), where p is the
number of 3-gluon vertices, q is the total number of external quark legs and internal quark propagators, and g is
the total number of gluonic external legs and internal propagators. The number of diagrams obtained by attaching
an additional gluon in all allowed ways is given by: p diagrams of type (p − 1, q, g + 1), plus q diagrams of type
(p, q + 1, g + 1) plus g diagrams of type (p + 1, q, g + 2). These triplets can be obtained by applying the operator
y∂/∂x+xy3∂/∂y+z2y∂/∂z to the function xp yg zq. Their multiplicities are given by the coefficients of the relative
monomials, and the total number of generated diagrams is extracted by setting x = y = z = 1 in the polynomial
thus obtained. Repeated iteration of this operator on the three-point diagrams ggg and qq̄g, represented by the
monomials x y3 and y z2, gives the desired result.
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Independently of our efforts, work by Draggiotis, Kleiss and Papadopoulos [11] has recently
addressed the problem of the efficient generation of multi-parton QCD final states using the
ALPHA algorithm. In this work they turn the summation over colours into an integration over a
continuous set of variables, slightly gaining in computational accuracy over the more standard
colour-summation technique presented in our work. The integration technique, however, does not
lend itself in an obvious way to the efficient merging of the parton-level calculation with the parton-
shower evolution. In either case, it is quite clear that improvements in the numerical efficiency
of these calculations will be possible, and work should be devoted in the future to find the best
compromise among all different requirements to be met for a faithful and efficient representation
of these highly complex processes.

2 The ALPHA algorithm

In reference [8], a new approach to the computation of tree level scattering amplitudes was in-
troduced. This approach, based on the numerical Legendre transform of the effective action, is
particularly useful for the automatic calculation of multi-particle processes. This technique was
implemented in a Fortran code [8] which has been succesfully used to study several intricated
electroweak processes [9]. For the sake of completeness, we review in this Section the ALPHA al-
gorithm; the interested reader can find a more detailed discussion in the original paper [8], which
includes an explicit analytic example for the λφ3 theory.

Let Γ be the one-particle-irreducible generator of the Green functions for a given theory. Then
the computation of the S-matrix requires the evaluation of the Legendre transform, Z, of Γ:

Z(Jα) = −Γ(φα) + Jα(x)φα(x) (2)

where φα are the classical fields defined as the solutions of

Jα =
δΓ

δφα
, (3)

and the Jα play the role of classical sources. In general the Lagrangian contains several fields, with
different spin and internal quantum numbers. It may also contain interactions with an arbitrary
number of fields; for our purposes it is better to rearrange the Lagrangian into an equivalent form
which includes only trilinear interactions: this can be achieved by introducing a proper set of
auxiliary fields5. The Lagrangian in momentum space is

L =
1

2

∫

d4p̄ d4q̄ δ̄(p + q) Π̃αβ(p2) φα(p) φβ(q) +

+
1

6

∫

d4p̄ d4q̄ d4k̄ δ̄(p + q + k) φα(p) φβ(q) φγ(k) Oαβγ(p, q, k) ,

where the greek indices are a compact notation for Lorentz indices, internal symmetry indices,
flavour etc. and where d4p̄ = d4p/(2π)4 and δ̄ = (2π)4δ4. Π̃αβ(p2) is the inverse propagator
and Oαβγ(p, q, k) is a generic function of the momenta. In the case of translationally invariant

5 For example a term of the type λφ4 can be replaced by the equivalent form λφ2X − 1/4X2, where X is an
auxiliary field. The equation of motion for the auxiliary field, X = 2λφ2, makes this equivalence manifest.
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local interactions O is a polynomial in the momenta. To obtain the connected Green function
Gαβ···γ(p1 · · · pn) from the above Lagrangian we introduce the classical sources

Jα(q) =
n
∑

i=1

aα
i δ̄(q − pi) (4)

where the aα
i carry the same quantum numbers as the source Jα. With this choice of the Jα the

amplitude A is given by6:

A =
∂Z

∂aα
1 . . . ∂aγ

n
|aα

1
=0,...,aγ

n=0 (5)

