
ar
X

iv
:h

ep
-p

h/
06

07
05

7v
1 

 5
 J

ul
 2

00
6

CP3-06-02

Color-dressed recursive relations

for multi-parton amplitudes

Claude Duhr, Stefan Höche∗, Fabio Maltoni
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1 Introduction

The quest for physics beyond the standard model will soon enter an exciting phase as the LHC

starts colliding protons at 14 TeV. At such an energy we will be probing the mechanism which

breaks the electroweak symmetry and hopefully understand what stabilizes the associated

scale. Whether this mechanism can be described perturbatively by a standard model Higgs

or can be related to new symmetries (such as supersymmetry) or even to the discovery of an

extended space-time structure, is the subject of an intense theoretical activity. The possibility,

however, of answering such far reaching questions at the LHC will eventually depend on our

ability to discriminate signals of new physics from large standard model backgrounds. With

so much energy available in the center of mass, the cross section for multi-jet QCD events

even associated with heavy objects such as weak bosons or top quarks will be in most cases

very large if not overwhelming.

As the need for better predictions for QCD processes with many particles in the final state

has become clear, a substantial activity on developing the techniques and the tools to perform

such calculations has spurred. Several codes have by now become available that can compute,

numerically, tree-level cross sections and generate events with many particles in the final state

in an automatic way [1–4]. Progress has been significant also in improving the accuracy of the

predictions by calculating next-to- and next-to-next-to-leading QCD corrections for processes

with up to three and just one particle in the final state respectively [5].

In the midst of this effort, unexpected theoretical progress has come from the so-called

twistor-inspired methods [6], which have provided new techniques to compute analytic results

for gauge amplitudes both at tree and one-loop level [7]. These new methods go back to a

correspondence between a weakly coupled N = 4 Super Yang-Mills theory and a certain type

of string theory. The key point in this correspondence is that all tree-level (color-ordered)

amplitudes are related to algebraic curves in twistor space. In Ref. [8] it was shown that this

leads to the so-called CSW rules, which state that all tree-level (color-ordered) amplitudes

can be constructed using a small class of very special amplitudes, the maximally helicity

violating (MHV) amplitudes. Another important result has been the formulation of a new

kind of recursive relations in addition to the well-known Berends-Giele recursion [9], the so-

called BCF relations [10,11]. They state that any tree-level (color-ordered) amplitude can be

constructed from products of two on-shell amplitudes of fewer particles, multiplied by a simple

scalar propagator. These new calculational tools have allowed to derive expressions for some

multi-parton amplitudes [8,12,13] and certain classes of splitting functions [14,15], which have

simple and compact analytic forms. So far, many extensions of the twistor-inspired methods

have been presented, in particular generalizations to include scalars [16], fermions [17,18] and

photons [19].

The purpose of this work is to present a new extension of the twistor-inspired methods.

We show that it is possible to reformulate the twistor-inspired recursive relations for the

color-ordered amplitudes in terms of the full amplitudes. The motivations are twofold. The

first is mostly theoretical and stems from the observation of an interesting similarity between
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a color decomposition based on the adjoint representation and the BCF recursive relations

which suggested the existence of a formulation that embodies both. The second is more

pragmatic and aims at establishing whether the new twistor-inspired recursive relations are

an improvement also at the numerical level. In order to make a consistent comparison with

the most efficient algorithms available [1, 20], a recursive formulation which includes color

is necessary. In the standard approach where the color-ordered amplitudes are calculated

analytically (or numerically), one has to sum over the permutations of the color orderings

to obtain the full amplitude. This algorithm has an intrinsic factorial growth and cannot

compete with the available numerical methods which only grow exponentially. In this work

we derive a general method to reinstate color into the recursive relations for color-ordered

amplitudes and apply it to the BCF and to a modified version of the CSW relations.

The paper is organized as follows. In Section 2 we review the notion of color decompositions,

highlighting the different features of the various color bases available. In Section 3 we discuss

the Berends-Giele recursive relations and we present a simple derivation of their color-dressed

counterpart which serves as an illustration of the method that will be applied later. In

Section 4 we prove our first main result, i.e., the color-dressed version of the BCF relations,

Eq. (4.12) and discuss its most important features. In Section 5 we reformulate the CSW

relations in terms of simple new three-point effective vertices and derive their color-dressed

version. Section 6 contains the numerical results on the evaluation of multi-gluon amplitudes

obtained using the different color-dressed recursive relations, focusing on the comparison with

known techniques. Finally we draw our conclusions.

2 Color Decompositions

In this section we briefly review the notion of color decomposition of tree-level QCD ampli-

tudes and the available results. Emphasis is given to those aspects that will play an important

role in the following.

The basic idea of a color decomposition is to factorize the information on the gauge struc-

ture from the kinematics. As an example, consider the amplitude for n gluons of colors

a1, a2, . . . , an (ai = 1, . . . , N2 − 1). One can easily prove that at tree level, such an amplitude

can be decomposed as [21]

A(1, . . . , n) =
∑

σ∈Sn−1

Tr (T a1T aσ2 · · ·T aσn ) A(1, σ2, . . . , σn) , (2.1)

where T a are the fundamental-representation matrices of SU(N), and the sum is over all

(n − 1)! permutations of (2, . . . , n). Each trace corresponds to a particular color structure.

The factor associated with each color structure, A, is called a color-ordered amplitude.1 It

depends on the four-momenta pi and polarization vectors ǫi of the n gluons, represented

simply by i in its argument. The color-ordered amplitudes are far simpler to calculate than

1Also referred to as a dual amplitude or partial amplitude.
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the full amplitude A due to the smaller number of Feynman diagrams contributing to them.

They have several remarkable properties. Among them, a special role is played by the so-

called Kleiss-Kuijf relations [22]. These are linear relations amongst the amplitudes directly

inherited from the gauge structure,i.e., from color, which in the case of n-gluon amplitudes

reduce the number of linearly-independent amplitudes to (n − 2)!. It is then clear that the

number of terms in Eq. (2.1) is not minimal. This decomposition has no special feature except

that it was inspired by string theories (color factors are the Chan-Paton factors of the open

strings). It is universally used to illustrate the idea of color decomposition and to define the

color-ordered amplitudes A in terms of the full amplitude A. It can be shown, however, that

this definition does not depend on the color basis.

Recently, another decomposition has been introduced, which is based on color flows [23,24].

This decomposition arises when treating the SU(N) gluon field as an N × N matrix (Aµ)i
j

(i, j = 1, . . . , N), rather than as a one-index field Aa
µ (a = 1, . . . , N2 − 1). The n-gluon

amplitude may then be decomposed as

A(1, . . . , n) =
∑

σ∈Sn−1

δ
̄σ2

i1
δ

̄σ3

iσ2
· · · δ̄1

iσn
A(1, σ2, . . . , σn) , (2.2)

where the sum is over all (n − 1)! permutations of (2, . . . , n). The partial amplitudes that

appear in this decomposition are the same as in the decomposition in the fundamental rep-

resentation. The color-flow decomposition has several nice features, the most attractive one

being its simplicity. In fact, it is a very natural way to decompose a QCD amplitude, and as

the name suggests, it is based on the flow of color, so the decomposition has a simple physical

interpretation. It does not involve any color matrix and the color factors in front of each

amplitude are either zero or one. This basis makes the numerical calculation of color factors

in the evaluation of full amplitudes fast, even though the number of terms in the sum over the

(n − 1)! permutations is not minimal. Finally, such a decomposition exists for all tree-level

parton amplitudes including any number of quark pairs and gluons.

A third decomposition of the multi-gluon amplitude is available, which is based on the

adjoint representation of SU(N) rather than the fundamental representation [25, 26]. The

n-gluon amplitude in this decomposition may be written as

A(1, . . . , n) =
∑

σ∈Sn−2

(F aσ2F aσ3 · · ·F aσn−1 )a1an
A(1, σ2, . . . , σn−1, n) , (2.3)

where (F a)b
c = −ifabc are the adjoint-representation matrices of SU(N) (fabc are the structure

constants), and the sum is over all (n − 2)! permutations of (2, . . . , n − 1). The indices

corresponding to the first and the last gluon are taken as “references” and are not included in

the permutations. The partial amplitudes that appear in this decomposition are the same as

in the other decomposition, but only the (n−2)! linearly-independent amplitudes are needed.

