~gerald-mwangi/+junk/Thesis

3 by gerald.mwangi at gmx
started background
1
\relax 
45 by gerald.mwangi at gmx
Changed formating based on S meisters PhD
2
\providecommand\hyper@newdestlabel[2]{}
180 by gerald.mwangi at gmx
Started corrections. Added appendix on top manifolds
3
\bibstyle{abbrvnat}
45 by gerald.mwangi at gmx
Changed formating based on S meisters PhD
4
\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
5
\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
6
\global\let\oldcontentsline\contentsline
7
\gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}}
8
\global\let\oldnewlabel\newlabel
9
\gdef\newlabel#1#2{\newlabelxx{#1}#2}
10
\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
11
\AtEndDocument{\ifx\hyper@anchor\@undefined
12
\let\contentsline\oldcontentsline
13
\let\newlabel\oldnewlabel
14
\fi}
15
\fi}
16
\global\let\hyper@last\relax 
17
\gdef\HyperFirstAtBeginDocument#1{#1}
18
\providecommand\HyField@AuxAddToFields[1]{}
19
\providecommand\HyField@AuxAddToCoFields[2]{}
20
\select@language{english}
21
\@writefile{toc}{\select@language{english}}
22
\@writefile{lof}{\select@language{english}}
23
\@writefile{lot}{\select@language{english}}
176 by gerald.mwangi at gmx
reviewing everything 24
24
\@input{AbstractAcknowledgements/abstract.aux}
25
\@input{AbstractAcknowledgements/acknowledgements.aux}
178 by gerald.mwangi at gmx
reviewing everything FINISHED!!
26
\@writefile{toc}{\contentsline {chapter}{\numberline {1}Introduction}{1}{chapter.1}}
68 by gerald.mwangi at gmx
Finished Introduction, modded last chapter
27
\@writefile{lof}{\addvspace {10\p@ }}
28
\@writefile{lot}{\addvspace {10\p@ }}
29
\@writefile{lol}{\addvspace {10\p@ }}
30
\@writefile{loa}{\addvspace {10\p@ }}
178 by gerald.mwangi at gmx
reviewing everything FINISHED!!
31
\newlabel{fig:leafBox}{{1.1a}{2}{Subfigure 1 1.1a}{subfigure.1.1.1}{}}
64 by gerald.mwangi at gmx
Started Introduction
32
\newlabel{sub@fig:leafBox}{{(a)}{a}{Subfigure 1 1.1a\relax }{subfigure.1.1.1}{}}
178 by gerald.mwangi at gmx
reviewing everything FINISHED!!
33
\newlabel{fig:leafBox@cref}{{[subfigure][1][1,1]1.1a}{2}}
34
\newlabel{fig:leafVein}{{1.1b}{2}{Subfigure 1 1.1b}{subfigure.1.1.2}{}}
64 by gerald.mwangi at gmx
Started Introduction
35
\newlabel{sub@fig:leafVein}{{(b)}{b}{Subfigure 1 1.1b\relax }{subfigure.1.1.2}{}}
178 by gerald.mwangi at gmx
reviewing everything FINISHED!!
36
\newlabel{fig:leafVein@cref}{{[subfigure][2][1,1]1.1b}{2}}
37
\@writefile{lof}{\contentsline {figure}{\numberline {1.1}{\ignorespaces \Cref  {fig:leafBox} shows an image of a leaf. The leaf clearly has no global symmetry. \Cref  {fig:leafVein} shows a close-up of the region around a vein of the leaf, indicated by the box in \cref  {fig:leafBox}. The vectors in \cref  {fig:leafVein} along the vein indicate local translations which leave the vein invariant. \relax }}{2}{figure.caption.5}}
86 by gerald.mwangi at gmx
modded opt flow, more citations
38
\providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}}
178 by gerald.mwangi at gmx
reviewing everything FINISHED!!
39
\newlabel{fig:introductionLeaf}{{1.1}{2}{\Figref {fig:leafBox} shows an image of a leaf. The leaf clearly has no global symmetry. \Figref {fig:leafVein} shows a close-up of the region around a vein of the leaf, indicated by the box in \figref {fig:leafBox}. The vectors in \figref {fig:leafVein} along the vein indicate local translations which leave the vein invariant. \relax }{figure.caption.5}{}}
40
\newlabel{fig:introductionLeaf@cref}{{[figure][1][1]1.1}{2}}
41
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{2}{subfigure.1.1}}
42
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{2}{subfigure.1.2}}
43
\newlabel{eq:localSymmetry}{{1.2}{2}{Introduction}{equation.1.0.2}{}}
44
\newlabel{eq:localSymmetry@cref}{{[equation][2][1]1.2}{2}}
149 by gerald.mwangi at gmx
reviewing everything
45
\citation{Hartley-Zisserman-multiple_view_geometry_book,ZhuFusionTOFandStereoVisForDepth,nair2012high,ScharsteinSterDepthStructLight}
178 by gerald.mwangi at gmx
reviewing everything FINISHED!!
46
\newlabel{fig:twoCameraSetup}{{1.2a}{3}{Subfigure 1 1.2a}{subfigure.1.2.1}{}}
65 by gerald.mwangi at gmx
Started Introduction2
47
\newlabel{sub@fig:twoCameraSetup}{{(a)}{a}{Subfigure 1 1.2a\relax }{subfigure.1.2.1}{}}
178 by gerald.mwangi at gmx
reviewing everything FINISHED!!
48
\newlabel{fig:twoCameraSetup@cref}{{[subfigure][1][1,2]1.2a}{3}}
49
\newlabel{fig:twoCameraSetupYc}{{1.2b}{3}{Subfigure 1 1.2b}{subfigure.1.2.2}{}}
65 by gerald.mwangi at gmx
Started Introduction2
50
\newlabel{sub@fig:twoCameraSetupYc}{{(b)}{b}{Subfigure 1 1.2b\relax }{subfigure.1.2.2}{}}
178 by gerald.mwangi at gmx
reviewing everything FINISHED!!
51
\newlabel{fig:twoCameraSetupYc@cref}{{[subfigure][2][1,2]1.2b}{3}}
52
\newlabel{fig:twoCameraSetupIc}{{1.2c}{3}{Subfigure 1 1.2c}{subfigure.1.2.3}{}}
65 by gerald.mwangi at gmx
Started Introduction2
53
\newlabel{sub@fig:twoCameraSetupIc}{{(c)}{c}{Subfigure 1 1.2c\relax }{subfigure.1.2.3}{}}
178 by gerald.mwangi at gmx
reviewing everything FINISHED!!
54
\newlabel{fig:twoCameraSetupIc@cref}{{[subfigure][3][1,2]1.2c}{3}}
55
\@writefile{lof}{\contentsline {figure}{\numberline {1.2}{\ignorespaces Multi modal setup}}{3}{figure.caption.6}}
56
\newlabel{fig:stereography}{{1.2}{3}{Multi modal setup}{figure.caption.6}{}}
57
\newlabel{fig:stereography@cref}{{[figure][2][1]1.2}{3}}
58
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{3}{subfigure.2.1}}
59
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$Y$}}}{3}{subfigure.2.2}}
60
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$I$}}}{3}{subfigure.2.3}}
61
\@writefile{brf}{\backcite{Hartley-Zisserman-multiple_view_geometry_book}{{3}{1}{figure.caption.6}}}
62
\@writefile{brf}{\backcite{ZhuFusionTOFandStereoVisForDepth}{{3}{1}{figure.caption.6}}}
63
\@writefile{brf}{\backcite{nair2012high}{{3}{1}{figure.caption.6}}}
64
\@writefile{brf}{\backcite{ScharsteinSterDepthStructLight}{{3}{1}{figure.caption.6}}}
65
\newlabel{eq:inferenceProcess}{{1.4}{4}{Introduction}{equation.1.0.4}{}}
66
\newlabel{eq:inferenceProcess@cref}{{[equation][4][1]1.4}{4}}
67
\newlabel{eq:inferenceInterm}{{1.6}{4}{Introduction}{equation.1.0.6}{}}
68
\newlabel{eq:inferenceInterm@cref}{{[equation][6][1]1.6}{4}}
148 by gerald.mwangi at gmx
writing appendix 5
69
\citation{SunRothOpticalFlowCVPR2010}
178 by gerald.mwangi at gmx
reviewing everything FINISHED!!
70
\newlabel{eq:minimizationIntro}{{1.8}{5}{Introduction}{equation.1.0.8}{}}
71
\newlabel{eq:minimizationIntro@cref}{{[equation][8][1]1.8}{5}}
72
\@writefile{brf}{\backcite{SunRothOpticalFlowCVPR2010}{{5}{1}{equation.1.0.10}}}
48 by gerald.mwangi at gmx
Completed description of image formation process
73
\citation{FieguthStatImProc}
178 by gerald.mwangi at gmx
reviewing everything FINISHED!!
74
\@writefile{toc}{\contentsline {chapter}{\numberline {2}Background}{6}{chapter.2}}
48 by gerald.mwangi at gmx
Completed description of image formation process
75
\@writefile{lof}{\addvspace {10\p@ }}
76
\@writefile{lot}{\addvspace {10\p@ }}
77
\@writefile{lol}{\addvspace {10\p@ }}
78
\@writefile{loa}{\addvspace {10\p@ }}
178 by gerald.mwangi at gmx
reviewing everything FINISHED!!
79
\newlabel{Background}{{2}{6}{Background}{chapter.2}{}}
80
\newlabel{Background@cref}{{[chapter][2][]2}{6}}
81
\@writefile{toc}{\contentsline {section}{\numberline {2.1}Gibbs Random Fields}{6}{section.2.1}}
82
\newlabel{sec:gibbsRandomFields}{{2.1}{6}{Gibbs Random Fields}{section.2.1}{}}
83
\newlabel{sec:gibbsRandomFields@cref}{{[section][1][2]2.1}{6}}
84
\newlabel{eq:forwardProblem}{{2.1}{6}{Gibbs Random Fields}{equation.2.1.1}{}}
85
\newlabel{eq:forwardProblem@cref}{{[equation][1][2]2.1}{6}}
86
\@writefile{brf}{\backcite{FieguthStatImProc}{{6}{2.1}{equation.2.1.2}}}
87
\newlabel{eq:gibbsTotalEnergy}{{2.3}{6}{Gibbs Random Fields}{equation.2.1.3}{}}
88
\newlabel{eq:gibbsTotalEnergy@cref}{{[equation][3][2]2.3}{6}}
89
\newlabel{eq:gibbsDistribution}{{2.4}{6}{Gibbs Random Fields}{equation.2.1.4}{}}
90
\newlabel{eq:gibbsDistribution@cref}{{[equation][4][2]2.4}{6}}
91
\newlabel{eq:gibbsLikelihood}{{2.5}{6}{Gibbs Random Fields}{equation.2.1.5}{}}
92
\newlabel{eq:gibbsLikelihood@cref}{{[equation][5][2]2.5}{6}}
93
\newlabel{eq:gibbsPrior}{{2.6}{6}{Gibbs Random Fields}{equation.2.1.6}{}}
94
\newlabel{eq:gibbsPrior@cref}{{[equation][6][2]2.6}{6}}
202 by gerald.mwangi at gmx
Started Convex opt section10
95
\citation{RockafellarConvexAnalysis,Chambolle2004,chambollePockPrimalDual}
96
\citation{RockafellarConvexAnalysis,LenzenVariational}
203 by gerald.mwangi at gmx
Started Convex opt section11
97
\citation{moreau1962P,RockafellarProxPoint}
202 by gerald.mwangi at gmx
Started Convex opt section10
98
\citation{pock2009algorithm,chambollePockPrimalDual}
178 by gerald.mwangi at gmx
reviewing everything FINISHED!!
99
\newlabel{eq:minimzationInference}{{2.7}{7}{Gibbs Random Fields}{equation.2.1.7}{}}
100
\newlabel{eq:minimzationInference@cref}{{[equation][7][2]2.7}{7}}
101
\newlabel{eq:inverseProblem}{{2.8}{7}{Gibbs Random Fields}{equation.2.1.8}{}}
102
\newlabel{eq:inverseProblem@cref}{{[equation][8][2]2.8}{7}}
192 by gerald.mwangi at gmx
Started Convex opt section
103
\@writefile{toc}{\contentsline {section}{\numberline {2.2}Convex Optimization}{7}{section.2.2}}
202 by gerald.mwangi at gmx
Started Convex opt section10
104
\@writefile{brf}{\backcite{RockafellarConvexAnalysis}{{7}{2.2}{section.2.2}}}
192 by gerald.mwangi at gmx
Started Convex opt section
105
\@writefile{brf}{\backcite{Chambolle2004}{{7}{2.2}{section.2.2}}}
202 by gerald.mwangi at gmx
Started Convex opt section10
106
\@writefile{brf}{\backcite{chambollePockPrimalDual}{{7}{2.2}{section.2.2}}}
107
\@writefile{brf}{\backcite{RockafellarConvexAnalysis}{{7}{2.2}{section.2.2}}}
108
\@writefile{brf}{\backcite{LenzenVariational}{{7}{2.2}{section.2.2}}}
203 by gerald.mwangi at gmx
Started Convex opt section11
109
\@writefile{brf}{\backcite{moreau1962P}{{7}{2.2}{section.2.2}}}
110
\@writefile{brf}{\backcite{RockafellarProxPoint}{{7}{2.2}{section.2.2}}}
111
\citation{pock2009algorithm}
202 by gerald.mwangi at gmx
Started Convex opt section10
112
\citation{pock2009algorithm}
113
\citation{arrow1958studies}
114
\citation{popov1980modification}
115
\citation{RudinOsherFatemiTotalVariation}
116
\citation{Chambolle2004}
117
\@writefile{brf}{\backcite{pock2009algorithm}{{8}{2.2}{equation.2.2.9}}}
118
\@writefile{brf}{\backcite{chambollePockPrimalDual}{{8}{2.2}{equation.2.2.9}}}
119
\@writefile{brf}{\backcite{pock2009algorithm}{{8}{2.2}{equation.2.2.9}}}
222 by gerald.mwangi at gmx
pushed Background7
120
\newlabel{def:dualSpace}{{1}{8}{Dual Space}{definition.1}{}}
121
\newlabel{def:dualSpace@cref}{{[definition][1][]1}{8}}
202 by gerald.mwangi at gmx
Started Convex opt section10
122
\newlabel{eq:saddlePointProblemIntro}{{2.10}{8}{Convex Optimization}{equation.2.2.10}{}}
123
\newlabel{eq:saddlePointProblemIntro@cref}{{[equation][10][2]2.10}{8}}
203 by gerald.mwangi at gmx
Started Convex opt section11
124
\@writefile{brf}{\backcite{pock2009algorithm}{{8}{2.2}{equation.2.2.10}}}
202 by gerald.mwangi at gmx
Started Convex opt section10
125
\@writefile{brf}{\backcite{arrow1958studies}{{8}{2.2}{equation.2.2.10}}}
126
\@writefile{brf}{\backcite{popov1980modification}{{8}{2.2}{equation.2.2.10}}}
127
\@writefile{brf}{\backcite{RudinOsherFatemiTotalVariation}{{8}{2.2}{equation.2.2.10}}}
128
\@writefile{brf}{\backcite{Chambolle2004}{{8}{2.2}{equation.2.2.10}}}
222 by gerald.mwangi at gmx
pushed Background7
129
\newlabel{eq:convexfunction}{{2.13}{9}{Convex function}{equation.2.2.13}{}}
130
\newlabel{eq:convexfunction@cref}{{[equation][13][2]2.13}{9}}
203 by gerald.mwangi at gmx
Started Convex opt section11
131
\newlabel{eq:epigraph}{{2.14}{9}{Epigraph}{equation.2.2.14}{}}
132
\newlabel{eq:epigraph@cref}{{[equation][14][2]2.14}{9}}
133
\newlabel{eq:minimumGradient}{{2.15}{9}{Convex Optimization}{equation.2.2.15}{}}
134
\newlabel{eq:minimumGradient@cref}{{[equation][15][2]2.15}{9}}
135
\newlabel{eq:subdifferential}{{2.16}{9}{Subdifferential}{equation.2.2.16}{}}
136
\newlabel{eq:subdifferential@cref}{{[equation][16][2]2.16}{9}}
137
\citation{youla1982image,combettes2011proximal,combettes1993foundations}
194 by gerald.mwangi at gmx
Started Convex opt section3
138
\citation{moreau1962P}
222 by gerald.mwangi at gmx
pushed Background7
139
\newlabel{lem:minimizerSubdiff}{{1}{10}{}{lemma.1}{}}
140
\newlabel{lem:minimizerSubdiff@cref}{{[lemma][1][]1}{10}}
141
\newlabel{eq:minimizerSubdiff}{{2.17}{10}{}{equation.2.2.17}{}}
142
\newlabel{eq:minimizerSubdiff@cref}{{[equation][17][2]2.17}{10}}
203 by gerald.mwangi at gmx
Started Convex opt section11
143
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2.1}The Proximal Operator}{10}{subsection.2.2.1}}
144
\@writefile{brf}{\backcite{youla1982image}{{10}{2.2.1}{subsection.2.2.1}}}
145
\@writefile{brf}{\backcite{combettes2011proximal}{{10}{2.2.1}{subsection.2.2.1}}}
146
\@writefile{brf}{\backcite{combettes1993foundations}{{10}{2.2.1}{subsection.2.2.1}}}
147
\newlabel{eq:constrprojectionOperator}{{2.18}{10}{Projection Onto Convex Sets}{equation.2.2.18}{}}
148
\newlabel{eq:constrprojectionOperator@cref}{{[equation][18][2]2.18}{10}}
208 by gerald.mwangi at gmx
Started Convex opt section16
149
\newlabel{eq:projectionOperator}{{2.19}{10}{The Proximal Operator}{equation.2.2.19}{}}
150
\newlabel{eq:projectionOperator@cref}{{[equation][19][2]2.19}{10}}
151
\newlabel{eq:indicatorfunc}{{2.20}{10}{The Proximal Operator}{equation.2.2.20}{}}
152
\newlabel{eq:indicatorfunc@cref}{{[equation][20][2]2.20}{10}}
203 by gerald.mwangi at gmx
Started Convex opt section11
153
\@writefile{brf}{\backcite{moreau1962P}{{10}{2.2.1}{equation.2.2.20}}}
222 by gerald.mwangi at gmx
pushed Background7
154
\newlabel{eq:proxOperator}{{2.21}{11}{Proximal Operator}{equation.2.2.21}{}}
155
\newlabel{eq:proxOperator@cref}{{[equation][21][2]2.21}{11}}
203 by gerald.mwangi at gmx
Started Convex opt section11
156
\newlabel{eq:stationaryPointProxOp}{{2.22}{11}{Stationary Points}{equation.2.2.22}{}}
157
\newlabel{eq:stationaryPointProxOp@cref}{{[equation][22][2]2.22}{11}}
158
\newlabel{eq:proxOpSubdiff}{{2.23}{11}{The Proximal Operator}{equation.2.2.23}{}}
159
\newlabel{eq:proxOpSubdiff@cref}{{[equation][23][2]2.23}{11}}
202 by gerald.mwangi at gmx
Started Convex opt section10
160
\newlabel{prop:nonexpProxOp}{{1}{11}{Non-Expansive}{proposition.1}{}}
161
\newlabel{prop:nonexpProxOp@cref}{{[proposition][1][]1}{11}}
203 by gerald.mwangi at gmx
Started Convex opt section11
162
\newlabel{eq:nonexpProxOp}{{2.24}{11}{Non-Expansive}{equation.2.2.24}{}}
163
\newlabel{eq:nonexpProxOp@cref}{{[equation][24][2]2.24}{11}}
202 by gerald.mwangi at gmx
Started Convex opt section10
164
\newlabel{lem:monotonsubDiff}{{4}{11}{Monotonic Subdifferential}{lemma.4}{}}
165
\newlabel{lem:monotonsubDiff@cref}{{[lemma][4][]4}{11}}
194 by gerald.mwangi at gmx
Started Convex opt section3
166
\citation{martinet1972determination}
203 by gerald.mwangi at gmx
Started Convex opt section11
167
\citation{pock2009algorithm}
168
\citation{gulerP}
222 by gerald.mwangi at gmx
pushed Background7
169
\newlabel{eq:proofMonotonSubdiff}{{2.26}{12}{The Proximal Operator}{equation.2.2.26}{}}
170
\newlabel{eq:proofMonotonSubdiff@cref}{{[equation][26][2]2.26}{12}}
203 by gerald.mwangi at gmx
Started Convex opt section11
171
\@writefile{brf}{\backcite{martinet1972determination}{{12}{2.2.1}{equation.2.2.32}}}
172
\@writefile{brf}{\backcite{pock2009algorithm}{{12}{2.2.1}{equation.2.2.32}}}
173
\newlabel{eq:proxPointAlgoIteration}{{2.33}{12}{The Proximal Operator}{equation.2.2.33}{}}
174
\newlabel{eq:proxPointAlgoIteration@cref}{{[equation][33][2]2.33}{12}}
175
\@writefile{brf}{\backcite{gulerP}{{12}{2.2.1}{equation.2.2.33}}}
194 by gerald.mwangi at gmx
Started Convex opt section3
176
\citation{boyd2014proximal}
177
\citation{FieguthStatImProc,boyd2014proximal}
203 by gerald.mwangi at gmx
Started Convex opt section11
178
\citation{boyd2014proximal}
208 by gerald.mwangi at gmx
Started Convex opt section16
179
\citation{bredies2008forward,svaiter2011weak,chen1997convergence,combettes2007douglas,combettes2004solving,eckstein1992douglas,FadiliTV,lions1979splitting,mercier1979topics,passty1979ergodic}
180
\citation{pock2009algorithm}
203 by gerald.mwangi at gmx
Started Convex opt section11
181
\newlabel{eq:backwardGradientStep}{{2.35}{13}{The Proximal Operator}{equation.2.2.35}{}}
182
\newlabel{eq:backwardGradientStep@cref}{{[equation][35][2]2.35}{13}}
183
\@writefile{brf}{\backcite{boyd2014proximal}{{13}{2.2.1}{equation.2.2.35}}}
184
\newlabel{eq:forwardGradientStep}{{2.36}{13}{The Proximal Operator}{equation.2.2.36}{}}
185
\newlabel{eq:forwardGradientStep@cref}{{[equation][36][2]2.36}{13}}
186
\@writefile{brf}{\backcite{FieguthStatImProc}{{13}{2.2.1}{equation.2.2.36}}}
187
\@writefile{brf}{\backcite{boyd2014proximal}{{13}{2.2.1}{equation.2.2.36}}}
188
\@writefile{brf}{\backcite{boyd2014proximal}{{13}{2.2.1}{equation.2.2.36}}}
208 by gerald.mwangi at gmx
Started Convex opt section16
189
\@writefile{brf}{\backcite{bredies2008forward}{{13}{2.2.1}{equation.2.2.36}}}
190
\@writefile{brf}{\backcite{svaiter2011weak}{{13}{2.2.1}{equation.2.2.36}}}
191
\@writefile{brf}{\backcite{chen1997convergence}{{13}{2.2.1}{equation.2.2.36}}}
192
\@writefile{brf}{\backcite{combettes2007douglas}{{13}{2.2.1}{equation.2.2.36}}}
193
\@writefile{brf}{\backcite{combettes2004solving}{{13}{2.2.1}{equation.2.2.36}}}
194
\@writefile{brf}{\backcite{eckstein1992douglas}{{13}{2.2.1}{equation.2.2.36}}}
195
\@writefile{brf}{\backcite{FadiliTV}{{13}{2.2.1}{equation.2.2.36}}}
196
\@writefile{brf}{\backcite{lions1979splitting}{{13}{2.2.1}{equation.2.2.36}}}
197
\@writefile{brf}{\backcite{mercier1979topics}{{13}{2.2.1}{equation.2.2.36}}}
198
\@writefile{brf}{\backcite{passty1979ergodic}{{13}{2.2.1}{equation.2.2.36}}}
199
\@writefile{brf}{\backcite{pock2009algorithm}{{13}{2.2.1}{equation.2.2.36}}}
200
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2.2}Fenchel Duality}{13}{subsection.2.2.2}}
201
\newlabel{fig:fenchelEpiF}{{2.1a}{14}{Subfigure 2 2.1a}{subfigure.2.1.1}{}}
202
\newlabel{sub@fig:fenchelEpiF}{{(a)}{a}{Subfigure 2 2.1a\relax }{subfigure.2.1.1}{}}
203
\newlabel{fig:fenchelEpiF@cref}{{[subfigure][1][2,1]2.1a}{14}}
204
\newlabel{fig:fenchelEpiFHalfPlanes}{{2.1b}{14}{Subfigure 2 2.1b}{subfigure.2.1.2}{}}
205
\newlabel{sub@fig:fenchelEpiFHalfPlanes}{{(b)}{b}{Subfigure 2 2.1b\relax }{subfigure.2.1.2}{}}
206
\newlabel{fig:fenchelEpiFHalfPlanes@cref}{{[subfigure][2][2,1]2.1b}{14}}
207
\@writefile{lof}{\contentsline {figure}{\numberline {2.1}{\ignorespaces \Cref  {fig:fenchelEpiF} shows a convex function $f\in \Gamma _0$ and its epigraph $\text  {epi}(f)$ and \cref  {fig:fenchelEpiFHalfPlanes} shows two additional tangents at the points $\phi _{1,2}$, their normals $p_{1,2}$ and their half-planes $H_{p_{1,2}}$. The epigraph is clearly contained in the intersection of the half-planes, $\text  {epi}(f)\subset H_{p_1}\cap H_{p_2}$. By adding more half-planes we can substitute $\text  {epi}(f)$ by the intersection of all the half-planes thus obtaining a picture in which $\text  {epi}(f)$ and $f$ are fully described in terms of the normal vector $p\in X^\star $.\relax }}{14}{figure.caption.7}}
208
\newlabel{fig:fenchelDuality}{{2.1}{14}{\Figref {fig:fenchelEpiF} shows a convex function $f\in \Gamma _0$ and its epigraph $\text {epi}(f)$ and \figref {fig:fenchelEpiFHalfPlanes} shows two additional tangents at the points $\phi _{1,2}$, their normals $p_{1,2}$ and their half-planes $H_{p_{1,2}}$. The epigraph is clearly contained in the intersection of the half-planes, $\text {epi}(f)\subset H_{p_1}\cap H_{p_2}$. By adding more half-planes we can substitute $\text {epi}(f)$ by the intersection of all the half-planes thus obtaining a picture in which $\text {epi}(f)$ and $f$ are fully described in terms of the normal vector $p\in X^\star $.\relax }{figure.caption.7}{}}
209
\newlabel{fig:fenchelDuality@cref}{{[figure][1][2]2.1}{14}}
210
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{14}{subfigure.1.1}}
211
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{14}{subfigure.1.2}}
222 by gerald.mwangi at gmx
pushed Background7
212
\newlabel{eq:epiHalfplane}{{2.37}{14}{Fenchel Duality}{equation.2.2.37}{}}
213
\newlabel{eq:epiHalfplane@cref}{{[equation][37][2]2.37}{14}}
208 by gerald.mwangi at gmx
Started Convex opt section16
214
\newlabel{eq:halfPlaneFunction}{{2.38}{14}{Fenchel Duality}{equation.2.2.38}{}}
215
\newlabel{eq:halfPlaneFunction@cref}{{[equation][38][2]2.38}{14}}
203 by gerald.mwangi at gmx
Started Convex opt section11
216
\newlabel{eq:Fmajorization}{{2.39}{14}{Fenchel Duality}{equation.2.2.39}{}}
217
\newlabel{eq:Fmajorization@cref}{{[equation][39][2]2.39}{14}}
218
\newlabel{eq:abcissaLowerBound}{{2.40}{14}{Fenchel Duality}{equation.2.2.40}{}}
219
\newlabel{eq:abcissaLowerBound@cref}{{[equation][40][2]2.40}{14}}
205 by gerald.mwangi at gmx
Started Convex opt section13
220
\newlabel{eq:convexConjugate}{{2.41}{14}{Conjugate Function}{equation.2.2.41}{}}
203 by gerald.mwangi at gmx
Started Convex opt section11
221
\newlabel{eq:convexConjugate@cref}{{[equation][41][2]2.41}{14}}
208 by gerald.mwangi at gmx
Started Convex opt section16
222
\citation{RockafellarConvexAnalysis}
223
\newlabel{eq:concaveConjugate}{{2.42}{15}{Fenchel Duality}{equation.2.2.42}{}}
224
\newlabel{eq:concaveConjugate@cref}{{[equation][42][2]2.42}{15}}
205 by gerald.mwangi at gmx
Started Convex opt section13
225
\newlabel{lem:concaveConjToConvex}{{5}{15}{}{lemma.5}{}}
226
\newlabel{lem:concaveConjToConvex@cref}{{[lemma][5][]5}{15}}
227
\newlabel{eq:concaveConjToConvex}{{2.43}{15}{}{equation.2.2.43}{}}
228
\newlabel{eq:concaveConjToConvex@cref}{{[equation][43][2]2.43}{15}}
229
\newlabel{eq:fenchelsInequality}{{2.47}{15}{Fenchel Duality}{equation.2.2.47}{}}
230
\newlabel{eq:fenchelsInequality@cref}{{[equation][47][2]2.47}{15}}
231
\@writefile{brf}{\backcite{RockafellarConvexAnalysis}{{15}{2.2.2}{equation.2.2.47}}}
232