The equations of motion of eq. (3) can be written as

φα(q) = Π̃−1
αλ(q)

[

Jλ(q) − 1

2

∫

d4p̄ d4k̄ δ̄(q + k + p) φβ(k) φγ(p) Oλβγ(q, k, p)
]

. (6)

It is clear that this equation for φ(q) can be solved perturbatively with respect to the interaction
Oαβγ (or, equivalently, with respect to the aα

i ) and the (t + 1)-th order of this perturbative series
is obtained by inserting the expansion of the φα(q) up to the t-th order in the right-hand side of
eq. (6). To recover the functional derivative of eq. (5) and avoid unnecessary computations it is
useful to introduce the prescription to drop out terms which contain powers of the aα

j larger than
one, at any iteration step. With this prescription, using the initial condition (4) and the recursive
relation (6), we can prove by induction that the solution φα(q) is of the form

φα(q) =
2n−2
∑

j=1

bα
j δ̄(q − Pj) (7)

with
Pj = ci

j pi ci
j = 0, 1. (8)

Here an important point should be noticed: the Lagrangian L of eq. (4) is reduced to a simple
function of a finite number of bα

j variables, by means of eq. (4) with the constraint given in eq. (8).
Namely, plugging the explicit expressions of eq. (7) into the Lagrangian of eq. (4) we obtain

L =
1

2

∫

d4p̄ d4q̄ δ̄(p + q) Π̃αβ(P 2
j ) δ̄(p − Pj) δ̄(q − Pr) bα

j bβ
r +

+
1

6

∫

d4p̄ d4q̄ d4k̄ δ̄(p + q + k) Oαβγ(p, q, k) δ̄(p − Pj) δ̄(q − Pr) δ̄(k − Pt) bα
j bβ

r bγ
t (9)

We define the matrices

∆αβ
jl =

∫

d4p̄ d4q̄ δ̄(p + q) Π̃αβ(P 2
j ) δ̄(p − Pj) δ̄(q − Pl) (10)

and
Dαβγ

jlm =
∫

d4p̄ d4q̄ d4k̄ δ̄(p + q + k) Oαβγ(p, q, k) δ̄(p − Pj) δ̄(q − Pl) δ̄(k − Pm). (11)

6For the sake of simplicity, we omit from this expression the explicit truncation of the external propagators.
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After integration they become:

Dαβγ
jlm =











Oαβγ(Pj , Pl, Pm) if Pj + Pl + Pm = 0

0 if Pj + Pl + Pm 6= 0
(12)

∆αβ
jl =











Π̃αβ(P 2
j ) if Pj + Pl = 0

0 if Pj + Pl 6= 0.
(13)

We recall that, in the above expressions, Oαβγ is the interaction in momentum space, Π̃αβ is the
inverse propagator and the quantities Djlm and ∆jl satisfy the four-momentum conservation by
construction.

The function Z then becomes

Z = aα
i bα

i − 1

2
bα
j bβ

l ∆αβ
jl − 1

6
bα
j bβ

l bγ
m Dαβγ

jlm . (14)

Equation (6) provides us with a set of iterative relations for the bα
j : after the substitution in

eq. (7), and performing the integrals over the momenta, we are left with a relation which gives us
each bj at the order t (bj,t) in the interaction coefficient O, in terms of the bj,r (with r < t)7

Namely, we have [8]

bα
j,0 = aα

j j = 1, n

bα
j,0 = 0 j > n n= number of external particles

bα
j,1 = −1

2
(∆−1)αβ

j,m Dβγδ
m,k,l

∑

l 6=k

bγ
k,0b

δ
l,0 (15)

...
...

bα
j,t = −1

2
(∆−1)αβ

j,m Dβγδ
m,k,l

∑

r+s=t−1

bγ
k,r bδ

l,s

where the condition l 6= k derives from the constraint in eq. (8). The full scattering amplitude is
recovered by plugging bα

j =
∑

t bj,t in eq. (14) and keeping only terms which are proportional to

aα
1aβ

2 · · ·aγ
n (the only ones that contribute to the limit a → 0)

Ap1,...,pn
= −1

2

∑

s+r=n−2

bα
j,r ∆αβ

j,l b
β
l,s −

1

6

∑

s+r+t=n−3

Dβγδ
j,k,l bβ

j,r bγ
k,s bδ

l,t + bα
j,n−2 aβ

l Π̃αβ
j,l . (16)

Notice that in eqs. (14)–(16) repeated indices are summed over, in particular repeated latin indices
are summed from 1 to 2n − 2, namely over the non-zero momenta contributing to eq. (7).