In this respect this formulation is “minimal” as there is no redundancy and the Kleiss-Kuijf

relations are embodied in the color factors. As we will elaborate upon in the following, there

exists a remarkable formal similarity with the BCF recursive relations, where two gluons are

also taken as a reference to build up the full amplitude.
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3 Color-dressed Berends-Giele relations

In Ref. [9], Berends and Giele introduced the color-ordered n-point gluon off-shell current

Jµ, which can be defined as the sum of all color-ordered Feynman diagrams with n external

on-shell legs and a single off-shell leg with polarization µ. The color-ordered off-shell currents

can be constructed using the Berends-Giele recursive relations

Jµ(1, 2, . . . , n) =
−i

P 2
1,n

{

n−1
∑

k=1

V
µνρ
3 (P1,k, Pk+1,n)Jν(1, . . . , k)Jρ(k + 1, . . . , n) (3.1)

+
n−2
∑

j=1

n−1
∑

k=j+1

V
µνρσ
4 Jν(1, . . . , j)Jρ(j + 1, . . . , k)Jσ(k + 1, . . . , n)

}

,

where

Pi,j = pi + pi+1 + . . . + pj−1 + pj , (3.2)

and V
µνρ
3 (P1,k, Pk+1,n) and V

µνρσ
4 are the color-ordered three and four-gluon vertices defined

in Ref. [27]. It is easy to see that the four-gluon vertex appearing in these relations introduces

a larger number of possible combinations of subcurrents than the three-gluon vertex. It is

possible to simplify the recursion by decomposing all four-gluon vertices into three-vertices

including a tensor particle (Fig. 1). Using this decomposition, the Berends-Giele recursive

relations can be rewritten such that only three-point vertices are present

Jµ(1, 2, . . . , n) =
−i

P 2
1,n

n−1
∑

k=1

{

V
µνρ
3 (P1,k, Pk+1,n)Jν(1, . . . , k)Jρ(k + 1, . . . , n) (3.3)

+ V
νµαβ
T Jν(1, . . . , k)Jαβ(k + 1, . . . , n) + V

µσαβ
T Jαβ(1, . . . , k)Jσ(k + 1, . . . , n)

}

,

where Jαβ is a tensor off-shell current, and V
µναβ
T is the tensor-gluon vertex, defined as

V
µνρσ
T =

ig

2
(gµρgνσ − gµσgνρ) . (3.4)

As there exists no one-point tensor off-shell current, all such currents appearing in Eq. (3.3)

are defined as zero. The tensor off-shell currents can be easily constructed recursively from

gluon off-shell currents

Jµν(1, 2, . . . , n) = iDµναβ V
σραβ
T

n−1
∑

k=1

Jρ(1, . . . , k)Jσ(k + 1, . . . , n), (3.5)

where iDµναβ is the color-ordered tensor “propagator”, defined as

iDµνρσ = −
i

2
(gµρgνσ − gµσgνρ) . (3.6)
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Fig. 1: Diagrammatic representation of the decomposition of the color-ordered four-
gluon vertex.

We now present a systematic method to dress color-ordered recursive relations with color

in order to obtain recursive relations for the color-dressed off-shell currents. In the color-flow

decomposition, a color-dressed gluon off-shell current can be written as

J µ

IJ̄
(1, 2, . . . , n) =

∑

σ∈Sn

δJ̄
iσ1

δ
̄σ1

iσ2
. . . δ

̄σn

I Jµ(σ1, σ2, . . . , σn), (3.7)

where (I, J̄) is the color of the off-shell leg. A color-dressed tensor off-shell current can be

obtained similarly. We will explain the color dressing of the Berends-Giele recursive relations,

Eq. (3.3), dealing with the pure gluon vertices and the tensor-gluon vertices separately. After

inserting Eq. (3.3), into the color-flow decomposition, Eq. (3.7), the three-gluon vertex part

reads

−i

P 2
1,n

∑

σ∈Sn

n−1
∑

k=1

δJ̄
iσ1

δ
̄σ1

iσ2
. . . δ

̄σn

I V
µνρ
3

(

Pσ1,σk
, Pσk+1,σn

)

Jν(σ1, . . . , σk)Jρ(σk+1, . . . , σn), (3.8)

where

Pσ1,σk
= pσ1

+ pσ2
+ . . . + pσk

,

Pσk+1,σn
= pσk+1

+ pσk+2
+ . . . + pσn

.
(3.9)

The color factor appearing in Eq. (3.8) can be written as (Fig. 2)

δJ̄
iσ1

δ
̄σ1

iσ2
. . . δ

̄σn

I = δJ̄
GδH̄

I δḠ
L δK̄

N δM̄
H δL̄

iσ1
. . . δ

̄σk

K δN̄
iσk+1

. . . δ
̄σn

M , (3.10)

where

- δJ̄
GδH̄

I is the color structure of the propagator appearing in the Berends-Giele recursive

relations.

- δL̄
iσ1

. . . δ
̄σk

K is the color structure of the subcurrent Jν(σ1, . . . , σk), where the off-shell leg

ν has color (K, L̄).

- δN̄
iσk+1

. . . δ
̄σn

M is the color structure of the subcurrent Jρ(σk+1, . . . , σn), where the off-shell

leg ρ has color (M, N̄).
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J̄

I
J µ

M
N̄

J ρ

L
K̄

H

Ḡ

N
M̄

J̄

I

G

H̄

K
L̄

J ν

Fig. 2: Diagrammatic representation of the decomposition (3.10) of the color factor
of the three-gluon vertex part.

- δḠ
L δK̄

N δM̄
H is part of the color structure of a three-gluon vertex to which the off-shell legs

µ, ν, ρ with colors (G, H̄), (K, L̄), (M, N̄) are attached.

We now define an ordered partition of a set E into two independent parts as a pair (π1, π2)

of subsets of E such that π1 ⊕ π2 = E, which means (π1, π2) 6= (π2, π1). Furthermore, we call

(unordered) partition of a set E into two independent parts a set {π1, π2} of subsets of E

such that π1 ⊕ π2 = E and {π1, π2} = {π2, π1} . These definitions can be easily extended to

partitions of a set E into n > 2 independent parts, for both the ordered and the unordered

case.

In the case encountered here E = {1, 2, . . . , n}. We will denote the set of all ordered

partitions of E into two independent parts by OP (n, 2) and the set of all (unordered) partitions

of E into two independent parts by P (n, 2). Using these definitions, the sum over permutations

appearing in Eq. (3.8) can be decomposed as follows: For a given value of k,

- Choose an ordered partition π = (π1, π2) in OP (n, 2) such that #π1 = k, where #π1 is

the number of elements in the set π1.

- Fix the first k elements of the permutation to be in the subset π1.

- Sum over all permutations of the first k elements and over all permutations of the last

n − k elements.

- Sum over all possible choices for the ordered partition π = (π1, π2).
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This is equivalent to the replacement

n−1
∑

k=1

∑

σ∈Sn

→
∑

π∈OP (n,2)

∑

σ∈Sk

∑

σ′∈Sn−k

. (3.11)

The three-gluon vertex part now reads

δJ̄
GδH̄

I

−i

P 2
1,n

∑

π∈OP (n,2)

∑

σ∈Sk

∑

σ′∈Sn−k

δḠ
L δK̄

N δM̄
H V

µνρ
3

(

Pσ
π1 ,σ

πk
, Pσ′

πk+1
,σ′

πn

)

δL̄
iσ

π1
. . . δ

̄σ
πk

K Jν(σπ1 , . . . , σπk) δN̄
iσ′

πk+1

. . . δ
̄σ′

πn

M Jρ(σ
′
πk+1, . . . , σ

′
πn), (3.12)

where π1 = {π1, π2 . . . , πk} and π2 = {πk+1, πk+2, . . . , πn}.

Clearly, Pσ
π1 ,σ

πk
and Pσ′

πk+1
,σ′

πn
only depend on the choice of the ordered partition π = (π1, π2),

but not on the order of the elements in π1 and π2. We therefore define

Pπ1
= pπ1 + pπ2 + . . . + pπk ,

Pπ2
= pπk+1 + pπk+2 + . . . + pπn .

(3.13)

It is now possible to identify several subcurrents in this expression, namely

J KL̄
ν (π1) =

∑

σ∈Sk

δL̄
iσ

π1
. . . δ

̄σ
πk

K Jν(σπ1 , . . . , σπk), (3.14)

J MN̄
ρ (π2) =

∑

σ′∈Sn−k

δN̄
iσ′

πk+1

. . . δ
̄σ′

πn

M Jρ(σ
′
πk+1, . . . , σ

′
πn), (3.15)

so that the three-gluon vertex part reads

δJ̄
GδH̄

I

−i

P 2
1,n

∑

π∈OP (n,2)

δḠ
L δK̄

N δM̄
H V

µνρ
3 (Pπ1

, Pπ2
) J KL̄

ν (π1) J
MN̄
ρ (π2). (3.16)

In Ref. [24] it was shown that the (color-dressed) three-gluon vertex can be expressed in the

color-flow decomposition as2

Vµνρ
3 (Pπ1

, Pπ2
) = δḠ

L δK̄
N δM̄

H V
µνρ
3 (Pπ1

, Pπ2
) + δḠ

NδM̄
L δK̄

H V
µρν
3 (Pπ2

, Pπ1
) . (3.17)

So, finally the three-gluon vertex part can be written as

δJ̄
GδH̄

I

−i

P 2
1,n

∑

π∈P (n,2)

Vµνρ
3 (Pπ1

, Pπ2
)J KL̄

ν (π1) J MN̄
ρ (π2). (3.18)

We now address the tensor-gluon part in the Berends-Giele recursive relations, Eq. (3.3).