\newlabel{eq:fenchelsInequalityConcave}{{2.48}{15}{Fenchel Duality}{equation.2.2.48}{}}
233
\newlabel{eq:fenchelsInequalityConcave@cref}{{[equation][48][2]2.48}{15}}
234
\newlabel{lem:KKTConditions}{{6}{15}{}{lemma.6}{}}
235
\newlabel{lem:KKTConditions@cref}{{[lemma][6][]6}{15}}
203 by gerald.mwangi at gmx
Started Convex opt section11
236
\newlabel{item:KKT1}{{1}{15}{}{Item.1}{}}
237
\newlabel{item:KKT1@cref}{{[enumi][1][]1}{15}}
238
\newlabel{item:KKT2}{{2}{15}{}{Item.2}{}}
239
\newlabel{item:KKT2@cref}{{[enumi][2][]2}{15}}
205 by gerald.mwangi at gmx
Started Convex opt section13
240
\newlabel{eq:KKT1Proof1}{{2.49}{15}{Fenchel Duality}{equation.2.2.49}{}}
241
\newlabel{eq:KKT1Proof1@cref}{{[equation][49][2]2.49}{15}}
208 by gerald.mwangi at gmx
Started Convex opt section16
242
\citation{RockafellarConvexAnalysis}
243
\newlabel{eq:KKT1Proof2}{{2.50}{16}{Fenchel Duality}{equation.2.2.50}{}}
244
\newlabel{eq:KKT1Proof2@cref}{{[equation][50][2]2.50}{16}}
205 by gerald.mwangi at gmx
Started Convex opt section13
245
\@writefile{brf}{\backcite{RockafellarConvexAnalysis}{{16}{2.2.2}{equation.2.2.50}}}
246
\newlabel{eq:KKT2Proof2}{{2.52}{16}{Fenchel Duality}{equation.2.2.52}{}}
247
\newlabel{eq:KKT2Proof2@cref}{{[equation][52][2]2.52}{16}}
248
\newlabel{eq:KKT2Proof3}{{2.54}{16}{Fenchel Duality}{equation.2.2.54}{}}
249
\newlabel{eq:KKT2Proof3@cref}{{[equation][54][2]2.54}{16}}
250
\newlabel{eq:KKT2Proof4}{{2.55}{16}{Fenchel Duality}{equation.2.2.55}{}}
251
\newlabel{eq:KKT2Proof4@cref}{{[equation][55][2]2.55}{16}}
252
\newlabel{eq:minimizerSubdiff2}{{2.56}{16}{Fenchel Duality}{equation.2.2.56}{}}
253
\newlabel{eq:minimizerSubdiff2@cref}{{[equation][56][2]2.56}{16}}
254
\newlabel{eq:minimizerConjugate}{{2.57}{16}{Fenchel Duality}{equation.2.2.57}{}}
255
\newlabel{eq:minimizerConjugate@cref}{{[equation][57][2]2.57}{16}}
256
\newlabel{eq:indicatorfuncConj}{{2.58}{17}{Fenchel Duality}{equation.2.2.58}{}}
257
\newlabel{eq:indicatorfuncConj@cref}{{[equation][58][2]2.58}{17}}
258
\newlabel{eq:minmaxConj}{{2.60}{17}{Fenchel Duality}{equation.2.2.60}{}}
259
\newlabel{eq:minmaxConj@cref}{{[equation][60][2]2.60}{17}}
222 by gerald.mwangi at gmx
pushed Background7
260
\newlabel{eq:primaryEnergyFunctional}{{2.61}{17}{Fenchel's Duality Theorem}{equation.2.2.61}{}}
261
\newlabel{eq:primaryEnergyFunctional@cref}{{[equation][61][2]2.61}{17}}
205 by gerald.mwangi at gmx
Started Convex opt section13
262
\newlabel{eq:fenchelDuality}{{2.63}{17}{Fenchel's Duality Theorem}{equation.2.2.63}{}}
263
\newlabel{eq:fenchelDuality@cref}{{[equation][63][2]2.63}{17}}
208 by gerald.mwangi at gmx
Started Convex opt section16
264
\newlabel{eq:fenchelDualitySecCase}{{2.64}{18}{Fenchel Duality}{equation.2.2.64}{}}
265
\newlabel{eq:fenchelDualitySecCase@cref}{{[equation][64][2]2.64}{18}}
205 by gerald.mwangi at gmx
Started Convex opt section13
266
\newlabel{eq:fenchelProof1}{{2.66}{18}{Fenchel Duality}{equation.2.2.66}{}}
267
\newlabel{eq:fenchelProof1@cref}{{[equation][66][2]2.66}{18}}
268
\newlabel{eq:fenchelProof2}{{2.71}{18}{Fenchel Duality}{equation.2.2.71}{}}
269
\newlabel{eq:fenchelProof2@cref}{{[equation][71][2]2.71}{18}}
270
\newlabel{eq:fenchelProof3}{{2.72}{18}{Fenchel Duality}{equation.2.2.72}{}}
271
\newlabel{eq:fenchelProof3@cref}{{[equation][72][2]2.72}{18}}
208 by gerald.mwangi at gmx
Started Convex opt section16
272
\newlabel{eq:fenchelProof4}{{2.74}{19}{Fenchel Duality}{equation.2.2.74}{}}
273
\newlabel{eq:fenchelProof4@cref}{{[equation][74][2]2.74}{19}}
205 by gerald.mwangi at gmx
Started Convex opt section13
274
\newlabel{eq:fenchelProof5}{{2.81}{19}{Fenchel Duality}{equation.2.2.81}{}}
275
\newlabel{eq:fenchelProof5@cref}{{[equation][81][2]2.81}{19}}
276
\newlabel{eq:fenchelDualitySecCase2}{{2.83}{19}{Fenchel Duality}{equation.2.2.83}{}}
277
\newlabel{eq:fenchelDualitySecCase2@cref}{{[equation][83][2]2.83}{19}}
208 by gerald.mwangi at gmx
Started Convex opt section16
278
\newlabel{eq:fenchelDualityConvex}{{2.85}{20}{Fenchel Duality}{equation.2.2.85}{}}
279
\newlabel{eq:fenchelDualityConvex@cref}{{[equation][85][2]2.85}{20}}
280
\newlabel{eq:KKTConditions2}{{2.86}{20}{Kuhn-Tucker conditions}{equation.2.2.86}{}}
281
\newlabel{eq:KKTConditions2@cref}{{[equation][86][2]2.86}{20}}
206 by gerald.mwangi at gmx
Started Convex opt section14
282
\newlabel{eq:KKT3Proof}{{2.87}{20}{Fenchel Duality}{equation.2.2.87}{}}
283
\newlabel{eq:KKT3Proof@cref}{{[equation][87][2]2.87}{20}}
284
\newlabel{eq:KKT3Proof2}{{2.88}{20}{Fenchel Duality}{equation.2.2.88}{}}
285
\newlabel{eq:KKT3Proof2@cref}{{[equation][88][2]2.88}{20}}
286
\newlabel{eq:KKT3Proof3}{{2.89}{20}{Fenchel Duality}{equation.2.2.89}{}}
287
\newlabel{eq:KKT3Proof3@cref}{{[equation][89][2]2.89}{20}}
207 by gerald.mwangi at gmx
Started Convex opt section15
288
\newlabel{eq:KKTEulerLagLikeEqns}{{2.90}{20}{Fenchel Duality}{equation.2.2.90}{}}
289
\newlabel{eq:KKTEulerLagLikeEqns@cref}{{[equation][90][2]2.90}{20}}
206 by gerald.mwangi at gmx
Started Convex opt section14
290
\newlabel{eq:morreau}{{2.91}{20}{Morreau's Theorem}{equation.2.2.91}{}}
291
\newlabel{eq:morreau@cref}{{[equation][91][2]2.91}{20}}
199 by gerald.mwangi at gmx
Started Convex opt section8
292
\citation{pock2009algorithm}
293
\citation{chambollePockPrimalDual}
294
\citation{lions1979splitting}
295
\citation{bredies2008forward,combettes2004solving,passty1979ergodic}
208 by gerald.mwangi at gmx
Started Convex opt section16
296
\newlabel{eq:morreauProof1}{{2.92}{21}{Fenchel Duality}{equation.2.2.92}{}}
297
\newlabel{eq:morreauProof1@cref}{{[equation][92][2]2.92}{21}}
206 by gerald.mwangi at gmx
Started Convex opt section14
298
\newlabel{eq:morreauProof2}{{2.96}{21}{Fenchel Duality}{equation.2.2.96}{}}
299
\newlabel{eq:morreauProof2@cref}{{[equation][96][2]2.96}{21}}
207 by gerald.mwangi at gmx
Started Convex opt section15
300
\newlabel{eq:morreauDecomp}{{2.97}{21}{Fenchel Duality}{equation.2.2.97}{}}
301
\newlabel{eq:morreauDecomp@cref}{{[equation][97][2]2.97}{21}}
302
\newlabel{eq:proxMorreauDecomp}{{2.98}{21}{Fenchel Duality}{equation.2.2.98}{}}
303
\newlabel{eq:proxMorreauDecomp@cref}{{[equation][98][2]2.98}{21}}
206 by gerald.mwangi at gmx
Started Convex opt section14
304
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2.3}Primal Dual Splitting}{21}{subsection.2.2.3}}
207 by gerald.mwangi at gmx
Started Convex opt section15
305
\@writefile{brf}{\backcite{pock2009algorithm}{{21}{2.2.3}{ALG@line.6}}}
306
\@writefile{brf}{\backcite{chambollePockPrimalDual}{{21}{2.2.3}{ALG@line.6}}}
307
\citation{lions1979splitting,eckstein1992douglas,combettes2007douglas,svaiter2011weak}
200 by gerald.mwangi at gmx
Started Convex opt section9
308
\citation{combettes2011proximal}
205 by gerald.mwangi at gmx
Started Convex opt section13
309
\citation{pock2009algorithm}
208 by gerald.mwangi at gmx
Started Convex opt section16
310
\@writefile{loa}{\contentsline {algorithm}{\numberline {1}{\ignorespaces Chambolle Pock Primal-Dual Splitting\relax }}{22}{algorithm.1}}
311
\newlabel{alg:chambollePock}{{1}{22}{Chambolle Pock Primal-Dual Splitting\relax }{algorithm.1}{}}
312
\newlabel{alg:chambollePock@cref}{{[algorithm][1][]1}{22}}
207 by gerald.mwangi at gmx
Started Convex opt section15
313
\@writefile{brf}{\backcite{lions1979splitting}{{22}{2.2.3}{ALG@line.6}}}
314
\@writefile{brf}{\backcite{bredies2008forward}{{22}{2.2.3}{ALG@line.6}}}
315
\@writefile{brf}{\backcite{combettes2004solving}{{22}{2.2.3}{ALG@line.6}}}
316
\@writefile{brf}{\backcite{passty1979ergodic}{{22}{2.2.3}{ALG@line.6}}}
317
\newlabel{eq:forwardBackward}{{2.99}{22}{Primal Dual Splitting}{equation.2.2.99}{}}
318
\newlabel{eq:forwardBackward@cref}{{[equation][99][2]2.99}{22}}
319
\@writefile{brf}{\backcite{lions1979splitting}{{22}{2.2.3}{equation.2.2.99}}}
320
\@writefile{brf}{\backcite{eckstein1992douglas}{{22}{2.2.3}{equation.2.2.99}}}
321
\@writefile{brf}{\backcite{combettes2007douglas}{{22}{2.2.3}{equation.2.2.99}}}
322
\@writefile{brf}{\backcite{svaiter2011weak}{{22}{2.2.3}{equation.2.2.99}}}
206 by gerald.mwangi at gmx
Started Convex opt section14
323
\newlabel{eq:douglasRachford}{{2.101}{22}{Primal Dual Splitting}{equation.2.2.101}{}}
324
\newlabel{eq:douglasRachford@cref}{{[equation][101][2]2.101}{22}}
325
\@writefile{brf}{\backcite{combettes2011proximal}{{22}{2.2.3}{equation.2.2.101}}}
326
\@writefile{brf}{\backcite{pock2009algorithm}{{22}{2.2.3}{equation.2.2.101}}}
208 by gerald.mwangi at gmx
Started Convex opt section16
327
\citation{pock2009algorithm}
328
\citation{pock2009algorithm,chambollePockPrimalDual}
329
\citation{pock2009algorithm}
330
\citation{chambollePockPrimalDual}
331
\newlabel{eq:primalProblem}{{2.103}{23}{Primal Dual Splitting}{equation.2.2.103}{}}
332
\newlabel{eq:primalProblem@cref}{{[equation][103][2]2.103}{23}}
333
\newlabel{eq:saddlePointProblem}{{2.104}{23}{Primal Dual Splitting}{equation.2.2.104}{}}
334
\newlabel{eq:saddlePointProblem@cref}{{[equation][104][2]2.104}{23}}
335
\@writefile{brf}{\backcite{pock2009algorithm}{{23}{2.2.3}{equation.2.2.104}}}
336
\@writefile{brf}{\backcite{pock2009algorithm}{{23}{2.2.3}{equation.2.2.104}}}
337
\@writefile{brf}{\backcite{chambollePockPrimalDual}{{23}{2.2.3}{equation.2.2.104}}}
338
\@writefile{brf}{\backcite{pock2009algorithm}{{23}{2.2.3}{equation.2.2.104}}}
339
\@writefile{brf}{\backcite{chambollePockPrimalDual}{{23}{2.2.3}{equation.2.2.109}}}
201 by gerald.mwangi at gmx
Started Convex opt section9
340
\citation{chambollePockPrimalDual}
195 by gerald.mwangi at gmx
Started Convex opt section4
341
\citation{landau1976mechanics,maupertuis1740LeastActionBodyRest,PeskinQFT,feynman1942principle,hentschke2017principle}
342
\citation{maupertuis1740LeastActionBodyRest}
343
\citation{MaupertuiPointMassLeastAction}
205 by gerald.mwangi at gmx
Started Convex opt section13
344
\citation{newton1687philosophiae}
208 by gerald.mwangi at gmx
Started Convex opt section16
345
\@writefile{brf}{\backcite{chambollePockPrimalDual}{{24}{2.2.3}{equation.2.2.110}}}
346
\@writefile{toc}{\contentsline {section}{\numberline {2.3}Principle of Least Action}{24}{section.2.3}}
347
\newlabel{sec:principleLeastAction}{{2.3}{24}{Principle of Least Action}{section.2.3}{}}
348
\newlabel{sec:principleLeastAction@cref}{{[section][3][2]2.3}{24}}
349
\@writefile{brf}{\backcite{landau1976mechanics}{{24}{2.3}{section.2.3}}}
350
\@writefile{brf}{\backcite{maupertuis1740LeastActionBodyRest}{{24}{2.3}{section.2.3}}}
351
\@writefile{brf}{\backcite{PeskinQFT}{{24}{2.3}{section.2.3}}}
352
\@writefile{brf}{\backcite{feynman1942principle}{{24}{2.3}{section.2.3}}}
353
\@writefile{brf}{\backcite{hentschke2017principle}{{24}{2.3}{section.2.3}}}
354
\@writefile{brf}{\backcite{maupertuis1740LeastActionBodyRest}{{24}{2.3}{section.2.3}}}
355
\@writefile{brf}{\backcite{MaupertuiPointMassLeastAction}{{24}{2.3}{section.2.3}}}
356
\newlabel{eq:manyBodyAction}{{2.111}{24}{Principle of Least Action}{equation.2.3.111}{}}
357
\newlabel{eq:manyBodyAction@cref}{{[equation][111][2]2.111}{24}}
358
\@writefile{brf}{\backcite{newton1687philosophiae}{{24}{2.3}{equation.2.3.112}}}
149 by gerald.mwangi at gmx
reviewing everything
359
\citation{landau1961electrodynamics,feynman1964electroLectures}
360
\citation{maxwell1865physical}
361
\citation{hertz1893electric}
208 by gerald.mwangi at gmx
Started Convex opt section16
362
\newlabel{eq:eulerLagrangeClassic}{{2.113}{25}{Principle of Least Action}{equation.2.3.113}{}}
363
\newlabel{eq:eulerLagrangeClassic@cref}{{[equation][113][2]2.113}{25}}
364
\newlabel{eq:eulerLagrangeGRF}{{2.115}{25}{Principle of Least Action}{equation.2.3.115}{}}
365
\newlabel{eq:eulerLagrangeGRF@cref}{{[equation][115][2]2.115}{25}}
366
\@writefile{brf}{\backcite{landau1961electrodynamics}{{25}{2.3}{equation.2.3.115}}}
367
\@writefile{brf}{\backcite{feynman1964electroLectures}{{25}{2.3}{equation.2.3.115}}}
368
\@writefile{brf}{\backcite{maxwell1865physical}{{25}{2.3}{equation.2.3.115}}}
369
\@writefile{brf}{\backcite{hertz1893electric}{{25}{2.3}{equation.2.3.115}}}
370
\@writefile{toc}{\contentsline {section}{\numberline {2.4}Image De-Noising}{25}{section.2.4}}
371
\newlabel{sec:ImageDeniosingBackground}{{2.4}{25}{Image De-Noising}{section.2.4}{}}
372
\newlabel{sec:ImageDeniosingBackground@cref}{{[section][4][2]2.4}{25}}
207 by gerald.mwangi at gmx
Started Convex opt section15
373
\newlabel{fig:thermoRoi}{{2.2a}{26}{Subfigure 2 2.2a}{subfigure.2.2.1}{}}
203 by gerald.mwangi at gmx
Started Convex opt section11
374
\newlabel{sub@fig:thermoRoi}{{(a)}{a}{Subfigure 2 2.2a\relax }{subfigure.2.2.1}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
375
\newlabel{fig:thermoRoi@cref}{{[subfigure][1][2,2]2.2a}{26}}
376
\newlabel{fig:thermoL2Roi}{{2.2b}{26}{Subfigure 2 2.2b}{subfigure.2.2.2}{}}
203 by gerald.mwangi at gmx
Started Convex opt section11
377
\newlabel{sub@fig:thermoL2Roi}{{(b)}{b}{Subfigure 2 2.2b\relax }{subfigure.2.2.2}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
378
\newlabel{fig:thermoL2Roi@cref}{{[subfigure][2][2,2]2.2b}{26}}
379
\@writefile{lof}{\contentsline {figure}{\numberline {2.2}{\ignorespaces \Cref  {fig:thermoRoi} shows an image $I^c$ taken of an object $O$ with a thermographic camera. A region of interest is shown where the contrast was enhanced to visualize the noise corruption. \Cref  {fig:thermoL2Roi} shows the result $I_O^\star $ of the minimization problem eq.~(\ref  {eq:minimizationIO}) with the prior in eq.~(\ref  {eq:priorL2Norm}). The noise is removed but the boundaries of $O$ are over smoothed \relax }}{26}{figure.caption.8}}
380
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{26}{subfigure.2.1}}
381
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{26}{subfigure.2.2}}
208 by gerald.mwangi at gmx
Started Convex opt section16
382
\newlabel{eq:cameraLikelihood}{{2.118}{26}{Image De-Noising}{equation.2.4.118}{}}
383
\newlabel{eq:cameraLikelihood@cref}{{[equation][118][2]2.118}{26}}
384
\newlabel{eq:cameraPrior}{{2.120}{27}{Image De-Noising}{equation.2.4.120}{}}
385
\newlabel{eq:cameraPrior@cref}{{[equation][120][2]2.120}{27}}
386
\newlabel{eq:minimizationIO}{{2.121}{27}{Image De-Noising}{equation.2.4.121}{}}
387
\newlabel{eq:minimizationIO@cref}{{[equation][121][2]2.121}{27}}
388
\newlabel{eq:priorL2Norm}{{2.122}{27}{Image De-Noising}{equation.2.4.122}{}}
389
\newlabel{eq:priorL2Norm@cref}{{[equation][122][2]2.122}{27}}
390
\newlabel{fig:levelSetInit}{{2.3a}{28}{Subfigure 2 2.3a}{subfigure.2.3.1}{}}
203 by gerald.mwangi at gmx
Started Convex opt section11
391
\newlabel{sub@fig:levelSetInit}{{(a)}{a}{Subfigure 2 2.3a\relax }{subfigure.2.3.1}{}}
208 by gerald.mwangi at gmx
Started Convex opt section16
392
\newlabel{fig:levelSetInit@cref}{{[subfigure][1][2,3]2.3a}{28}}
393
\newlabel{fig:levelSetMorphed}{{2.3b}{28}{Subfigure 2 2.3b}{subfigure.2.3.2}{}}
203 by gerald.mwangi at gmx
Started Convex opt section11
394
\newlabel{sub@fig:levelSetMorphed}{{(b)}{b}{Subfigure 2 2.3b\relax }{subfigure.2.3.2}{}}
208 by gerald.mwangi at gmx
Started Convex opt section16
395
\newlabel{fig:levelSetMorphed@cref}{{[subfigure][2][2,3]2.3b}{28}}
396
\@writefile{lof}{\contentsline {figure}{\numberline {2.3}{\ignorespaces Local transformation of an image $\phi $ with a level-set $S$. \Cref  {fig:levelSetInit} shows an image $\phi \left (\ensuremath  {\ensuremath  {{\bm  {x}}}}\right )$ with a line $S$ along which the intensity values are constant. At each point $\ensuremath  {\ensuremath  {{\bm  {x}}}}_S$ the vector $\ensuremath  {{\bm  {\omega }}}_S$ is the tangential vector on $S$. \Cref  {fig:levelSetMorphed} shows the result of the local distortion of $S$ under the action of the operator $g_{\delta _\omega }$. $g_{\delta _\omega }$ acts on $S$ by adding to $\ensuremath  {{\bm  {\omega }}}_S$ a spacial dependent vector $\ensuremath  {{\bm  {\delta }}}_\omega \left (\ensuremath  {\ensuremath  {{\bm  {x}}}}\right )$\relax }}{28}{figure.caption.9}}
397
\newlabel{fig:levelSet}{{2.3}{28}{Local transformation of an image $\phi $ with a level-set $S$. \Figref {fig:levelSetInit} shows an image $\phi \brackets {\vx }$ with a line $S$ along which the intensity values are constant. At each point $\vx _S$ the vector $\vector {\omega }_S$ is the tangential vector on $S$. \Figref {fig:levelSetMorphed} shows the result of the local distortion of $S$ under the action of the operator $g_{\delta _\omega }$. $g_{\delta _\omega }$ acts on $S$ by adding to $\vector {\omega }_S$ a spacial dependent vector $\vector {\delta }_\omega \brackets {\vx }$\relax }{figure.caption.9}{}}
398
\newlabel{fig:levelSet@cref}{{[figure][3][2]2.3}{28}}
399
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{28}{subfigure.3.1}}
400
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{28}{subfigure.3.2}}
401
\@writefile{toc}{\contentsline {section}{\numberline {2.5}Lie Groups and the Noether Theorem}{28}{section.2.5}}
402
\newlabel{sec:LieGroupsNoetherTheorem}{{2.5}{28}{Lie Groups and the Noether Theorem}{section.2.5}{}}
403
\newlabel{sec:LieGroupsNoetherTheorem@cref}{{[section][5][2]2.5}{28}}
404
\@writefile{toc}{\contentsline {subsection}{\numberline {2.5.1}Motivation 1, the problem}{28}{subsection.2.5.1}}
405
\newlabel{sec:NotherMotivation}{{2.5.1}{28}{Motivation 1, the problem}{subsection.2.5.1}{}}
406
\newlabel{sec:NotherMotivation@cref}{{[subsection][1][2,5]2.5.1}{28}}
407
\newlabel{eq:l2prior}{{2.123}{28}{Motivation 1, the problem}{equation.2.5.123}{}}
408
\newlabel{eq:l2prior@cref}{{[equation][123][2]2.123}{28}}
409
\newlabel{eq:l2Minimizerset}{{2.124}{28}{Motivation 1, the problem}{equation.2.5.124}{}}
410
\newlabel{eq:l2Minimizerset@cref}{{[equation][124][2]2.124}{28}}
411
\newlabel{eq:rotationsMotivation}{{2.125}{28}{Motivation 1, the problem}{equation.2.5.125}{}}
412
\newlabel{eq:rotationsMotivation@cref}{{[equation][125][2]2.125}{28}}
205 by gerald.mwangi at gmx
Started Convex opt section13
413
\citation{RudinOsherFatemiTotalVariation,Chambolle2004}
414
\citation{NitzbergStructTensDiffusion,weickertAnisDiffTheory,weicketAnisotropicDiffusionBook}
415
\citation{MumfordShah,AmbrosioApproxFunctionalTConverg,VeseMultPhaseLevelset}
416
\citation{NagelEnkelmannAnisSmoothOptFlow}
208 by gerald.mwangi at gmx
Started Convex opt section16
417
\newlabel{eq:l2RotInv}{{2.126}{29}{Motivation 1, the problem}{equation.2.5.126}{}}
418
\newlabel{eq:l2RotInv@cref}{{[equation][126][2]2.126}{29}}
419
\@writefile{brf}{\backcite{RudinOsherFatemiTotalVariation}{{29}{2.5.1}{equation.2.5.126}}}
420
\@writefile{brf}{\backcite{Chambolle2004}{{29}{2.5.1}{equation.2.5.126}}}
421
\@writefile{brf}{\backcite{NitzbergStructTensDiffusion}{{29}{2.5.1}{equation.2.5.126}}}
422
\@writefile{brf}{\backcite{weickertAnisDiffTheory}{{29}{2.5.1}{equation.2.5.126}}}
423
\@writefile{brf}{\backcite{weicketAnisotropicDiffusionBook}{{29}{2.5.1}{equation.2.5.126}}}
424
\@writefile{brf}{\backcite{MumfordShah}{{29}{2.5.1}{equation.2.5.126}}}
425
\@writefile{brf}{\backcite{AmbrosioApproxFunctionalTConverg}{{29}{2.5.1}{equation.2.5.126}}}
426
\@writefile{brf}{\backcite{VeseMultPhaseLevelset}{{29}{2.5.1}{equation.2.5.126}}}
427
\@writefile{brf}{\backcite{NagelEnkelmannAnisSmoothOptFlow}{{29}{2.5.1}{equation.2.5.126}}}
428
\newlabel{eq:NagelEnkelmann2}{{2.127}{29}{Motivation 1, the problem}{equation.2.5.127}{}}
429
\newlabel{eq:NagelEnkelmann2@cref}{{[equation][127][2]2.127}{29}}
430
\@writefile{toc}{\contentsline {subsection}{\numberline {2.5.2}Motivation 2, the solution}{30}{subsection.2.5.2}}
431
\newlabel{sec:NotherMotivationSolution}{{2.5.2}{30}{Motivation 2, the solution}{subsection.2.5.2}{}}
432
\newlabel{sec:NotherMotivationSolution@cref}{{[subsection][2][2,5]2.5.2}{30}}
433
\newlabel{eq:constSet}{{2.130}{30}{Motivation 2, the solution}{equation.2.5.130}{}}
434
\newlabel{eq:constSet@cref}{{[equation][130][2]2.130}{30}}
435
\newlabel{eq:constL2}{{2.131}{30}{Motivation 2, the solution}{equation.2.5.131}{}}
436
\newlabel{eq:constL2@cref}{{[equation][131][2]2.131}{30}}
437
\newlabel{eq:l2MinimizersetGconst}{{2.132}{30}{Motivation 2, the solution}{equation.2.5.132}{}}
438
\newlabel{eq:l2MinimizersetGconst@cref}{{[equation][132][2]2.132}{30}}
439
\newlabel{eq:noetherMotivIntensTrans}{{2.133}{31}{Motivation 2, the solution}{equation.2.5.133}{}}
440
\newlabel{eq:noetherMotivIntensTrans@cref}{{[equation][133][2]2.133}{31}}
441
\newlabel{eq:noetherMotivSpacialTrans}{{2.134}{31}{Motivation 2, the solution}{equation.2.5.134}{}}
442
\newlabel{eq:noetherMotivSpacialTrans@cref}{{[equation][134][2]2.134}{31}}
443
\newlabel{eq:condInvariance}{{2.135}{31}{Motivation 2, the solution}{equation.2.5.135}{}}
444
\newlabel{eq:condInvariance@cref}{{[equation][135][2]2.135}{31}}
445
\newlabel{eq:minimizerSetGeneralGroup}{{2.136}{31}{Motivation 2, the solution}{equation.2.5.136}{}}
446
\newlabel{eq:minimizerSetGeneralGroup@cref}{{[equation][136][2]2.136}{31}}
447
\newlabel{eq:minimizerSetGeomPartitioning}{{2.138}{31}{Motivation 2, the solution}{equation.2.5.138}{}}
448
\newlabel{eq:minimizerSetGeomPartitioning@cref}{{[equation][138][2]2.138}{31}}
449
\newlabel{eq:reducedA}{{2.139}{31}{Motivation 2, the solution}{equation.2.5.139}{}}
450
\newlabel{eq:reducedA@cref}{{[equation][139][2]2.139}{31}}
222 by gerald.mwangi at gmx
pushed Background7
451
\newlabel{eq:ScPhi0}{{2.144}{32}{Motivation 2, the solution}{equation.2.5.144}{}}
452
\newlabel{eq:ScPhi0@cref}{{[equation][144][2]2.144}{32}}
453
\newlabel{eq:ScPrime}{{2.146}{32}{Motivation 2, the solution}{equation.2.5.146}{}}
454
\newlabel{eq:ScPrime@cref}{{[equation][146][2]2.146}{32}}
455
\newlabel{eq:constPhi}{{2.147}{33}{Motivation 2, the solution}{equation.2.5.147}{}}
456
\newlabel{eq:constPhi@cref}{{[equation][147][2]2.147}{33}}
208 by gerald.mwangi at gmx
Started Convex opt section16
457
\@writefile{toc}{\contentsline {section}{\numberline {2.6}Lie Groups}{33}{section.2.6}}
458
\newlabel{sec:LieGroups}{{2.6}{33}{Lie Groups}{section.2.6}{}}
459
\newlabel{sec:LieGroups@cref}{{[section][6][2]2.6}{33}}
222 by gerald.mwangi at gmx
pushed Background7
460
\newlabel{eq:localCoordinatesBackground}{{2.148}{34}{Lie Groups}{equation.2.6.148}{}}
461