Equation (16) can be further simplified using the equations of motion. The solution bj to
∂Z/∂bj = 0, has been found for any value of the expansion parameter, thus the minimization is
satisfied order by order in the perturbative expansion, i.e. ∂Z/∂bj,t = 0. For simplicity, let us
discuss the case of an odd number of particles n. It is easy to check by inspection that each term
in eq. (16) can contain at most one bj,t with t > n/2− 1. Therefore we can reorganize eq. (16) by

7In the following j, k, l, m will always label quantities that are in one to one correspondence with the momenta
Pj in eq. (7), whereas r, s, t will denote the order of the perturbative expansion.
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collecting each bj,t with t > n/2 − 1. The coefficients of these terms cannot depend on other bj,t′

with t′ > n/2− 1 (they are only polynomial in bj,t̄ with t̄ < n/2− 1) and therefore we can simply
drop such terms from eq. (16). The above simplification also applies to the case of even n, and it
amounts to keeping only the trilinear terms in eq. (16) and limiting the summation to a subset of
the bα

j [8]. Then, an additional restriction on the quantities ci
j in eq. (8) is obtained:

Ap1,...,pn
= −1

6

∑

j,k,l∈P

∑

s+r+t=n−3

Oβγδ
j,k,l bβ

j,r bγ
k,s bδ

l,t , (17)

with:

j ∈ P if











∑

i c
i
j < n/2
or

∑

i c
i
j = n/2, with c1

j = 1 .
(18)

A final remark is in order here. In eqs. (15) one has to take properly into account Bose/Fermi
statistics. Formally this can be achieved by introducing a set of Grassman variables ǫj , so that
ǫjǫk +ǫkǫj = 0, and setting u(p) → ǫu(p) for the fermion sources, where u(p) is a vector of ordinary
numbers. In practice this means that each term in the sums of eqs. (15) enters with a relative
sign, depending on the order of the bj .

The advantage of the iterative eqs. (15) is that they can now be easily implemented in a
Fortran code. Note that the recursive relations have been obtained for a completely generic
Lagrangian, without using any specific property of the interaction (e.g. identities on the structure
constants of SU(3), or the Lorentz structure of the interaction etc.). With this algorithm we can
thus compute the scattering amplitude for any physical initial and final states. In particular,
any colour structure can be assigned to the external legs (while for example the Berends-Giele’s
recursive relations [15] have only been derived for colour-ordered amplitudes) and weak bosons (as
well as other particles beyond the Standard Model) can be incorporated. Finally, the algorithm
has an exponential growth of the CPU time with the number of external particles (instead of a
factorial growth) and it can take into account the particle masses without increasing the computing
time.

As a final remark, we point out that the algorithm presented above can be further optimised
in the specific case of the QCD Lagrangian. In fact the pure Yang-Mills Lagrangian

LY M = −1

4
F a

µνF
a
µν (19)

can be rewritten as

LY M = −1

2
Ba

µνB
a
µν +

1

4
Ba

µνF
a
µν (20)

This form of the Lagrangian has the virtue that a single interaction term of the form BAA is left,
instead of the two interaction terms which are present in eq. (19). This saves CPU time when
performing the iteration step given in eq. (15). A further reduction in the algorithm complexity
can be obtained by using the Coulomb gauge Aa

0 = 0, which reduces the number of components
of the field Aa

µ from four to three and those of the field Ba
µν from six to three.

