~frederix/+junk/matrix

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
module parameters
! User input:
  ! next     = number of external gluons (initial+final)
  ! npoints  = number of PS points to compute (negative to keep going)
  ! npermtry = number of colour flow permutations to include per PS
  !            point (needs to be greater than 2 and smaller than the
  !            maximal, (next-1)!)
  ! alphas   = the value of the strong coupling
  ! sqrtshat = collision energy
  integer, parameter   :: next=5
  integer, parameter   :: npermtry=24
  integer*8, parameter :: npoints=10000
  real*8, parameter    :: alphas=0.12d0
  real*8, parameter    :: sqrtshat=1000d0
! constants:  
  integer, parameter :: ninc=2,nfin=next-ninc
  real*8, parameter :: pi=3.14159265358979323846d0
! External momenta (generated by 'call get_momenta()'): 
  real*8, dimension(0:3,next) :: p
! helicity (polarisation) and permutation used for amplitude
! computation:
  integer, dimension(next) :: ip
! final or initial state particle:
  integer, dimension(next) :: ifinal
  data ifinal(1:next) / -1,-1,nfin*1 /
  complex*16, dimension(npermtry,0:maskr(next)) :: amp
end module parameters

program matrix
  use parameters
  implicit none
  integer :: ih,iperm,jperm,i,ib1,ib2,ib,ih1,ih2,towrite=1
  integer*8 :: iden,ipoint=0,inonzero=0,nperm
  integer, dimension(next,npermtry) :: ips
  real*8, dimension(next) :: pmass=0d0
  real*8 :: amp2,integral=0d0,uncertainty=0d0,flux,matrix_element,wgt, &
       perm_vol
  real*8, parameter :: conv=389379660d0
  ! number of colour permutations
  nperm=factorial(next-1)
  ! colour, polarisation incoming gluons: 8*8, 2*2
  ! identical final state particle factor: nfin!
  iden=8*8*2*2 * factorial(nfin)
  ! flux factor
  flux=1d0/(2d0*sqrtshat**2)
  do
     if (npoints.gt.0 .and. inonzero.eq.npoints) exit
     ipoint=ipoint+1
     call get_momenta(sqrtshat,pmass,wgt)
     do i=1,2
        p(0,i)=-p(0,i) ! treat all momenta as outgoing
     enddo
     ! weight from Ramdo is logarithmic and does not
     ! include 1/(2pi)^(3n-4). Compensate...     
     wgt=exp(wgt)/((2*pi)**(3*nfin-4))

     ! Check if PS point passes generation cuts
     if (fail_cuts()) cycle
     inonzero=inonzero+1
     amp2=0d0
     ! Determine which npermtry colour ordered amplitudes to
     ! compute. Do this randomly.
     do iperm=1,npermtry
        if (npermtry.eq.nperm) then
           ! Summing over all permutations. 
           call set_iperm(iperm,ips(1,iperm))
        elseif (npermtry.lt.nperm) then
           if (iperm.eq.1) then
              call get_iperm_rn(ips(1,iperm))
           else
111           call get_iperm_rn(ips(1,iperm))
              ! second (or third, etc.) should always be different
              ! from previous ones. Simply regenerate. This is not
              ! optimal, but sufficient if npermtry<<nperm, which
              ! should be the case for large number of gluons
              do i=1,iperm-1
                 if (all(ips(1:next,iperm).eq.ips(1:next,i))) goto 111
              enddo
           endif
        else
           write (*,*) 'npermtry should be smaller than',nperm
           stop 1
        endif
     enddo
     do iperm=1,npermtry
        ip(1:next)=ips(1:next,iperm)
        ! Compute the matrix colour ordered amplitude, first computing
        ! the wavefunctions correspoding to the sum of the first
        ! next-1 particles, dotting that into the gluon polarisation
        ! for the next particle.
        call compute_amplitude(iperm)
     enddo

!!$     do iperm=1,1
!!$        write (*,*) ips(1:next,iperm) ,'=>',iperm
!!$        do i=0,maskr(next)
!!$           write (*,*) i,amp(iperm,i)
!!$        enddo
!!$     enddo