\newlabel{eq:localCoordinatesBackground@cref}{{[equation][148][2]2.148}{34}}
462
\newlabel{eq:leftAction}{{2.149}{34}{Left and Right Action}{equation.2.6.149}{}}
463
\newlabel{eq:leftAction@cref}{{[equation][149][2]2.149}{34}}
464
\newlabel{eq:lieGroupVectorField}{{2.151}{34}{Lie Groups}{equation.2.6.151}{}}
465
\newlabel{eq:lieGroupVectorField@cref}{{[equation][151][2]2.151}{34}}
466
\newlabel{eq:lieDerivativeBackground}{{2.152}{35}{Lie Derivative}{equation.2.6.152}{}}
467
\newlabel{eq:lieDerivativeBackground@cref}{{[equation][152][2]2.152}{35}}
468
\newlabel{eq:lieAlgCommutatorBackground}{{2.153}{35}{Lie Groups}{equation.2.6.153}{}}
469
\newlabel{eq:lieAlgCommutatorBackground@cref}{{[equation][153][2]2.153}{35}}
470
\newlabel{eq:lieAlgebraInvVectorField}{{2.154}{35}{Lie Algebra}{equation.2.6.154}{}}
471
\newlabel{eq:lieAlgebraInvVectorField@cref}{{[equation][154][2]2.154}{35}}
472
\newlabel{eq:leftInvarianceCommutator}{{2.155}{35}{Left invariant commutator}{equation.2.6.155}{}}
473
\newlabel{eq:leftInvarianceCommutator@cref}{{[equation][155][2]2.155}{35}}
218 by gerald.mwangi at gmx
pushed Background4
474
\citation{KugoGaugeTheory}
475
\citation{KugoGaugeTheory,PeskinQFT,FeynmanLectures}
222 by gerald.mwangi at gmx
pushed Background7
476
\@writefile{toc}{\contentsline {subsection}{\numberline {2.6.1}The Group $\mathbb  {G}=\mathbb  {T}\times SO(2)$}{36}{subsection.2.6.1}}
477
\newlabel{sec:translRotGroup}{{2.6.1}{36}{The Group $\mathbb {G}=\mathbb {T}\times SO(2)$}{subsection.2.6.1}{}}
478
\newlabel{sec:translRotGroup@cref}{{[subsection][1][2,6]2.6.1}{36}}
479
\newlabel{eq:infRotRepresentation}{{2.158}{36}{The Group $\mathbb {G}=\mathbb {T}\times SO(2)$}{equation.2.6.158}{}}
480
\newlabel{eq:infRotRepresentation@cref}{{[equation][158][2]2.158}{36}}
481
\newlabel{eq:rotTranAlgCommutators}{{2.159}{36}{The Group $\mathbb {G}=\mathbb {T}\times SO(2)$}{equation.2.6.159}{}}
482
\newlabel{eq:rotTranAlgCommutators@cref}{{[equation][159][2]2.159}{36}}
483
\newlabel{eq:SO2CoordRep}{{2.160}{36}{The Group $\mathbb {G}=\mathbb {T}\times SO(2)$}{equation.2.6.160}{}}
484
\newlabel{eq:SO2CoordRep@cref}{{[equation][160][2]2.160}{36}}
485
\newlabel{eq:pauliMatrixNablaSO2}{{2.161}{36}{The Group $\mathbb {G}=\mathbb {T}\times SO(2)$}{equation.2.6.161}{}}
486
\newlabel{eq:pauliMatrixNablaSO2@cref}{{[equation][161][2]2.161}{36}}
487
\@writefile{brf}{\backcite{KugoGaugeTheory}{{36}{2.6.1}{equation.2.6.161}}}
488
\@writefile{brf}{\backcite{KugoGaugeTheory}{{37}{2.6.1}{equation.2.6.161}}}
489
\@writefile{brf}{\backcite{PeskinQFT}{{37}{2.6.1}{equation.2.6.161}}}
490
\@writefile{brf}{\backcite{FeynmanLectures}{{37}{2.6.1}{equation.2.6.161}}}
491
\@writefile{toc}{\contentsline {subsection}{\numberline {2.6.2}The action of $\mathbb  {G}$ on Functionals}{37}{subsection.2.6.2}}
492
\newlabel{eq:lieGroupActionEuclidSpace}{{2.162}{37}{The action of $\mathbb {G}$ on Functionals}{equation.2.6.162}{}}
493
\newlabel{eq:lieGroupActionEuclidSpace@cref}{{[equation][162][2]2.162}{37}}
226 by gerald.mwangi at gmx
pushed Background11
494
\newlabel{eq:phiGOmega}{{2.165}{37}{The action of $\mathbb {G}$ on Functionals}{equation.2.6.165}{}}
495
\newlabel{eq:phiGOmega@cref}{{[equation][165][2]2.165}{37}}
496
\newlabel{eq:scalarProdCInfty}{{2.168}{38}{The action of $\mathbb {G}$ on Functionals}{equation.2.6.168}{}}
497
\newlabel{eq:scalarProdCInfty@cref}{{[equation][168][2]2.168}{38}}
498
\newlabel{eq:Xbasis}{{2.170}{38}{Dual Basis}{equation.2.6.170}{}}
499
\newlabel{eq:Xbasis@cref}{{[equation][170][2]2.170}{38}}
500
\newlabel{eq:XStarBasis}{{2.171}{38}{Dual Basis}{equation.2.6.171}{}}
501
\newlabel{eq:XStarBasis@cref}{{[equation][171][2]2.171}{38}}
502
\newlabel{eq:dualBasis}{{2.172}{38}{Dual Basis}{equation.2.6.172}{}}
503
\newlabel{eq:dualBasis@cref}{{[equation][172][2]2.172}{38}}
504
\newlabel{eq:dualBasisProof1}{{2.174}{39}{The action of $\mathbb {G}$ on Functionals}{equation.2.6.174}{}}
505
\newlabel{eq:dualBasisProof1@cref}{{[equation][174][2]2.174}{39}}
506
\newlabel{eq:dualBasisProof2}{{2.176}{39}{The action of $\mathbb {G}$ on Functionals}{equation.2.6.176}{}}
507
\newlabel{eq:dualBasisProof2@cref}{{[equation][176][2]2.176}{39}}
508
\newlabel{eq:derivativeE}{{2.179}{39}{The action of $\mathbb {G}$ on Functionals}{equation.2.6.179}{}}
509
\newlabel{eq:derivativeE@cref}{{[equation][179][2]2.179}{39}}
510
\newlabel{eq:flowSubdiffF}{{2.180}{40}{The action of $\mathbb {G}$ on Functionals}{equation.2.6.180}{}}
511
\newlabel{eq:flowSubdiffF@cref}{{[equation][180][2]2.180}{40}}
512
\newlabel{eq:subdiffHi}{{2.182}{40}{The action of $\mathbb {G}$ on Functionals}{equation.2.6.182}{}}
513
\newlabel{eq:subdiffHi@cref}{{[equation][182][2]2.182}{40}}
514
\newlabel{eq:flowSubdiffH}{{2.185}{40}{The action of $\mathbb {G}$ on Functionals}{equation.2.6.185}{}}
515
\newlabel{eq:flowSubdiffH@cref}{{[equation][185][2]2.185}{40}}
516
\newlabel{eq:flowSubdiffE}{{2.187}{41}{The action of $\mathbb {G}$ on Functionals}{equation.2.6.187}{}}
517
\newlabel{eq:flowSubdiffE@cref}{{[equation][187][2]2.187}{41}}
518
\newlabel{eq:lieAlgebraPhiGeneral}{{2.190}{41}{The action of $\mathbb {G}$ on Functionals}{equation.2.6.190}{}}
519
\newlabel{eq:lieAlgebraPhiGeneral@cref}{{[equation][190][2]2.190}{41}}
520
\newlabel{eq:lieAlgebraPhi}{{2.193}{41}{The action of $\mathbb {G}$ on Functionals}{equation.2.6.193}{}}
521
\newlabel{eq:lieAlgebraPhi@cref}{{[equation][193][2]2.193}{41}}
522
\newlabel{eq:flowSubdiffFphi}{{2.197}{42}{The action of $\mathbb {G}$ on Functionals}{equation.2.6.197}{}}
523
\newlabel{eq:flowSubdiffFphi@cref}{{[equation][197][2]2.197}{42}}
524
\newlabel{eq:flowSubdiffHphi}{{2.198}{42}{The action of $\mathbb {G}$ on Functionals}{equation.2.6.198}{}}
525
\newlabel{eq:flowSubdiffHphi@cref}{{[equation][198][2]2.198}{42}}
526
\newlabel{eq:flowSubdiffEPhi}{{2.200}{42}{The action of $\mathbb {G}$ on Functionals}{equation.2.6.200}{}}
527
\newlabel{eq:flowSubdiffEPhi@cref}{{[equation][200][2]2.200}{42}}
528
\newlabel{eq:actionLieGroupfunctional1}{{2.203}{43}{The action of $\mathbb {G}$ on Functionals}{equation.2.6.203}{}}
529
\newlabel{eq:actionLieGroupfunctional1@cref}{{[equation][203][2]2.203}{43}}
530
\newlabel{eq:actionLieGroupfunctional2}{{2.204}{43}{The action of $\mathbb {G}$ on Functionals}{equation.2.6.204}{}}
531
\newlabel{eq:actionLieGroupfunctional2@cref}{{[equation][204][2]2.204}{43}}
532
\newlabel{eq:actionLieGroupfunctional4}{{2.205}{43}{The action of $\mathbb {G}$ on Functionals}{equation.2.6.205}{}}
533
\newlabel{eq:actionLieGroupfunctional4@cref}{{[equation][205][2]2.205}{43}}
534
\@writefile{toc}{\contentsline {section}{\numberline {2.7}Noether's First Theorem}{43}{section.2.7}}
535
\newlabel{sec:noethersFirstTheorem}{{2.7}{43}{Noether's First Theorem}{section.2.7}{}}
536
\newlabel{sec:noethersFirstTheorem@cref}{{[section][7][2]2.7}{43}}
537
\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Embedding Geometrical Constraints into Prior Energies}{43}{section*.10}}
538
\newlabel{eq:priorMinimmizers}{{2.206}{43}{Embedding Geometrical Constraints into Prior Energies}{equation.2.7.206}{}}
539
\newlabel{eq:priorMinimmizers@cref}{{[equation][206][2]2.206}{43}}
540
\newlabel{eq:priorMinimizersG}{{2.207}{43}{Embedding Geometrical Constraints into Prior Energies}{equation.2.7.207}{}}
541
\newlabel{eq:priorMinimizersG@cref}{{[equation][207][2]2.207}{43}}
216 by gerald.mwangi at gmx
pushed Background2
542
\citation{BigunBook,FerraroTransfInvLieGroup}
226 by gerald.mwangi at gmx
pushed Background11
543
\newlabel{eq:levelSetVF}{{2.208}{44}{Embedding Geometrical Constraints into Prior Energies}{equation.2.7.208}{}}
544
\newlabel{eq:levelSetVF@cref}{{[equation][208][2]2.208}{44}}
545
\newlabel{eq:linLevelSet}{{2.209}{44}{Embedding Geometrical Constraints into Prior Energies}{equation.2.7.209}{}}
546
\newlabel{eq:linLevelSet@cref}{{[equation][209][2]2.209}{44}}
547
\@writefile{brf}{\backcite{BigunBook}{{44}{2.7}{equation.2.7.209}}}
548
\@writefile{brf}{\backcite{FerraroTransfInvLieGroup}{{44}{2.7}{equation.2.7.209}}}
549
\newlabel{eq:diffEqHarmonicFunctions}{{2.210}{44}{Embedding Geometrical Constraints into Prior Energies}{equation.2.7.210}{}}
550
\newlabel{eq:diffEqHarmonicFunctions@cref}{{[equation][210][2]2.210}{44}}
551
\newlabel{eq:linearDomain}{{2.211}{44}{Embedding Geometrical Constraints into Prior Energies}{equation.2.7.211}{}}
552
\newlabel{eq:linearDomain@cref}{{[equation][211][2]2.211}{44}}
553
\newlabel{eq:generalLevelSet}{{2.212}{45}{Embedding Geometrical Constraints into Prior Energies}{equation.2.7.212}{}}
554
\newlabel{eq:generalLevelSet@cref}{{[equation][212][2]2.212}{45}}
555
\newlabel{eq:cauchyRiemann}{{2.213}{45}{Embedding Geometrical Constraints into Prior Energies}{equation.2.7.213}{}}
556
\newlabel{eq:cauchyRiemann@cref}{{[equation][213][2]2.213}{45}}
557
\newlabel{eq:minimizerSetInv}{{2.214}{45}{Embedding Geometrical Constraints into Prior Energies}{equation.2.7.214}{}}
558
\newlabel{eq:minimizerSetInv@cref}{{[equation][214][2]2.214}{45}}
559
\newlabel{eq:constPrior}{{2.215}{45}{Embedding Geometrical Constraints into Prior Energies}{equation.2.7.215}{}}
560
\newlabel{eq:constPrior@cref}{{[equation][215][2]2.215}{45}}
216 by gerald.mwangi at gmx
pushed Background2
561
\citation{NoetherTheoremDeu,NoetherTheroemEng}
225 by gerald.mwangi at gmx
pushed Background10
562
\@writefile{toc}{\contentsline {subsection}{\numberline {2.7.1}Noethers Theorems}{46}{subsection.2.7.1}}
563
\newlabel{sec:noetherClassicalTheorem}{{2.7.1}{46}{Noethers Theorems}{subsection.2.7.1}{}}
564
\newlabel{sec:noetherClassicalTheorem@cref}{{[subsection][1][2,7]2.7.1}{46}}
565
\@writefile{brf}{\backcite{NoetherTheoremDeu}{{46}{2.7.1}{subsection.2.7.1}}}
566
\@writefile{brf}{\backcite{NoetherTheroemEng}{{46}{2.7.1}{subsection.2.7.1}}}
226 by gerald.mwangi at gmx
pushed Background11
567
\newlabel{eq:actionSymmetry}{{2.218}{46}{Noethers Theorems}{equation.2.7.218}{}}
568
\newlabel{eq:actionSymmetry@cref}{{[equation][218][2]2.218}{46}}
569
\newlabel{eq:NoetherInvariantDiv}{{2.220}{47}{Noethers Theorems}{equation.2.7.220}{}}
570
\newlabel{eq:NoetherInvariantDiv@cref}{{[equation][220][2]2.220}{47}}
571
\newlabel{eq:noetherGeneralDivEq}{{2.223}{47}{Noethers Theorems}{equation.2.7.223}{}}
572
\newlabel{eq:noetherGeneralDivEq@cref}{{[equation][223][2]2.223}{47}}
573
\newlabel{eq:noetherOverDetSol}{{2.224}{47}{Noethers Theorems}{equation.2.7.224}{}}
574
\newlabel{eq:noetherOverDetSol@cref}{{[equation][224][2]2.224}{47}}
575
\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Kepler's Two Body Problem}{47}{section*.11}}
576
\newlabel{eq:KeplerLagrange}{{2.226}{48}{Kepler's Two Body Problem}{equation.2.7.226}{}}
577
\newlabel{eq:KeplerLagrange@cref}{{[equation][226][2]2.226}{48}}
578
\newlabel{eq:KeplerEulerLagrange}{{2.227}{48}{Kepler's Two Body Problem}{equation.2.7.227}{}}
579
\newlabel{eq:KeplerEulerLagrange@cref}{{[equation][227][2]2.227}{48}}
580
\newlabel{eq:KeplerTimeshift}{{2.230}{48}{Kepler's Two Body Problem}{equation.2.7.230}{}}
581
\newlabel{eq:KeplerTimeshift@cref}{{[equation][230][2]2.230}{48}}
582
\newlabel{eq:KeplerRotX}{{2.231}{48}{Kepler's Two Body Problem}{equation.2.7.231}{}}
583
\newlabel{eq:KeplerRotX@cref}{{[equation][231][2]2.231}{48}}
584
\newlabel{eq:KeplerRotY}{{2.232}{48}{Kepler's Two Body Problem}{equation.2.7.232}{}}
585
\newlabel{eq:KeplerRotY@cref}{{[equation][232][2]2.232}{48}}
586
\newlabel{eq:KeplerRotZ}{{2.233}{48}{Kepler's Two Body Problem}{equation.2.7.233}{}}
587
\newlabel{eq:KeplerRotZ@cref}{{[equation][233][2]2.233}{48}}
223 by gerald.mwangi at gmx
pushed Background8
588
\citation{NoetherTheroemEng,MansfieldInvarCalc}
589
\citation{kuypers2005klassische}
225 by gerald.mwangi at gmx
pushed Background10
590
\@writefile{toc}{\contentsline {subsection}{\numberline {2.7.2}Noether's First Theorem: A Modern Version}{49}{subsection.2.7.2}}
591
\newlabel{sec:noetherModern}{{2.7.2}{49}{Noether's First Theorem: A Modern Version}{subsection.2.7.2}{}}
592
\newlabel{sec:noetherModern@cref}{{[subsection][2][2,7]2.7.2}{49}}
226 by gerald.mwangi at gmx
pushed Background11
593
\newlabel{eq:NoetherEnergyInt}{{2.234}{49}{Noether's First Theorem: A Modern Version}{equation.2.7.234}{}}
594
\newlabel{eq:NoetherEnergyInt@cref}{{[equation][234][2]2.234}{49}}
595
\newlabel{eq:NoetherEnergyInfTrans}{{2.235}{49}{Noether's First Theorem: A Modern Version}{equation.2.7.235}{}}
596
\newlabel{eq:NoetherEnergyInfTrans@cref}{{[equation][235][2]2.235}{49}}
597
\newlabel{eq:eulerLagrange2}{{2.236}{49}{Noether's First Theorem: A Modern Version}{equation.2.7.236}{}}
598
\newlabel{eq:eulerLagrange2@cref}{{[equation][236][2]2.236}{49}}
599
\@writefile{brf}{\backcite{NoetherTheroemEng}{{49}{2.7.2}{equation.2.7.236}}}
600
\@writefile{brf}{\backcite{MansfieldInvarCalc}{{49}{2.7.2}{equation.2.7.236}}}
601
\@writefile{brf}{\backcite{kuypers2005klassische}{{49}{2.7.2}{equation.2.7.236}}}
602
\newlabel{eq:volumeElement2}{{2.237}{49}{Noether's First Theorem: A Modern Version}{equation.2.7.237}{}}
603
\newlabel{eq:volumeElement2@cref}{{[equation][237][2]2.237}{49}}
604
\newlabel{eq:volumeElement}{{2.238}{49}{Noether's First Theorem: A Modern Version}{equation.2.7.238}{}}
605
\newlabel{eq:volumeElement@cref}{{[equation][238][2]2.238}{49}}
606
\newlabel{eq:VeExpansion}{{2.239}{50}{Noether's First Theorem: A Modern Version}{equation.2.7.239}{}}
607
\newlabel{eq:VeExpansion@cref}{{[equation][239][2]2.239}{50}}
608
\newlabel{eq:noetherVariation2}{{2.240}{50}{Noether's First Theorem: A Modern Version}{equation.2.7.240}{}}
609
\newlabel{eq:noetherVariation2@cref}{{[equation][240][2]2.240}{50}}
610
\newlabel{eq:bendingBackground}{{2.241}{50}{Noether's First Theorem: A Modern Version}{equation.2.7.241}{}}
611
\newlabel{eq:bendingBackground@cref}{{[equation][241][2]2.241}{50}}
612
\newlabel{eq:noetherVariation}{{2.242}{50}{Noether's First Theorem: A Modern Version}{equation.2.7.242}{}}
613
\newlabel{eq:noetherVariation@cref}{{[equation][242][2]2.242}{50}}
614
\newlabel{eq:noetherPureIntensTrans}{{2.243}{50}{Noether's First Theorem: A Modern Version}{equation.2.7.243}{}}
615
\newlabel{eq:noetherPureIntensTrans@cref}{{[equation][243][2]2.243}{50}}
616
\newlabel{eq:divergenceFreeVectors}{{2.244}{50}{Noether's First Theorem: A Modern Version}{equation.2.7.244}{}}
617
\newlabel{eq:divergenceFreeVectors@cref}{{[equation][244][2]2.244}{50}}
618
\newlabel{eq:noetherDivergence}{{2.245}{50}{Noether's First Theorem: A Modern Version}{equation.2.7.245}{}}
619
\newlabel{eq:noetherDivergence@cref}{{[equation][245][2]2.245}{50}}
620
\newlabel{eq:NoetherEnergyInfTransSymm}{{2.246}{50}{Noether's First Theorem: A Modern Version}{equation.2.7.246}{}}
621
\newlabel{eq:NoetherEnergyInfTransSymm@cref}{{[equation][246][2]2.246}{50}}
622
\newlabel{eq:eulerLagrangeEq}{{2.247}{51}{Noether's First Theorem: A Modern Version}{equation.2.7.247}{}}
623
\newlabel{eq:eulerLagrangeEq@cref}{{[equation][247][2]2.247}{51}}
624
\newlabel{eq:noetherDivergenceCanonMomentum}{{2.248}{51}{Noether's First Theorem: A Modern Version}{equation.2.7.248}{}}
625
\newlabel{eq:noetherDivergenceCanonMomentum@cref}{{[equation][248][2]2.248}{51}}
225 by gerald.mwangi at gmx
pushed Background10
626
\@writefile{toc}{\contentsline {subsection}{\numberline {2.7.3}Pure Spacial Symmetries}{51}{subsection.2.7.3}}
627
\newlabel{sec:pureSpacialSymmetry}{{2.7.3}{51}{Pure Spacial Symmetries}{subsection.2.7.3}{}}
628
\newlabel{sec:pureSpacialSymmetry@cref}{{[subsection][3][2,7]2.7.3}{51}}
226 by gerald.mwangi at gmx
pushed Background11
629
\newlabel{eq:pureSpacialSymmetry}{{2.249}{51}{Pure Spacial Symmetries}{equation.2.7.249}{}}
630
\newlabel{eq:pureSpacialSymmetry@cref}{{[equation][249][2]2.249}{51}}
631
\newlabel{eq:pureSpacialSymmetry2}{{2.250}{51}{Pure Spacial Symmetries}{equation.2.7.250}{}}
632
\newlabel{eq:pureSpacialSymmetry2@cref}{{[equation][250][2]2.250}{51}}
633
\newlabel{eq:pureSpacialSymmetryCanonMomentum}{{2.251}{51}{Pure Spacial Symmetries}{equation.2.7.251}{}}
634
\newlabel{eq:pureSpacialSymmetryCanonMomentum@cref}{{[equation][251][2]2.251}{51}}
217 by gerald.mwangi at gmx
pushed Background3
635
\citation{PeskinQFT}
175 by gerald.mwangi at gmx
reviewing everything 23
636
\citation{MansfieldInvarCalc,OlverMovingFrame1,OlverMovingFrame2}
226 by gerald.mwangi at gmx
pushed Background11
637
\citation{RudinOsherFatemiTotalVariation,Chambolle2004,wedel2009improved,FadiliTV,BrediesMathemBildverarbeitung}
638
\citation{RudinOsherFatemiTotalVariation,OsherRudinShockFilter,RudinShockFilter}
225 by gerald.mwangi at gmx
pushed Background10
639
\@writefile{toc}{\contentsline {section}{\numberline {2.8}Current usage of Noethers Theorems}{52}{section.2.8}}
640
\@writefile{brf}{\backcite{PeskinQFT}{{52}{2.8}{section.2.8}}}
224 by gerald.mwangi at gmx
pushed Background9
641
\@writefile{brf}{\backcite{MansfieldInvarCalc}{{52}{2.8}{section.2.8}}}
642
\@writefile{brf}{\backcite{OlverMovingFrame1}{{52}{2.8}{section.2.8}}}
643
\@writefile{brf}{\backcite{OlverMovingFrame2}{{52}{2.8}{section.2.8}}}
226 by gerald.mwangi at gmx
pushed Background11
644
\@writefile{toc}{\contentsline {section}{\numberline {2.9}Total Variation}{52}{section.2.9}}
645
\newlabel{sec:TotalVariation}{{2.9}{52}{Total Variation}{section.2.9}{}}
646
\newlabel{sec:TotalVariation@cref}{{[section][9][2]2.9}{52}}
647
\@writefile{brf}{\backcite{RudinOsherFatemiTotalVariation}{{52}{2.9}{section.2.9}}}
648
\@writefile{brf}{\backcite{Chambolle2004}{{52}{2.9}{section.2.9}}}
649
\@writefile{brf}{\backcite{wedel2009improved}{{52}{2.9}{section.2.9}}}
650
\@writefile{brf}{\backcite{FadiliTV}{{52}{2.9}{section.2.9}}}
651
\@writefile{brf}{\backcite{BrediesMathemBildverarbeitung}{{52}{2.9}{section.2.9}}}
225 by gerald.mwangi at gmx
pushed Background10
652
\citation{RudinOsherFatemiTotalVariation}
653
\citation{BrediesMathemBildverarbeitung,LenzenVariational}
654
\citation{BrediesMathemBildverarbeitung,LenzenVariational}
223 by gerald.mwangi at gmx
pushed Background8
655
\citation{freitagfunktionentheorie}
226 by gerald.mwangi at gmx
pushed Background11
656
\citation{BrediesMathemBildverarbeitung}
225 by gerald.mwangi at gmx
pushed Background10
657
\@writefile{brf}{\backcite{RudinOsherFatemiTotalVariation}{{53}{2.9}{section.2.9}}}
658
\@writefile{brf}{\backcite{OsherRudinShockFilter}{{53}{2.9}{section.2.9}}}
659
\@writefile{brf}{\backcite{RudinShockFilter}{{53}{2.9}{section.2.9}}}
226 by gerald.mwangi at gmx
pushed Background11
660
\newlabel{eq:TVL1Def}{{2.253}{53}{Total Variation}{equation.2.9.253}{}}
661
\newlabel{eq:TVL1Def@cref}{{[equation][253][2]2.253}{53}}
662
\@writefile{brf}{\backcite{RudinOsherFatemiTotalVariation}{{53}{2.9}{equation.2.9.253}}}
663
\newlabel{eq:TVL1DefApprox}{{2.254}{53}{Total Variation}{equation.2.9.254}{}}
664
\newlabel{eq:TVL1DefApprox@cref}{{[equation][254][2]2.254}{53}}
665
\@writefile{brf}{\backcite{BrediesMathemBildverarbeitung}{{53}{2.9}{equation.2.9.254}}}
666
\@writefile{brf}{\backcite{LenzenVariational}{{53}{2.9}{equation.2.9.254}}}
667
\@writefile{brf}{\backcite{BrediesMathemBildverarbeitung}{{53}{2.9}{equation.2.9.254}}}
668
\@writefile{brf}{\backcite{LenzenVariational}{{53}{2.9}{equation.2.9.254}}}
669
\newlabel{eq:TVWeakDerivative}{{2.255}{53}{Total Variation}{equation.2.9.255}{}}
670
\newlabel{eq:TVWeakDerivative@cref}{{[equation][255][2]2.255}{53}}
671
\@writefile{brf}{\backcite{freitagfunktionentheorie}{{53}{2.9}{equation.2.9.256}}}
672
\newlabel{eq:TVDefinition}{{2.258}{53}{Total Variation}{equation.2.9.258}{}}
673
\newlabel{eq:TVDefinition@cref}{{[equation][258][2]2.258}{53}}
216 by gerald.mwangi at gmx
pushed Background2
674
\citation{MumfordShah,VeseMultPhaseLevelset}
226 by gerald.mwangi at gmx
pushed Background11
675
\@writefile{brf}{\backcite{BrediesMathemBildverarbeitung}{{54}{2.9}{equation.2.9.258}}}
676
\newlabel{eq:TVSplit}{{2.259}{54}{Total Variation}{equation.2.9.259}{}}
677
\newlabel{eq:TVSplit@cref}{{[equation][259][2]2.259}{54}}
678
\newlabel{eq:lineIntegral}{{2.260}{54}{Total Variation}{equation.2.9.260}{}}
679
\newlabel{eq:lineIntegral@cref}{{[equation][260][2]2.260}{54}}
680
\newlabel{eq:TVInvConst}{{2.261}{54}{Total Variation}{equation.2.9.261}{}}
681
\newlabel{eq:TVInvConst@cref}{{[equation][261][2]2.261}{54}}
682
\newlabel{eq:generalTVModel}{{2.263}{54}{Total Variation}{equation.2.9.263}{}}
683
\newlabel{eq:generalTVModel@cref}{{[equation][263][2]2.263}{54}}
684
\@writefile{brf}{\backcite{MumfordShah}{{54}{2.9}{equation.2.9.263}}}
685
\@writefile{brf}{\backcite{VeseMultPhaseLevelset}{{54}{2.9}{equation.2.9.263}}}
686
\newlabel{eq:generalTVModel2}{{2.264}{54}{Total Variation}{equation.2.9.264}{}}
687
\newlabel{eq:generalTVModel2@cref}{{[equation][264][2]2.264}{54}}
225 by gerald.mwangi at gmx
pushed Background10
688
\@writefile{toc}{\contentsline {subsection}{\numberline {2.9.1}The Mean Curvature of Total Variation}{55}{subsection.2.9.1}}
226 by gerald.mwangi at gmx
pushed Background11
689
\newlabel{eq:totArcLength}{{2.267}{55}{The Mean Curvature of Total Variation}{equation.2.9.267}{}}
690
\newlabel{eq:totArcLength@cref}{{[equation][267][2]2.267}{55}}
691
\newlabel{eq:arcLengthDeriv}{{2.268}{55}{The Mean Curvature of Total Variation}{equation.2.9.268}{}}
692
\newlabel{eq:arcLengthDeriv@cref}{{[equation][268][2]2.268}{55}}
151 by gerald.mwangi at gmx
fixing stuff :)
693
\citation{BrediesMathemBildverarbeitung}
694
\citation{EvansLevelSetMeanCurvature,CasellesGeoActCont,KichenassamyConformalCurvFlow}
152 by gerald.mwangi at gmx
reviewing everything 3
695
\citation{LenzenVariational}
104 by gerald.mwangi at gmx
Worked on section 3) 13
696
\citation{Horn-Schunck,LukasKanadeImageReg,SunRothOpticalFlowCVPR2010,BlackAnandanRobustOpticalFlow,Bruhn-CombLocGlobMeth,Kondermann-SurfMeasure,wedel2009improved}
697
\citation{HanVideoComprOpticalFlow,HanVideoComprOpticalFlow99}
698
\citation{LukasKanadeImageReg,PollefeysSelfCalibMetricRecon,PollefeysKeyFrame3DRecons,PollefeysLiveMetric3DReconstructionICCV2013,SnavelyModellingWorld,SnavelyPhotoTourism,KimMultiViewTOF,ScharsteinSterDepthStructLight}
699
\citation{Bhattacharya2009}
700