3 Summing over colours

The proper bookkeeping of the colour structure of QCD processes has been one of the main
ingredients in the simplification of the calculations of multi-parton processes in QCD which took
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place in the past years. It has been shown [12] that by expanding the matrix element for a given
QCD process in a particular colour basis, the coefficients of each colour structure in this basis enjoy
important properties which make their calculation much simpler. As an example, the scattering
amplitude for n gluons with momenta pµ

i , helicities ǫµ
i and colours ai (with i = 1, . . . , n), can be

written as:
M({pi}, {ǫi}, {ai}) =

∑

P (2,3,...,n)

tr(λa1 λa2 . . . λan) A(1, 2, . . . , n) . (21)

The sum extends over all permutations P of (2, 3, . . . , n), and the functions A(1, 2, . . . , n) (known
as dual or colour-ordered amplitudes) are gauge-invariant, cyclically-symmetric functions of the
gluons’ momenta and helicities8. All of the colour-dependence is absorbed in the trace coefficients,
and the dual amplitudes are colour-independent. In these special bases some particular helicity
amplitudes [14] have very simple analitical expressions [12, 5], regardless of the number of external
partons, and all amplitudes obey recursive relations [5] which make it possible to numerically
evaluate them systematically for arbitrarily complex processes [16, 15, 13]. Thanks to additional
properties of these functions, only (n− 2)! of them are truly independent, and the remaining ones
can be obtained from specific linear combinations [13].

Furthermore, when summing over colours the amplitude squared, different orderings of dual
amplitudes are orthogonal at the leading order in 1/N2:

∑

col′s

|M({pi}, {ǫi}, {ai})|2 = Nn−2(N2 − 1)
∑

P (2,3,...,n)

[

|A(1, 2, . . . , n)|2 +
1

N2
(interf.)

]

. (22)

It is therefore possible to achieve an accuracy to leading-order in 1/N2 by neglecting the evaluation
of the subleading interferences, reducing significantly the complexity of the numerical evaluations.

Similar expansions hold for processes involving one [17, 5] or more [18] quark pairs. In the
case of amplitudes with one quark pair, for example, one has the following expansion:

M(qα, q̄β, {pi}, {ǫi}, {ai}) =
∑

P (1,2,...,n)

(λa1 λa2 . . . λan)αβ A(q, q̄, 1, 2, . . . , n) (23)

where the gauge-invariant functions A(q, q̄, 1, 2, . . . , n) obey remarkable properties similar to those
of the gluonic amplitudes.

Dual amplitudes can be easily evaluated using the ALPHA algorithm. Since the dual amplitudes
A are independent of the number of colours, they can be calculated exactly by taking N sufficiently
large. Considering for example the case of an n-gluon amplitude, we can choose N > n and select
the following set of λ matrices to represent the gluon colours a1, . . . , an:

(λai)jk =
1√
2
δi,jδi+1,k (i = 1, . . . , n − 1) , (λan)jk =

1√
2
δn,jδk,1 (24)

With this colour choice the dual amplitude corresponding to the permutation (1, 2, . . . , n) is pro-
portional to the full amplitude, as the only non-vanishing colour factor in eq. (21) is

tr(λa1λa2 . . . λan) =
1

2n/2
. (25)

8For simplicity we will just use the indices i = 1, . . . , n, as opposed to using the full symbols pi and ǫi, to specify
the relevant permutation of momenta and helicities.
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Figure 1: Colour structure of the n-gluon amplitude in the large-N limit.

We explicitly calculated multi-gluon dual amplitudes using the large-N colour-matrices given
in eq. (24). We verified the correctness of the calculation for n up to 11 by comparing the
results for maximally helicity violating (MHV) amplitudes [14] (e.g. g+g+ → g+ · · · g+) with the
analytic expressions known exactly for arbitrary n [12, 5]. The input of the numerical evaluation
of the matrix element is a string containing the total number of gluons, their helicity state, and
their momenta. From these data, the amplitude is evaluated automatically. Since the evaluation
performed with the ALPHA algorithm does not treat the case of MHV amplitudes differently than
any other helicity combination, and since we checked the numerical calculation using several
different gauges (which allowed us to ensure that no accidental cancellation of individual diagrams
takes place), we are confident that our code correctly evaluates the dual amplitudes for arbitrary
helicity configurations. We extended this test to processes with one and two qq̄ pairs, where
analytic expressions are known for similar MHV amplitudes [1], and found perfect agreement.