From Fig. 3 it can be seen that for the s-channel appearing in the decomposition of the

four-gluon vertex, each tensor-gluon vertex has the same color-flow structure as a three-gluon

vertex. The t-channel contribution is similar. Therefore the tensor-gluon vertex can be written

in the color-flow decomposition as
2For brevity, the color indices of the vertex are not written explicitly.
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Fig. 3: Color-flow structure of the s-channel contribution to the for gluon vertex.

Vµναβ
T = δJ̄

i1
δ

̄1
i2

δ
̄2
I V

µναβ
T + δJ̄

i2
δ

̄2
i1

δ
̄1
I V

νµαβ
T , (3.19)

where (I, J̄) is the color of the tensor particle. The color dressing of the tensor-gluon part in

Eq. (3.3) is hence exactly the same as for the pure gluon part, leading to

∑

π∈OP (n,2)

δḠ
L δK̄

N δM̄
H

{

V
νµαβ
T JKL̄

ν (π1)J
MN̄
αβ (π2) + V

µναβ
T J KL̄

αβ (π1)J
MN̄
ν (π2)

}

. (3.20)

As the sum runs over all elements in OP (n, 2), we can exchange π1 and π2 as well as the color

indices (K, L̄) and (M, N̄) in the last term. Using Eq. (3.19) the tensor part now becomes
∑

π∈OP (n,2)

Vµναβ
T J KL̄

ν (π1)J
MN̄
αβ (π2). (3.21)

Hence the color-dressed recursive relations with all four-gluon vertices replaced by tensor

particles read

J IJ̄
µ (1, . . . , n) = Dµν (P1,n)

[

∑

π∈P (n,2)

Vνρσ
3 (Pπ1

, Pπ2
) J KL̄

ρ (π1)J
MN̄
σ (π2)

+
∑

π∈OP (n,2)

Vµραβ
T J KL̄

ρ (π1)J
MN̄
αβ (π2)

]

. (3.22)

To complete the color dressing of the Berends-Giele recursive relations, we have to apply

the color-dressing method introduced above to the recursive relations for the off-shell tensor-

currents, Eq. (3.5). Both the color-dressed vertex and the color-dressed off-shell tensor-current

have the same form as in the pure gluon case and the recursive relations for the tensor particle,

Eq. (3.5), have the same structure as for the three-gluon vertex part in the previous section.

Therefore, one can immediately write down the color-dressed recursive relations for the off-

shell tensor-current

J IJ̄
µν (1, 2, . . . , n) = iDµναβ Vσραβ

T

∑

π∈P (n,2)

J KL̄
ρ (π1)J

MN̄
σ (π2). (3.23)

The two recursive relations, Eq. (3.22) and Eq. (3.23), can be solved simultaneously to con-

struct color-dressed gluon off-shell currents for arbitrary n. The full color-dressed scattering
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amplitude is then recovered be putting the off-shell leg on-shell. This result is equivalent to

the Dyson-Schwinger algorithm presented in Ref. [4]. It should be noticed that the color-

dressed recursive relations have the same form as the color-ordered Berends-Giele recursive

relations, Eq. (3.3) and Eq. (3.5). The only difference between the color-ordered and the

color-dressed case is that in the latter we sum over unordered objects and no permutations

need to be taken into account. This is a general feature which will turn out to be common to

all color-dressed recursive relations.

4 Color-dressed BCF relations

In this section, we apply the same method employed to construct the color-dressed Berends-

Giele recursive relations to the BCF recursive relations, presented in Ref. [10, 11]. Assuming

that gluons 1 and n have opposite helicities, the BCF recursive relations read

An(1, 2, . . . , n) =
n−2
∑

k=2

Ak+1

(

1̂, 2, . . . , k,−P̂−h
1,k

) 1

P 2
1,k

An−k+1

(

P̂ h
1,k, k + 1, . . . , n̂

)

, (4.1)

where a sum over the helicities h of the intermediate gluon is implicit, and

P̂1,k = P1,k +
P 2

1,k

〈n|P1,k|1]
λnλ̃1, (4.2)

p̂1 = p1 +
P 2

1,k

〈n|P1,k|1]
λnλ̃1, (4.3)

p̂n = pn −
P 2

1,k

〈n|P1,k|1]
λnλ̃1, (4.4)

with λi and λ̃i being the spinor components of pi = λi λ̃i.

As in Eq. (4.1) we have to choose two reference gluons, 1 and n, the color-flow decomposition

and the color decomposition in the fundamental representation are not well suited to dress

the BCF recursive relations with color, because they allow us to fix only one of the two

reference gluons. The most natural color decomposition which fixes both reference gluons is

the color decomposition in the adjoint representation, Eq. (2.3). Inserting the color-ordered

BCF relations, Eq. (4.1), into Eq. (2.3), one finds

An (1, . . . , n) =
n−2
∑

k=2

∑

σ∈Sn−2

(F aσ2 . . . F aσn−1 )a1an
Ak+1

(

1̂, σ2, . . . , σk,−P̂−h
1,σk

)

1

P 2
1,σk

An−k+1

(

P̂ h
1,σk

, σk+1, . . . , σn−1, n̂
)

, (4.5)

where

P1,σk
= p1 + pσ2

+ . . . + pσk
. (4.6)
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For a given value of k, the sum over permutations appearing in Eq. (4.5) can be decomposed

in a similar way as for the three-gluon vertex part in the Berends-Giele recursive relations.

The procedure is as follows

- Choose an ordered partition π = (π1, π2) of {2, 3, . . . , n−2, n−1} such that #π1 = k−1.

- Fix the first k − 1 elements of the permutation to be in the subset π1.

- Sum over all permutations of the first k − 1 elements and over all permutations of the

last n − k − 1 elements.

- Sum over all possible choices for the ordered partition π = (π1, π2).

This is equivalent to the replacement

n−2
∑

k=2

∑

σ∈Sn−2

→
∑

π∈OP (n−2,2)

∑

σ∈Sk−1

∑

σ′∈Sn−k−1

, (4.7)

where by OP (n − 2, 2) we denote the set of all ordered partitions of {2, 3, . . . , n − 1}.

Furthermore, for a fixed value of k, the color factor can be written

(F aσ2 . . . F aσn−1 )a1an
= (F aσ2 . . . F aσk )a1x (F aσk+1 . . . F aσn−1 )xan

, (4.8)

where a sum over x = 1, . . . , 8 is understood.

Finally, the propagator clearly only depends on the choice of the ordered partition π = (π1, π2)

and not on the order of the elements in π1 and π2. If π1 = {π2, π3, . . . , πk}, we define

P1,π1
= p1 + pπ2 + pπ3 + . . . + pπk ,

Pπ2,n = −P1,π1
.

(4.9)

At this point it is possible to identify subamplitudes in the expression for An, namely

∑

σ∈Sk−1

(F aσ
π2 . . . F

aσ
πk )a1x Ak+1

(

1̂, σπ2 , . . . , σπk ,−P̂−h
1,π1

)

= Ak+1

(

1̂, π1,−P̂
−h,x
1,π1

)

, (4.10)

∑

σ′∈Sn−k−1

(

F
aσ′

πk+1 . . . F
aσ′

πn−1

)

xan

An−k+1

(

−P̂−h
π2,n, σ′

πk+1, . . . , σ
′
πn−1 , n̂

)

= An−k+1

(

−P̂−h,x
π2,n , π2, n̂

)

, (4.11)

where x is the color of the intermediate gluon.

Collecting all the pieces, the color-dressed BCF recursive relations read

An(1, 2, . . . , n) =
∑

π∈OP (n−2,2)

Ak+1

(

1̂, π1,−P̂
−h,x
1,π1

) 1

P 2
1,π1

An−k+1

(

P̂
h,x
1,π1

, π2, n̂
)

. (4.12)
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=An
...

1

n

Σπ

n̂

π

π̄

P1,π

1̂
...

...An−k+1

Ak+1

Fig. 4: Diagrammatic representation of the color-dressed BCF recursive relations.

We emphasize that although the proof of these new recursive relations relies on the adjoint

color basis, the final result, Eq. (4.12), is independent of the choice of the basis. Furthermore,

as in the case of the Berends-Giele recursive relations, we see that the form of the color-

dressed BCF recursive relations stays the same as in the color-ordered case, with the only

difference that in Eq. (4.12) the sum goes over all partitions of {2, 3, . . . , n − 1}, i.e., over

unordered objects. This implies that the new color-dressed BCF recursive relations have the

same properties as in the color-ordered case, namely

1. The definition of the off-shell shifts, Eqs. (4.2 - 4.4), is independent of the color.

2. As in the color-ordered BCF recursive relations, the pole structure of the scattering

amplitude is manifest in Eq. (4.12).