\citation{YezziZoelleiVarJointSegRegGeomCont}
226 by gerald.mwangi at gmx
pushed Background11
701
\newlabel{eq:curvLevelSet}{{2.270}{56}{The Mean Curvature of Total Variation}{equation.2.9.270}{}}
702
\newlabel{eq:curvLevelSet@cref}{{[equation][270][2]2.270}{56}}
703
\@writefile{brf}{\backcite{BrediesMathemBildverarbeitung}{{56}{2.9.1}{equation.2.9.270}}}
704
\@writefile{brf}{\backcite{EvansLevelSetMeanCurvature}{{56}{2.9.1}{equation.2.9.270}}}
705
\@writefile{brf}{\backcite{CasellesGeoActCont}{{56}{2.9.1}{equation.2.9.270}}}
706
\@writefile{brf}{\backcite{KichenassamyConformalCurvFlow}{{56}{2.9.1}{equation.2.9.270}}}
707
\newlabel{eq:meanCurv}{{2.271}{56}{The Mean Curvature of Total Variation}{equation.2.9.271}{}}
708
\newlabel{eq:meanCurv@cref}{{[equation][271][2]2.271}{56}}
709
\newlabel{eq:CurvatureTVSubgradientRel2}{{2.272}{56}{The Mean Curvature of Total Variation}{equation.2.9.272}{}}
710
\newlabel{eq:CurvatureTVSubgradientRel2@cref}{{[equation][272][2]2.272}{56}}
711
\@writefile{brf}{\backcite{LenzenVariational}{{56}{2.9.1}{equation.2.9.272}}}
224 by gerald.mwangi at gmx
pushed Background9
712
\@writefile{toc}{\contentsline {section}{\numberline {2.10}Optical Flow}{56}{section.2.10}}
713
\newlabel{sec:OpticalFlow}{{2.10}{56}{Optical Flow}{section.2.10}{}}
714
\newlabel{sec:OpticalFlow@cref}{{[section][10][2]2.10}{56}}
226 by gerald.mwangi at gmx
pushed Background11
715
\@writefile{brf}{\backcite{Horn-Schunck}{{56}{2.10}{section.2.10}}}
716
\@writefile{brf}{\backcite{LukasKanadeImageReg}{{56}{2.10}{section.2.10}}}
717
\@writefile{brf}{\backcite{SunRothOpticalFlowCVPR2010}{{56}{2.10}{section.2.10}}}
718
\@writefile{brf}{\backcite{BlackAnandanRobustOpticalFlow}{{56}{2.10}{section.2.10}}}
719
\@writefile{brf}{\backcite{Bruhn-CombLocGlobMeth}{{56}{2.10}{section.2.10}}}
720
\@writefile{brf}{\backcite{Kondermann-SurfMeasure}{{56}{2.10}{section.2.10}}}
721
\@writefile{brf}{\backcite{wedel2009improved}{{56}{2.10}{section.2.10}}}
722
\@writefile{brf}{\backcite{HanVideoComprOpticalFlow}{{56}{2.10}{section.2.10}}}
723
\@writefile{brf}{\backcite{HanVideoComprOpticalFlow99}{{56}{2.10}{section.2.10}}}
724
\citation{Horn-Schunck,LukasKanadeImageReg,HermosilloPHDMatching,ChefdHotel2001}
725
\citation{LoweSIFT}
726
\citation{HermosilloPHDMatching,ChefdHotel2001}
224 by gerald.mwangi at gmx
pushed Background9
727
\newlabel{fig:multiModalSetupCams}{{2.4a}{57}{Subfigure 2 2.4a}{subfigure.2.4.1}{}}
223 by gerald.mwangi at gmx
pushed Background8
728
\newlabel{sub@fig:multiModalSetupCams}{{(a)}{a}{Subfigure 2 2.4a\relax }{subfigure.2.4.1}{}}
224 by gerald.mwangi at gmx
pushed Background9
729
\newlabel{fig:multiModalSetupCams@cref}{{[subfigure][1][2,4]2.4a}{57}}
730
\newlabel{fig:multiModalFlow}{{2.4b}{57}{Subfigure 2 2.4b}{subfigure.2.4.2}{}}
223 by gerald.mwangi at gmx
pushed Background8
731
\newlabel{sub@fig:multiModalFlow}{{(b)}{b}{Subfigure 2 2.4b\relax }{subfigure.2.4.2}{}}
224 by gerald.mwangi at gmx
pushed Background9
732
\newlabel{fig:multiModalFlow@cref}{{[subfigure][2][2,4]2.4b}{57}}
733
\newlabel{fig:multiModalYc}{{2.4c}{57}{Subfigure 2 2.4c}{subfigure.2.4.3}{}}
223 by gerald.mwangi at gmx
pushed Background8
734
\newlabel{sub@fig:multiModalYc}{{(c)}{c}{Subfigure 2 2.4c\relax }{subfigure.2.4.3}{}}
224 by gerald.mwangi at gmx
pushed Background9
735
\newlabel{fig:multiModalYc@cref}{{[subfigure][3][2,4]2.4c}{57}}
736
\newlabel{fig:multiModalIc}{{2.4d}{57}{Subfigure 2 2.4d}{subfigure.2.4.4}{}}
223 by gerald.mwangi at gmx
pushed Background8
737
\newlabel{sub@fig:multiModalIc}{{(d)}{d}{Subfigure 2 2.4d\relax }{subfigure.2.4.4}{}}
224 by gerald.mwangi at gmx
pushed Background9
738
\newlabel{fig:multiModalIc@cref}{{[subfigure][4][2,4]2.4d}{57}}
739
\@writefile{lof}{\contentsline {figure}{\numberline {2.4}{\ignorespaces Multi modal setup}}{57}{figure.caption.12}}
740
\newlabel{fig:multiModalSetup}{{2.4}{57}{Multi modal setup}{figure.caption.12}{}}
741
\newlabel{fig:multiModalSetup@cref}{{[figure][4][2]2.4}{57}}
742
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{57}{subfigure.4.1}}
743
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$\ensuremath {\ensuremath {{\bm {d}}}}$}}}{57}{subfigure.4.2}}
744
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$Y$}}}{57}{subfigure.4.3}}
745
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {$I$}}}{57}{subfigure.4.4}}
225 by gerald.mwangi at gmx
pushed Background10
746
\@writefile{brf}{\backcite{LukasKanadeImageReg}{{57}{2.10}{section.2.10}}}
747
\@writefile{brf}{\backcite{PollefeysSelfCalibMetricRecon}{{57}{2.10}{section.2.10}}}
748
\@writefile{brf}{\backcite{PollefeysKeyFrame3DRecons}{{57}{2.10}{section.2.10}}}
749
\@writefile{brf}{\backcite{PollefeysLiveMetric3DReconstructionICCV2013}{{57}{2.10}{section.2.10}}}
750
\@writefile{brf}{\backcite{SnavelyModellingWorld}{{57}{2.10}{section.2.10}}}
751
\@writefile{brf}{\backcite{SnavelyPhotoTourism}{{57}{2.10}{section.2.10}}}
752
\@writefile{brf}{\backcite{KimMultiViewTOF}{{57}{2.10}{section.2.10}}}
753
\@writefile{brf}{\backcite{ScharsteinSterDepthStructLight}{{57}{2.10}{section.2.10}}}
754
\@writefile{brf}{\backcite{Bhattacharya2009}{{57}{2.10}{section.2.10}}}
755
\@writefile{brf}{\backcite{YezziZoelleiVarJointSegRegGeomCont}{{57}{2.10}{section.2.10}}}
226 by gerald.mwangi at gmx
pushed Background11
756
\newlabel{eq:opticalFlowDef}{{2.274}{57}{Optical Flow}{equation.2.10.274}{}}
757
\newlabel{eq:opticalFlowDef@cref}{{[equation][274][2]2.274}{57}}
758
\@writefile{brf}{\backcite{Horn-Schunck}{{57}{2.10}{equation.2.10.274}}}
759
\@writefile{brf}{\backcite{LukasKanadeImageReg}{{57}{2.10}{equation.2.10.274}}}
760
\@writefile{brf}{\backcite{HermosilloPHDMatching}{{57}{2.10}{equation.2.10.274}}}
761
\@writefile{brf}{\backcite{ChefdHotel2001}{{57}{2.10}{equation.2.10.274}}}
225 by gerald.mwangi at gmx
pushed Background10
762
\citation{Kondermann-SurfMeasure}
763
\citation{BishopNeuralNetworkPatRec,ZetscheLimitsOfLinFilters}
135 by gerald.mwangi at gmx
Worked on section 4) 24
764
\citation{Horn-Schunck}
765
\citation{LukasKanadeImageReg}
766
\citation{Horn-Schunck}
226 by gerald.mwangi at gmx
pushed Background11
767
\@writefile{brf}{\backcite{LoweSIFT}{{58}{2.10}{equation.2.10.274}}}
768
\@writefile{brf}{\backcite{HermosilloPHDMatching}{{58}{2.10}{equation.2.10.274}}}
769
\@writefile{brf}{\backcite{ChefdHotel2001}{{58}{2.10}{equation.2.10.274}}}
770
\newlabel{eq:similarityMeasureWarpedI}{{2.275}{58}{Optical Flow}{equation.2.10.275}{}}
771
\newlabel{eq:similarityMeasureWarpedI@cref}{{[equation][275][2]2.275}{58}}
772
\@writefile{brf}{\backcite{Kondermann-SurfMeasure}{{58}{2.10}{equation.2.10.275}}}
773
\@writefile{brf}{\backcite{BishopNeuralNetworkPatRec}{{58}{2.10}{equation.2.10.275}}}
774
\@writefile{brf}{\backcite{ZetscheLimitsOfLinFilters}{{58}{2.10}{equation.2.10.275}}}
775
\newlabel{eq:opticalFlowGenericEnergy}{{2.276}{58}{Optical Flow}{equation.2.10.276}{}}
776
\newlabel{eq:opticalFlowGenericEnergy@cref}{{[equation][276][2]2.276}{58}}
777
\@writefile{toc}{\contentsline {subsection}{\numberline {2.10.1}Uni-Modal Optical Flow}{58}{subsection.2.10.1}}
778
\newlabel{sec:UniModalOpticalFlowBackground}{{2.10.1}{58}{Uni-Modal Optical Flow}{subsection.2.10.1}{}}
779
\newlabel{sec:UniModalOpticalFlowBackground@cref}{{[subsection][1][2,10]2.10.1}{58}}
780
\@writefile{brf}{\backcite{Horn-Schunck}{{58}{2.10.1}{subsection.2.10.1}}}
781
\@writefile{brf}{\backcite{LukasKanadeImageReg}{{58}{2.10.1}{subsection.2.10.1}}}
782
\@writefile{brf}{\backcite{Horn-Schunck}{{58}{2.10.1}{subsection.2.10.1}}}
216 by gerald.mwangi at gmx
pushed Background2
783
\citation{PapenbergTVOpticalFlow}
784
\citation{ZachTVL1OpticalFlow}
226 by gerald.mwangi at gmx
pushed Background11
785
\newlabel{eq:HornSchunk}{{2.277}{59}{Uni-Modal Optical Flow}{equation.2.10.277}{}}
786
\newlabel{eq:HornSchunk@cref}{{[equation][277][2]2.277}{59}}
787
\newlabel{eq:HornSchunkBCCE}{{2.278}{59}{Uni-Modal Optical Flow}{equation.2.10.278}{}}
788
\newlabel{eq:HornSchunkBCCE@cref}{{[equation][278][2]2.278}{59}}
789
\newlabel{eq:HornSchunkL2}{{2.279}{59}{Uni-Modal Optical Flow}{equation.2.10.279}{}}
790
\newlabel{eq:HornSchunkL2@cref}{{[equation][279][2]2.279}{59}}
791
\@writefile{brf}{\backcite{PapenbergTVOpticalFlow}{{59}{2.10.1}{equation.2.10.279}}}
792
\@writefile{brf}{\backcite{ZachTVL1OpticalFlow}{{59}{2.10.1}{equation.2.10.279}}}
793
\newlabel{eq:TVOpticalFlow}{{2.280}{59}{Uni-Modal Optical Flow}{equation.2.10.280}{}}
794
\newlabel{eq:TVOpticalFlow@cref}{{[equation][280][2]2.280}{59}}
225 by gerald.mwangi at gmx
pushed Background10
795
\@writefile{toc}{\contentsline {subsection}{\numberline {2.10.2}Multi-Modal Optical Flow}{59}{subsection.2.10.2}}
796
\newlabel{sec:MultiModalOpticalFlowBackground}{{2.10.2}{59}{Multi-Modal Optical Flow}{subsection.2.10.2}{}}
797
\newlabel{sec:MultiModalOpticalFlowBackground@cref}{{[subsection][2][2,10]2.10.2}{59}}
226 by gerald.mwangi at gmx
pushed Background11
798
\newlabel{eq:optFlowBCCE}{{2.281}{59}{Multi-Modal Optical Flow}{equation.2.10.281}{}}
799
\newlabel{eq:optFlowBCCE@cref}{{[equation][281][2]2.281}{59}}
86 by gerald.mwangi at gmx
modded opt flow, more citations
800
\citation{MaesMutualInformationRegistration,RocheUnifyingMaxLikelihoodRegistration,HermosilloPHDMatching,HirschmuellerSemiGlobalMatching}
153 by gerald.mwangi at gmx
reviewing everything 4
801
\citation{edelman1993MRI}
802
\citation{hsieh2003CT}
803
\citation{vardi1985PET}
223 by gerald.mwangi at gmx
pushed Background8
804
\citation{RocheCorrRatio}
226 by gerald.mwangi at gmx
pushed Background11
805
\citation{RocheCorrRatio}
225 by gerald.mwangi at gmx
pushed Background10
806
\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Mutual Information}{60}{section*.13}}
807
\@writefile{brf}{\backcite{MaesMutualInformationRegistration}{{60}{2.10.2}{section*.13}}}
808
\@writefile{brf}{\backcite{RocheUnifyingMaxLikelihoodRegistration}{{60}{2.10.2}{section*.13}}}
809
\@writefile{brf}{\backcite{HermosilloPHDMatching}{{60}{2.10.2}{section*.13}}}
810
\@writefile{brf}{\backcite{HirschmuellerSemiGlobalMatching}{{60}{2.10.2}{section*.13}}}
811
\@writefile{brf}{\backcite{edelman1993MRI}{{60}{2.10.2}{section*.13}}}
812
\@writefile{brf}{\backcite{hsieh2003CT}{{60}{2.10.2}{section*.13}}}
813
\@writefile{brf}{\backcite{vardi1985PET}{{60}{2.10.2}{section*.13}}}
226 by gerald.mwangi at gmx
pushed Background11
814
\newlabel{eq:mutualinf}{{2.284}{60}{Mutual Information}{equation.2.10.284}{}}
815
\newlabel{eq:mutualinf@cref}{{[equation][284][2]2.284}{60}}
816
\newlabel{eq:mutualinfEn}{{2.285}{60}{Mutual Information}{equation.2.10.285}{}}
817
\newlabel{eq:mutualinfEn@cref}{{[equation][285][2]2.285}{60}}
818
\@writefile{brf}{\backcite{RocheCorrRatio}{{60}{2.10.2}{equation.2.10.285}}}
216 by gerald.mwangi at gmx
pushed Background2
819
\citation{Roche98CorrelRatio,RocheUnifyingMaxLikelihoodRegistration,HermosilloPHDMatching,ChefdHotel2001}
223 by gerald.mwangi at gmx
pushed Background8
820
\citation{RocheCorrRatio}
821
\citation{FaugerasCrossCorrMatching,NetschCrossCorrRegistr,CachierCrossCorrRegistration,HermosilloPHDMatching}
225 by gerald.mwangi at gmx
pushed Background10
822
\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Correlation Ratio}{61}{section*.14}}
823
\@writefile{brf}{\backcite{RocheCorrRatio}{{61}{2.10.2}{section*.14}}}
226 by gerald.mwangi at gmx
pushed Background11
824
\@writefile{brf}{\backcite{Roche98CorrelRatio}{{61}{2.10.2}{equation.2.10.286}}}
825
\@writefile{brf}{\backcite{RocheUnifyingMaxLikelihoodRegistration}{{61}{2.10.2}{equation.2.10.286}}}
826
\@writefile{brf}{\backcite{HermosilloPHDMatching}{{61}{2.10.2}{equation.2.10.286}}}
827
\@writefile{brf}{\backcite{ChefdHotel2001}{{61}{2.10.2}{equation.2.10.286}}}
828
\newlabel{eq:corrratio}{{2.287}{61}{Correlation Ratio}{equation.2.10.287}{}}
829
\newlabel{eq:corrratio@cref}{{[equation][287][2]2.287}{61}}
830
\@writefile{brf}{\backcite{RocheCorrRatio}{{61}{2.10.2}{equation.2.10.288}}}
224 by gerald.mwangi at gmx
pushed Background9
831
\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Cross Correlation}{61}{section*.15}}
832
\newlabel{sec:CrossCorrelation}{{2.10.2}{61}{Cross Correlation}{section*.15}{}}
833
\newlabel{sec:CrossCorrelation@cref}{{[subsection][2][2,10]2.10.2}{61}}
834
\@writefile{brf}{\backcite{FaugerasCrossCorrMatching}{{61}{2.10.2}{section*.15}}}
835
\@writefile{brf}{\backcite{NetschCrossCorrRegistr}{{61}{2.10.2}{section*.15}}}
836
\@writefile{brf}{\backcite{CachierCrossCorrRegistration}{{61}{2.10.2}{section*.15}}}
837
\@writefile{brf}{\backcite{HermosilloPHDMatching}{{61}{2.10.2}{section*.15}}}
226 by gerald.mwangi at gmx
pushed Background11
838
\newlabel{eq:crosscorr}{{2.289}{61}{Cross Correlation}{equation.2.10.289}{}}
839
\newlabel{eq:crosscorr@cref}{{[equation][289][2]2.289}{61}}
225 by gerald.mwangi at gmx
pushed Background10
840
\citation{MaesMutualInformationRegistration}
226 by gerald.mwangi at gmx
pushed Background11
841
\citation{Horn-Schunck}
225 by gerald.mwangi at gmx
pushed Background10
842
\newlabel{fig:line0}{{2.5a}{62}{Subfigure 2 2.5a}{subfigure.2.5.1}{}}
843
\newlabel{sub@fig:line0}{{(a)}{a}{Subfigure 2 2.5a\relax }{subfigure.2.5.1}{}}
844
\newlabel{fig:line0@cref}{{[subfigure][1][2,5]2.5a}{62}}
845
\newlabel{fig:line1blurred}{{2.5b}{62}{Subfigure 2 2.5b}{subfigure.2.5.2}{}}
846
\newlabel{sub@fig:line1blurred}{{(b)}{b}{Subfigure 2 2.5b\relax }{subfigure.2.5.2}{}}
847
\newlabel{fig:line1blurred@cref}{{[subfigure][2][2,5]2.5b}{62}}
848
\newlabel{fig:flowNoScaleDiff}{{2.5c}{62}{Subfigure 2 2.5c}{subfigure.2.5.3}{}}
849
\newlabel{sub@fig:flowNoScaleDiff}{{(c)}{c}{Subfigure 2 2.5c\relax }{subfigure.2.5.3}{}}
850
\newlabel{fig:flowNoScaleDiff@cref}{{[subfigure][3][2,5]2.5c}{62}}
851
\newlabel{fig:line0warpedNoScaleDiff}{{2.5d}{62}{Subfigure 2 2.5d}{subfigure.2.5.4}{}}
852
\newlabel{sub@fig:line0warpedNoScaleDiff}{{(d)}{d}{Subfigure 2 2.5d\relax }{subfigure.2.5.4}{}}
853
\newlabel{fig:line0warpedNoScaleDiff@cref}{{[subfigure][4][2,5]2.5d}{62}}
854
\@writefile{lof}{\contentsline {figure}{\numberline {2.5}{\ignorespaces \Cref  {fig:line0} shows a synthetic high resolution image $I^{syn}$. In \cref  {fig:line1blurred} we show a low resolution image $Y^{syn}$. $Y^{syn}$ is computed by down sampling $I^{syn}$ by a factor ${\ensuremath  {{\sigma ^{sc}}}}=5$, creating $y^{syn}$ followed by cubic interpolation and translated by $10$ pixels relative to $I^{syn}$. An optical flow model which incorporates knowledge of the scale difference between $Y^{syn}$ and $I^{syn}$ should produce a flow $\setbox \z@ \hbox {\frozen@everymath \@emptytoks \mathsurround \z@ $\textstyle \ensuremath  {\ensuremath  {{\bm  {d}}}}$}\mathaccent "0365{\ensuremath  {\ensuremath  {{\bm  {d}}}}}$, such that the warped image $I^{syn}_{\setbox \z@ \hbox {\frozen@everymath \@emptytoks \mathsurround \z@ $\textstyle \ensuremath  {\ensuremath  {{\bm  {d}}}}$}\mathaccent "0365{\ensuremath  {\ensuremath  {{\bm  {d}}}}}}$ matches the image $Y^{syn}$ \textsl  {up to scale} ${\ensuremath  {{\sigma ^{sc}}}}$, thereby preserving the features of $I^{syn}$. \Cref  {fig:flowNoScaleDiff} shows the flow $\ensuremath  {\ensuremath  {{\bm  {d}}}}$ computed with the model in eq.~(\ref  {eq:HornSchunk}). Since the model in eq.~(\ref  {eq:HornSchunk}) does not incorporate knowledge of the scale difference $\ensuremath  {{\sigma ^{sc}}}$, the features of the warped image $I^{syn}_\ensuremath  {\ensuremath  {{\bm  {d}}}}$ (\cref  {fig:line0warpedNoScaleDiff}) are heavily distorted\relax }}{62}{figure.caption.16}}
855
\newlabel{fig:scaleDiffProblem}{{2.5}{62}{\Figref {fig:line0} shows a synthetic high resolution image $I^{syn}$. In \figref {fig:line1blurred} we show a low resolution image $Y^{syn}$. $Y^{syn}$ is computed by down sampling $I^{syn}$ by a factor ${\scalediff }=5$, creating $y^{syn}$ followed by cubic interpolation and translated by $10$ pixels relative to $I^{syn}$. An optical flow model which incorporates knowledge of the scale difference between $Y^{syn}$ and $I^{syn}$ should produce a flow $\tilde {\vd }$, such that the warped image $I^{syn}_{\tilde {\vd }}$ matches the image $Y^{syn}$ \textsl {up to scale} ${\scalediff }$, thereby preserving the features of $I^{syn}$. \Figref {fig:flowNoScaleDiff} shows the flow $\vd $ computed with the model in \eqref {eq:HornSchunk}. Since the model in \eqref {eq:HornSchunk} does not incorporate knowledge of the scale difference $\scalediff $, the features of the warped image $I^{syn}_\vd $ (\figref {fig:line0warpedNoScaleDiff}) are heavily distorted\relax }{figure.caption.16}{}}
856
\newlabel{fig:scaleDiffProblem@cref}{{[figure][5][2]2.5}{62}}
857
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{62}{subfigure.5.1}}
858
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{62}{subfigure.5.2}}
859
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{62}{subfigure.5.3}}
860
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{62}{subfigure.5.4}}
861
\@writefile{brf}{\backcite{MaesMutualInformationRegistration}{{62}{2.10.2}{figure.caption.16}}}
152 by gerald.mwangi at gmx
reviewing everything 3
862
\citation{HardieSpacialImageResEnhancement}
863
\citation{HardieSpacialImageResEnhancement}
864
\citation{HardieSpacialImageResEnhancement}
865
\citation{HardieSpacialImageResEnhancement}
866
\citation{HardieInfraRedSuperRes}
867
\citation{HardieInfraRedSuperRes}
868
\citation{HardieSpacialImageResEnhancement}
153 by gerald.mwangi at gmx
reviewing everything 4
869
\citation{campbell2011RemoteSensing}
226 by gerald.mwangi at gmx
pushed Background11
870
\newlabel{fig:multiModalCoAlignedSetup}{{2.6a}{63}{Subfigure 2 2.6a}{subfigure.2.6.1}{}}
871
\newlabel{sub@fig:multiModalCoAlignedSetup}{{(a)}{a}{Subfigure 2 2.6a\relax }{subfigure.2.6.1}{}}
872
\newlabel{fig:multiModalCoAlignedSetup@cref}{{[subfigure][1][2,6]2.6a}{63}}
873
\newlabel{fig:multiModalCoAlignedSetupIc}{{2.6b}{63}{Subfigure 2 2.6b}{subfigure.2.6.2}{}}
874
\newlabel{sub@fig:multiModalCoAlignedSetupIc}{{(b)}{b}{Subfigure 2 2.6b\relax }{subfigure.2.6.2}{}}
875
\newlabel{fig:multiModalCoAlignedSetupIc@cref}{{[subfigure][2][2,6]2.6b}{63}}
876
\newlabel{fig:multiModalCoAlignedSetupYc}{{2.6c}{63}{Subfigure 2 2.6c}{subfigure.2.6.3}{}}
877
\newlabel{sub@fig:multiModalCoAlignedSetupYc}{{(c)}{c}{Subfigure 2 2.6c\relax }{subfigure.2.6.3}{}}
878
\newlabel{fig:multiModalCoAlignedSetupYc@cref}{{[subfigure][3][2,6]2.6c}{63}}
879
\newlabel{fig:multiModalCoAlignedSetupYcResult}{{2.6d}{63}{Subfigure 2 2.6d}{subfigure.2.6.4}{}}
880
\newlabel{sub@fig:multiModalCoAlignedSetupYcResult}{{(d)}{d}{Subfigure 2 2.6d\relax }{subfigure.2.6.4}{}}
881
\newlabel{fig:multiModalCoAlignedSetupYcResult@cref}{{[subfigure][4][2,6]2.6d}{63}}
882
\@writefile{lof}{\contentsline {figure}{\numberline {2.6}{\ignorespaces \Cref  {fig:multiModalCoAlignedSetup} shows a schematic setup of the camera configuration considered by Hardie et. al. \cite  {HardieSpacialImageResEnhancement}. The blue line indicates the orthogonal direction to both the TC and the VSC image planes. The camera centers (indicated by the blue circles) are aligned along the dashed line. \Cref  {fig:multiModalCoAlignedSetupIc} shows the image $I_{vsc}$ captured by the VSC and \cref  {fig:multiModalCoAlignedSetupYc} the image $y_{tc}$ captured by the TC. The image $y_{tc}$ has a smaller optical resolution then the image $I_{vsc}$. The method in \cite  {HardieSpacialImageResEnhancement} takes the data $y_{tc}$ and $I_{vsc}$ to produce a higher resolution thermographic image $Y_{tc}$, shown in \cref  {fig:multiModalCoAlignedSetupYcResult}\relax }}{63}{figure.caption.17}}
883
\@writefile{brf}{\backcite{HardieSpacialImageResEnhancement}{{63}{2.6}{figure.caption.17}}}
884
\@writefile{brf}{\backcite{HardieSpacialImageResEnhancement}{{63}{2.6}{figure.caption.17}}}
885
\newlabel{fig:multiModalCoAligned}{{2.6}{63}{\Figref {fig:multiModalCoAlignedSetup} shows a schematic setup of the camera configuration considered by Hardie et. al. \cite {HardieSpacialImageResEnhancement}. The blue line indicates the orthogonal direction to both the TC and the VSC image planes. The camera centers (indicated by the blue circles) are aligned along the dashed line. \Figref {fig:multiModalCoAlignedSetupIc} shows the image $I_{vsc}$ captured by the VSC and \figref {fig:multiModalCoAlignedSetupYc} the image $y_{tc}$ captured by the TC. The image $y_{tc}$ has a smaller optical resolution then the image $I_{vsc}$. The method in \cite {HardieSpacialImageResEnhancement} takes the data $y_{tc}$ and $I_{vsc}$ to produce a higher resolution thermographic image $Y_{tc}$, shown in \figref {fig:multiModalCoAlignedSetupYcResult}\relax }{figure.caption.17}{}}
886
\newlabel{fig:multiModalCoAligned@cref}{{[figure][6][2]2.6}{63}}
887
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{63}{subfigure.6.1}}
888
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$I_{vsc}$}}}{63}{subfigure.6.2}}
889
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$y_{tc}$}}}{63}{subfigure.6.3}}
890
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {$Y_{tc}$}}}{63}{subfigure.6.4}}
891
\@writefile{brf}{\backcite{Horn-Schunck}{{63}{2.10.2}{equation.2.10.290}}}
892
\newlabel{eq:HornSchunk2}{{2.291}{63}{Cross Correlation}{equation.2.10.291}{}}
893
\newlabel{eq:HornSchunk2@cref}{{[equation][291][2]2.291}{63}}
225 by gerald.mwangi at gmx
pushed Background10
894
\@writefile{toc}{\contentsline {section}{\numberline {2.11}Image Fusion}{63}{section.2.11}}
895
\newlabel{sec:ImageFusion}{{2.11}{63}{Image Fusion}{section.2.11}{}}
896
\newlabel{sec:ImageFusion@cref}{{[section][11][2]2.11}{63}}
897
\@writefile{brf}{\backcite{HardieSpacialImageResEnhancement}{{63}{2.11}{figure.caption.18}}}
224 by gerald.mwangi at gmx
pushed Background9
898
\citation{HardieSpacialImageResEnhancement}
226 by gerald.mwangi at gmx
pushed Background11
899
\citation{flir}
900
\citation{HardieInfraRedSuperRes}
901
\newlabel{fig:cameraGrid}{{2.7a}{64}{Subfigure 2 2.7a}{subfigure.2.7.1}{}}
902
\newlabel{sub@fig:cameraGrid}{{(a)}{a}{Subfigure 2 2.7a\relax }{subfigure.2.7.1}{}}
903