The use of dual amplitudes for the evaluation of multi-parton processes has one valuable
feature, and one serious drawback. The valuable feature is the fact that dual amplitudes admit
a simple physical interpretation, which as we shall show makes them the required starting point
for the parton-shower evolution of the parton-level process. The serious drawback is that their
number grows factorially with n, so that while each individual dual amplitude can be easily and
quickly calculated, using the technique given above, the number of dual-amplitude calculations
which are necessary to get the full matrix element squared and summed over colours becomes soon
too large to be practical. In the rest of this Section we will first explain in more detail the role of
dual amplitudes for the parton-shower evolution of the hard process, and then present a way to
bypass the rapid growth of their multiplicity.

Dual amplitudes correspond to planar amplitudes in the N → ∞ limit of QCD. At large N ,
the colour structure given by the assignement in eq. (24) corresponds to having the colour flowing
from gluon 1 to gluon 2, from gluon 2 to gluon 3, and so on, until the colour of the last gluon
flows back to gluon 1 (see fig. 1). The identification of a specific colour flow makes it possible to
incorporate soft-gluon emission corrections to the hard process. In fact the soft-gluon emission
probability from a planar amplitude is given, in the large-N limit, by the incoherent sum over the
emission probabilities from each individual colour-string [19, 12, 15]. In the case of a multi-gluon
amplitude, for example, we get:

∑

col′s

|M(p1, . . . , pn, k)|2 k→0→ g2N
∑

P (1,2,...,n)

∑

i=1,...,n

(pi · pi+1)

(pi · k) (pi+1 · k)
|A(1, 2, . . . , n)|2 + O(1/N2) ,

(26)
where n + 1 and 1 are identified in the above equation. Inclusion of soft-gluon virtual corrections
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factorises in a similar fashion, and Sudakov form factors for the soft-gluon emission probability
can be defined, to next-to-leading logarithmic accuracy, to describe the parton-shower evolution
from any such colour-ordered process [19, 10]. Perfectly similar equations can be written in the
case of processes involving quark pairs.

The prescription to correctly generate the parton-shower associated to a given event in the
large-N limit is therefore the following:

1. Calculate the (n − 1)! dual amplitudes corresponding to all possible planar colour configu-
rations.

2. Extract the most likely colour configuration for this event on a statistical basis, according to
the relative contribution of the single configurations to the total event weight 9. Since each
dual amplitude is gauge invariant, the choice of colour-configurations is also a gauge-invariant
operation.

3. Develop the parton shower out of each initial and final-state parton, starting from the
selected colour configuration. This step can be carried out by feeding the generated event
to a Monte-Carlo program such as HERWIG, which is precisely designed to turn partons into

jets starting from an assigned colour-ordered configuration.

Notice that, if the dual amplitudes are evaluated for a specific helicity configuration, HERWIG will
also include spin-correlation effects in the evolution of the parton shower [20, 10].

With the physical value of N = 3, dual amplitudes corresponding to different permutations
will however interfere with each other, as shown in eq. (22). This interference is suppressed by
powers of 1/N2 [17], as well as by dynamical factors: for example, the behaviour of interference
terms is less singular near collinear or soft momentum configurations than the leading terms in
N . Within the 1/N2 approximation which is employed in the description of coherence effects in
the shower evolution [10], it is therefore consistent to neglect the interferences between different
dual amplitudes for the selection of the colour structure to be assigned to a given event. After
calculating the total weight of a given event, accurate to all orders in 1/N , we can thus still use
the procedure described in point 2 above to assign a definite colour configuration to the event
itself.

As a result, use of the dual-amplitude representation of a multi-gluon amplitude allows to
accurately describe not only the large-angle correlations in multi-jet final states, but also the full
shower evolution of the initial- and final-state partons with the same accuracy available in HERWIG

for the description of 2-jet final states.