     ! Loop over all colour ordered amplitudes computed, and multiply
     ! by the colour factor to get the matrix element squared. If
     ! npermtry<nperm, also include the weight from the MC-ing over
     ! the colour-ordered amplitudes. The colour factor for the
     ! off-diagonal contributions includes a factor 2, because only
     ! upper triangle of colour matrix is included.
     do ih=0,maskr(next)
        do iperm=1,npermtry
           ! do some bit moving to align the helicity with the
           ! permutation iperm
           ih1=0
           do ib=1,next
              call mvbits(ih,ips(ib,iperm)-1,1,ih1,ib-1)
           enddo
           do jperm=iperm,npermtry
              ! do some bit moving to align the helicity with the
              ! permutation jperm
              ih2=0
              do ib=1,next
                 call mvbits(ih,ips(ib,jperm)-1,1,ih2,ib-1)
              enddo
              ! Compute the weight from the MC-ing over permutations
              if (iperm.eq.jperm) then
                 perm_vol=dble(nperm)/dble(npermtry)
              else
                 perm_vol=dble(nperm*(nperm-1))/dble(npermtry*(npermtry-1))
              endif
              ! Compute the amplitude squared
              amp2=amp2+dble(amp(iperm,ih1)*dconjg(amp(jperm,ih2)))* &
                   color_factor_list(ips(1,iperm),ips(1,jperm))*perm_vol
           enddo
        enddo
     enddo
     ! Include the strong coupling and the identical particle factor.
     amp2=amp2*(4*pi*alphas)**nfin/dble(iden)
     ! Include the flux factor, the phase-space weight, and the
     ! conversion from GeV->pb.
     matrix_element=amp2*flux*wgt*conv

     ! Add the current matrix element to the total cross section
     integral=integral+matrix_element
     uncertainty=uncertainty+matrix_element**2
     if (inonzero.gt.10*towrite .and. towrite.lt.10000) towrite=towrite*10
     if (mod(inonzero,towrite).eq.0) then
        write (88,*) ipoint,inonzero,matrix_element,integral/dble(ipoint), &
             sqrt(abs(uncertainty/dble(ipoint)-(integral/dble(ipoint))**2)/dble(ipoint)), &
             100d0*sqrt(abs(uncertainty/dble(ipoint)-(integral/dble(ipoint))**2)/dble(ipoint))/(integral/dble(ipoint)) 
        write (*,*) ipoint,inonzero,matrix_element,integral/dble(ipoint), &
             sqrt(abs(uncertainty/dble(ipoint)-(integral/dble(ipoint))**2)/dble(ipoint)), &
             100d0*sqrt(abs(uncertainty/dble(ipoint)-(integral/dble(ipoint))**2)/dble(ipoint))/(integral/dble(ipoint)) 
        call flush(88)
     endif
  enddo
  ! Print the final result to the screen
  integral=integral/dble(npoints)
  uncertainty=uncertainty/dble(npoints)
  uncertainty=sqrt(abs(uncertainty-integral**2)/dble(npoints))
  if (npoints.gt.10) write (*,*) 'sigma:',integral,'+/-',uncertainty,'(',100d0*uncertainty/integral,'%)'

contains
  logical function fail_cuts()
    ! Cuts on the phase-space point.
    use parameters
    implicit none
    integer i,j
    fail_cuts=.false.
    do i=3,next
       if (pt(p(0,i)).lt.60d0) then
          fail_cuts=.true.
          return
       endif
       if (abs(eta(p(0,i))).gt.2d0) then
          fail_cuts=.true.
          return
       endif
       if (i.ne.next) then
          do j=i+1,next
             if (DeltaR(p(0,i),p(0,j)).lt.0.7d0) then
                fail_cuts=.true.
                return
             endif
          enddo
       endif
    enddo
  end function fail_cuts
  
  real*8 function pt(p)
    ! transverse momentum of 'p'
    implicit none
    real*8, dimension(0:3) :: p
    pt=sqrt(p(1)**2+p(2)**2)
  end function pt
  
  real*8 function eta(p)
    ! pseudo-rapidity of 'p'
    implicit none
    real*8, dimension(0:3) :: p
    real*8 :: theta
    theta=acos(p(3)/sqrt(p(1)**2+p(2)**2+p(3)**2))
    eta=-log(dtan(theta/2d0))
  end function eta

  real*8 function delta_phi(p1,p2)
    ! azimuthal difference of 'p1' and 'p2'
    implicit none
    real*8, dimension(0:3) :: p1,p2
    real*8 :: denom
    denom=pt(p1)*pt(p2)
    delta_phi=acos((p1(1)*p2(1)+p1(2)*p2(2))/denom)
  end function delta_phi

  real*8 function deltaR(p1,p2)
    ! Distance (Delta-R) between 'p1' and 'p2'
    implicit none
    real*8, dimension(0:3) :: p1,p2
    deltaR=sqrt(delta_phi(p1,p2)**2+(eta(p1)-eta(p2))**2)
  end function deltaR