\newlabel{fig:cameraGrid@cref}{{[subfigure][1][2,7]2.7a}{64}}
904
\newlabel{fig:HardiePSF}{{2.7b}{64}{Subfigure 2 2.7b}{subfigure.2.7.2}{}}
905
\newlabel{sub@fig:HardiePSF}{{(b)}{b}{Subfigure 2 2.7b\relax }{subfigure.2.7.2}{}}
906
\newlabel{fig:HardiePSF@cref}{{[subfigure][2][2,7]2.7b}{64}}
907
\@writefile{lof}{\contentsline {figure}{\numberline {2.7}{\ignorespaces \Cref  {fig:cameraGrid} The thick grid depicts the CCD of the low resolution thermographic camera. The finer grid a virtual super-resolved version of the pixels in the TC. \Cref  {fig:HardiePSF} shows the point spread function $W_{{\ensuremath  {{\sigma ^{sc}}}}}\left (x,y\right ) $ of the gray pixel in \cref  {fig:cameraGrid}, taken from Hardie et al. \cite  {HardieInfraRedSuperRes}. It shows that each pixel in the TC image has a non uniform response over its surface to incoming photons.\relax }}{64}{figure.caption.18}}
908
\@writefile{brf}{\backcite{HardieInfraRedSuperRes}{{64}{2.7}{figure.caption.18}}}
909
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{64}{subfigure.7.1}}
910
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{64}{subfigure.7.2}}
911
\@writefile{brf}{\backcite{campbell2011RemoteSensing}{{64}{2.11}{figure.caption.18}}}
225 by gerald.mwangi at gmx
pushed Background10
912
\@writefile{brf}{\backcite{HardieSpacialImageResEnhancement}{{64}{2.11}{figure.caption.18}}}
913
\@writefile{brf}{\backcite{flir}{{64}{2.11}{figure.caption.18}}}
914
\@writefile{brf}{\backcite{HardieInfraRedSuperRes}{{64}{2.11}{figure.caption.18}}}
226 by gerald.mwangi at gmx
pushed Background11
915
\citation{HardieSpacialImageResEnhancement}
223 by gerald.mwangi at gmx
pushed Background8
916
\citation{HardieSpacialImageResEnhancement}
917
\citation{rue2005gaussian}
918
\citation{HardieSpacialImageResEnhancement}
226 by gerald.mwangi at gmx
pushed Background11
919
\newlabel{eq:likelihood}{{2.292}{65}{Image Fusion}{equation.2.11.292}{}}
920
\newlabel{eq:likelihood@cref}{{[equation][292][2]2.292}{65}}
921
\@writefile{brf}{\backcite{HardieSpacialImageResEnhancement}{{65}{2.11}{equation.2.11.292}}}
922
\@writefile{brf}{\backcite{HardieSpacialImageResEnhancement}{{65}{2.11}{equation.2.11.292}}}
923
\@writefile{brf}{\backcite{rue2005gaussian}{{65}{2.11}{equation.2.11.292}}}
924
\newlabel{eq:ScondI}{{2.293}{65}{Image Fusion}{equation.2.11.293}{}}
925
\newlabel{eq:ScondI@cref}{{[equation][293][2]2.293}{65}}
926
\newlabel{eq:CondVariance}{{2.294}{65}{Image Fusion}{equation.2.11.294}{}}
927
\newlabel{eq:CondVariance@cref}{{[equation][294][2]2.294}{65}}
928
\newlabel{eq:condMeanSI}{{2.295}{65}{Image Fusion}{equation.2.11.295}{}}
929
\newlabel{eq:condMeanSI@cref}{{[equation][295][2]2.295}{65}}
930
\newlabel{eq:globVariance}{{2.296}{65}{Image Fusion}{equation.2.11.296}{}}
931
\newlabel{eq:globVariance@cref}{{[equation][296][2]2.296}{65}}
932
\newlabel{eq:res-enh-post}{{2.297}{65}{Image Fusion}{equation.2.11.297}{}}
933
\newlabel{eq:res-enh-post@cref}{{[equation][297][2]2.297}{65}}
934
\newlabel{eq:res-enh-postEn}{{2.298}{65}{Image Fusion}{equation.2.11.298}{}}
935
\newlabel{eq:res-enh-postEn@cref}{{[equation][298][2]2.298}{65}}
216 by gerald.mwangi at gmx
pushed Background2
936
\citation{ZhangSpatialResEnhWavelet}
226 by gerald.mwangi at gmx
pushed Background11
937
\@writefile{brf}{\backcite{HardieSpacialImageResEnhancement}{{66}{2.11}{equation.2.11.298}}}
938
\newlabel{eq:thermoSolution1}{{2.299}{66}{Image Fusion}{equation.2.11.299}{}}
939
\newlabel{eq:thermoSolution1@cref}{{[equation][299][2]2.299}{66}}
940
\@writefile{brf}{\backcite{ZhangSpatialResEnhWavelet}{{66}{2.11}{equation.2.11.299}}}
941
\newlabel{eq:thermoSolution2}{{2.300}{66}{Image Fusion}{equation.2.11.300}{}}
942
\newlabel{eq:thermoSolution2@cref}{{[equation][300][2]2.300}{66}}
943
\newlabel{eq:condMeanSI2}{{2.303}{66}{Image Fusion}{equation.2.11.303}{}}
944
\newlabel{eq:condMeanSI2@cref}{{[equation][303][2]2.303}{66}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
945
\@writefile{toc}{\contentsline {chapter}{\numberline {3}Noether's First Theorem: A Modern Version}{67}{chapter.3}}
946
\@writefile{lof}{\addvspace {10\p@ }}
947
\@writefile{lot}{\addvspace {10\p@ }}
948
\@writefile{lol}{\addvspace {10\p@ }}
949
\@writefile{loa}{\addvspace {10\p@ }}
228 by gerald.mwangi at gmx
work on modern noether
950
\newlabel{eq:EnergyModernNoether}{{3.1}{67}{Noether's First Theorem: A Modern Version}{equation.3.0.1}{}}
951
\newlabel{eq:EnergyModernNoether@cref}{{[equation][1][3]3.1}{67}}
952
\newlabel{eq:dataTermModernNoether}{{3.2}{67}{Noether's First Theorem: A Modern Version}{equation.3.0.2}{}}
953
\newlabel{eq:dataTermModernNoether@cref}{{[equation][2][3]3.2}{67}}
954
\newlabel{eq:priorEnergyModernNoether}{{3.3}{67}{Noether's First Theorem: A Modern Version}{equation.3.0.3}{}}
955
\newlabel{eq:priorEnergyModernNoether@cref}{{[equation][3][3]3.3}{67}}
956
\newlabel{eq:scalarProdFunctionspace}{{3.4}{67}{Noether's First Theorem: A Modern Version}{equation.3.0.4}{}}
957
\newlabel{eq:scalarProdFunctionspace@cref}{{[equation][4][3]3.4}{67}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
958
\@writefile{toc}{\contentsline {section}{\numberline {3.1}The action of $\mathbb  {G}$ on Functionals}{67}{section.3.1}}
230 by gerald.mwangi at gmx
work on modern noether3
959
\newlabel{eq:lieGroupActionEuclidSpace}{{3.5}{67}{The action of $\mathcal {G}^{\Omega \phi }$ on $\functionspace $}{equation.3.1.5}{}}
228 by gerald.mwangi at gmx
work on modern noether
960
\newlabel{eq:lieGroupActionEuclidSpace@cref}{{[equation][5][3]3.5}{67}}
230 by gerald.mwangi at gmx
work on modern noether3
961
\newlabel{eq:GOmegaElement}{{3.8}{68}{The action of $\mathcal {G}^{\Omega \phi }$ on $\functionspace $}{equation.3.1.8}{}}
228 by gerald.mwangi at gmx
work on modern noether
962
\newlabel{eq:GOmegaElement@cref}{{[equation][8][3]3.8}{68}}
230 by gerald.mwangi at gmx
work on modern noether3
963
\newlabel{eq:phiGOmega}{{3.9}{68}{The action of $\mathcal {G}^{\Omega \phi }$ on $\functionspace $}{equation.3.1.9}{}}
228 by gerald.mwangi at gmx
work on modern noether
964
\newlabel{eq:phiGOmega@cref}{{[equation][9][3]3.9}{68}}
230 by gerald.mwangi at gmx
work on modern noether3
965
\newlabel{eq:GPhi1dim}{{3.10}{68}{The action of $\mathcal {G}^{\Omega \phi }$ on $\functionspace $}{equation.3.1.10}{}}
966
\newlabel{eq:GPhi1dim@cref}{{[equation][10][3]3.10}{68}}
967
\newlabel{eq:GPhiAlgebra}{{3.11}{68}{The action of $\mathcal {G}^{\Omega \phi }$ on $\functionspace $}{equation.3.1.11}{}}
968
\newlabel{eq:GPhiAlgebra@cref}{{[equation][11][3]3.11}{68}}
969
\newlabel{eq:GOmegaAlgebra}{{3.14}{69}{The action of $\mathcal {G}^{\Omega \phi }$ on $\functionspace $}{equation.3.1.14}{}}
970
\newlabel{eq:GOmegaAlgebra@cref}{{[equation][14][3]3.14}{69}}
971
\newlabel{eq:Xbasis}{{3.18}{70}{Dual Basis}{equation.3.1.18}{}}
972
\newlabel{eq:Xbasis@cref}{{[equation][18][3]3.18}{70}}
973
\newlabel{eq:XStarBasis}{{3.19}{70}{Dual Basis}{equation.3.1.19}{}}
974
\newlabel{eq:XStarBasis@cref}{{[equation][19][3]3.19}{70}}
975
\newlabel{eq:dualBasis}{{3.20}{70}{Dual Basis}{equation.3.1.20}{}}
976
\newlabel{eq:dualBasis@cref}{{[equation][20][3]3.20}{70}}
977
\newlabel{eq:dualBasisProof1}{{3.22}{70}{The action of $\mathcal {G}^{\Omega \phi }$ on $\functionspace $}{equation.3.1.22}{}}
978
\newlabel{eq:dualBasisProof1@cref}{{[equation][22][3]3.22}{70}}
979
\newlabel{eq:dualBasisProof2}{{3.24}{70}{The action of $\mathcal {G}^{\Omega \phi }$ on $\functionspace $}{equation.3.1.24}{}}
980
\newlabel{eq:dualBasisProof2@cref}{{[equation][24][3]3.24}{70}}
981
\newlabel{eq:derivativeE}{{3.28}{71}{The action of $\mathcal {G}^{\Omega \phi }$ on $\functionspace $}{equation.3.1.28}{}}
982
\newlabel{eq:derivativeE@cref}{{[equation][28][3]3.28}{71}}
983
\newlabel{eq:flowSubdiffF}{{3.29}{71}{The action of $\mathcal {G}^{\Omega \phi }$ on $\functionspace $}{equation.3.1.29}{}}
984
\newlabel{eq:flowSubdiffF@cref}{{[equation][29][3]3.29}{71}}
985
\newlabel{eq:subdiffHi}{{3.31}{71}{The action of $\mathcal {G}^{\Omega \phi }$ on $\functionspace $}{equation.3.1.31}{}}
986
\newlabel{eq:subdiffHi@cref}{{[equation][31][3]3.31}{71}}
987
\newlabel{eq:flowSubdiffH}{{3.34}{72}{The action of $\mathcal {G}^{\Omega \phi }$ on $\functionspace $}{equation.3.1.34}{}}
988
\newlabel{eq:flowSubdiffH@cref}{{[equation][34][3]3.34}{72}}
989
\newlabel{eq:flowSubdiffE}{{3.36}{72}{The action of $\mathcal {G}^{\Omega \phi }$ on $\functionspace $}{equation.3.1.36}{}}
990
\newlabel{eq:flowSubdiffE@cref}{{[equation][36][3]3.36}{72}}
991
\newlabel{eq:lieAlgebraPhiGeneral}{{3.39}{72}{The action of $\mathcal {G}^{\Omega \phi }$ on $\functionspace $}{equation.3.1.39}{}}
992
\newlabel{eq:lieAlgebraPhiGeneral@cref}{{[equation][39][3]3.39}{72}}
993
\newlabel{eq:lieAlgebraPhi}{{3.42}{73}{The action of $\mathcal {G}^{\Omega \phi }$ on $\functionspace $}{equation.3.1.42}{}}
994
\newlabel{eq:lieAlgebraPhi@cref}{{[equation][42][3]3.42}{73}}
995
\newlabel{eq:flowSubdiffFphi}{{3.46}{73}{The action of $\mathcal {G}^{\Omega \phi }$ on $\functionspace $}{equation.3.1.46}{}}
996
\newlabel{eq:flowSubdiffFphi@cref}{{[equation][46][3]3.46}{73}}
997
\newlabel{eq:flowSubdiffHphi}{{3.47}{73}{The action of $\mathcal {G}^{\Omega \phi }$ on $\functionspace $}{equation.3.1.47}{}}
998
\newlabel{eq:flowSubdiffHphi@cref}{{[equation][47][3]3.47}{73}}
999
\newlabel{eq:flowSubdiffEPhi}{{3.49}{74}{The action of $\mathcal {G}^{\Omega \phi }$ on $\functionspace $}{equation.3.1.49}{}}
1000
\newlabel{eq:flowSubdiffEPhi@cref}{{[equation][49][3]3.49}{74}}
1001
\@writefile{toc}{\contentsline {section}{\numberline {3.2}Embedding Geometrical Constraints into Prior Energies}{74}{section.3.2}}
1002
\newlabel{eq:priorMinimmizers}{{3.52}{74}{Embedding Geometrical Constraints into Prior Energies}{equation.3.2.52}{}}
1003
\newlabel{eq:priorMinimmizers@cref}{{[equation][52][3]3.52}{74}}
1004
\newlabel{eq:priorMinimizersG}{{3.53}{74}{Embedding Geometrical Constraints into Prior Energies}{equation.3.2.53}{}}
1005
\newlabel{eq:priorMinimizersG@cref}{{[equation][53][3]3.53}{74}}
228 by gerald.mwangi at gmx
work on modern noether
1006
\citation{BigunBook,FerraroTransfInvLieGroup}
230 by gerald.mwangi at gmx
work on modern noether3
1007
\newlabel{eq:levelSetVF}{{3.54}{75}{Embedding Geometrical Constraints into Prior Energies}{equation.3.2.54}{}}
1008
\newlabel{eq:levelSetVF@cref}{{[equation][54][3]3.54}{75}}
1009
\newlabel{eq:linLevelSet}{{3.55}{75}{Embedding Geometrical Constraints into Prior Energies}{equation.3.2.55}{}}
1010
\newlabel{eq:linLevelSet@cref}{{[equation][55][3]3.55}{75}}
1011
\@writefile{brf}{\backcite{BigunBook}{{75}{3.2}{equation.3.2.55}}}
1012
\@writefile{brf}{\backcite{FerraroTransfInvLieGroup}{{75}{3.2}{equation.3.2.55}}}
1013
\newlabel{eq:diffEqHarmonicFunctions}{{3.56}{75}{Embedding Geometrical Constraints into Prior Energies}{equation.3.2.56}{}}
1014
\newlabel{eq:diffEqHarmonicFunctions@cref}{{[equation][56][3]3.56}{75}}
1015
\newlabel{eq:linearDomain}{{3.57}{75}{Embedding Geometrical Constraints into Prior Energies}{equation.3.2.57}{}}
1016
\newlabel{eq:linearDomain@cref}{{[equation][57][3]3.57}{75}}
1017
\newlabel{eq:generalLevelSet}{{3.58}{76}{Embedding Geometrical Constraints into Prior Energies}{equation.3.2.58}{}}
1018
\newlabel{eq:generalLevelSet@cref}{{[equation][58][3]3.58}{76}}
1019
\newlabel{eq:cauchyRiemann}{{3.59}{76}{Embedding Geometrical Constraints into Prior Energies}{equation.3.2.59}{}}
1020
\newlabel{eq:cauchyRiemann@cref}{{[equation][59][3]3.59}{76}}
1021
\newlabel{eq:minimizerSetInv}{{3.60}{76}{Embedding Geometrical Constraints into Prior Energies}{equation.3.2.60}{}}
1022
\newlabel{eq:minimizerSetInv@cref}{{[equation][60][3]3.60}{76}}
1023
\newlabel{eq:constPrior}{{3.61}{76}{Embedding Geometrical Constraints into Prior Energies}{equation.3.2.61}{}}
1024
\newlabel{eq:constPrior@cref}{{[equation][61][3]3.61}{76}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1025
\citation{NoetherTheroemEng,MansfieldInvarCalc}
1026
\citation{kuypers2005klassische}
230 by gerald.mwangi at gmx
work on modern noether3
1027
\@writefile{toc}{\contentsline {section}{\numberline {3.3}Noether's First Theorem: A Modern Version}{77}{section.3.3}}
1028
\newlabel{sec:noetherModern}{{3.3}{77}{Noether's First Theorem: A Modern Version}{section.3.3}{}}
1029
\newlabel{sec:noetherModern@cref}{{[section][3][3]3.3}{77}}
1030
\newlabel{eq:NoetherEnergyInt}{{3.63}{77}{Noether's First Theorem: A Modern Version}{equation.3.3.63}{}}
1031
\newlabel{eq:NoetherEnergyInt@cref}{{[equation][63][3]3.63}{77}}
1032
\newlabel{eq:NoetherEnergyInfTrans}{{3.64}{77}{Noether's First Theorem: A Modern Version}{equation.3.3.64}{}}
1033
\newlabel{eq:NoetherEnergyInfTrans@cref}{{[equation][64][3]3.64}{77}}
1034
\newlabel{eq:eulerLagrange2}{{3.65}{77}{Noether's First Theorem: A Modern Version}{equation.3.3.65}{}}
1035
\newlabel{eq:eulerLagrange2@cref}{{[equation][65][3]3.65}{77}}
1036
\@writefile{brf}{\backcite{NoetherTheroemEng}{{77}{3.3}{equation.3.3.65}}}
1037
\@writefile{brf}{\backcite{MansfieldInvarCalc}{{77}{3.3}{equation.3.3.65}}}
1038
\@writefile{brf}{\backcite{kuypers2005klassische}{{77}{3.3}{equation.3.3.65}}}
1039
\newlabel{eq:volumeElement2}{{3.66}{77}{Noether's First Theorem: A Modern Version}{equation.3.3.66}{}}
1040
\newlabel{eq:volumeElement2@cref}{{[equation][66][3]3.66}{77}}
1041
\newlabel{eq:volumeElement}{{3.67}{78}{Noether's First Theorem: A Modern Version}{equation.3.3.67}{}}
1042
\newlabel{eq:volumeElement@cref}{{[equation][67][3]3.67}{78}}
1043
\newlabel{eq:VeExpansion}{{3.68}{78}{Noether's First Theorem: A Modern Version}{equation.3.3.68}{}}
1044
\newlabel{eq:VeExpansion@cref}{{[equation][68][3]3.68}{78}}
1045
\newlabel{eq:noetherVariation2}{{3.69}{78}{Noether's First Theorem: A Modern Version}{equation.3.3.69}{}}
1046
\newlabel{eq:noetherVariation2@cref}{{[equation][69][3]3.69}{78}}
1047
\newlabel{eq:bendingBackground}{{3.70}{78}{Noether's First Theorem: A Modern Version}{equation.3.3.70}{}}
1048
\newlabel{eq:bendingBackground@cref}{{[equation][70][3]3.70}{78}}
1049
\newlabel{eq:noetherVariation}{{3.71}{78}{Noether's First Theorem: A Modern Version}{equation.3.3.71}{}}
1050
\newlabel{eq:noetherVariation@cref}{{[equation][71][3]3.71}{78}}
1051
\newlabel{eq:noetherPureIntensTrans}{{3.72}{78}{Noether's First Theorem: A Modern Version}{equation.3.3.72}{}}
1052
\newlabel{eq:noetherPureIntensTrans@cref}{{[equation][72][3]3.72}{78}}
1053
\newlabel{eq:divergenceFreeVectors}{{3.73}{78}{Noether's First Theorem: A Modern Version}{equation.3.3.73}{}}
1054
\newlabel{eq:divergenceFreeVectors@cref}{{[equation][73][3]3.73}{78}}
1055
\newlabel{eq:noetherDivergence}{{3.74}{78}{Noether's First Theorem: A Modern Version}{equation.3.3.74}{}}
1056
\newlabel{eq:noetherDivergence@cref}{{[equation][74][3]3.74}{78}}
1057
\newlabel{eq:NoetherEnergyInfTransSymm}{{3.75}{79}{Noether's First Theorem: A Modern Version}{equation.3.3.75}{}}
1058
\newlabel{eq:NoetherEnergyInfTransSymm@cref}{{[equation][75][3]3.75}{79}}
1059
\newlabel{eq:eulerLagrangeEq}{{3.76}{79}{Noether's First Theorem: A Modern Version}{equation.3.3.76}{}}
1060
\newlabel{eq:eulerLagrangeEq@cref}{{[equation][76][3]3.76}{79}}
1061
\newlabel{eq:noetherDivergenceCanonMomentum}{{3.77}{79}{Noether's First Theorem: A Modern Version}{equation.3.3.77}{}}
1062
\newlabel{eq:noetherDivergenceCanonMomentum@cref}{{[equation][77][3]3.77}{79}}
1063
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.1}Pure Spacial Symmetries}{79}{subsection.3.3.1}}
1064
\newlabel{sec:pureSpacialSymmetry}{{3.3.1}{79}{Pure Spacial Symmetries}{subsection.3.3.1}{}}
1065
\newlabel{sec:pureSpacialSymmetry@cref}{{[subsection][1][3,3]3.3.1}{79}}
1066
\newlabel{eq:pureSpacialSymmetry}{{3.78}{79}{Pure Spacial Symmetries}{equation.3.3.78}{}}
1067
\newlabel{eq:pureSpacialSymmetry@cref}{{[equation][78][3]3.78}{79}}
1068
\newlabel{eq:pureSpacialSymmetry2}{{3.79}{79}{Pure Spacial Symmetries}{equation.3.3.79}{}}
1069
\newlabel{eq:pureSpacialSymmetry2@cref}{{[equation][79][3]3.79}{79}}
1070
\newlabel{eq:pureSpacialSymmetryCanonMomentum}{{3.80}{79}{Pure Spacial Symmetries}{equation.3.3.80}{}}
1071
\newlabel{eq:pureSpacialSymmetryCanonMomentum@cref}{{[equation][80][3]3.80}{79}}
24 by gerald.mwangi at gmx
Started intro of prior
1072
\citation{Bigun1987}
230 by gerald.mwangi at gmx
work on modern noether3
1073
\@writefile{toc}{\contentsline {chapter}{\numberline {4}Linearized Priors}{81}{chapter.4}}
24 by gerald.mwangi at gmx
Started intro of prior
1074
\@writefile{lof}{\addvspace {10\p@ }}
1075
\@writefile{lot}{\addvspace {10\p@ }}
45 by gerald.mwangi at gmx
Changed formating based on S meisters PhD
1076
\@writefile{lol}{\addvspace {10\p@ }}
1077
\@writefile{loa}{\addvspace {10\p@ }}
230 by gerald.mwangi at gmx
work on modern noether3
1078
\newlabel{chap:GeometricalPrior}{{4}{81}{Linearized Priors}{chapter.4}{}}
1079
\newlabel{chap:GeometricalPrior@cref}{{[chapter][4][]4}{81}}
1080
\@writefile{toc}{\contentsline {section}{\numberline {4.1}The Linear Structure Tensor}{81}{section.4.1}}
1081
\newlabel{eq:vectorTransAlgebra}{{4.1}{81}{The Linear Structure Tensor}{equation.4.1.1}{}}
1082
\newlabel{eq:vectorTransAlgebra@cref}{{[equation][1][4]4.1}{81}}
1083
\newlabel{eq:linearLevelSet}{{4.3}{81}{The Linear Structure Tensor}{equation.4.1.3}{}}
1084
\newlabel{eq:linearLevelSet@cref}{{[equation][3][4]4.3}{81}}
1085
\@writefile{brf}{\backcite{Bigun1987}{{81}{4.1}{equation.4.1.3}}}
1086
\newlabel{eq:StructTensLeastSquaresEnergy}{{4.4}{81}{The Linear Structure Tensor}{equation.4.1.4}{}}
1087
\newlabel{eq:StructTensLeastSquaresEnergy@cref}{{[equation][4][4]4.4}{81}}
1088
\newlabel{eq:structtensDef}{{4.5}{81}{The Linear Structure Tensor}{equation.4.1.5}{}}
1089
\newlabel{eq:structtensDef@cref}{{[equation][5][4]4.5}{81}}
1090
\newlabel{eq:structtensEigenvalues}{{4.6}{82}{The Linear Structure Tensor}{equation.4.1.6}{}}
1091
\newlabel{eq:structtensEigenvalues@cref}{{[equation][6][4]4.6}{82}}
1092
\newlabel{eq:structtensRot}{{4.7}{82}{The Linear Structure Tensor}{equation.4.1.7}{}}
1093
\newlabel{eq:structtensRot@cref}{{[equation][7][4]4.7}{82}}
1094
\newlabel{eq:commutatorStructens}{{4.9}{82}{The Linear Structure Tensor}{equation.4.1.9}{}}
1095
\newlabel{eq:commutatorStructens@cref}{{[equation][9][4]4.9}{82}}
1096
\newlabel{eq:changeEigenvectors}{{4.10}{82}{The Linear Structure Tensor}{equation.4.1.10}{}}
1097
\newlabel{eq:changeEigenvectors@cref}{{[equation][10][4]4.10}{82}}
1098
\newlabel{eq:changeStructtens}{{4.11}{82}{The Linear Structure Tensor}{equation.4.1.11}{}}
1099
\newlabel{eq:changeStructtens@cref}{{[equation][11][4]4.11}{82}}
1100
\@writefile{toc}{\contentsline {section}{\numberline {4.2}Structure Tensor Based Prior}{83}{section.4.2}}
1101
\newlabel{sec:structureTensPrior}{{4.2}{83}{Structure Tensor Based Prior}{section.4.2}{}}
1102
\newlabel{sec:structureTensPrior@cref}{{[section][2][4]4.2}{83}}
1103
\newlabel{eq:structureTensorRotation}{{4.12}{83}{Structure Tensor Based Prior}{equation.4.2.12}{}}
1104
\newlabel{eq:structureTensorRotation@cref}{{[equation][12][4]4.12}{83}}
1105
\newlabel{eq:structtensPrior}{{4.14}{83}{Structure Tensor Based Prior}{equation.4.2.14}{}}
1106
\newlabel{eq:structtensPrior@cref}{{[equation][14][4]4.14}{83}}
1107
\newlabel{eq:structtensPriorRot}{{4.15}{83}{Structure Tensor Based Prior}{equation.4.2.15}{}}
1108
\newlabel{eq:structtensPriorRot@cref}{{[equation][15][4]4.15}{83}}
1109
\newlabel{eq:traceTransf}{{4.16}{83}{Structure Tensor Based Prior}{equation.4.2.16}{}}
1110
\newlabel{eq:traceTransf@cref}{{[equation][16][4]4.16}{83}}
94 by gerald.mwangi at gmx
Worked on section 3) 3
1111
\citation{MaesMutualInformationRegistration}
1112
\citation{Roche98CorrelRatio}
1113
\citation{RocheUnifyingMaxLikelihoodRegistration}
1114
\citation{HardieSpacialImageResEnhancement}
154 by gerald.mwangi at gmx
reviewing everything 5
1115
\citation{HardieSpacialImageResEnhancement}
230 by gerald.mwangi at gmx
work on modern noether3
1116
\newlabel{eq:structtensPriorRotInv}{{4.17}{84}{Structure Tensor Based Prior}{equation.4.2.17}{}}
1117
\newlabel{eq:structtensPriorRotInv@cref}{{[equation][17][4]4.17}{84}}
1118
\@writefile{toc}{\contentsline {section}{\numberline {4.3}Geometrical Optical Flow Model}{84}{section.4.3}}
1119
\newlabel{chap:GeomOptFlowModel}{{4.3}{84}{Geometrical Optical Flow Model}{section.4.3}{}}
1120
\newlabel{chap:GeomOptFlowModel@cref}{{[section][3][4]4.3}{84}}
1121
\@writefile{brf}{\backcite{MaesMutualInformationRegistration}{{84}{4.3}{section.4.3}}}
1122
\@writefile{brf}{\backcite{Roche98CorrelRatio}{{84}{4.3}{section.4.3}}}
1123
\@writefile{brf}{\backcite{RocheUnifyingMaxLikelihoodRegistration}{{84}{4.3}{section.4.3}}}
1124
\@writefile{brf}{\backcite{HardieSpacialImageResEnhancement}{{84}{4.3}{section.4.3}}}
1125
\@writefile{brf}{\backcite{HardieSpacialImageResEnhancement}{{84}{4.3}{section.4.3}}}
94 by gerald.mwangi at gmx
Worked on section 3) 3
1126
\citation{HardieSpacialImageResEnhancement}
230 by gerald.mwangi at gmx
work on modern noether3
1127
\newlabel{fig:multiModalSetupDiffRes}{{4.1a}{85}{Subfigure 4 4.1a}{subfigure.4.1.1}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1128
\newlabel{sub@fig:multiModalSetupDiffRes}{{(a)}{a}{Subfigure 4 4.1a\relax }{subfigure.4.1.1}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1129
\newlabel{fig:multiModalSetupDiffRes@cref}{{[subfigure][1][4,1]4.1a}{85}}
1130
\newlabel{fig:multiModalSetupDiffResIvsc}{{4.1b}{85}{Subfigure 4 4.1b}{subfigure.4.1.2}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1131
\newlabel{sub@fig:multiModalSetupDiffResIvsc}{{(b)}{b}{Subfigure 4 4.1b\relax }{subfigure.4.1.2}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1132
\newlabel{fig:multiModalSetupDiffResIvsc@cref}{{[subfigure][2][4,1]4.1b}{85}}
1133
\newlabel{fig:multiModalSetupDiffResYtcLow}{{4.1c}{85}{Subfigure 4 4.1c}{subfigure.4.1.3}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1134
\newlabel{sub@fig:multiModalSetupDiffResYtcLow}{{(c)}{c}{Subfigure 4 4.1c\relax }{subfigure.4.1.3}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1135