3. Similar to the color-ordered case, the subamplitudes in Eq. (4.12) are not independent,

but they are are linked via the off-shell shifts.

The result (4.12) obtained for amplitudes containing only gluons can be easily extended to

include a single quark pair. For amplitudes containing a single qq̄ pair, the color decomposition

reads [27]

An(1q, 2, . . . , n − 1, nq̄) =
∑

σ∈Sn−2

(T aσ2 . . . T aσn−1 ) ̄
i An (1q, σ2, . . . , σn−1, nq̄) . (4.13)

The BCF recursive relations for color-ordered amplitudes still hold when a quark pair is

included, where either a quark or a gluon can be chosen as the intermediate particle [17]. If

a quark is chosen for the internal line, no sum over helicities has to be carried out, because

11



helicity is conserved all along the fermion line. The BCF recursive relations then read

An(1h
q , 2, . . . , n

−h
q̄ ) =

n−2
∑

k=2

Ak+1

(

1̂h
q , 2, . . . , k,−P̂−h

q̄,1k

)

(4.14)

1

P 2
q,1k

An−k+1

(

P̂ h
q,1k, k + 1, . . . , n − 1, n̂−h

q̄

)

,

where h is the helicity of the quark. Both the recursive relations and the color decomposition

have the same form as in the case of a pure gluon amplitude, with the only difference that

instead of working in the adjoint representation one now has to work in the fundamental

representation of SU(3). So the recursive relations derived in the case of pure gluon amplitudes

can be easily extended to include a single qq̄ pair

An(1
h
q , 2, . . . , n

−h
q̄ ) =

∑

π∈OP (n−2,2)

Ak+1

(

1̂h
q , π1,−P̂

−h,x
q̄,1π1

) 1

P 2
q,1π1

An−k+1

(

P̂
h,x
q,1π1

, π2, n̂
−h
q̄

)

.

(4.15)

The formula is exactly the same as in the pure gluon case, up to two small differences:

- no helicity sum has to be carried out for the internal line

- x is a color index in the fundamental representation.

It is possible to extend this relation to include photons, by simply performing the substitution

(T a) ̄
i → δ

̄
i . (4.16)

From this it follows that a QED amplitude containing a single qq̄ pair and n− 2 photons can

be written in terms of color-ordered amplitudes as

AQED
n (1q, 2, . . . , n − 1, nq̄) =

∑

σ∈Sn−2

An(1q, σ2, . . . , σn−1, nq̄). (4.17)

Thus the above recursive relations (4.14) still hold for QED amplitudes. This particular result

has already been pointed out by Stirling and Ozeren in Ref. [19]. However, as shown there,

for QED processes it is more efficient to take one of the fermions and one photon as reference

particles. In fact, as there is no photon-photon vertex, all the terms in the recursive relations

where both fermions are in the same subamplitude vanish, simplifying the calculation.

5 Color-dressed CSW rules

In this section we present the color-dressing of the CSW vertex rules introduced in Refs. [6–8].

These rules state that it is possible to build all color-ordered amplitudes from MHV vertices,

connecting them by scalar propagators. Each off-shell leg with momentum P then corre-

sponds to a spinor Paȧη
ȧ, using some arbitrary antiholomorphic reference spinor ηȧ. However,
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the CSW rules imply that an n-point color-ordered amplitude may have contributions from

MHV vertices involving up to n particles. The number of different vertices is thus growing

steadily with the number of particles, which makes it impossible to put the Berends-Giele

recursive relations and the CSW rules on the same footing. This problem has also been ad-

dressed in Ref. [28]. Here we introduce a new method to decompose an MHV vertex into

three-point vertices involving an auxiliary particle and derive recursive relations for both the

auxiliary particle and the scalar propagators. Once these relations have been obtained, the

corresponding color dressing is performed.

In analogy to the Berends-Giele recursive relations we define an n-point scalar off-shell

current Jh(1, . . . , n) as the sum of all MHV diagrams with n external on-shell legs, and one

off-shell leg with helicity h.3 This scalar off-shell current can be easily constructed employing

the CSW rules:

Jh(1, . . . , n) =
1

P 2
1,n

[

n−1
∑

i=1

A3

(

−P−h
1,n , P h1

1,k, P h2

k+1,n

)

Jh1
(1, . . . , i) Jh2

(i + 1, . . . , n)

+
n−2
∑

i=1

n−1
∑

j=i+1

A4

(

−P−h
1,n , P h1

1,i , P h2

i+1,j, P h3

j+1,n

)

Jh1
(1, . . . , i)

Jh2
(i + 1, . . . , j)Jh3

(j + 1, . . . , n) + . . .

]

, (5.1)

where the dots indicate terms with higher order MHV vertices. A sum over helicities (h, h1, h2, . . .)

with −h + h1 + h2 + . . . = n − 4 is implicitly understood. According to the CSW rules, the

vertices An correspond to off-shell continued n-point MHV amplitudes.

However, as mentioned above in this form the CSW relations imply a factorial growth in

the color-dressed case, because of possibly large numbers of legs at single MHV vertices and

the associated permutations of these legs. In order to tame this growth, we rewrite the CSW

relations in a form similar to the Berends-Giele recursion with a tensor particle, where the

terms in Table 1 serve as basic building blocks. We first introduce auxiliary double-lines,

carrying threefold information:

- The total momentum P flowing in the double-line.

- A pair (kl, kr), describing the momenta flowing in each of the two lines separately. Notice

that in general kl + kr 6= P .

- A pair (a, b), describing the momenta of the negative helicity legs in the corresponding

MHV amplitude contained in the off-shell current. If no negative helicity gluon is

attached to the double-line, then a = b = 0, and if only one negative helicity gluon is

attached, then b = 0.

3In the context of the CSW rules, it makes sense to talk about the helicity of an off-shell particle. As the
off-shell continuation of the spinors involves an arbitrary reference spinor ηȧ, the scalar off-shell currents are
not gauge invariant objects. However, the ηȧ dependence drops out in the end [8].
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Right-handed Vertices
i j

k
V

hi,hj ,hk

GG (i, j, k) =
〈αβ〉4

〈ij〉〈jk〉〈ki〉

i j

k
V

hi,hj ,akbk

AG (i, j) =
1

〈ij〉
δkliδkrj ǫ(hi, hj, akbk)

i j

k
V

aibi,hj ,akbk

AAR (il, ir, j) =
1

〈irj〉
δklilδkrj ǫ(aibi, hj, akbk)

i j

k
V

aibi,hj,hk

GAR (il, ir, j) =
〈αβ〉4

〈irj〉〈jk〉〈kil〉
ǫ(aibi, hj, hk)

Tab. 1: Right-handed basic building blocks in the MHV decomposition of color-ordered
amplitudes in the CSW approach. Details are given in the text.

In order to build recursive relations where all n-point MHV vertices for n ≥ 4 are decomposed

into three-point vertices, we define n-point (off-shell) double-line currents Jab
uv(1, . . . , n), where

1 ≤ u ≤ v < n, as the sum of all diagrams with n external on-shell legs and an (off-shell)

auxiliary double-line. This line carries the information (kl, kr) = (P1,u, Pv+1,n) and (a, b), a

and b being the momenta of the negative helicity gluons attached to it.4 Furthermore, in

the color-ordered case, a must be of the form a = Pi,j with (i, j) constrained to one of the

following possibilities

1 ≤ i ≤ j ≤ u,

u + 1 ≤ i ≤ j ≤ v,

v + 1 ≤ i ≤ j ≤ n

(5.2)

and equivalently for b. Notice that according to our definition there are no one-point double-

line currents. For later convenience we define all one-point double-line currents as zero. All

other double-line currents can be built recursively employing the vertices given in Table 1,

yielding

Jab
uv(1, . . . , n) = δuv V

h1,h2,ab
AG (P1,u, Pu+1,n) Jh1

(1, . . . , u) Jh2
(u + 1, . . . , n) (5.3)

+ (1 − δuv)

v−1
∑

w=u

V
a′b′,h,ab
AAR (P1,u, Pw+1,vPv+1,n) Ja′b′

uw (1, . . . , v) Jh(v + 1, . . . , n),

where sums over repeated indices are always understood.