In the N → ∞ limit the choice of the dual amplitude basis has also one important advantage.
Since interferences between different colour structures vanish in this limit, one can perform the sum
over colours by Monte-Carlo methods. Rather than evaluating the full matrix element squared,
summed over all colour structures, one can randomly select a dual colour structure on an event-
by-event basis, and just evaluate the corresponding contribution to the amplitude squared. An
overall multiplicative coefficient proportional to the number of dual colour configurations provides
the correct normalization. Assuming that, on average, all colour configurations contribute the
same amount to the cross-section, this approach is numerically more efficient than summing each

9Defining wi = |Ai|2 for each colour flow i, and Wi =
∑

k=1,...,i wk/
∑

k=1,...,n wk, the j-th colour structure will
be selected if Wj−1 ≤ ξ < Wj , for a random number ξ uniformly distributed over the interval [0, 1].
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event over all colours. Furthermore, one could optimise the selection of colour configurations, to
adapt it to possible differences in their individual overall contributions. This is similar to what is
usually done to perform the sum over quark and gluon helicities.

At finite N this procedure is not applicable anymore, as interferences between various colour
structures do not vanish. At the same time, the matrix describing all possible colour interferences
has a size growing like [(n − 1)!]2, which makes its storing and access highly inefficient.

We propose to solve this problem as follows. First of all we choose the following orthonormal
basis for the Gell-Mann λ matrices:

λ1 =
1√
2







0 1 0
0 0 0
0 0 0





 , λ2 =
1√
2







0 0 1
0 0 0
0 0 0





 , λ3 =
1√
2







0 0 0
1 0 0
0 0 0







λ5 =
1√
2







0 0 0
0 0 1
0 0 0





 , λ6 =
1√
2







0 0 0
0 0 0
1 0 0





 , λ7 =
1√
2







0 0 0
0 0 0
0 1 0







λ4 =
1

2







1 0 0
0 −1 0
0 0 0





 , λ8 =
1√
12







1 0 0
0 1 0
0 0 −2







In this basis, only a fraction of all possible 8n colour assignements gives rise to a non-zero am-
plitude. For each event, we randomly select a non-vanishing colour assignement for the exernal
gluons, and evaluate the amplitude M . The weight of the event is proportional to |M |2, multiplied
by the number of non-zero colour configurations. This is all we need if we are not interested in
evolving the event with the parton shower. If instead we want to generate the parton shower, we
first decide, with standard unweighting techniques, whether to accept the event. If the event is
accepted, we list all dual amplitudes contributing to the chosen colour configuration according to
eq. (21) and, among these dual amplitudes, we randomly select a colour flow on the basis of their
relative weight10.

In a 6-gluon amplitude, for example, a possible non-zero colour assignement is given by
(2, 7, 5, 6, 1, 3). Up to cyclic permutations, only three orderings of the colour indices give rise to
non-vanishing traces: tr(λ2 λ7 λ5 λ6 λ1 λ3), tr(λ2 λ6 λ1 λ5 λ7 λ3) and tr(λ2 λ7 λ3 λ1 λ5 λ6). Therefore
only three dual amplitudes contribute to the full amplitude: A(2, 7, 5, 6, 1, 3), A(2, 6, 1, 5, 7, 3) and
A(2, 7, 3, 1, 5, 6). The colour ordering to be specified for the coherent parton-shower evolution can
be selected by comparing the size of the squares of tr(λ2 λi2 . . . λi6) A(2, i2, . . . , i6) for the three
contributing permutations (i2, . . . , i6) of the colour indices.

Since the average number of dual amplitudes involved in the evaluation of a single element of
the orthogonal basis is smaller than (n − 1)!, the complexity of the procedure grows more slowly
than for the calculation done using directly the dual basis. The distribution of the number of dual
amplitudes contributing to all possible colour assignements in the orthogonal basis for n = 8, 9
and 10 gluons is shown in fig. 2. Furthermore, considering that only unweighted events are usually
evolved by the parton shower, and that unweighted events are a small fraction of all generated
parton-level events, the decomposition in terms of dual amplitudes only needs to be performed
for a small fraction of the generated configurations.

10We explicitly checked the numerical implementation of this algorithm by comparing our results for the colour-
summed squared amplitudes of the gg → n g and qq̄ → n g processes (for n = 4, 5) with the known results obtained
in ref. [13], as implemented in the NJETS code [2]. The agreement is at the level of machine precision.
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Figure 2: Distribution of the number of dual amplitudes contributing to all possible

colour assignements in the orthogonal basis for n = 8, 9 and 10 gluons.