\newlabel{fig:multiModalSetupDiffResYtcLow@cref}{{[subfigure][3][4,1]4.1c}{85}}
1136
\@writefile{lof}{\contentsline {figure}{\numberline {4.1}{\ignorespaces \Cref  {fig:multiModalSetupDiffRes} shows the setup of a thermographic camera (TC), $C_{tc}$, and a visual spectrum camera (VSC), $C_{vsc}$, recording an object $O$. \Cref  {fig:multiModalSetupDiffResIvsc} shows the image $I$ which is recorded by $C_{vsc}$ and \cref  {fig:multiModalSetupDiffResYtcLow} the lower resolution image $y$ recorded by $C_{tc}$. The solid line cone of $C_{tc}$ in \cref  {fig:multiModalSetupDiffRes} which is small compared to the cone of $C_{vsc}$ indicates the low resolution of the TC compared to that of the VSC. The dotted cone indicates the high resolution of the image $Y$, which is jointly estimated together with the optical flow $\ensuremath  {\ensuremath  {{\bm  {d}}}}$ (the mapping between $I$ and $y$) by the model in eq.~(\ref  {eq:YtcToIvscDMapping}) \relax }}{85}{figure.caption.20}}
1137
\newlabel{fig:multiModalSetupDiffResSetup}{{4.1}{85}{\Figref {fig:multiModalSetupDiffRes} shows the setup of a thermographic camera (TC), $C_{tc}$, and a visual spectrum camera (VSC), $C_{vsc}$, recording an object $O$. \Figref {fig:multiModalSetupDiffResIvsc} shows the image $I$ which is recorded by $C_{vsc}$ and \figref {fig:multiModalSetupDiffResYtcLow} the lower resolution image $y$ recorded by $C_{tc}$. The solid line cone of $C_{tc}$ in \figref {fig:multiModalSetupDiffRes} which is small compared to the cone of $C_{vsc}$ indicates the low resolution of the TC compared to that of the VSC. The dotted cone indicates the high resolution of the image $Y$, which is jointly estimated together with the optical flow $\vd $ (the mapping between $I$ and $y$) by the model in \eqref {eq:YtcToIvscDMapping} \relax }{figure.caption.20}{}}
1138
\newlabel{fig:multiModalSetupDiffResSetup@cref}{{[figure][1][4]4.1}{85}}
1139
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Schematic}}}{85}{subfigure.1.1}}
1140
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$I$}}}{85}{subfigure.1.2}}
1141
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$y$}}}{85}{subfigure.1.3}}
1142
\@writefile{toc}{\contentsline {section}{\numberline {4.4}Multi-Modal Optical Flow with Differing Resolutions}{85}{section.4.4}}
1143
\newlabel{sec:ImageFusionDisparity}{{4.4}{85}{Multi-Modal Optical Flow with Differing Resolutions}{section.4.4}{}}
1144
\newlabel{sec:ImageFusionDisparity@cref}{{[section][4][4]4.4}{85}}
1145
\@writefile{brf}{\backcite{HardieSpacialImageResEnhancement}{{85}{4.4}{figure.caption.20}}}
1146
\newlabel{eq:warpedIvsc}{{4.18}{85}{Multi-Modal Optical Flow with Differing Resolutions}{equation.4.4.18}{}}
1147
\newlabel{eq:warpedIvsc@cref}{{[equation][18][4]4.18}{85}}
1148
\newlabel{eq:multiResSimMeasure}{{4.19}{85}{Multi-Modal Optical Flow with Differing Resolutions}{equation.4.4.19}{}}
1149
\newlabel{eq:multiResSimMeasure@cref}{{[equation][19][4]4.19}{85}}
1150
\newlabel{eq:YtcToLowMapping}{{4.20}{86}{Computation of the similarity measure $E^{data}_{y,I}$}{equation.4.4.20}{}}
1151
\newlabel{eq:YtcToLowMapping@cref}{{[equation][20][4]4.20}{86}}
1152
\newlabel{eq:YtcToIvscMapping}{{4.21}{86}{Computation of the similarity measure $E^{data}_{y,I}$}{equation.4.4.21}{}}
1153
\newlabel{eq:YtcToIvscMapping@cref}{{[equation][21][4]4.21}{86}}
1154
\newlabel{eq:condVarYtc}{{4.22}{86}{Computation of the similarity measure $E^{data}_{y,I}$}{equation.4.4.22}{}}
1155
\newlabel{eq:condVarYtc@cref}{{[equation][22][4]4.22}{86}}
1156
\newlabel{eq:condMeanYtc}{{4.23}{86}{Computation of the similarity measure $E^{data}_{y,I}$}{equation.4.4.23}{}}
1157
\newlabel{eq:condMeanYtc@cref}{{[equation][23][4]4.23}{86}}
1158
\newlabel{eq:YtcToLowMapping2}{{4.24}{86}{Computation of the similarity measure $E^{data}_{y,I}$}{equation.4.4.24}{}}
1159
\newlabel{eq:YtcToLowMapping2@cref}{{[equation][24][4]4.24}{86}}
1160
\newlabel{eq:YtcToIvscDMapping}{{4.25}{86}{Computation of the similarity measure $E^{data}_{y,I}$}{equation.4.4.25}{}}
1161
\newlabel{eq:YtcToIvscDMapping@cref}{{[equation][25][4]4.25}{86}}
1162
\newlabel{fig:line02}{{4.2a}{87}{Subfigure 4 4.2a}{subfigure.4.2.1}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1163
\newlabel{sub@fig:line02}{{(a)}{a}{Subfigure 4 4.2a\relax }{subfigure.4.2.1}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1164
\newlabel{fig:line02@cref}{{[subfigure][1][4,2]4.2a}{87}}
1165
\newlabel{fig:line1blurred2}{{4.2b}{87}{Subfigure 4 4.2b}{subfigure.4.2.2}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1166
\newlabel{sub@fig:line1blurred2}{{(b)}{b}{Subfigure 4 4.2b\relax }{subfigure.4.2.2}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1167
\newlabel{fig:line1blurred2@cref}{{[subfigure][2][4,2]4.2b}{87}}
1168
\newlabel{fig:line0warpedWithScaleDiff}{{4.2c}{87}{Subfigure 4 4.2c}{subfigure.4.2.3}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1169
\newlabel{sub@fig:line0warpedWithScaleDiff}{{(c)}{c}{Subfigure 4 4.2c\relax }{subfigure.4.2.3}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1170
\newlabel{fig:line0warpedWithScaleDiff@cref}{{[subfigure][3][4,2]4.2c}{87}}
1171
\newlabel{fig:flowWithScaleDiff}{{4.2d}{87}{Subfigure 4 4.2d}{subfigure.4.2.4}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1172
\newlabel{sub@fig:flowWithScaleDiff}{{(d)}{d}{Subfigure 4 4.2d\relax }{subfigure.4.2.4}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1173
\newlabel{fig:flowWithScaleDiff@cref}{{[subfigure][4][4,2]4.2d}{87}}
1174
\@writefile{lof}{\contentsline {figure}{\numberline {4.2}{\ignorespaces \Cref  {fig:line02} shows a synthetic high resolution image $I^{syn}$. In \cref  {fig:line1blurred2} we show a low resolution image $y^{syn}$. $y^{syn}$ is computed by convolution of $I^{syn}$ with Gaussian $G_\ensuremath  {{\sigma ^{sc}}}$ with standard deviation $\ensuremath  {{\sigma ^{sc}}}=5$ and translated by $10$ pixels relative to $I^{syn}$. \Cref  {fig:flowWithScaleDiff} shows the flow $\ensuremath  {\ensuremath  {{\bm  {d}}}}$ computed with the model in eq.~(\ref  {eq:flowDataTerm2}), which incorporates knowledge of the scale difference between $y^{syn}$ and $I^{syn}$ and \cref  {fig:line0warpedWithScaleDiff} show the warped image $I_{\ensuremath  {\ensuremath  {{\bm  {d}}}}}$\relax }}{87}{figure.caption.22}}
1175
\newlabel{fig:scaleDiffProblemWithScale}{{4.2}{87}{\Figref {fig:line02} shows a synthetic high resolution image $I^{syn}$. In \figref {fig:line1blurred2} we show a low resolution image $y^{syn}$. $y^{syn}$ is computed by convolution of $I^{syn}$ with Gaussian $G_\scalediff $ with standard deviation $\scalediff =5$ and translated by $10$ pixels relative to $I^{syn}$. \Figref {fig:flowWithScaleDiff} shows the flow $\vd $ computed with the model in \eqref {eq:flowDataTerm2}, which incorporates knowledge of the scale difference between $y^{syn}$ and $I^{syn}$ and \figref {fig:line0warpedWithScaleDiff} show the warped image $I_{\vd }$\relax }{figure.caption.22}{}}
1176
\newlabel{fig:scaleDiffProblemWithScale@cref}{{[figure][2][4]4.2}{87}}
1177
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{87}{subfigure.2.1}}
1178
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{87}{subfigure.2.2}}
1179
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{87}{subfigure.2.3}}
1180
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{87}{subfigure.2.4}}
1181
\newlabel{eq:thermoSolutionOptflow}{{4.26}{87}{Computation of the similarity measure $E^{data}_{y,I}$}{equation.4.4.26}{}}
1182
\newlabel{eq:thermoSolutionOptflow@cref}{{[equation][26][4]4.26}{87}}
1183
\newlabel{eq:flowDataTerm2}{{4.27}{87}{Computation of the similarity measure $E^{data}_{y,I}$}{equation.4.4.27}{}}
1184
\newlabel{eq:flowDataTerm2@cref}{{[equation][27][4]4.27}{87}}
1185
\newlabel{eq:globalIntensFactor}{{4.28}{87}{Computation of the similarity measure $E^{data}_{y,I}$}{equation.4.4.28}{}}
1186
\newlabel{eq:globalIntensFactor@cref}{{[equation][28][4]4.28}{87}}
1187
\newlabel{eq:linearRelationyI}{{4.30}{87}{Computation of the similarity measure $E^{data}_{y,I}$}{equation.4.4.30}{}}
1188
\newlabel{eq:linearRelationyI@cref}{{[equation][30][4]4.30}{87}}
1189
\@writefile{toc}{\contentsline {section}{\numberline {4.5}Localization}{88}{section.4.5}}
1190
\newlabel{sec:localSimilarityMeasure}{{4.5}{88}{Localization}{section.4.5}{}}
1191
\newlabel{sec:localSimilarityMeasure@cref}{{[section][5][4]4.5}{88}}
1192
\newlabel{eq:globalRelation}{{4.32}{88}{Localization}{equation.4.5.32}{}}
1193
\newlabel{eq:globalRelation@cref}{{[equation][32][4]4.32}{88}}
1194
\newlabel{eq:localRelation}{{4.33}{88}{Localization}{equation.4.5.33}{}}
1195
\newlabel{eq:localRelation@cref}{{[equation][33][4]4.33}{88}}
1196
\newlabel{eq:locCovariance}{{4.34}{89}{Localization}{equation.4.5.34}{}}
1197
\newlabel{eq:locCovariance@cref}{{[equation][34][4]4.34}{89}}
1198
\newlabel{eq:likelihoodWindow}{{4.35}{89}{Localization}{equation.4.5.35}{}}
1199
\newlabel{eq:likelihoodWindow@cref}{{[equation][35][4]4.35}{89}}
1200
\newlabel{eq:condVarYtcLocal}{{4.36}{89}{Localization}{equation.4.5.36}{}}
1201
\newlabel{eq:condVarYtcLocal@cref}{{[equation][36][4]4.36}{89}}
1202
\newlabel{eq:localFfactor}{{4.37}{89}{Localization}{equation.4.5.37}{}}
1203
\newlabel{eq:localFfactor@cref}{{[equation][37][4]4.37}{89}}
1204
\newlabel{eq:flowDataTermLocal}{{4.38}{89}{Localization}{equation.4.5.38}{}}
1205
\newlabel{eq:flowDataTermLocal@cref}{{[equation][38][4]4.38}{89}}
1206
\@writefile{toc}{\contentsline {section}{\numberline {4.6}The Multigrid Newton algorithm}{89}{section.4.6}}
1207
\newlabel{eq:optFlowModelST}{{4.39}{89}{The Multigrid Newton algorithm}{equation.4.6.39}{}}
1208
\newlabel{eq:optFlowModelST@cref}{{[equation][39][4]4.39}{89}}
1209
\newlabel{eq:optFlowModelTV}{{4.40}{89}{The Multigrid Newton algorithm}{equation.4.6.40}{}}
1210
\newlabel{eq:optFlowModelTV@cref}{{[equation][40][4]4.40}{89}}
1211
\newlabel{item:FlowAlgoWhileCond}{{6}{90}{The Multigrid Newton algorithm}{ALG@line.6}{}}
1212
\newlabel{item:FlowAlgoWhileCond@cref}{{[line][6][]6}{90}}
1213
\newlabel{item:FlowAlgoLinearStep}{{9}{90}{The Multigrid Newton algorithm}{ALG@line.9}{}}
1214
\newlabel{item:FlowAlgoLinearStep@cref}{{[line][9][]9}{90}}
1215
\@writefile{loa}{\contentsline {algorithm}{\numberline {2}{\ignorespaces Multigrid Optical Flow (MOF)\relax }}{90}{algorithm.2}}
1216
\newlabel{alg:MultigridOpticalFlow}{{2}{90}{Multigrid Optical Flow (MOF)\relax }{algorithm.2}{}}
1217
\newlabel{alg:MultigridOpticalFlow@cref}{{[algorithm][2][]2}{90}}
1218
\newlabel{eq:structtensPriorFuncderiv}{{4.41}{90}{The Multigrid Newton algorithm}{equation.4.6.41}{}}
1219
\newlabel{eq:structtensPriorFuncderiv@cref}{{[equation][41][4]4.41}{90}}
161 by gerald.mwangi at gmx
reviewing everything 11
1220
\citation{Middleburry}
230 by gerald.mwangi at gmx
work on modern noether3
1221
\newlabel{eq:structtensPriorStable}{{4.42}{91}{The Multigrid Newton algorithm}{equation.4.6.42}{}}
1222
\newlabel{eq:structtensPriorStable@cref}{{[equation][42][4]4.42}{91}}
1223
\newlabel{eq:optFlowModelSTStable}{{4.43}{91}{The Multigrid Newton algorithm}{equation.4.6.43}{}}
1224
\newlabel{eq:optFlowModelSTStable@cref}{{[equation][43][4]4.43}{91}}
1225
\@writefile{toc}{\contentsline {section}{\numberline {4.7}Results}{91}{section.4.7}}
1226
\@writefile{brf}{\backcite{Middleburry}{{91}{4.7}{section.4.7}}}
1227
\newlabel{fig:rubberWhale}{{4.3a}{92}{Subfigure 4 4.3a}{subfigure.4.3.1}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1228
\newlabel{sub@fig:rubberWhale}{{(a)}{a}{Subfigure 4 4.3a\relax }{subfigure.4.3.1}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1229
\newlabel{fig:rubberWhale@cref}{{[subfigure][1][4,3]4.3a}{92}}
1230
\newlabel{fig:rubberWhale-flow}{{4.3b}{92}{Subfigure 4 4.3b}{subfigure.4.3.2}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1231
\newlabel{sub@fig:rubberWhale-flow}{{(b)}{b}{Subfigure 4 4.3b\relax }{subfigure.4.3.2}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1232
\newlabel{fig:rubberWhale-flow@cref}{{[subfigure][2][4,3]4.3b}{92}}
1233
\newlabel{fig:rubberWhale-flowL1}{{4.3c}{92}{Subfigure 4 4.3c}{subfigure.4.3.3}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1234
\newlabel{sub@fig:rubberWhale-flowL1}{{(c)}{c}{Subfigure 4 4.3c\relax }{subfigure.4.3.3}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1235
\newlabel{fig:rubberWhale-flowL1@cref}{{[subfigure][3][4,3]4.3c}{92}}
1236
\newlabel{fig:rubberWhale-gt2}{{4.3d}{92}{Subfigure 4 4.3d}{subfigure.4.3.4}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1237
\newlabel{sub@fig:rubberWhale-gt2}{{(d)}{d}{Subfigure 4 4.3d\relax }{subfigure.4.3.4}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1238
\newlabel{fig:rubberWhale-gt2@cref}{{[subfigure][4][4,3]4.3d}{92}}
1239
\@writefile{lof}{\contentsline {figure}{\numberline {4.3}{\ignorespaces Rubberwhale Sequence: Figure \ref  {fig:rubberWhale} shows one frame of the sequence. \cref  {fig:rubberWhale-flow} shows the estimated optical flow $\ensuremath  {\ensuremath  {\ensuremath  {{\bm  {d}}}}_{ST}^{\star }}$, \cref  {fig:rubberWhale-flowL1} the flow $\ensuremath  {\ensuremath  {\ensuremath  {{\bm  {d}}}}_{TV}^{\star }}$ and \cref  {fig:rubberWhale-gt2} shows the provided ground truth\relax }}{92}{figure.caption.23}}
1240
\newlabel{fig:rubberWhaleSeq2}{{4.3}{92}{Rubberwhale Sequence: Figure \ref {fig:rubberWhale} shows one frame of the sequence. \figref {fig:rubberWhale-flow} shows the estimated optical flow $\optimalflowST $, \figref {fig:rubberWhale-flowL1} the flow $\optimalflowTV $ and \figref {fig:rubberWhale-gt2} shows the provided ground truth\relax }{figure.caption.23}{}}
1241
\newlabel{fig:rubberWhaleSeq2@cref}{{[figure][3][4]4.3}{92}}
1242
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{92}{subfigure.3.1}}
1243
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$\ensuremath {\ensuremath {\ensuremath {{\bm {d}}}}_{ST}^{\star }}$}}}{92}{subfigure.3.2}}
1244
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$\ensuremath {\ensuremath {\ensuremath {{\bm {d}}}}_{TV}^{\star }}$}}}{92}{subfigure.3.3}}
1245
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{92}{subfigure.3.4}}
1246
\newlabel{eq:optFlowModelSTLocal}{{4.44}{92}{Results}{equation.4.7.44}{}}
1247
\newlabel{eq:optFlowModelSTLocal@cref}{{[equation][44][4]4.44}{92}}
1248
\newlabel{eq:optFlowModelTVLocal}{{4.45}{92}{Results}{equation.4.7.45}{}}
1249
\newlabel{eq:optFlowModelTVLocal@cref}{{[equation][45][4]4.45}{92}}
1250
\@writefile{toc}{\contentsline {subsection}{\numberline {4.7.1}Uni-Modal Data}{92}{subsection.4.7.1}}
1251
\newlabel{sec:uniModalOpticalFlow}{{4.7.1}{92}{Uni-Modal Data}{subsection.4.7.1}{}}
1252
\newlabel{sec:uniModalOpticalFlow@cref}{{[subsection][1][4,7]4.7.1}{92}}
1253
\newlabel{eq:EPEDefinition}{{4.46}{92}{Uni-Modal Data}{equation.4.7.46}{}}
1254
\newlabel{eq:EPEDefinition@cref}{{[equation][46][4]4.46}{92}}
1255
\newlabel{fig:hydrangea}{{4.4a}{93}{Subfigure 4 4.4a}{subfigure.4.4.1}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1256
\newlabel{sub@fig:hydrangea}{{(a)}{a}{Subfigure 4 4.4a\relax }{subfigure.4.4.1}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1257
\newlabel{fig:hydrangea@cref}{{[subfigure][1][4,4]4.4a}{93}}
1258
\newlabel{fig:hydrangea-flow}{{4.4b}{93}{Subfigure 4 4.4b}{subfigure.4.4.2}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1259
\newlabel{sub@fig:hydrangea-flow}{{(b)}{b}{Subfigure 4 4.4b\relax }{subfigure.4.4.2}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1260
\newlabel{fig:hydrangea-flow@cref}{{[subfigure][2][4,4]4.4b}{93}}
1261
\newlabel{fig:hydrangea-flowL1}{{4.4c}{93}{Subfigure 4 4.4c}{subfigure.4.4.3}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1262
\newlabel{sub@fig:hydrangea-flowL1}{{(c)}{c}{Subfigure 4 4.4c\relax }{subfigure.4.4.3}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1263
\newlabel{fig:hydrangea-flowL1@cref}{{[subfigure][3][4,4]4.4c}{93}}
1264
\newlabel{fig:hydrangea-gt2}{{4.4d}{93}{Subfigure 4 4.4d}{subfigure.4.4.4}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1265
\newlabel{sub@fig:hydrangea-gt2}{{(d)}{d}{Subfigure 4 4.4d\relax }{subfigure.4.4.4}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1266
\newlabel{fig:hydrangea-gt2@cref}{{[subfigure][4][4,4]4.4d}{93}}
1267
\@writefile{lof}{\contentsline {figure}{\numberline {4.4}{\ignorespaces Hydrangea Sequence: Figure \ref  {fig:hydrangea} shows one frame of the sequence. \cref  {fig:hydrangea-flow} shows the estimated optical flow $\ensuremath  {\ensuremath  {\ensuremath  {{\bm  {d}}}}_{ST}^{\star }}$, \cref  {fig:hydrangea-flowL1} the flow $\ensuremath  {\ensuremath  {\ensuremath  {{\bm  {d}}}}_{TV}^{\star }}$ and \cref  {fig:hydrangea-gt2} shows the provided ground truth\relax }}{93}{figure.caption.24}}
1268
\newlabel{fig:hydrangeaSeq2}{{4.4}{93}{Hydrangea Sequence: Figure \ref {fig:hydrangea} shows one frame of the sequence. \figref {fig:hydrangea-flow} shows the estimated optical flow $\optimalflowST $, \figref {fig:hydrangea-flowL1} the flow $\optimalflowTV $ and \figref {fig:hydrangea-gt2} shows the provided ground truth\relax }{figure.caption.24}{}}
1269
\newlabel{fig:hydrangeaSeq2@cref}{{[figure][4][4]4.4}{93}}
1270
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{93}{subfigure.4.1}}
1271
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$\ensuremath {\ensuremath {\ensuremath {{\bm {d}}}}_{ST}^{\star }}$}}}{93}{subfigure.4.2}}
1272
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$\ensuremath {\ensuremath {\ensuremath {{\bm {d}}}}_{TV}^{\star }}$}}}{93}{subfigure.4.3}}
1273
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{93}{subfigure.4.4}}
1274
\newlabel{eq:meanCurv2}{{4.47}{93}{Uni-Modal Data}{equation.4.7.47}{}}
1275
\newlabel{eq:meanCurv2@cref}{{[equation][47][4]4.47}{93}}
1276
\@writefile{toc}{\contentsline {subsection}{\numberline {4.7.2}Rubber Whale Sequence}{93}{subsection.4.7.2}}
1277
\newlabel{sec:rubberWhale}{{4.7.2}{93}{Rubber Whale Sequence}{subsection.4.7.2}{}}
1278
\newlabel{sec:rubberWhale@cref}{{[subsection][2][4,7]4.7.2}{93}}
1279
\newlabel{fig:EPEToCurvST7}{{4.5a}{94}{Subfigure 4 4.5a}{subfigure.4.5.1}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1280
\newlabel{sub@fig:EPEToCurvST7}{{(a)}{a}{Subfigure 4 4.5a\relax }{subfigure.4.5.1}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1281
\newlabel{fig:EPEToCurvST7@cref}{{[subfigure][1][4,5]4.5a}{94}}
1282
\newlabel{fig:EPEToCurvST9}{{4.5b}{94}{Subfigure 4 4.5b}{subfigure.4.5.2}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1283
\newlabel{sub@fig:EPEToCurvST9}{{(b)}{b}{Subfigure 4 4.5b\relax }{subfigure.4.5.2}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1284
\newlabel{fig:EPEToCurvST9@cref}{{[subfigure][2][4,5]4.5b}{94}}
1285
\newlabel{fig:EPEToCurvST11}{{4.5c}{94}{Subfigure 4 4.5c}{subfigure.4.5.3}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1286
\newlabel{sub@fig:EPEToCurvST11}{{(c)}{c}{Subfigure 4 4.5c\relax }{subfigure.4.5.3}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1287
\newlabel{fig:EPEToCurvST11@cref}{{[subfigure][3][4,5]4.5c}{94}}
1288
\newlabel{fig:EPEToCurvTV}{{4.5d}{94}{Subfigure 4 4.5d}{subfigure.4.5.4}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1289
\newlabel{sub@fig:EPEToCurvTV}{{(d)}{d}{Subfigure 4 4.5d\relax }{subfigure.4.5.4}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1290
\newlabel{fig:EPEToCurvTV@cref}{{[subfigure][4][4,5]4.5d}{94}}
1291
\@writefile{lof}{\contentsline {figure}{\numberline {4.5}{\ignorespaces EPE to level-set curvature: Figures \ref  {fig:EPEToCurvST7} to \ref  {fig:EPEToCurvTV} show plots of the EPE (eq.~(\ref  {eq:EPEDefinition})) against the curvature $\kappa $ (eq.~(\ref  {eq:meanCurv2})) for the rubber whale sequence (\cref  {fig:rubberWhaleSeq2}). Figures \ref  {fig:EPEToCurvST7} to \ref  {fig:EPEToCurvST11} show the results for the structure tensor model $E_{ST}$ and \cref  {fig:EPEToCurvTV} the result for the TV model $E_{TV}$. The curvature $\kappa $ was split into $40$ bins and the height of the bars is the average EPE per curvature bin. \relax }}{94}{figure.caption.25}}
1292
\newlabel{fig:EPEToCurv}{{4.5}{94}{EPE to level-set curvature: Figures \ref {fig:EPEToCurvST7} to \ref {fig:EPEToCurvTV} show plots of the EPE (\eqref {eq:EPEDefinition}) against the curvature $\kappa $ (\eqref {eq:meanCurv2}) for the rubber whale sequence (\figref {fig:rubberWhaleSeq2}). Figures \ref {fig:EPEToCurvST7} to \ref {fig:EPEToCurvST11} show the results for the structure tensor model $E_{ST}$ and \figref {fig:EPEToCurvTV} the result for the TV model $E_{TV}$. The curvature $\kappa $ was split into $40$ bins and the height of the bars is the average EPE per curvature bin. \relax }{figure.caption.25}{}}
1293
\newlabel{fig:EPEToCurv@cref}{{[figure][5][4]4.5}{94}}
1294
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{94}{subfigure.5.1}}
1295
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{94}{subfigure.5.2}}
1296
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{94}{subfigure.5.3}}
1297
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{94}{subfigure.5.4}}
1298
\@writefile{lot}{\contentsline {table}{\numberline {4.1}{\ignorespaces EPE for different filter-sizes $\sigma _{ST}$ for the model $E^g_{ST}$ (eq.~(\ref  {eq:optFlowModelST})) and for the TV model $E^g_{TV}$ (eq.~(\ref  {eq:optFlowModelTV})). The value shown in the column \textsl  {Median EPE} is the median EPE per ROI. The median per ROI was chosen over the average EPE per ROI due to its robustness towards outlier EPE values. The EPE values for the model $E^g_{ST}$ decrease with increasing structure tensor filtersizes $\sigma _{ST}$. However the general trend is that the ROI's with high curvatures $\kappa $ (\textsl  {Wheel} and \textsl  {Shell}) tend to have higher EPE values then the ROI's with low curvatures (\textsl  {Fence} and \textsl  {Box Edge}). \relax }}{94}{table.caption.26}}
1299