4It is easy to see that all other assignments for (kl, kr) do not contribute in the color-ordered case.
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The indices α and β in Table 1 refer to the two particles with negative helicity within one

MHV amplitude. The ǫ functions appearing in the vertices involving an auxiliary double-line

keep track of the negative helicity gluons attached to them,

ǫ ≡

{

1, if #negative helicity gluons ≤ 2
0, if #negative helicity gluons > 2

. (5.4)

A vertex vanishes if the number of negative helicity gluons attached to a double-line is greater

than two, since this situation corresponds to a non-MHV amplitude, that has to be decom-

posed further by means of the CSW relations. No permutation of the incoming legs is allowed,

since it would lead to double-counting. The respective rules in the MHV decomposition are

obtained from the above by swaping helicities and replacing angular by square brackets. In

analogy to the double-line current, we can write the recursive relation for the scalar off-shell

current in terms of double-line and scalar off-shell currents

Jh(1, . . . , n) =
1

P 2
1,n

n−1
∑

k=1

[

V
h1,h2,h
GG (P1,k, Pk+1,n) Jh1

(1, . . . , k) Jh2
(k + 1, . . . , n) (5.5)

+

k−1
∑

u=1

k−1
∑

v=u

V
ab,h1,h
GAR (P1,u, Pv+1,k, Pk+1,n) Jab

uv(1, . . . , k) Jh1
(k + 1, . . . , n)

]

.

Notice that the second term vanishes for k = 1 due to the vanishing of all one-point double-line

currents.

The vertices given in Table 1 correspond to the situation where all gluons are attached on one

side of the double-line. We will refer to these vertices as the right-handed vertices. The right-

handed vertices are sufficient to construct all MHV amplitudes. However, it is convenient for

the subsequent color dressing of the CSW rules to recast Eq. (5.5) into a symmetric form. To

do so, first we define left-handed vertices where all the gluons are attached to the opposite side

of the double-line. These vertices are shown in Table 2.5 In the left-handed decomposition,

the recursive relations Eq. (5.3) and Eq. (5.5) read

Jab
uv(1, . . . , n) = δuv V

h1,h2,ab
AG (P1,u, Pu+1,n) Jh1

(1, . . . , u) Jh2
(u + 1, . . . , n) (5.6)

+ (1 − δuv)

v
∑

w=u+1

V
h,a′b′,ab
AAL (P1,u, Pu+1,w, Pv+1,n) Jh(1, . . . , u) Ja′b′

wv (u + 1, . . . , n),

Jh(1, . . . , n) =
1

P 2
1,n

n−1
∑

k=1

[

V
h1,h2,h
GG (P1,k, Pk+1,n) Jh1

(1, . . . , k) Jh2
(k + 1, . . . , n) (5.7)

+
n−k−1
∑

u=1

n−k−1
∑

v=u

V
h1,ab,h
GAL (P1,k, Pk+1,u, Pv+1,n) Jh1

(1, . . . , k) Jab
uv(k + 1, . . . , n)

]

.

5As VGG and VAG are the same in both the right and left-handed decompositions, we do not list them
again in Table 2.
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Left-handed Vertices
i j

k
V

hi,ajbj ,akbk

AAL (i, jl, jr) =
1

〈ijl〉
δkliδkrjr

ǫ(hi, ajbj , akbk)

i j

k
V

hi,ajbj ,hk

GAL (i, jl, jr) =
〈αβ〉4

〈jrk〉〈ki〉〈ijl〉
ǫ(hi, ajbj , hk)

Tab. 2: Left-handed basic building blocks in the MHV decomposition of color-ordered
amplitudes in the CSW approach.

Combining the right- and left-handed decompositions, it is possible to write the recursive

relations in a symmetric form involving both right-handed and left-handed vertices

Jab
uv(1, . . . , n) = δuv V

h1,h2,ab
AG (P1,u, Pu+1,n) Jh1

(1, . . . , u) Jh2
(u + 1, . . . , n) (5.8)

+ (1 − δuv)
1

2

v−1
∑

w=u

V
a′b′,h,ab
AAR (P1,u, Pw+1,v, Pv+1,n) Ja′b′

uw (1, . . . , v) Jh(v + 1, . . . , n)

+ (1 − δuv)
1

2

v
∑

w=u+1

V
h,a′b′,ab
AAL (P1,u, Pu+1,w, Pv+1,n) Jh(1, . . . , u) Ja′b′

wv (u + 1, . . . , n),

Jh(1, . . . , n) =
1

P 2
1,n

n−1
∑

k=1

[

V
h1,h2,h
GG (P1,k, Pk+1,n) Jh1

(1, . . . , k) Jh2
(k + 1, . . . , n) (5.9)

+
1

2

k−1
∑

u=1

k−1
∑

v=u

V
ab,h1,h
GAR (P1,u, Pv+1,k, Pk+1,n) Jab

uv(1, . . . , k) Jh1
(k + 1, . . . , n)

+
1

2

n−k−1
∑

u=1

n−k−1
∑

v=u

V
h1,ab,h
GAL (P1,k, Pk+1,u, Pv+1,n) Jh1

(1, . . . , k) Jab
uv(k + 1, . . . , n)

]

.

These recursive relations, equivalent to the CSW vertex rules, can be solved simultaneously

to construct the scalar off-shell current. The difference to the pure CSW approach without

decomposition of the MHV vertices lies in the fact that the number of different vertices in

Eq. (5.8) and Eq. (5.9) is fixed and does not grow with the number of particles. The approach

thereby differs from the one presented in Ref. [28]. Furthermore, as the number of different

vertices is fixed and as only three-point vertices are present, these new recursive relations are

well suited to be compared to the Berends-Giele recursive relations.

We now turn to the color dressing of the new CSW-like recursive relations. The procedure

is very similar to the Berends-Giele case, but it contains some technical subtleties. The

interested reader may refer to appendix A for a detailed discussion. As the new recursive

relations only contain three-point vertices, we expect the color-dressed vertices to be of the
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same form as in Eq. (3.17),

V(P, Q) = δḠ
L δK̄

N δM̄
H VR(P, Q) + δḠ

NδM̄
L δK̄

H VL(Q, P ). (5.10)

In the color-flow basis, the scalar off-shell currents are defined in the usual way

J IJ̄
h (1, . . . , n) =

∑

σ∈Sn

δJ̄
iσ1

δ
̄σ1

iσ2
. . . δ

̄σn

I Jh(σ1, σ2 . . . , σn). (5.11)

The color-dressed n-point double-line currents are defined by

J ab,IJ̄
πlπr

(πl, πm, πr) =
∑

σ∈Su

∑

σ′∈Sv−u

∑

σ′′∈Sn−v

[

δJ̄
iσl,1

. . . δ
̄σl,u

iσ′

m,u+1

. . . δ
̄σ′

m,v

iσ′′

r,v+1

. . . δ
̄σ′′

r,n

I (5.12)

Jab
uv(σπl

, σ′
πm

, σ′′
πr

) + δJ̄
iσ′′

r,v+1

. . . δ
̄σ′′

r,n

iσ′

m,u+1

. . . δ
̄σ′

m,v

iσl,1
. . . δ

̄σl,u

I

Jab
(n−v)(n−u)(σ

′′
πr

, σ′
πm

, σπl
)

]

,

where πl and πr are two proper subsets of {1, 2, . . . , n} referring to the momenta flowing in

each line separately, (kl, kr) = (Pπl
, Pπr

), and πm is defined by πl ⊕ πm ⊕ πr = {1, 2, . . . , n}

(Notice that πm may be empty). On the right-hand side of Eq. (5.12), the indices (u, v) of

the color-ordered currents are defined by (u, v) = (#πl, n − #πr) and

πl = {π1
l , π

2
l , . . . , π

u
l },

πm = {πu+1
m , πu+2

m , . . . , πv
m},

πr = {πv+1
r , πv+2

r , . . . , πn
r }.

(5.13)

Finally, the symbols σi,j are defined by σi,j = σ(πj
i ). Notice that due to the second term

appearing in Eq. (5.12), a color-dressed n-point double-line current is symmetric in (πl, πr).

The color dressing is similar to the Berends-Giele case and the result is

J IJ̄
h (1, . . . , n) =

1

P 2
1,n

[

∑

π∈P (n,2)

Vh1,h2,h
GG (Pπ1

, Pπ2
)J KL̄

h1
(π1)J

MN̄
h2

(π2) (5.14)

+
1

2

∑

π∈OP (n,3)

Vab,h1,h
GA (Pπ1

, Pπ2
, Pπ3

)J ab,KL̄
π1π2

(π1, π2)J
MN̄
h1

(π3)

+
1

2

∑

π∈OP (n,4)

Vab,h1,h
GA (Pπ1

, Pπ3
, Pπ4

)J ab,KL̄
π1π3

(π1, π2, π3)J
MN̄
h1

(π4)

]

,

J ab,IJ̄
πl,πr

(πl, πm, πr) = δuv Vh1,h2,ab
AG (Pπl

, Pπr
)J KL̄

h1
(πl) J

MN̄
h2

(πr) (5.15)

+ (1 − δuv)
1

2

[

Va′b′,h,ab
AA (Pπl

, Pπm
, Pπr

) J a′b′,KL̄
πlπ2

(πl, πm) J MN̄
h (πr)

+
∑

π∈OP (πm,2)

Va′b′,h,ab
AA (Pπl

, Pπ2
, Pπr

) J a′b′,KL̄
πlπ2

(πl, π1, π2) J
MN̄
h (πr)

+ (πl ↔ πr)

]

,
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where in Eq. (5.15) OP (πm, 2) is the set of all ordered partitions of πm into two independent

parts.