The results we present in the following are all relative to parton-level results, and therefore
only the Monte-Carlo summation over orthogonal colour configurations is considered.

4 Results

As an example of our technique, we present here results for the following two parton-level processes:

g g → 8 g

q q̄ → 8 g . (27)

For comparisons, we also computed the above reactions in the simple approximation first sug-
gested by Kunszt and Stirling [6]. This approximation (hereafter referred to as SPHEL) consists
in assuming that the average value of MHV amplitudes is equal to the average value of all other
non-zero amplitudes. In the case of n-gluon amplitudes this amounts to estimating the sum over
all helicity configurations using the relation:

∑

hel′s

|M (gg → (n − 2) g)|2 =
2n − 2(n + 1)

n(n − 1)

∑

MHV

|M (gg → (n − 2) g)|2 (28)

where the sum on the right-hand side runs over all MHV amplitues (e.g. ++ → + . . .+, +− →
− + . . . +, etc.). Their value is known exactly for all n at the leading-order in 1/N [14]:

∑

MHV

|M (gg → (n − 2) g)|2 = 4

(

g2N

2

)n−2

(N2 − 1)
∑

i,j

(pi · pj)
4

11



Process Exact (pb) SPHEL (pb)

g g → 8 g 0.719 ± 0.019 1.53 ± 0.03

q q̄ → 8 g ( 0.901 ± 0.009 )×10−3 ( 1.042 ± 0.008 )×10−3

Table 2: Partonic cross-sections in pb at
√

ŝ = 1500 GeV, with the cuts described in the
text.

∑

P (1,n−1)

1

(p1 · p2)(p2 · p3) · · · (pn · p1)
(29)

where the sum runs over all permutations P (1, . . . , n − 1) of the indices (1, . . . , n − 1). Similarly,
in the case of qq̄g . . . g amplitudes, the SPHEL approximation amounts to assuming:

∑

hel′s

|M (qq̄ → n g)|2 =
2n−1 − 1

n

∑

MHV

|M (qq̄ → n g)|2 (30)

where the sum on the right-hand side runs over all MHV amplitues (e.g. +− → −+ . . .+), whose
value is known exactly for all n at the leading-order in 1/N [17]:

∑

MHV

|M (qq̄ → n g)| = 4

(

g2N

2

)n

(N2 − 1)
∑

i=1,n

[

(pq · pi)
3(pq̄ · pi) + (pq · pi)(pq̄ · pi)

3
]

1

pq · pq̄

∑

P (1,...,n)

1

(pq · p1)(p1 · p2) · · · (pn · pq̄)
, (31)

where the sum runs over all permutations P (1, . . . , n) of the indices (1, . . . , n).

The kinematic configuration and the cut values used in our numerical examples are as follows:

√
ŝ = 1500 GeV , pTi

> 60 GeV , |ηi| < 2 , ∆Rij > 0.7 . (32)

These values, and the choice of a fixed strong coupling αs = 0.12, only serve for illustrative pur-
poses. A more complete phenomenological analysis of production cross-sections and a comparison
of exact and approximate expressions will be presented elsewhere.

The integration over the phase space allowed by the cuts was performed by Monte Carlo using
both RAMBO [21], a flat phase space generator, and a multichannel approach [22]. Both integration
strategies gave compatible and comparable efficiencies. The sum over helicity configurations was
performed via a flat Monte Carlo generation. No attempt has been made to optimise this step.
Some of the details of the numerical performance of the algorithm are given at the end of the
Section.

In Table 2 we present our Monte Carlo estimate for the partonic cross-sections, together with
the values obtained by using SPHEL. SPHEL overestimates by about a factor 2 the exact cross-section
for the process g g → 8 g , while it is accurate at the 10% level for q q̄ → 8 g.