\newlabel{tab:rw-epeAE}{{4.1}{94}{EPE for different filter-sizes $\sigma _{ST}$ for the model $E^g_{ST}$ (\eqref {eq:optFlowModelST}) and for the TV model $E^g_{TV}$ (\eqref {eq:optFlowModelTV}). The value shown in the column \textsl {Median EPE} is the median EPE per ROI. The median per ROI was chosen over the average EPE per ROI due to its robustness towards outlier EPE values. The EPE values for the model $E^g_{ST}$ decrease with increasing structure tensor filtersizes $\sigma _{ST}$. However the general trend is that the ROI's with high curvatures $\kappa $ (\textsl {Wheel} and \textsl {Shell}) tend to have higher EPE values then the ROI's with low curvatures (\textsl {Fence} and \textsl {Box Edge}). \relax }{table.caption.26}{}}
1300
\newlabel{tab:rw-epeAE@cref}{{[table][1][4]4.1}{94}}
1301
\newlabel{fig:EPEToCurvST7hyd}{{4.6a}{95}{Subfigure 4 4.6a}{subfigure.4.6.1}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1302
\newlabel{sub@fig:EPEToCurvST7hyd}{{(a)}{a}{Subfigure 4 4.6a\relax }{subfigure.4.6.1}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1303
\newlabel{fig:EPEToCurvST7hyd@cref}{{[subfigure][1][4,6]4.6a}{95}}
1304
\newlabel{fig:EPEToCurvST9hyd}{{4.6b}{95}{Subfigure 4 4.6b}{subfigure.4.6.2}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1305
\newlabel{sub@fig:EPEToCurvST9hyd}{{(b)}{b}{Subfigure 4 4.6b\relax }{subfigure.4.6.2}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1306
\newlabel{fig:EPEToCurvST9hyd@cref}{{[subfigure][2][4,6]4.6b}{95}}
1307
\newlabel{fig:EPEToCurvST11hyd}{{4.6c}{95}{Subfigure 4 4.6c}{subfigure.4.6.3}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1308
\newlabel{sub@fig:EPEToCurvST11hyd}{{(c)}{c}{Subfigure 4 4.6c\relax }{subfigure.4.6.3}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1309
\newlabel{fig:EPEToCurvST11hyd@cref}{{[subfigure][3][4,6]4.6c}{95}}
1310
\newlabel{fig:EPEToCurvTVhyd}{{4.6d}{95}{Subfigure 4 4.6d}{subfigure.4.6.4}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1311
\newlabel{sub@fig:EPEToCurvTVhyd}{{(d)}{d}{Subfigure 4 4.6d\relax }{subfigure.4.6.4}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1312
\newlabel{fig:EPEToCurvTVhyd@cref}{{[subfigure][4][4,6]4.6d}{95}}
1313
\@writefile{lof}{\contentsline {figure}{\numberline {4.6}{\ignorespaces EPE to level-set curvature: Figures \ref  {fig:EPEToCurvST7hyd} to \ref  {fig:EPEToCurvTVhyd} show plots of the EPE (eq.~(\ref  {eq:EPEDefinition})) against the curvature $\kappa $ (eq.~(\ref  {eq:meanCurv2})) for the hydrangea sequence (\cref  {fig:hydrangeaSeq2}). Figures \ref  {fig:EPEToCurvST7hyd} to \ref  {fig:EPEToCurvST11hyd} show the results for the structure tensor model $E_{ST}$ and \cref  {fig:EPEToCurvTV} the result for the TV model $E_{TV}$. The curvature $\kappa $ was split into $40$ bins and the height of the bars is the average EPE per curvature bin. \relax }}{95}{figure.caption.27}}
1314
\newlabel{fig:EPEToCurvHyd}{{4.6}{95}{EPE to level-set curvature: Figures \ref {fig:EPEToCurvST7hyd} to \ref {fig:EPEToCurvTVhyd} show plots of the EPE (\eqref {eq:EPEDefinition}) against the curvature $\kappa $ (\eqref {eq:meanCurv2}) for the hydrangea sequence (\figref {fig:hydrangeaSeq2}). Figures \ref {fig:EPEToCurvST7hyd} to \ref {fig:EPEToCurvST11hyd} show the results for the structure tensor model $E_{ST}$ and \figref {fig:EPEToCurvTV} the result for the TV model $E_{TV}$. The curvature $\kappa $ was split into $40$ bins and the height of the bars is the average EPE per curvature bin. \relax }{figure.caption.27}{}}
1315
\newlabel{fig:EPEToCurvHyd@cref}{{[figure][6][4]4.6}{95}}
1316
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{95}{subfigure.6.1}}
1317
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{95}{subfigure.6.2}}
1318
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{95}{subfigure.6.3}}
1319
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{95}{subfigure.6.4}}
1320
\@writefile{toc}{\contentsline {subsection}{\numberline {4.7.3}Hydrangea Sequence}{95}{subsection.4.7.3}}
1321
\newlabel{sec:hydrangea}{{4.7.3}{95}{Hydrangea Sequence}{subsection.4.7.3}{}}
1322
\newlabel{sec:hydrangea@cref}{{[subsection][3][4,7]4.7.3}{95}}
1323
\newlabel{fig:synthMultModalRWFrame10}{{4.7a}{96}{Subfigure 4 4.7a}{subfigure.4.7.1}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1324
\newlabel{sub@fig:synthMultModalRWFrame10}{{(a)}{a}{Subfigure 4 4.7a\relax }{subfigure.4.7.1}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1325
\newlabel{fig:synthMultModalRWFrame10@cref}{{[subfigure][1][4,7]4.7a}{96}}
1326
\newlabel{fig:synthMultModalRWYCoAlScale2Frame10}{{4.7b}{96}{Subfigure 4 4.7b}{subfigure.4.7.2}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1327
\newlabel{sub@fig:synthMultModalRWYCoAlScale2Frame10}{{(b)}{b}{Subfigure 4 4.7b\relax }{subfigure.4.7.2}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1328
\newlabel{fig:synthMultModalRWYCoAlScale2Frame10@cref}{{[subfigure][2][4,7]4.7b}{96}}
1329
\newlabel{fig:synthMultModalRWYCoAlScale4Frame10}{{4.7c}{96}{Subfigure 4 4.7c}{subfigure.4.7.3}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1330
\newlabel{sub@fig:synthMultModalRWYCoAlScale4Frame10}{{(c)}{c}{Subfigure 4 4.7c\relax }{subfigure.4.7.3}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1331
\newlabel{fig:synthMultModalRWYCoAlScale4Frame10@cref}{{[subfigure][3][4,7]4.7c}{96}}
1332
\@writefile{lof}{\contentsline {figure}{\numberline {4.7}{\ignorespaces Synthesized multi-modal data. This data simulates the camera arrangement in \cref  {fig:multiModalCoAligned}. The image $I$ in \cref  {fig:synthMultModalRWFrame10} is from the rubberwhale data set in \cref  {fig:rubberWhaleSeq2}. Figures \ref  {fig:synthMultModalRWYCoAlScale2Frame10} and \ref  {fig:synthMultModalRWYCoAlScale4Frame10} show the image $y_{{\ensuremath  {{\sigma ^{sc}}}_{test}}}$ (eq.~(\ref  {eq:synthMultiModalCoAlignedYLow})) at the scales $\ensuremath  {{\sigma ^{sc}}}_{test}=2$ and $\ensuremath  {{\sigma ^{sc}}}_{test}=4$\relax }}{96}{figure.caption.28}}
1333
\newlabel{fig:synthMultModalRWYCoAl}{{4.7}{96}{Synthesized multi-modal data. This data simulates the camera arrangement in \figref {fig:multiModalCoAligned}. The image $I$ in \figref {fig:synthMultModalRWFrame10} is from the rubberwhale data set in \figref {fig:rubberWhaleSeq2}. Figures \ref {fig:synthMultModalRWYCoAlScale2Frame10} and \ref {fig:synthMultModalRWYCoAlScale4Frame10} show the image $y_{{\scalediff _{test}}}$ (\eqref {eq:synthMultiModalCoAlignedYLow}) at the scales $\scalediff _{test}=2$ and $\scalediff _{test}=4$\relax }{figure.caption.28}{}}
1334
\newlabel{fig:synthMultModalRWYCoAl@cref}{{[figure][7][4]4.7}{96}}
1335
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {$I$}}}{96}{subfigure.7.1}}
1336
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$y_2$}}}{96}{subfigure.7.2}}
1337
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$y_4$}}}{96}{subfigure.7.3}}
1338
\@writefile{toc}{\contentsline {subsection}{\numberline {4.7.4}Estimation of the Scale Difference $\ensuremath  {{\sigma ^{sc}}}$}{96}{subsection.4.7.4}}
1339
\newlabel{sec:synthMultiModalScaleDiff}{{4.7.4}{96}{Estimation of the Scale Difference $\scalediff $}{subsection.4.7.4}{}}
1340
\newlabel{sec:synthMultiModalScaleDiff@cref}{{[subsection][4][4,7]4.7.4}{96}}
1341
\newlabel{eq:synthMultiModalCoAlignedYHigh}{{4.49}{96}{Estimation of the Scale Difference $\scalediff $}{equation.4.7.49}{}}
1342
\newlabel{eq:synthMultiModalCoAlignedYHigh@cref}{{[equation][49][4]4.49}{96}}
1343
\newlabel{eq:synthMultiModalCoAlignedYLow}{{4.50}{96}{Estimation of the Scale Difference $\scalediff $}{equation.4.7.50}{}}
1344
\newlabel{eq:synthMultiModalCoAlignedYLow@cref}{{[equation][50][4]4.50}{96}}
160 by gerald.mwangi at gmx
reviewing everything 10
1345
\citation{ferreiraCFRP,khanCFRP,tehraniCFRP,FanCFRP}
1346
\citation{FanCFRP}
1347
\citation{wuLockIn,SpiessbergerFusionLockin,meolaLockIn}
230 by gerald.mwangi at gmx
work on modern noether3
1348
\newlabel{fig:EdataCoAlScale2}{{4.8a}{97}{Subfigure 4 4.8a}{subfigure.4.8.1}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1349
\newlabel{sub@fig:EdataCoAlScale2}{{(a)}{a}{Subfigure 4 4.8a\relax }{subfigure.4.8.1}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1350
\newlabel{fig:EdataCoAlScale2@cref}{{[subfigure][1][4,8]4.8a}{97}}
1351
\newlabel{fig:EdataCoAlScale4}{{4.8b}{97}{Subfigure 4 4.8b}{subfigure.4.8.2}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1352
\newlabel{sub@fig:EdataCoAlScale4}{{(b)}{b}{Subfigure 4 4.8b\relax }{subfigure.4.8.2}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1353
\newlabel{fig:EdataCoAlScale4@cref}{{[subfigure][2][4,8]4.8b}{97}}
1354
\@writefile{lof}{\contentsline {figure}{\numberline {4.8}{\ignorespaces Figures \ref  {fig:EdataCoAlScale2} and \ref  {fig:EdataCoAlScale4} show plots the similarity measure $E^{data}_{y,I}(\ensuremath  {{\sigma ^{sc}}},\ensuremath  {\ensuremath  {{\bm  {d}}}})$ for the cases $y=y_2$, $\ensuremath  {{\sigma ^{sc}}}_{test}=2$, and $y=y_4$, $\ensuremath  {{\sigma ^{sc}}}_{test}=4$. We can observe that $E^{data}_{y,I}(\ensuremath  {{\sigma ^{sc}}},\ensuremath  {\ensuremath  {{\bm  {d}}}})$ is minimal with respect to $\ensuremath  {{\sigma ^{sc}}}$ at the correct scales $\ensuremath  {{\sigma ^{sc}}}_{test}$\relax }}{97}{figure.caption.29}}
1355
\newlabel{fig:EdataCoAlScales}{{4.8}{97}{Figures \ref {fig:EdataCoAlScale2} and \ref {fig:EdataCoAlScale4} show plots the similarity measure $E^{data}_{y,I}(\scalediff ,\vd )$ for the cases $y=y_2$, $\scalediff _{test}=2$, and $y=y_4$, $\scalediff _{test}=4$. We can observe that $E^{data}_{y,I}(\scalediff ,\vd )$ is minimal with respect to $\scalediff $ at the correct scales $\scalediff _{test}$\relax }{figure.caption.29}{}}
1356
\newlabel{fig:EdataCoAlScales@cref}{{[figure][8][4]4.8}{97}}
1357
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {$y=y_2$}}}{97}{subfigure.8.1}}
1358
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$y=y_4$}}}{97}{subfigure.8.2}}
1359
\newlabel{eq:flowDataTerm3}{{4.51}{97}{Estimation of the Scale Difference $\scalediff $}{equation.4.7.51}{}}
1360
\newlabel{eq:flowDataTerm3@cref}{{[equation][51][4]4.51}{97}}
1361
\newlabel{eq:globalIntensFactor2}{{4.52}{97}{Estimation of the Scale Difference $\scalediff $}{equation.4.7.52}{}}
1362
\newlabel{eq:globalIntensFactor2@cref}{{[equation][52][4]4.52}{97}}
1363
\newlabel{eq:likelihood2}{{4.54}{97}{Estimation of the Scale Difference $\scalediff $}{equation.4.7.54}{}}
1364
\newlabel{eq:likelihood2@cref}{{[equation][54][4]4.54}{97}}
1365
\@writefile{toc}{\contentsline {subsection}{\numberline {4.7.5}Real Multimodal Optical Flow Data}{97}{subsection.4.7.5}}
1366
\newlabel{sec:realMultiModalOpticalFlow}{{4.7.5}{97}{Real Multimodal Optical Flow Data}{subsection.4.7.5}{}}
1367
\newlabel{sec:realMultiModalOpticalFlow@cref}{{[subsection][5][4,7]4.7.5}{97}}
1368
\newlabel{fig:multiModalVSC2}{{4.9a}{98}{Subfigure 4 4.9a}{subfigure.4.9.1}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1369
\newlabel{sub@fig:multiModalVSC2}{{(a)}{a}{Subfigure 4 4.9a\relax }{subfigure.4.9.1}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1370
\newlabel{fig:multiModalVSC2@cref}{{[subfigure][1][4,9]4.9a}{98}}
1371
\newlabel{fig:multiModalTC2}{{4.9b}{98}{Subfigure 4 4.9b}{subfigure.4.9.2}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1372
\newlabel{sub@fig:multiModalTC2}{{(b)}{b}{Subfigure 4 4.9b\relax }{subfigure.4.9.2}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1373
\newlabel{fig:multiModalTC2@cref}{{[subfigure][2][4,9]4.9b}{98}}
1374
\newlabel{fig:multiModalHisto2}{{4.9c}{98}{Subfigure 4 4.9c}{subfigure.4.9.3}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1375
\newlabel{sub@fig:multiModalHisto2}{{(c)}{c}{Subfigure 4 4.9c\relax }{subfigure.4.9.3}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1376
\newlabel{fig:multiModalHisto2@cref}{{[subfigure][3][4,9]4.9c}{98}}
1377
\@writefile{lof}{\contentsline {figure}{\numberline {4.9}{\ignorespaces \cref  {fig:multiModalVSC2} shows an image from a visual spectrum camera (VSC). The object recorded is a carbon-fiber reinforced polymer (CFRP). \Cref  {fig:multiModalTC2} shows an image of the same CFRP recorded with a thermographic camera (TC). The TC is sensitive in the infra-red domain, thus higher intensities in \cref  {fig:multiModalTC2} correspond to warmer objects (the CFRP) and lower intensities to colder objects (the background). As in \cref  {fig:multiModalSetupDiffRes} the optical centers of the VSC and the TC are physically separated so the problem that is being addressed is that of finding the optical flow field $\ensuremath  {\ensuremath  {{\bm  {d}}}(\ensuremath  {{\bm  {x}}})}$ (see eq.~(\ref  {eq:opticalFlowDef})) which maps every pixel in the TC image to the corresponding pixel in the VSC image. \Cref  {fig:multiModalHisto2} shows the joint histogram of the VSC and TC image. It shows a complex mapping of the intensities of \cref  {fig:multiModalVSC2} to those of \cref  {fig:multiModalTC2} indicating that a linearity assumption between the TC and the VSC is not valid\relax }}{98}{figure.caption.30}}
1378
\newlabel{fig:multiModalTCVSC2}{{4.9}{98}{\figref {fig:multiModalVSC2} shows an image from a visual spectrum camera (VSC). The object recorded is a carbon-fiber reinforced polymer (CFRP). \Figref {fig:multiModalTC2} shows an image of the same CFRP recorded with a thermographic camera (TC). The TC is sensitive in the infra-red domain, thus higher intensities in \figref {fig:multiModalTC2} correspond to warmer objects (the CFRP) and lower intensities to colder objects (the background). As in \figref {fig:multiModalSetupDiffRes} the optical centers of the VSC and the TC are physically separated so the problem that is being addressed is that of finding the optical flow field $\vdx $ (see \eqref {eq:opticalFlowDef}) which maps every pixel in the TC image to the corresponding pixel in the VSC image. \Figref {fig:multiModalHisto2} shows the joint histogram of the VSC and TC image. It shows a complex mapping of the intensities of \figref {fig:multiModalVSC2} to those of \figref {fig:multiModalTC2} indicating that a linearity assumption between the TC and the VSC is not valid\relax }{figure.caption.30}{}}
1379
\newlabel{fig:multiModalTCVSC2@cref}{{[figure][9][4]4.9}{98}}
1380
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{98}{subfigure.9.1}}
1381
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{98}{subfigure.9.2}}
1382
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{98}{subfigure.9.3}}
1383
\@writefile{brf}{\backcite{ferreiraCFRP}{{98}{4.7.5}{figure.caption.30}}}
1384
\@writefile{brf}{\backcite{khanCFRP}{{98}{4.7.5}{figure.caption.30}}}
1385
\@writefile{brf}{\backcite{tehraniCFRP}{{98}{4.7.5}{figure.caption.30}}}
1386
\@writefile{brf}{\backcite{FanCFRP}{{98}{4.7.5}{figure.caption.30}}}
1387
\@writefile{brf}{\backcite{FanCFRP}{{98}{4.7.5}{figure.caption.30}}}
1388
\@writefile{brf}{\backcite{wuLockIn}{{98}{4.7.5}{figure.caption.30}}}
1389
\@writefile{brf}{\backcite{SpiessbergerFusionLockin}{{98}{4.7.5}{figure.caption.30}}}
1390
\@writefile{brf}{\backcite{meolaLockIn}{{98}{4.7.5}{figure.caption.30}}}
1391
\newlabel{fig:EdatalocA21}{{4.10a}{99}{Subfigure 4 4.10a}{subfigure.4.10.1}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1392
\newlabel{sub@fig:EdatalocA21}{{(a)}{a}{Subfigure 4 4.10a\relax }{subfigure.4.10.1}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1393
\newlabel{fig:EdatalocA21@cref}{{[subfigure][1][4,10]4.10a}{99}}
1394
\newlabel{fig:scaleOverA}{{4.10b}{99}{Subfigure 4 4.10b}{subfigure.4.10.2}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1395
\newlabel{sub@fig:scaleOverA}{{(b)}{b}{Subfigure 4 4.10b\relax }{subfigure.4.10.2}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1396
\newlabel{fig:scaleOverA@cref}{{[subfigure][2][4,10]4.10b}{99}}
1397
\newlabel{fig:EdatalocOverA}{{4.10c}{99}{Subfigure 4 4.10c}{subfigure.4.10.3}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1398
\newlabel{sub@fig:EdatalocOverA}{{(c)}{c}{Subfigure 4 4.10c\relax }{subfigure.4.10.3}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1399
\newlabel{fig:EdatalocOverA@cref}{{[subfigure][3][4,10]4.10c}{99}}
1400
\@writefile{lof}{\contentsline {figure}{\numberline {4.10}{\ignorespaces \Cref  {fig:EdatalocA21}: Plot $E^{data,l}_{y_{tc},I_{vsc}}(\ensuremath  {{\sigma ^{sc}}},a,\ensuremath  {{\bm  {0}}})$ over the PSF scale difference $\ensuremath  {{\sigma ^{sc}}}$ for the images $y_{tc}$ and $I_{vsc}$ in \cref  {fig:multiModalTCVSC2} for the window size $a=25$. \Cref  {fig:scaleOverA} shows the minimum scale $\ensuremath  {{\sigma ^{sc}}}_{min}$ defined in eq.~(\ref  {eq:scaleMin}) as a function over the window size $a$ and \cref  {fig:EdatalocOverA} the similarity measure $E^{data,l}_{min}$ (eq.~(\ref  {eq:EdataScaleMin})) over $a$. The minimum scale $\ensuremath  {{\sigma ^{sc}}}_{min}$ increases or stays constant but does not decrease for larger window sizes $a$. The window size $a=21$ marks a sweet spot where $\ensuremath  {{\sigma ^{sc}}}_{min}(21)= \ensuremath  {\sigma ^{sc,\star }}=3$ while $E^{data,l}_{min}(21)$ is comparatively minimal.\relax }}{99}{figure.caption.31}}
1401
\newlabel{fig:EdataSigmaAdependence}{{4.10}{99}{\Figref {fig:EdatalocA21}: Plot $E^{data,l}_{y_{tc},I_{vsc}}(\scalediff ,a,\vector {0})$ over the PSF scale difference $\scalediff $ for the images $y_{tc}$ and $I_{vsc}$ in \figref {fig:multiModalTCVSC2} for the window size $a=25$. \Figref {fig:scaleOverA} shows the minimum scale $\scalediff _{min}$ defined in \eqref {eq:scaleMin} as a function over the window size $a$ and \figref {fig:EdatalocOverA} the similarity measure $E^{data,l}_{min}$ (\eqref {eq:EdataScaleMin}) over $a$. The minimum scale $\scalediff _{min}$ increases or stays constant but does not decrease for larger window sizes $a$. The window size $a=21$ marks a sweet spot where $\scalediff _{min}(21)= \optscalediff =3$ while $E^{data,l}_{min}(21)$ is comparatively minimal.\relax }{figure.caption.31}{}}
1402
\newlabel{fig:EdataSigmaAdependence@cref}{{[figure][10][4]4.10}{99}}
1403
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{99}{subfigure.10.1}}
1404
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{99}{subfigure.10.2}}
1405
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{99}{subfigure.10.3}}
1406
\newlabel{eq:flowDataTermLocal2}{{4.56}{99}{Real Multimodal Optical Flow Data}{equation.4.7.56}{}}
1407
\newlabel{eq:flowDataTermLocal2@cref}{{[equation][56][4]4.56}{99}}
1408
\newlabel{fig:flowST}{{4.11a}{100}{Subfigure 4 4.11a}{subfigure.4.11.1}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1409
\newlabel{sub@fig:flowST}{{(a)}{a}{Subfigure 4 4.11a\relax }{subfigure.4.11.1}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1410
\newlabel{fig:flowST@cref}{{[subfigure][1][4,11]4.11a}{100}}
1411
\newlabel{fig:flowTV}{{4.11b}{100}{Subfigure 4 4.11b}{subfigure.4.11.2}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1412
\newlabel{sub@fig:flowTV}{{(b)}{b}{Subfigure 4 4.11b\relax }{subfigure.4.11.2}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1413
\newlabel{fig:flowTV@cref}{{[subfigure][2][4,11]4.11b}{100}}
1414
\@writefile{lof}{\contentsline {figure}{\numberline {4.11}{\ignorespaces Resulting optical flows of the local models $E^l_{ST}$ ($\ensuremath  {\ensuremath  {\ensuremath  {{\bm  {d}}}}_{ST}^{\star }}$, eq.~(\ref  {eq:optFlowModelSTLocal})) and $E^l_{TV}$ ($\ensuremath  {\ensuremath  {\ensuremath  {{\bm  {d}}}}_{TV}^{\star }}$, eq.~(\ref  {eq:optFlowModelTVLocal})). We can see that the structure tensor prior in the model $E^l_{ST}$ fails to isotropically smooth the optical flow $\ensuremath  {\ensuremath  {\ensuremath  {{\bm  {d}}}}_{ST}^{\star }}$ in the regions where the images $y_{tc}$ and $I_{vsc}$ are predominantly homogeneous. In these regions the TV model $E^l_{TV}$ excels due to the $L_1$ piecewise smoothing term in eq.~(\ref  {eq:TVSplit}). \relax }}{100}{figure.caption.32}}
1415
\newlabel{fig:multModalFlowResult}{{4.11}{100}{Resulting optical flows of the local models $E^l_{ST}$ ($\optimalflowST $, \eqref {eq:optFlowModelSTLocal}) and $E^l_{TV}$ ($\optimalflowTV $, \eqref {eq:optFlowModelTVLocal}). We can see that the structure tensor prior in the model $E^l_{ST}$ fails to isotropically smooth the optical flow $\optimalflowST $ in the regions where the images $y_{tc}$ and $I_{vsc}$ are predominantly homogeneous. In these regions the TV model $E^l_{TV}$ excels due to the $L_1$ piecewise smoothing term in \eqref {eq:TVSplit}. \relax }{figure.caption.32}{}}
1416
\newlabel{fig:multModalFlowResult@cref}{{[figure][11][4]4.11}{100}}
1417
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {$\ensuremath {\ensuremath {\ensuremath {{\bm {d}}}}_{ST}^{\star }}$}}}{100}{subfigure.11.1}}
1418
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$\ensuremath {\ensuremath {\ensuremath {{\bm {d}}}}_{TV}^{\star }}$}}}{100}{subfigure.11.2}}
1419
\newlabel{eq:viewAnglesEqual}{{4.57}{100}{Real Multimodal Optical Flow Data}{equation.4.7.57}{}}
1420
\newlabel{eq:viewAnglesEqual@cref}{{[equation][57][4]4.57}{100}}
1421
\newlabel{eq:trueOptScale}{{4.58}{100}{Real Multimodal Optical Flow Data}{equation.4.7.58}{}}
1422
\newlabel{eq:trueOptScale@cref}{{[equation][58][4]4.58}{100}}
175 by gerald.mwangi at gmx
reviewing everything 23
1423
\citation{WassermanAllStatistics}
230 by gerald.mwangi at gmx
work on modern noether3
1424
\newlabel{eq:scaleMin}{{4.59}{101}{Real Multimodal Optical Flow Data}{equation.4.7.59}{}}
1425
\newlabel{eq:scaleMin@cref}{{[equation][59][4]4.59}{101}}
1426
\newlabel{eq:EdataScaleMin}{{4.60}{101}{Real Multimodal Optical Flow Data}{equation.4.7.60}{}}
1427
\newlabel{eq:EdataScaleMin@cref}{{[equation][60][4]4.60}{101}}
1428
\newlabel{eq:localRelation2}{{4.61}{101}{Real Multimodal Optical Flow Data}{equation.4.7.61}{}}
1429
\newlabel{eq:localRelation2@cref}{{[equation][61][4]4.61}{101}}
1430
\newlabel{eq:optFlowModelLocalST}{{4.62}{101}{Real Multimodal Optical Flow Data}{equation.4.7.62}{}}
1431
\newlabel{eq:optFlowModelLocalST@cref}{{[equation][62][4]4.62}{101}}
1432
\newlabel{eq:optFlowModelLocalTV}{{4.63}{101}{Real Multimodal Optical Flow Data}{equation.4.7.63}{}}