Apart from a few subtleties, the procedure of the color dressing is now similar to the Berends-

Giele case. A detailed discussion is given in appendix A. The main differences are the follow-

ing:

- As the color-dressed vertices, Eq. (5.10), have both right and left-handed contributions,

the symmetric form for the color-ordered recursive relations, Eq. (5.8) and Eq. (5.9) is

employed.

- The contributions coming from the u = v and u 6= v terms in Eq. (5.8) and Eq. (5.9)

are treated separately. For example, the u = v and u 6= v contributions in Eq. (5.9)

give rise to the OP (n, 3) and OP (n, 4) terms in Eq. (5.14), respectively.

Apart from these, the new CSW-like recursive relations retain the same form as the corre-

sponding color-ordered relations with the difference that in the color-ordered case the sum

goes over unordered objects. Furthermore, as in the color-ordered case, the number of differ-

ent vertices is fixed and only three-point vertices appear in the recursive relations. Therefore

we may compare them to the color-dressed Berends-Giele recursive relation presented in Sec-

tion 3.

6 Numerical results

All relations for calculating multi-gluon amplitudes presented in the previous sections have

been implemented into C++ Monte Carlo programs using the tools set ATOOLS-2.0 and the

integration package PHASIC++-1.0 [3]. A comparison of calculation times for helicity summed

color-ordered amplitudes versus the results obtained in Ref. [29] has been performed. Our

implementations yield exactly the same growth in computation time, except for the CSW

rules, where we gain considerably due to rewriting the CSW vertex rules in terms of recursive

relations for internal lines. Furthermore we have checked, employing the color-flow basis, that

the color-dressed relations yield the same results as the calculations employing color-ordered

amplitudes along with the color-flow decomposition presented in Ref. [24]. Using the adjoint

representation, we have checked that the color-dressed BCF relations yield the same result as

the color-ordered ones along with a decomposition of the total amplitude in the adjoint basis.

A comparison of the computation times for the various approaches using the color-flow

basis can be found in Table 3. The color-dressed Berends-Giele relations are the fastest

method for more than five final state gluons. For less than six outgoing gluons the color-

flow decomposition using color-ordered amplitudes calculated according to the BCF recursion

performs better. In this case only few valid color flows exist [24] and primarily (or only) MHV

vertices contribute. For those the computation time increases only linearly with the number

of outgoing particles in the color-ordered BCF relations.
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Final BG BCF CSW

State CO CD CO CD CO CD
2g 0.24 0.28 0.28 0.33 0.31 0.26
3g 0.45 0.48 0.42 0.51 0.57 0.55
4g 1.20 1.04 0.84 1.32 1.63 1.75
5g 3.78 2.69 2.59 7.26 5.95 5.96
6g 14.2 7.19 11.9 59.1 27.8 30.6
7g 58.5 23.7 73.6 646 146 195
8g 276 82.1 597 8690 919 1890
9g 1450 270 5900 127000 6310 29700
10g 7960 864 64000 - 48900 -

Tab. 3: Computation time (s) of the 2 → n gluon amplitudes for 104 phase space
points, sampled over helicity and color. Results are given for the color-ordered
(CO) and the color-dressed (CD) Berends-Giele (BG), Britto-Cachazo-Feng
(BCF) and Cachazo-Svrček-Witten (CSW) relations. Numbers were generated
on a 2.66 GHz XeonTM CPU.

It is apparent that the computation times in the color-dressed BCF and in the color-dressed

CSW case grow very fast. In the case of the CSW relations the reason is the number of types

of internal lines, which is larger than in the Berends-Giele and in the BCF approach. In this

respect it is important to note that each double line may eventually carry zero, one or two

indices of attached negative helicity gluons. Additionally, in most cases two vertices exist

for either of these lines (cf. Table 1), yielding a large amount of lines that finally have to be

computed. However, the growth we encounter by employing this method is still not factorial

but exponential. Nevertheless the factor in the exponent is still too large for the method to

be competitive with the Berends-Giele approach. This fact is illustrated in Table 4, where

we list the average number of nonzero internal lines counted either by value or by origination

vertex. The former corresponds to the average number of nonzero currents in the Berends-

Giele approach.

Employing the color-dressed BCF relations, we encounter a factorial growth of the compu-

tation time. We have identified three main reasons:

- The subamplitudes are linked by the spinor shifts.

- The natural color basis is the adjoint basis.

- The amplitudes are decomposed down to three-point vertices.

We address these points in order.

In the color-dressed as well as in the color-ordered BCF relations, Eqs. (4.1) and (4.12),

the subamplitudes of a given decomposition are linked via the shifts Eqs. (4.2-4.4). Thus
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Final Currents Internal lines (CSW) by MHV vertices (BCF) by

State (BG) vertex value vertex value
2g 7.04 3.48 7.56 1.98 1.98
3g 19.50 8.56 27.45 4.43 4.57
4g 44.67 18.58 109.0 14.13 18.17
5g 95.74 38.63 407.4 63.88 126.3
6g 198.8 78.25 1648 297.2 1026
7g 405.8 157.8 6773 1395 10330
8g 850.3 325.8 31340 6073 124600

Tab. 4: Average number of nonzero currents in the color-dressed Berends-Giele re-
lations, average number of internal lines in the CSW approach and average
number of nonzero MHV vertices in the color-dressed BCF relations using the
color-flow decomposition. MHV vertices in BCF are counted either by distinct
value or by distinct assignment of unshifted external momenta. Internal lines
in CSW are counted either by vertex or by distinct value.

the BCF relations need a recursive calculation of subamplitudes in the sense that the total

amplitude is to be decomposed successively into smaller building blocks, finally yielding only

three-point MHV vertices. In other words, we have to take Eq. (4.12) literally and apply

a top-down approach of the computation, since for the evaluation of each subamplitude all

previous spinor shifts have to be computed. Figuratively speaking, this is due to the fact that

in the BCF recursion all subamplitudes “remember” which decomposition they originated

from, thus inhibiting the calculation of general color-dressed subamplitudes. This fact is also

illustrated in Table 4, where we list the average number of distinct nonzero MHV vertices

and the average number of distinct assignments of unshifted momenta at these vertices. The

latter corresponds to the average number of internal lines in the CSW approach, counted by

origination vertex. It grows much slower than the former, although faster than for example

the average number of nonzero currents in the Berends-Giele relations.

When applying the top-down procedure of the computation described above, it is neces-

sary to avoid the calculation of terms yielding zero due to the color assignment of external

and internal lines. This can be done in two steps. First, all valid color flows are identified

employing an algorithm similar to the one used for the Berends-Giele recursion. Second,

the subamplitudes are calculated only for the valid color structures. The calculation can be

alleviated if the reference particles in the recursion are chosen such that together they form

a color current having a nonvanishing contribution to the respective amplitude. Since there

exists no decomposition assigning both particles to a common subamplitude, the correspond-

ing color current does not contribute anymore. This procedure eliminates many terms in the

recursion, but it is still insufficient in the case of the color-flow basis. In fact we expect some

redundancy in the calculation of color-ordered subamplitudes due to the dual Ward identities,

which is introduced by fixing the reference particles for all possible color flows of an amplitude
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Process Color flow Adjoint
gg→ 2g 0.78 0.86
gg→ 3g 0.83 0.74
gg→ 4g 0.94 0.60
gg→ 5g 1.14 0.51
gg→ 6g 1.44 0.44

Tab. 5: Ratio of the average number of nonzero MHV vertices in the color dressed
and the color-ordered case in the color-flow and the adjoint representation
decomposition.

simultaneously, cf. Eq. (4.12). To see this, consider a dual Ward identity of the form

A(2, 1, 3, . . . , n) = −
∑

l 6=2; 1≤l<n

A(1, . . . , l, 2, l + 1, . . . , n) . (6.1)

Assume that particles 1 and n have been fixed to be the reference particles in the recursion

and the ordering {2, 1, 3, . . . , n} yields a valid color flow. In this case the above choice of

reference particles is actually inconvenient to calculate the respective contribution to the total

amplitude, since the sum on the right hand side of Eq. (6.1) could be replaced by the one

term on the left hand side. This problem does not occur in the color-ordered case, since the

reference particles are chosen separately for each color flow. To illustrate this, in Table 5 we

compare the ratio of the average number of distinct nonzero MHV vertices in the color-dressed

and the color-ordered BCF relations for the color-flow basis and the adjoint representation

incorporating all simplifications described above. In the adjoint representation the color-

dressed relations yield less terms than the color-ordered ones, since the adjoint representation

naturally avoids the problem of encountering singlet gluons, that decouple. However, much

more effort is spent on the computation of color factors in the adjoint representation [24],

such that it is not the method of choice.