  real*8 function color_factor(iperm,jperm)
    ! Compute colour factor for permutation numbers 'iperm' and
    ! 'jperm'
    use parameters
    implicit none
    integer :: iperm,jperm
    integer, dimension(next) :: iper,jper,ips
    call set_iperm(iperm,ips)
    iper(1:next)=ips(:)
    call set_iperm(jperm,ips)
    jper(1:next)=ips(:)
    color_factor=color_factor_list(iper,jper)
  end function color_factor

  real*8 function color_factor_list(iper,jper)
    ! Given two permutations (iper and jper) compute corresponding
    ! colour factor. If the two configurations are identical, include
    ! an additional factor 2.
    use parameters
    implicit none
    integer :: i,j,k,id0,jd0,id1,jd1,colfac,nperms
    integer, dimension(next) :: iper,jper
    integer, dimension(0:1,next) :: idel,jdel
    logical, dimension(next) :: lper
    ! add the factor 2 if need be
    if (all(iper.eq.jper)) then
       colfac=1
    else
       colfac=2
    endif
    ! Determine the delta's to contract
    do i=1,next
       ! delta's of the amplitude
       idel(0,i)=iper(i)
       jdel(0,i)=iper(mod(i,next)+1)
       ! delta's of the conjugate amplitude
       idel(1,i)=jper(i)
       jdel(1,i)=jper(mod(i,next)+1)
    enddo
    ! No closed string of delta's found so far: set all the labels to
    ! false
    lper(1:next)=.false.
    ! Loop over the delta's.
    do k=1,next
       ! If this delta already belonged to a previously closed
       ! string. Skip it
       if (lper(k)) cycle
       ! The two labels of the delta in the amplitude
       id0=idel(0,k)
       jd0=jdel(0,k)
       ! Go searching to see to which delta's it is connected
       do
          do j=1,next
             if (jdel(1,j).eq.jd0) then
                ! Found the delta in the conjugate amplitude to which
                ! the delta in the amplitude is connected to
                id1=idel(1,j)
                exit
             endif
          enddo
          if (id0.eq.id1) then
             ! The delta in the conjugate amplitude, links back to the
             ! starting delta. Hence, one closed string found: add a
             ! factor 3 to the colour factor and start with the next
             ! delta in the amplitude.
             colfac=colfac*3
             exit
          endif
          do i=1,next
             if (idel(0,i).eq.id1) then
                ! Found delta in the amplitude to which the delta in
                ! the conjugate amplitude connects to. Hence, it's
                ! part of a closed string, so set corresponding lper
                ! to true.
                jd0=jdel(0,i)
                lper(i)=.true.
                exit
             endif
          enddo
       enddo
    enddo
    color_factor_list=dble(colfac)
  end function color_factor_list
  
  integer*8 function factorial(ifact)
    ! computes the factorial of 'ifact'. Uses long integers to deal
    ! with large numbers
    implicit none
    integer, value :: ifact
    factorial=1
    do while (ifact.gt.1)
       factorial=factorial*ifact
       ifact=ifact-1
    enddo
  end function factorial
end program matrix

subroutine set_iperm(iperm,ipss)
  ! Given permutation number 'iperm', fills the corresponding
  ! permutation. This is slow when the number of permutations is
  ! large, and easily becomes the most time-consuming part of the
  ! calculation if used too often.
  use parameters
  implicit none
  integer :: iperm,i
  integer, dimension(next-1) :: ips
  integer, dimension(next) :: ipss
  integer :: iflag
  do i=1,next-1
     ips(i)=i
  enddo
  do i=1,iperm-1
     call ipnext(ips,next-1,iflag)
  enddo
  ipss(1:next-1)=ips(:)
  ipss(next)=next
end subroutine set_iperm

subroutine get_iperm_rn(ips)
  ! Computes a random permutation 'ips'.
  use parameters
  implicit none
  integer :: i,j,k,itemp
  integer,dimension(1:next-1) :: ileft
  integer,dimension(next) :: ips
  real*8, external :: rn
  ! Create a pool of numbers to pick from
  do i=1,next
     ileft(i)=i
  enddo
  ! Randomly remove a number from the pool 'ileft' and add it to the
  ! 'ips' permutation list.
  do i=1,next-1
     k=0
     itemp=int(rn(1)*(next-i))+1
     do j=1,itemp
        k=k+1
        do while (ileft(k).eq.0)
           k=k+1
        enddo
     enddo
     ips(i)=ileft(k)
     ileft(k)=0
  enddo
  ! Last number in permutation is always 'next': this removes all cyclic
  ! permutations.
  ips(next)=next
end subroutine get_iperm_rn