Notice the large ratio of the gg-initiated amplitude, relative to the qq̄ one. In the case of 2 → 2
processes, this ratio is of order 30 for a reference scattering angle θ = π/2, while here it is much
larger. It is easy to understand this result considering the structure of the MHV amplitudes in the

12



Figure 3: Differential distributions for the minimum gluon transverse momentum. Exact
result vs. SPHEL.

two cases. In the gluon-only case, eq. (29), the numerators are dominated by the term (p1p2)
4 ∼ ŝ4,

while in the qq̄ case, eq. (31), only terms proportional to t-channel momentum exchange appear.
With the increase in the number of final-state particles, the average momentum exchanged in the
t-channels becomes smaller, while ŝ stays the same, and the ratio ŝ/〈t〉4 becomes very large.

We also considered differential cross-sections. In Fig. 3, we show the distribution of the mini-
mum gluon transverse momentum for both processes. A good agreement between the exact and
the SPHEL result is observed. Considering the large uncertainties present in the overall normal-
ization of multi-parton tree-level processes (e.g. those induced by changes in the choice of the
renormalization and factorization scales), the approximated evaluation can provide in many cases
a sufficient description of the final-state distributions.

In Figs. 4 and 5 we plot the distributions for the maximum gluon transverse momentum and
the maximum two-gluon invariant mass. Again there is a reasonable agreement between the exact
and the approximated result, in particular in the case of the gluon-only process.

Before closing this Section, we present some technical details to illustrate the performance of
the algorithms used to produce our results. As an example, consider the process g g → 8 g. As
shown in Table 1, the total number of Feynman diagrams contributing to this process is 10,525,900.
The plots in this work have been obtained from the evaluation of the matrix elements for 1.9×106

Monte Carlo points passing the selection cuts given in eq. (32) (out of 1.8 × 108 points selected
by the phase-space generator). The efficiency for the generation of the non zero weights, defined
as the average weight divided by the maximum weight, was about 1 × 10−4. The computational
time for producing 100 events that pass the cuts, with a 200 MHz processor 11, and working in
double precision throughout, was about 91 seconds for the exact matrix element and 2.3 seconds
using the SPHEL approximation. In this last case, the dominant component of the CPU budget is

11All of the following numbers are reduced by a factor of 4 when using a DEC Alpha station.
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Figure 4: Differential distributions for the maximun gluon transverse momentum. Exact

result vs. SPHEL.

Figure 5: Differential distributions for the maximum two-gluon invariant mass. Exact
result vs. SPHEL.
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the search for phase-space configurations passing the selection cuts.

5 Conclusions

We presented in this work an algorithm to evaluate the exact, tree-level matrix elements for
multi-parton processes in QCD. This technique, based on the algorithm ALPHA, has been tested
for processes such as gg → n gluons and qq̄ → n gluons, with n up to 9. We discussed how
the summation over colour configurations allows the construction of parton-level event generators
suitable to interfacing with a parton-shower evolution including the effects of colour-coherence.
This will eventually lead to a fully exclusive, hadron-level description of multi-jet final states,
accurately incorporating the dynamics of large jet-jet separation angles.

While we confined our presentation to the case of hadroproduction, our program can be used
without modifications for the evaluation of multi-parton production in e+e− collisions, since the
relevant SU(2)×U(1) Lagrangian is already included in the code. Likewise, associated hadropro-
duction of gauge bosons and QCD partons is a straightforward application of our code.

We gave some explicit numerical results, considering parton-level cross-sections and distribu-
tions for the processes gg → 8 gluons and qq̄ → 8 gluons. We verified that some standard simple
approximations to the multi-parton cross-sections provide a good description of the exact result,
for both rates and distributions. The existence of the exact results allows now to extend the checks
on these approximations to values of n larger than ever before. We expect that large improvements
can be obtained in the numerical efficiency of the algorithm, and that cross-sections for up to 10
final-state partons should become feasible.

Furthermore, when n becomes so large that the evaluation of the exact amplitudes is nu-
merically too slow for the generation of large samples of events, one can nevertheless use the
approximated calculations to generate the samples, and lower statistics runs to assess the good-
ness of the approximation. In this respect, the numerical efficiency of the phase-space generation
in presence of kinematic cuts will need to be improved as well.
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