In the color-dressed BCF relations each amplitude is decomposed completely into three-

point vertices. In contrast, in the color-ordered case, any MHV amplitude occuring in any

step of the recursion can be evaluated immediately. To highlight the differences due to this

treatment, Table 6 shows a comparison of the average number of distinct nonzero MHV ver-

tices that have to be evaluated in the color-dressed and in the color-ordered case. We also

give the same number for the color-ordered case, when each amplitude is decomposed into

three-point vertices as well.
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Process CO CD

general MHV 3-point MHV
gg→ 2g 1.28 2.55 1.98
gg→ 3g 1.84 5.51 4.57
gg→ 4g 7.41 19.33 18.17
gg→ 5g 48.78 110.7 126.3
gg→ 6g 318.3 714.7 1026
gg→ 7g 2329 5269 10330
gg→ 8g 20650 46890 124600

Tab. 6: Average number of nonzero MHV vertices in the color-flow decomposition for
the color-ordered (CO) and the color-dressed (CD) BCF relations.

7 Conclusions

We have presented a new approach to the calculation of multi-parton amplitudes which ex-

tends the recursive relations for the color-ordered amplitudes to relations for the full colored

amplitudes. We have argued that in general these new color-dressed relations should be more

suitable for a numerical implementation since they naturally avoid the factorial growth im-

plicit in taking the sum over the permutations of the possible color flows in an amplitude.

The taming of the factorial growth to an exponential one is easily proved in the color-dressed

formulation of the Berends-Giele recursive relations which we find to be the same as the

Schwinger-Dyson approach introduced in Ref. [20] and equivalent to the ALPHA algorithm

of Ref. [30]. Using a similar approach but exploiting the adjoint color basis decomposition,

Eq. (2.3), we have proved a new formulation of the BCF relations, Eq. (4.12), which involves

the full amplitudes, including color, and retains the same formal simplicity of the original

formulation. Finally, we have considered the CSW relations. In this case we had first to

recast them in a form similar to the Berends-Giele relation through the introduction of a new

type of three-point vertices and effective particles, Eqs. (5.8,5.9). It is interesting to note that

while for the Berends-Giele relations the color dressing is straightforward due to the close

correspondence to the Feynman diagram approach, this is far less trivial for the BCF and

CSW relations, for which there is no direct relation to the standard quantum field theory

perturbative approach.

To test the numerical efficiency of the different formulations we have also implemented the

corresponding algorithms and computed squared amplitudes for 2 → n gluon scattering, by

performing the sum over helicities and color with a Monte Carlo method. Our results clearly

show the numerical superiority of the recursive formulation by Berends and Giele over all

twistor-inspired methods, both from the point of view of the growth of complexity with n

and the simplicity of the implementation. For the color-ordered amplitude formulation we

confirm the results of Ref. [29] except for the CSW relations, on which we improve considerably
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by bringing them to the same level of complexity as the BCF relations. The color-dressed

formulations of the BCF and CSW relations perform worse than the corresponding color-

dressed Berends-Giele relations for different reasons. The BCF relations are penalized by

their top-down structure, i.e., the fact that for each helicity and color configuration the

decomposition in terms of amplitudes with smaller multiplicity has to be found, and from the

fact that their natural (and minimal) color basis is the adjoint basis which is computationally

quite heavy. The “improved” color-dressed CSW relations instead suffer from the presence

of a large number of elementary line types and effective three-point vertices which eventually

affect the overall growth of the algorithm.

In conclusion, we have shown how color can be included in the color-stripped recursive rela-

tions coming from twistor-inspired methods that do not have a straightforward relation with

a standard perturbative Lagrangian approach. The resulting color-dressed BCF relations can

be easily derived by employing the adjoint color decomposition, which exactly matches onto

the BCF structure, and retain the same very elegant form of their color-ordered counterpart.

In this respect, it is suggestive to speculate that similar colored relations might be derived

also for one-loop amplitudes, for which an analogous color decomposition holds and may be

deduced from an effective QCD Lagrangian, still unknown.
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A Appendix

In this appendix we give a detailed derivation for the color dressing of the CSW-like recursive

relations presented in Section 5. We start with the color dressing of the recursive relations

for the double-line current. As we want all color-dressed vertices to be of the form given in

Eq. (5.10), involving both right-handed and left-handed contributions, we use the symmetric

form of the recursive relation, Eq. (5.8). We will consider the terms for u = v and u 6= v

appearing in Eq. (5.8) separately and we will start with the u = v term. This term corresponds

to πm = ∅. Inserting it into the definition (5.12), we obtain

∑

σ∈Su

∑

σ′′∈Sn−u

[

δJ̄
iσl,1

. . . δ
̄σl,u

iσ′′

r,u+1

. . . δ
̄σ′′

r,n

I V
h1,h2,ab
AG (Pσπl

, Pσ′′

πr
) Jh1

(σπl
) Jh2

(σ′′
πr

) (A.1)

+ δJ̄
iσ′′

r,u+1

. . . δ
̄σ′′

r,n

iσl,1
. . . δ

̄σl,u

I V
h2,h1,ab
AG (Pσ′′

πr
, Pσπl

) Jh2
(σ′′

πr
) Jh1

(σπl
)

]

.
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The decomposition of the two color factors is similar to the Berends-Giele case, Eq. (3.10),

δJ̄
iσl,1

. . . δ
̄σl,u

iσ′′

r,u+1

. . . δ
̄σ′′

r,n

I = δJ̄
LδK̄

N δM̄
I δL̄

iσl,1
. . . δ

̄σl,u

K δN̄
iσ′′

r,u+1

. . . δ
̄σ′′

r,n

M , (A.2)

δJ̄
iσ′′

r,u+1

. . . δ
̄σ′′

r,n

iσl,1
. . . δ

̄σl,u

I = δJ̄
NδM̄

L δK̄
I δN̄

iσ′′

r,u+1

. . . δ
̄σ′′

r,n

M δL̄
iσl,1

. . . δ
̄σl,u

K . (A.3)

As Pσπl
= Pπl

and Pσ′′

πr
= Pπr

, we can identify two scalar subcurrents in Eq. (A.1)

JKL̄
h1

(πl) =
∑

σ∈Su

δL̄
iσl,1

. . . δ
̄σl,u

K Jh1
(σπl

), (A.4)

J MN̄
h2

(πr) =
∑

σ′′∈Sn−u

δN̄
iσ′′

r,u+1

. . . δ
̄σ′′

r,n

M Jh2
(σ′′

πr
), (A.5)

and so the u = v term reads

(

δJ̄
LδK̄

N δM̄
I V

h1,h2,ab
AG (Pπl

, Pπr
) + δJ̄

NδM̄
L δK̄

I V
h2,h1,ab
AG (Pπr

, Pπl
)
)

J KL̄
h1

(πl)J
MN̄
h2

(πr). (A.6)

We define the color-dressed AG-vertex as6

Vh1,h2,ab
AG (Pπl

, Pπr
) = δJ̄

LδK̄
N δM̄

I V
h1,h2,ab
AG (Pπl

, Pπr
) + δJ̄

NδM̄
L δK̄

I V
h2,h1,ab
AG (Pπr

, Pπl
), (A.7)

and so finally the u = v term reads

Vh1,h2,ab
AG (Pπl

, Pπr
)J KL̄

h1
(πl)J

MN̄
h2

(πr). (A.8)

We now turn to the u 6= v term in Eq. (5.8). This term has four contributions, corresponding

to the right-handed and left-handed decompositions for each of the two terms appearing in

Eq. (5.12). We will show the color dressing of the right-handed decomposition of the first

term in Eq. (5.12) explicitly. The three remaining contributions can be obtained in a similar

way. The right-handed contribution to the first term in Eq. (5.12) gives

∑

σ∈Su

∑

σ′∈Sv−u

∑

σ′′∈Sn−v

v−1
∑

w=u

V
a′b′,h,ab
AAR (Pσπl

, Pσ′

m,w+1
,σ′

m,v
, Pσ′′

πr
) (A.9)

δJ̄
iσl,1

. . . δ
̄σl,u

iσ′

m,u+1

. . . δ
̄σ′

m,v

iσ′′

r,v+1

. . . δ
̄σ′′

r,n

I Ja′b′

uw (σπl
, σ′

πm
) Jh(σ

′′
πr

).