subroutine compute_amplitude(iperm)
  use parameters
  implicit none
  integer,parameter :: mw=maskr(next-1),mm=maskr(next-1)+1,zero=0
  integer :: imom,i,ih,level,j,isplit,jsplit,iwf,nnext,iperm, &
       a3,b3,a4,b4,c4,ia,ib,ic,ext,nh,icount
  complex*16, dimension(4,mm,mm) :: wf
  integer,dimension(mm) :: nwf
  real*8, dimension(0:3,mm) :: pp
  complex*16 :: propagator,contribution
  complex*16,dimension(4) :: wfout
  complex*16,parameter :: ci=(0d0,1d0)
  complex*16,dimension(4,0:1) :: wffinal

  nwf=0
  nnext=next-1
  do i=1,next
     ext=0
     ext=ibset(ext,i-1)
     pp(0:3,ext)=p(0:3,ip(i))
     do ih=0,1
        nwf(ext)=nwf(ext)+1
        call v_ext(pp(0,ext),ih,1,wf(1,nwf(ext),ext))
     enddo
  enddo

  do level=1,nnext-1
     do i=1,nnext-level
        ext=0
        nh=1
        do j=0,level
           ext=ibset(ext,i+j-1)
           nh=nh*2
        enddo
        nwf(ext)=nh
        wf(1:4,1:nwf(ext),ext)=(0d0,0d0)

        pp(0:3,ext)=0d0
        do j=1,nnext
           if (btest(ext,j-1)) pp(0:3,ext)=pp(0:3,ext)+pp(0:3,ibset(zero,j-1))
        enddo

        do isplit=1+trailz(ext),popcnt(ext)-1+trailz(ext)
           a3=merge_bits(ext,zero,maskr(isplit))
           b3=merge_bits(zero,ext,maskr(isplit))
           do ib=1,nwf(b3)
              do ia=1,nwf(a3)
                 call gluon3(wf(1,ia,a3),pp(0,a3), &
                             wf(1,ib,b3),pp(0,b3), &
                             wfout)
                 icount=(ib-1)*nwf(a3)+ia
                 wf(1:4,icount,ext)=wf(1:4,icount,ext)+wfout(1:4)
              enddo
           enddo
           do jsplit=isplit+1,popcnt(ext)-1+trailz(ext)
              a4=a3
              b4=merge_bits(b3,zero,maskr(jsplit))
              c4=merge_bits(zero,b3,maskr(jsplit))
              do ic=1,nwf(c4)
                 do ib=1,nwf(b4)
                    do ia=1,nwf(a4)
                       call gluon4(wf(1,ia,a4),wf(1,ib,b4),wf(1,ic,c4),wfout)
                       icount=(ic-1)*nwf(a4)*nwf(b4)+(ib-1)*nwf(a4)+ia
                       wf(1:4,icount,ext)=wf(1:4,icount,ext)+wfout(1:4)
                    enddo
                 enddo
              enddo
           enddo
        enddo
        if (level.ne.nnext-1) then
           propagator=-ci/(pp(0,ext)**2-pp(1,ext)**2-pp(2,ext)**2-pp(3,ext)**2)
           wf(1:4,1:nwf(ext),ext)=wf(1:4,1:nwf(ext),ext)*propagator
        endif
     enddo
  enddo

  amp(iperm,:)=0d0
  do iwf=1,nwf(ext)
     do i=1,2
        contribution= &
                    (wf(1,iwf,ext)*wf(1,i,ibset(zero,nnext))- &
                     wf(2,iwf,ext)*wf(2,i,ibset(zero,nnext))- &
                     wf(3,iwf,ext)*wf(3,i,ibset(zero,nnext))- &
                     wf(4,iwf,ext)*wf(4,i,ibset(zero,nnext)))
        ih=iwf-1
        if (i.eq.2) ih=ibset(ih,next-1)
        amp(iperm,ih)=amp(iperm,ih)+contribution
     enddo
  enddo

end subroutine compute_amplitude
   
subroutine v_ext(p,ihel,ifinal,wf)
  ! External gluon wavefunction. From HELAS.
  implicit none
  integer :: ihel,ifinal
  real*8, dimension(0:3) :: p
  complex*16, dimension(4) :: wf
  real*8, parameter :: rzero=0d0,rhalf=0.5d0,sqh=sqrt(0.5d0)
  real*8 :: hel,pt2,pp,pt,pzpt
  hel = dble(2*ihel-1)
  pt2 = p(1)**2+p(2)**2
  pp = min(p(0),sqrt(pt2+p(3)**2))
  pt = min(pp,sqrt(pt2))
  pp = p(0)
  pt = sqrt(p(1)**2+p(2)**2)
  wf(1) = dcmplx( rZero )
  wf(4) = dcmplx( hel*pt/pp*sqh )
  if ( pt.ne.rZero ) then
     pzpt = p(3)/(pp*pt)*sqh*hel
     wf(2) = dcmplx( -p(1)*pzpt , -ifinal*p(2)/pt*sqh )
     wf(3) = dcmplx( -p(2)*pzpt ,  ifinal*p(1)/pt*sqh )
  else
     wf(2) = dcmplx( -hel*sqh )
     wf(3) = dcmplx( rZero , ifinal*sign(sqh,p(3)) )
  endif
end subroutine v_ext

subroutine gluon3(wf1,pwf1,wf2,pwf2,wf)
  ! Colour-ordered three gluon interaction
  implicit none
  complex*16,dimension(4) :: wf1,wf2,wf
  real*8,dimension(0:3) :: pwf1,pwf2
  complex*16, parameter :: prefact=(0d0,1d0)/sqrt(2d0)
  complex*16 :: TMP1,TMP2,TMP3
  TMP1 = (wf1(1)*wf2(1)-wf1(2)*wf2(2)-wf1(3)*wf2(3)-wf1(4)*wf2(4))
  TMP2 = (wf1(1)*pwf2(0)-wf1(2)*pwf2(1)-wf1(3)*pwf2(2)-wf1(4)*pwf2(3))
  TMP3 = (wf2(1)*pwf1(0)-wf2(2)*pwf1(1)-wf2(3)*pwf1(2)-wf2(4)*pwf1(3))
  wf(1) = prefact*(TMP1*(pwf1(0)-pwf2(0))+2d0*TMP2*wf2(1)-2d0*TMP3*wf1(1))
  wf(2) = prefact*(TMP1*(pwf1(1)-pwf2(1))+2d0*TMP2*wf2(2)-2d0*TMP3*wf1(2))
  wf(3) = prefact*(TMP1*(pwf1(2)-pwf2(2))+2d0*TMP2*wf2(3)-2d0*TMP3*wf1(3))
  wf(4) = prefact*(TMP1*(pwf1(3)-pwf2(3))+2d0*TMP2*wf2(4)-2d0*TMP3*wf1(4))
end subroutine gluon3

subroutine gluon4(wf1,wf2,wf3,wf)
  ! Colour-ordered four gluon interaction
  implicit none
  complex*16,dimension(4) :: wf1,wf2,wf3,wf
  complex*16, parameter :: prefact=(0d0,0.5d0)
  complex*16 :: TMP1,TMP2,TMP3
  TMP1 = (wf1(1)*wf2(1)-wf1(2)*wf2(2)-wf1(3)*wf2(3)-wf1(4)*wf2(4))
  TMP2 = (wf1(1)*wf3(1)-wf1(2)*wf3(2)-wf1(3)*wf3(3)-wf1(4)*wf3(4))
  TMP3 = (wf2(1)*wf3(1)-wf2(2)*wf3(2)-wf2(3)*wf3(3)-wf2(4)*wf3(4))
  wf(1) = prefact*(2d0*wf2(1)*TMP2-wf1(1)*TMP3-wf3(1)*TMP1)
  wf(2) = prefact*(2d0*wf2(2)*TMP2-wf1(2)*TMP3-wf3(2)*TMP1)
  wf(3) = prefact*(2d0*wf2(3)*TMP2-wf1(3)*TMP3-wf3(3)*TMP1)
  wf(4) = prefact*(2d0*wf2(4)*TMP2-wf1(4)*TMP3-wf3(4)*TMP1)
end subroutine gluon4

subroutine ipnext(ia, n, flag)
  ! Compute next permutation starting from the list 'ia' (of length
  ! 'n').
  implicit none
  integer ::n,flag,i,j,itemp
  integer, dimension(*) :: ia
  i=n-1
  do while (i.ge.1 .and. ia(i).gt.ia(i+1))
     i=i-1
  enddo
  if (i.lt.1) then
     flag = -1
     return
  endif
  j = n
  do while (ia(i).gt.ia(j))
     j = j-1
  enddo
  itemp = ia(i)
  ia(i) = ia(j)
  ia(j) = itemp
  i = i+1
  j = n
  do while (i.lt.j)
     itemp = ia(i)
     ia(i) = ia(j)
     ia(j) = itemp
     i = i+1
     j = j-1
  enddo
  flag = 1
  return
end subroutine ipnext