The color factor is decomposed in the usual way
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. . . δ
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m,v
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. . . δ
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iσl,1
. . . δ
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m,u+1

. . . δ
̄σ′

m,v

K δN̄
iσ′′

r,v+1

. . . δ
̄σ′′

r,n

M .

(A.10)

As Pσπl
= Pπl

and Pσ′′

πr
= Pπr

, we can immediately identify the color-dressed scalar subcurrent

J MN̄
h (πr) =

∑

σ′′∈Sn−v

δN̄
iσ′′

r,v+1

. . . δ
̄σ′′

r,n

M Jh(σ
′′
πr

), (A.11)

6As for the Berends-Giele case, the color indices of the vertices are suppressed.
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and we are left with

∑

σ∈Su

∑

σ′∈Sv−u

v−1
∑

w=u

δJ̄
LδK̄

N δM̄
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) (A.12)
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K Ja′b′
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)J MN̄

h (πr).

We will now consider the contributions coming from w = u and w > u separately. For w = u

we find, with Pσ′

m,u+1
,σ′

m,v
= Pσ′

πm
= Pπm

,

∑

σ∈Su

∑
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N δM̄
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(A.13)

Due to the Kronecker-deltas appearing in the definition of VAAR (See Table 1), one has

V
a′b′,h,ab
AAR (Pπl

, Pπm
, Pπr

) Ja′b′

(v−u)(v−u)(σ
′
πm

, σπl
) = 0, (A.14)

and so Eq. (A.13) can be written
∑
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(
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)

,

where the second term vanishes according to Eq. (A.14). This second term corresponds to

the second term in Eq. (5.12)

J ab
πlπm

(πl, πm) =
∑

σ∈Su

∑
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.

So for w = u, we get

δJ̄
LδK̄

N δM̄
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a′b′,h,ab
AAR (Pπl

, Pπm
, Pπr

)J a′b′, KL̄
πlπm

(πl, πm)J MN̄
h (πr). (A.17)

For w > u, we can rewrite the sums over w and σ′ in a similar way as in the Berends-Giele

case, Eq. (3.11),
v−1
∑

w=u+1

∑

σ′∈Sv−u

→
∑

π∈OP (πm,2)

∑

σ′∈Sw−u
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, (A.18)

where OP (πm, 2) is the set of all ordered partitions of πm into 2 independent parts. This

rearrangement gives, with Pσ′′
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,σ′′

m,v
= Pσ′′
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= Pπ2

,

∑
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where π = (π1, π2) is an ordered partition of πm and w = #π1. Due to the Kronecker-deltas

in the definition of VAAR, we have in a similar manner as for Eq. (A.14)

V
a′b′,h,ab
AAR (Pπl

, Pπ1
, Pπr

)Ja′b′

(v−w)(v−u)(σ
′′
π2

, σ′
π1

, σπl
) = 0. (A.20)

Using this relation, we can identify a color-dressed double-line current in a similar way as for

the w = u contribution. The w > u contribution reads

∑

π∈OP (πm,2)
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N δM̄
I V

a′b′,h,ab
AAR (Pπl

, Pπ2
, Pπr

) J a′b′,KL̄
πlπ2

(πl, π1, π2)J
MN̄
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Putting together the w = u and w > u terms, we find the contribution from the right-handed

decomposition of the first factor in Eq. (5.12)
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+
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Similar terms are obtained for the remaining three contributions. Adding up all the contri-

butions, we find for the u 6= v term
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where the color-dressed AA-vertex is defined as
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(A.24)

Finally the recursive relations for the double-line current read
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+(1 − δuv)
1

2
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]

,

which is Eq. (5.15) stated in Section 5.
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We now turn to the color dressing of the recursive relations for the scalar off-shell currents,

and we use again the symmetric form of the recursive relations, Eq. (5.9). The color dressing

of the pure gluon part is identical to the color dressing of the three-gluon vertex part for the

Berends-Giele recursive relations, and it evaluates to
∑

π∈P (n,2)

Vh1,h2,h
GG (Pπ1

, Pπ2
)J KL̄

h1
(π1)J

MN̄
h2

(π2). (A.26)

The term in Eq. (5.9) involving a double-line current has contributions from both the right-

handed and the left-handed decompositions. We will only show the color dressing for the

right-handed contribution here. The left-handed contribution can be obtained in a similar

way. The right-handed contribution reads7

∑

σ∈Sn

n−1
∑

k=2

k−1
∑

u=1

k−1
∑

v=u

δJ̄
iσ1

. . . δ
̄σn

I V
ab,h1,h
GAR (Pσ1,σu

, Pσv+1,σk
, Pσk+1,σn

) Jab
uv(σ1, . . . , σk) Jh1

(σk+1, . . . , σn).

(A.27)

We consider the terms corresponding to u = v and u 6= v separately. The u = v term in

Eq. (A.27) reads

∑

σ∈Sn

n−1
∑

k=2

k−1
∑

u=1

δJ̄
iσ1

. . . δ
̄σn

I V
ab,h1,h
GAR (Pσ1,σu

, Pσu+1,σk
, Pσk+1,σn

) Jab
uu(σ1, . . . , σk) Jh1

(σk+1, . . . , σn).

(A.28)

The color factor is decomposed in the usual way

δJ̄
iσ1

. . . δ
̄σn

I = δJ̄
LδK̄

N δM̄
I δL̄

iσ1
. . . δ

̄σk

K δN̄
iσk+1

. . . δ
̄σn

M . (A.29)

The sums appearing in this expression can be rearranged as

∑

σ∈Sn

n−1
∑

k=2

k−1
∑

u=1

→
∑

π∈OP (n,3)

∑

σ∈Su

∑

σ′∈Sk−u

∑

σ′′∈Sn−k

, (A.30)

where on the right-hand side u = #π1 and k = n−#π3 and OP (n, 3) is the set of all ordered

partitions of {1, 2, . . . , n} into three independent parts. Since

V
ab,h1,h
GAR (Pπ1

, Pπ2
, Pπ3

)Jab
(k−u)(k−u)(π2, π1) = 0, (A.31)

due to the Kronecker-deltas in the definition of VGAR, the result of the color dressing of

Eq. (A.28) is
∑

π∈OP (n,3)

δJ̄
LδK̄

N δM̄
I V

ab,h1,h
GAR (Pπ1

, Pπ2
, Pπ3

)J ab,KL̄
π1π2

(π1, π2)J
MN̄
h1

(π3). (A.32)

Adding the left-handed contribution, we find
∑

π∈OP (n,3)

Vab,h1,h
GA (Pπ1

, Pπ2
, Pπ3

)J ab,KL̄
π1π2

(π1, π2)J
MN̄
h1

(π3), (A.33)

7Recall that this term has no contribution from k = 1.
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where the color-dressed GA-vertex is defined by

Vab,h1,h
GA (Pπ1

, Pπ2
, Pπ3

) = δJ̄
LδK̄

N δM̄
I V

ab,h1,h
GAR (Pπ1

, Pπ2
, Pπ3

) + δJ̄
NδM̄

L δK̄
I V

h1,ab,h
GAL (Pπ3

, Pπ1
, Pπ2

).

(A.34)

The color dressing of the u 6= v contribution in Eq. (A.27) is similar to the u = v case, except

that we have to introduce the set OP (n, 4) of all ordered partitions of {1, . . . , n} into four

independent parts, and the rearrangement of the sums is now written

∑

σ∈Sn

n−1
∑

k=1

k−1
∑

u=1

k−1
∑

v=u+1

→
∑

π∈OP (n,4)

∑

σ∈Su

∑

σ′∈Sv−u

∑

σ′′∈Sk−v

∑

σ′′′∈Sn−k

, (A.35)

where on the right hand side u = #π1, v = #π1 + #π2 and k = n − #π4. The result of the

color dressing of the u 6= v contribution then reads

∑

π∈OP (n,4)

Vab,h1,h
GA (Pπ1

, Pπ3
, Pπ4

)J ab,KL̄
π1π3

(π1, π2, π3)J
MN̄
h1

(π4). (A.36)

Finally the color-dressed recursive relations for the scalar off-shell current read

J IJ̄
h (1, . . . , n) =

1

P 2
1,n

[

∑

π∈P (n,2)

Vh1,h2,h
GG (Pπ1

, Pπ2
)J KL̄

h1
(π1)J

MN̄
h2

(π2) (A.37)

+
1

2

∑

π∈OP (n,3)

Vab,h1,h
GA (Pπ1

, Pπ2
, Pπ3

)J ab,KL̄
π1π2

(π1, π2)J
MN̄
h1

(π3)

+
1

2

∑

π∈OP (n,4)

Vab,h1,h
GA (Pπ1

, Pπ3
, Pπ4

)J ab,KL̄
π1π3

(π1, π2, π3)J
MN̄
h1

(π4)

]

,

which is Eq. (5.14) stated in Section 5.
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