1433
\newlabel{eq:optFlowModelLocalTV@cref}{{[equation][63][4]4.63}{101}}
1434
\@writefile{brf}{\backcite{WassermanAllStatistics}{{101}{4.7.5}{equation.4.7.63}}}
1435
\newlabel{fig:chiSqNoFlow}{{4.12a}{102}{Subfigure 4 4.12a}{subfigure.4.12.1}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1436
\newlabel{sub@fig:chiSqNoFlow}{{(a)}{a}{Subfigure 4 4.12a\relax }{subfigure.4.12.1}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1437
\newlabel{fig:chiSqNoFlow@cref}{{[subfigure][1][4,12]4.12a}{102}}
1438
\newlabel{fig:chiSqSTFlow}{{4.12b}{102}{Subfigure 4 4.12b}{subfigure.4.12.2}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1439
\newlabel{sub@fig:chiSqSTFlow}{{(b)}{b}{Subfigure 4 4.12b\relax }{subfigure.4.12.2}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1440
\newlabel{fig:chiSqSTFlow@cref}{{[subfigure][2][4,12]4.12b}{102}}
1441
\newlabel{fig:chiSqTVFlow}{{4.12c}{102}{Subfigure 4 4.12c}{subfigure.4.12.3}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1442
\newlabel{sub@fig:chiSqTVFlow}{{(c)}{c}{Subfigure 4 4.12c\relax }{subfigure.4.12.3}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1443
\newlabel{fig:chiSqTVFlow@cref}{{[subfigure][3][4,12]4.12c}{102}}
1444
\@writefile{lof}{\contentsline {figure}{\numberline {4.12}{\ignorespaces Comparison of the p-values (eq.~(\ref  {eq:pearsonPValue})) for the hypotheses (eq.~(\ref  {eq:linConstraint})) $H_{\mathaccentV {hat}05E{\ensuremath  {\ensuremath  {{\bm  {d}}}}}=\ensuremath  {{\bm  {0}}}}$ (\cref  {fig:chiSqNoFlow}), $H_{\mathaccentV {hat}05E{\ensuremath  {\ensuremath  {{\bm  {d}}}}}=\ensuremath  {\ensuremath  {\ensuremath  {{\bm  {d}}}}_{ST}^{\star }}}$ (\cref  {fig:chiSqSTFlow}) and $H_{\mathaccentV {hat}05E{\ensuremath  {\ensuremath  {{\bm  {d}}}}}=\ensuremath  {\ensuremath  {\ensuremath  {{\bm  {d}}}}_{TV}^{\star }}}$ (\cref  {fig:chiSqTVFlow}). The p-values where computed for windows $\mathcal  {A}_{\ensuremath  {\ensuremath  {{\bm  {x}}}}_0}$ around each pixel $\ensuremath  {\ensuremath  {{\bm  {x}}}}_0\in \Omega $ and plotted over the binned values of the gradient $\nabla y$. All three diagrams show high p-values for gradients $\nabla y\approx 0$ indicating that the structureless areas in the data in \cref  {fig:multiModalTCVSC2} obey the linear relation in eq.~(\ref  {eq:linConstraint}) regardless of the optical flow $\mathaccentV {hat}05E{\ensuremath  {\ensuremath  {{\bm  {d}}}}}$. For higher values of the gradient $\nabla y$ the hypothesis $H_{\mathaccentV {hat}05E{\ensuremath  {\ensuremath  {{\bm  {d}}}}}=\ensuremath  {{\bm  {0}}}}$ in \cref  {fig:chiSqNoFlow} fails as expected since the p-values tend to zero. The p-values at higher gradients for the hypotheses $H_{\mathaccentV {hat}05E{\ensuremath  {\ensuremath  {{\bm  {d}}}}}=\ensuremath  {\ensuremath  {\ensuremath  {{\bm  {d}}}}_{ST}^{\star }}}$ (\cref  {fig:chiSqSTFlow}) and $H_{\mathaccentV {hat}05E{\ensuremath  {\ensuremath  {{\bm  {d}}}}}=\ensuremath  {\ensuremath  {\ensuremath  {{\bm  {d}}}}_{TV}^{\star }}}$ (\cref  {fig:chiSqTVFlow}) are significantly higher then for $H_{\mathaccentV {hat}05E{\ensuremath  {\ensuremath  {{\bm  {d}}}}}=\ensuremath  {{\bm  {0}}}}$ with $H_{\mathaccentV {hat}05E{\ensuremath  {\ensuremath  {{\bm  {d}}}}}=\ensuremath  {\ensuremath  {\ensuremath  {{\bm  {d}}}}_{TV}^{\star }}}$ having the highest p-values meaning that the total variation model $E^l_{TV}$ in eq.~(\ref  {eq:optFlowModelTVLocal}) best fulfills the linearity hypothesis in eq.~(\ref  {eq:linConstraint}). \relax }}{102}{figure.caption.33}}
1445
\newlabel{fig:chiSqPValue}{{4.12}{102}{Comparison of the p-values (\eqref {eq:pearsonPValue}) for the hypotheses (\eqref {eq:linConstraint}) $H_{\hat {\vd }=\vector {0}}$ (\figref {fig:chiSqNoFlow}), $H_{\hat {\vd }=\optimalflowST }$ (\figref {fig:chiSqSTFlow}) and $H_{\hat {\vd }=\optimalflowTV }$ (\figref {fig:chiSqTVFlow}). The p-values where computed for windows $\mathcal {A}_{\vx _0}$ around each pixel $\vx _0\in \Omega $ and plotted over the binned values of the gradient $\nabla y$. All three diagrams show high p-values for gradients $\nabla y\approx 0$ indicating that the structureless areas in the data in \figref {fig:multiModalTCVSC2} obey the linear relation in \eqref {eq:linConstraint} regardless of the optical flow $\hat {\vd }$. For higher values of the gradient $\nabla y$ the hypothesis $H_{\hat {\vd }=\vector {0}}$ in \figref {fig:chiSqNoFlow} fails as expected since the p-values tend to zero. The p-values at higher gradients for the hypotheses $H_{\hat {\vd }=\optimalflowST }$ (\figref {fig:chiSqSTFlow}) and $H_{\hat {\vd }=\optimalflowTV }$ (\figref {fig:chiSqTVFlow}) are significantly higher then for $H_{\hat {\vd }=\vector {0}}$ with $H_{\hat {\vd }=\optimalflowTV }$ having the highest p-values meaning that the total variation model $E^l_{TV}$ in \eqref {eq:optFlowModelTVLocal} best fulfills the linearity hypothesis in \eqref {eq:linConstraint}. \relax }{figure.caption.33}{}}
1446
\newlabel{fig:chiSqPValue@cref}{{[figure][12][4]4.12}{102}}
1447
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{102}{subfigure.12.1}}
1448
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{102}{subfigure.12.2}}
1449
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{102}{subfigure.12.3}}
1450
\newlabel{eq:chiSqV}{{4.64}{102}{Pearson's $\chi ^{2}$ statistic}{equation.4.7.64}{}}
1451
\newlabel{eq:chiSqV@cref}{{[equation][64][4]4.64}{102}}
1452
\newlabel{eq:pearsonCDF}{{4.65}{102}{Pearson's $\chi ^{2}$ statistic}{equation.4.7.65}{}}
1453
\newlabel{eq:pearsonCDF@cref}{{[equation][65][4]4.65}{102}}
1454
\newlabel{eq:pearsonPValue}{{4.66}{103}{Pearson's $\chi ^{2}$ statistic}{equation.4.7.66}{}}
1455
\newlabel{eq:pearsonPValue@cref}{{[equation][66][4]4.66}{103}}
1456
\newlabel{eq:chiSqVObs}{{4.67}{103}{Pearson's $\chi ^{2}$ statistic}{equation.4.7.67}{}}
1457
\newlabel{eq:chiSqVObs@cref}{{[equation][67][4]4.67}{103}}
1458
\newlabel{eq:chiSqSatis}{{4.68}{103}{Pearson's $\chi ^{2}$ statistic}{equation.4.7.68}{}}
1459
\newlabel{eq:chiSqSatis@cref}{{[equation][68][4]4.68}{103}}
1460
\newlabel{eq:linConstraint}{{4.69}{103}{Pearson's $\chi ^{2}$ statistic}{equation.4.7.69}{}}
1461
\newlabel{eq:linConstraint@cref}{{[equation][69][4]4.69}{103}}
1462
\newlabel{eq:pearsonLocalObservation}{{4.70}{103}{Pearson's $\chi ^{2}$ statistic}{equation.4.7.70}{}}
1463
\newlabel{eq:pearsonLocalObservation@cref}{{[equation][70][4]4.70}{103}}
1464
\newlabel{fig:subfigEdevisroi-184-397-histo}{{4.13a}{104}{Subfigure 4 4.13a}{subfigure.4.13.1}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1465
\newlabel{sub@fig:subfigEdevisroi-184-397-histo}{{(a)}{a}{Subfigure 4 4.13a\relax }{subfigure.4.13.1}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1466
\newlabel{fig:subfigEdevisroi-184-397-histo@cref}{{[subfigure][1][4,13]4.13a}{104}}
1467
\newlabel{fig:subfigEdevisroi-184-397-im0}{{4.13b}{104}{Subfigure 4 4.13b}{subfigure.4.13.2}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1468
\newlabel{sub@fig:subfigEdevisroi-184-397-im0}{{(b)}{b}{Subfigure 4 4.13b\relax }{subfigure.4.13.2}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1469
\newlabel{fig:subfigEdevisroi-184-397-im0@cref}{{[subfigure][2][4,13]4.13b}{104}}
1470
\newlabel{fig:subfigEdevisroi-184-397-im0warped}{{4.13c}{104}{Subfigure 4 4.13c}{subfigure.4.13.3}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1471
\newlabel{sub@fig:subfigEdevisroi-184-397-im0warped}{{(c)}{c}{Subfigure 4 4.13c\relax }{subfigure.4.13.3}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1472
\newlabel{fig:subfigEdevisroi-184-397-im0warped@cref}{{[subfigure][3][4,13]4.13c}{104}}
1473
\newlabel{fig:subfigEdevisroi-184-397-thermo}{{4.13d}{104}{Subfigure 4 4.13d}{subfigure.4.13.4}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1474
\newlabel{sub@fig:subfigEdevisroi-184-397-thermo}{{(d)}{d}{Subfigure 4 4.13d\relax }{subfigure.4.13.4}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1475
\newlabel{fig:subfigEdevisroi-184-397-thermo@cref}{{[subfigure][4][4,13]4.13d}{104}}
1476
\newlabel{fig:subfigEdevisroiLone-184-397-histo}{{4.13e}{104}{Subfigure 4 4.13e}{subfigure.4.13.5}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1477
\newlabel{sub@fig:subfigEdevisroiLone-184-397-histo}{{(e)}{e}{Subfigure 4 4.13e\relax }{subfigure.4.13.5}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1478
\newlabel{fig:subfigEdevisroiLone-184-397-histo@cref}{{[subfigure][5][4,13]4.13e}{104}}
1479
\newlabel{fig:subfigEdevisroiLone-184-397-im0}{{4.13f}{104}{Subfigure 4 4.13f}{subfigure.4.13.6}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1480
\newlabel{sub@fig:subfigEdevisroiLone-184-397-im0}{{(f)}{f}{Subfigure 4 4.13f\relax }{subfigure.4.13.6}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1481
\newlabel{fig:subfigEdevisroiLone-184-397-im0@cref}{{[subfigure][6][4,13]4.13f}{104}}
1482
\newlabel{fig:subfigEdevisroiLone-184-397-im0warped}{{4.13g}{104}{Subfigure 4 4.13g}{subfigure.4.13.7}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1483
\newlabel{sub@fig:subfigEdevisroiLone-184-397-im0warped}{{(g)}{g}{Subfigure 4 4.13g\relax }{subfigure.4.13.7}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1484
\newlabel{fig:subfigEdevisroiLone-184-397-im0warped@cref}{{[subfigure][7][4,13]4.13g}{104}}
1485
\newlabel{fig:subfigEdevisroiLone-184-397-thermo}{{4.13h}{104}{Subfigure 4 4.13h}{subfigure.4.13.8}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1486
\newlabel{sub@fig:subfigEdevisroiLone-184-397-thermo}{{(h)}{h}{Subfigure 4 4.13h\relax }{subfigure.4.13.8}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1487
\newlabel{fig:subfigEdevisroiLone-184-397-thermo@cref}{{[subfigure][8][4,13]4.13h}{104}}
1488
\@writefile{lof}{\contentsline {figure}{\numberline {4.13}{\ignorespaces Comparison of region of interests (ROI) of size $a^\star =21$. Figures \ref  {fig:subfigEdevisroi-184-397-im0} and \ref  {fig:subfigEdevisroiLone-184-397-im0} show a ROI of $I_{vsc}$ and \ref  {fig:subfigEdevisroi-184-397-thermo} and \ref  {fig:subfigEdevisroiLone-184-397-thermo} the corresponding ROI of the image $y_{tc}$. Figures \ref  {fig:subfigEdevisroi-184-397-im0warped} and \ref  {fig:subfigEdevisroiLone-184-397-im0warped} show \cref  {fig:subfigEdevisroi-184-397-im0} warped by the flows $\ensuremath  {\ensuremath  {\ensuremath  {{\bm  {d}}}}_{ST}^{\star }}$ and $\ensuremath  {\ensuremath  {\ensuremath  {{\bm  {d}}}}_{TV}^{\star }}$. \ref  {fig:subfigEdevisroi-184-397-histo} and \ref  {fig:subfigEdevisroiLone-184-397-histo} show the histograms between \ref  {fig:subfigEdevisroi-184-397-thermo} and the filtered roi's $\setbox \z@ \hbox {\frozen@everymath \@emptytoks \mathsurround \z@ $\textstyle I$}\mathaccent "0365{I}_{vsc,\ensuremath  {\ensuremath  {{\bm  {d}}}}}=W_{\ensuremath  {\sigma ^{sc,\star }}}\star I_{vsc,\ensuremath  {\ensuremath  {{\bm  {d}}}}}$ \relax }}{104}{figure.caption.35}}
1489
\newlabel{fig:multimodalRoi}{{4.13}{104}{Comparison of region of interests (ROI) of size $a^\star =21$. Figures \ref {fig:subfigEdevisroi-184-397-im0} and \ref {fig:subfigEdevisroiLone-184-397-im0} show a ROI of $I_{vsc}$ and \ref {fig:subfigEdevisroi-184-397-thermo} and \ref {fig:subfigEdevisroiLone-184-397-thermo} the corresponding ROI of the image $y_{tc}$. Figures \ref {fig:subfigEdevisroi-184-397-im0warped} and \ref {fig:subfigEdevisroiLone-184-397-im0warped} show \figref {fig:subfigEdevisroi-184-397-im0} warped by the flows $\optimalflowST $ and $\optimalflowTV $. \ref {fig:subfigEdevisroi-184-397-histo} and \ref {fig:subfigEdevisroiLone-184-397-histo} show the histograms between \ref {fig:subfigEdevisroi-184-397-thermo} and the filtered roi's $\tilde {I}_{vsc,\vd }=W_{\optscalediff }\star I_{vsc,\vd }$ \relax }{figure.caption.35}{}}
1490
\newlabel{fig:multimodalRoi@cref}{{[figure][13][4]4.13}{104}}
1491
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{104}{subfigure.13.1}}
1492
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{104}{subfigure.13.2}}
1493
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$\ensuremath {\ensuremath {{\bm {d}}}}=\ensuremath {\ensuremath {\ensuremath {{\bm {d}}}}_{ST}^{\star }}$}}}{104}{subfigure.13.3}}
1494
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{104}{subfigure.13.4}}
1495
\@writefile{lof}{\contentsline {subfigure}{\numberline{(e)}{\ignorespaces {}}}{104}{subfigure.13.5}}
1496
\@writefile{lof}{\contentsline {subfigure}{\numberline{(f)}{\ignorespaces {}}}{104}{subfigure.13.6}}
1497
\@writefile{lof}{\contentsline {subfigure}{\numberline{(g)}{\ignorespaces {$\ensuremath {\ensuremath {{\bm {d}}}}=\ensuremath {\ensuremath {\ensuremath {{\bm {d}}}}_{TV}^{\star }}$}}}{104}{subfigure.13.7}}
1498
\@writefile{lof}{\contentsline {subfigure}{\numberline{(h)}{\ignorespaces {}}}{104}{subfigure.13.8}}
1499
\newlabel{fig:QregEigVal3}{{4.14a}{105}{Subfigure 4 4.14a}{subfigure.4.14.1}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1500
\newlabel{sub@fig:QregEigVal3}{{(a)}{a}{Subfigure 4 4.14a\relax }{subfigure.4.14.1}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1501
\newlabel{fig:QregEigVal3@cref}{{[subfigure][1][4,14]4.14a}{105}}
1502
\newlabel{fig:QregEigVal6}{{4.14b}{105}{Subfigure 4 4.14b}{subfigure.4.14.2}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1503
\newlabel{sub@fig:QregEigVal6}{{(b)}{b}{Subfigure 4 4.14b\relax }{subfigure.4.14.2}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1504
\newlabel{fig:QregEigVal6@cref}{{[subfigure][2][4,14]4.14b}{105}}
1505
\newlabel{fig:QregEigVal9}{{4.14c}{105}{Subfigure 4 4.14c}{subfigure.4.14.3}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1506
\newlabel{sub@fig:QregEigVal9}{{(c)}{c}{Subfigure 4 4.14c\relax }{subfigure.4.14.3}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1507
\newlabel{fig:QregEigVal9@cref}{{[subfigure][3][4,14]4.14c}{105}}
1508
\@writefile{lof}{\contentsline {figure}{\numberline {4.14}{\ignorespaces The largest eigenvalue $\sigma ^k_Q$ of $Q^{reg}$ plotted over the iterations $k$ for three values of $\lambda _2$ in eq.~(\ref  {eq:structtensPriorStable}). Initially we have $\sigma ^k_Q\approx 8\lambda _2$ which is the eigenvalue of the $L_2$ term in eq.~(\ref  {eq:structtensPriorStable}). For $\lambda _2=10^{-3}$ we see that $\sigma ^k_Q$ slowly rises for increasing iterations $k$ until at $k\approx 40$ a sudden jump occurs and $\sigma ^k_Q$ begins to decrease. This is the regime where the structure tensor prior $E^{prior}_{ST}$ begins to act an-isotropically. For smaller values of $\lambda _2$ (figures \ref  {fig:QregEigVal6} and \ref  {fig:QregEigVal9}) the jump occurs sooner indicating quicker an-isotropic behavior of $E^{prior}_{ST}$. \relax }}{105}{figure.caption.36}}
1509
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {$\lambda _2=10^{-3}$}}}{105}{subfigure.14.1}}
1510
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$\lambda _2=10^{-6}$}}}{105}{subfigure.14.2}}
1511
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$\lambda _2=10^{-9}$}}}{105}{subfigure.14.3}}
1512
\@writefile{toc}{\contentsline {subsection}{\numberline {4.7.6}Eigenvalue analysis and the stabilization parameter $\lambda _2$}{105}{subsection.4.7.6}}
1513
\newlabel{sec:EigenValueSTPrior}{{4.7.6}{105}{Eigenvalue analysis and the stabilization parameter $\lambda _2$}{subsection.4.7.6}{}}
1514
\newlabel{sec:EigenValueSTPrior@cref}{{[subsection][6][4,7]4.7.6}{105}}
165 by gerald.mwangi at gmx
reviewing everything 15
1515
\citation{Bigun1987,BigunBook}
230 by gerald.mwangi at gmx
work on modern noether3
1516
\newlabel{fig:bnorm3}{{4.15a}{106}{Subfigure 4 4.15a}{subfigure.4.15.1}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1517
\newlabel{sub@fig:bnorm3}{{(a)}{a}{Subfigure 4 4.15a\relax }{subfigure.4.15.1}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1518
\newlabel{fig:bnorm3@cref}{{[subfigure][1][4,15]4.15a}{106}}
1519
\newlabel{fig:bnorm6}{{4.15b}{106}{Subfigure 4 4.15b}{subfigure.4.15.2}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1520
\newlabel{sub@fig:bnorm6}{{(b)}{b}{Subfigure 4 4.15b\relax }{subfigure.4.15.2}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1521
\newlabel{fig:bnorm6@cref}{{[subfigure][2][4,15]4.15b}{106}}
1522
\newlabel{fig:bnorm9}{{4.15c}{106}{Subfigure 4 4.15c}{subfigure.4.15.3}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1523
\newlabel{sub@fig:bnorm9}{{(c)}{c}{Subfigure 4 4.15c\relax }{subfigure.4.15.3}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1524
\newlabel{fig:bnorm9@cref}{{[subfigure][3][4,15]4.15c}{106}}
1525
\@writefile{lof}{\contentsline {figure}{\numberline {4.15}{\ignorespaces The residual vector $\ensuremath  {{\bm  {b}}}$ plotted over the iterations $k$ for three values of $\lambda _2$ in eq.~(\ref  {eq:structtensPriorStable}). While the norm of $\ensuremath  {{\bm  {b}}}$ is approximately equal for $\lambda _2=10^{-3}$ and $\lambda _2=10^{-6}$, it is an order of magnitude higher for $\lambda _2=10^{-9}$. This indicates a numerical instability of the MOF algorithm for $\lambda _2=10^{-9}$ \relax }}{106}{figure.caption.37}}
1526
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {$\lambda _2=10^{-3}$}}}{106}{subfigure.15.1}}
1527
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$\lambda _2=10^{-6}$}}}{106}{subfigure.15.2}}
1528
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$\lambda _2=10^{-9}$}}}{106}{subfigure.15.3}}
1529
\@writefile{toc}{\contentsline {subsection}{\numberline {4.7.7}Summary}{106}{subsection.4.7.7}}
1530
\newlabel{sec:OptFlowsummary}{{4.7.7}{106}{Summary}{subsection.4.7.7}{}}
1531
\newlabel{sec:OptFlowsummary@cref}{{[subsection][7][4,7]4.7.7}{106}}
1532
\@writefile{brf}{\backcite{Bigun1987}{{106}{4.7.7}{subsection.4.7.7}}}
1533
\@writefile{brf}{\backcite{BigunBook}{{106}{4.7.7}{subsection.4.7.7}}}
1534
\newlabel{eq:summaryGlobalLin}{{4.71}{106}{Summary}{equation.4.7.71}{}}
1535
\newlabel{eq:summaryGlobalLin@cref}{{[equation][71][4]4.71}{106}}
163 by gerald.mwangi at gmx
reviewing everything 13
1536
\citation{Middleburry}
230 by gerald.mwangi at gmx
work on modern noether3
1537
\newlabel{eq:sumoptFlowModelST}{{4.72}{107}{Summary}{equation.4.7.72}{}}
1538
\newlabel{eq:sumoptFlowModelST@cref}{{[equation][72][4]4.72}{107}}
1539
\newlabel{eq:sumoptFlowModelTV}{{4.73}{107}{Summary}{equation.4.7.73}{}}
1540
\newlabel{eq:sumoptFlowModelTV@cref}{{[equation][73][4]4.73}{107}}
1541
\@writefile{brf}{\backcite{Middleburry}{{107}{4.7.7}{equation.4.7.73}}}
1542
\newlabel{eq:summaryLocalRelation}{{4.74}{108}{Summary}{equation.4.7.74}{}}
1543
\newlabel{eq:summaryLocalRelation@cref}{{[equation][74][4]4.74}{108}}
1544
\newlabel{eq:sumoptFlowModelSTLocal}{{4.75}{108}{Summary}{equation.4.7.75}{}}
1545
\newlabel{eq:sumoptFlowModelSTLocal@cref}{{[equation][75][4]4.75}{108}}
1546
\newlabel{eq:sumoptFlowModelTVLocal}{{4.76}{108}{Summary}{equation.4.7.76}{}}
1547
\newlabel{eq:sumoptFlowModelTVLocal@cref}{{[equation][76][4]4.76}{108}}
1548
\@writefile{toc}{\contentsline {chapter}{\numberline {5}The Extended Least Action Algorithm}{110}{chapter.5}}
59 by gerald.mwangi at gmx
Started generalized newton chapter
1549
\@writefile{lof}{\addvspace {10\p@ }}
1550
\@writefile{lot}{\addvspace {10\p@ }}
1551
\@writefile{lol}{\addvspace {10\p@ }}
1552
\@writefile{loa}{\addvspace {10\p@ }}
230 by gerald.mwangi at gmx
work on modern noether3
1553
\newlabel{chap:GeneralizedNewtonAlgorithm}{{5}{110}{The Extended Least Action Algorithm}{chapter.5}{}}
1554
\newlabel{chap:GeneralizedNewtonAlgorithm@cref}{{[chapter][5][]5}{110}}
1555
\newlabel{eq:totEnergyGenNewton}{{5.1}{110}{The Extended Least Action Algorithm}{equation.5.0.1}{}}
1556
\newlabel{eq:totEnergyGenNewton@cref}{{[equation][1][5]5.1}{110}}
1557
\newlabel{eq:eulerLagrangeGRF2}{{5.2}{110}{The Extended Least Action Algorithm}{equation.5.0.2}{}}
1558
\newlabel{eq:eulerLagrangeGRF2@cref}{{[equation][2][5]5.2}{110}}
1559
\newlabel{eq:pureSpacialSymmetryCanonMomentum2}{{5.4}{110}{The Extended Least Action Algorithm}{equation.5.0.4}{}}
1560
\newlabel{eq:pureSpacialSymmetryCanonMomentum2@cref}{{[equation][4][5]5.4}{110}}
1561
\newlabel{fig:GNAMotivCurvImage}{{5.1a}{111}{Subfigure 5 5.1a}{subfigure.5.1.1}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1562
\newlabel{sub@fig:GNAMotivCurvImage}{{(a)}{a}{Subfigure 5 5.1a\relax }{subfigure.5.1.1}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1563
\newlabel{fig:GNAMotivCurvImage@cref}{{[subfigure][1][5,1]5.1a}{111}}
1564
\newlabel{fig:GNAMotivCoordFrame}{{5.1b}{111}{Subfigure 5 5.1b}{subfigure.5.1.2}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1565
\newlabel{sub@fig:GNAMotivCoordFrame}{{(b)}{b}{Subfigure 5 5.1b\relax }{subfigure.5.1.2}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1566
\newlabel{fig:GNAMotivCoordFrame@cref}{{[subfigure][2][5,1]5.1b}{111}}
1567
\newlabel{fig:GNAMotivCurvImageStraight}{{5.1c}{111}{Subfigure 5 5.1c}{subfigure.5.1.3}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1568
\newlabel{sub@fig:GNAMotivCurvImageStraight}{{(c)}{c}{Subfigure 5 5.1c\relax }{subfigure.5.1.3}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1569
\newlabel{fig:GNAMotivCurvImageStraight@cref}{{[subfigure][3][5,1]5.1c}{111}}
1570
\newlabel{fig:GNAMotivCoordFrameStraight}{{5.1d}{111}{Subfigure 5 5.1d}{subfigure.5.1.4}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1571
\newlabel{sub@fig:GNAMotivCoordFrameStraight}{{(d)}{d}{Subfigure 5 5.1d\relax }{subfigure.5.1.4}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1572
\newlabel{fig:GNAMotivCoordFrameStraight@cref}{{[subfigure][4][5,1]5.1d}{111}}
1573
\@writefile{lof}{\contentsline {figure}{\numberline {5.1}{\ignorespaces \Cref  {fig:GNAMotivCurvImage} shows an image $\phi _0$ with parabolic level-sets according to eq.~(\ref  {eq:GNAMotivLevelSet}). The white line indicates the level-sets $S_{\phi _0,c}$ with $39<c<43$. In \cref  {fig:GNAMotivCoordFrame} the coordinate frame $\Omega _0$ is shown together with the level-sets $S_{\phi _0,c}$. \Cref  {fig:GNAMotivCurvImageStraight} shows the warped image $\phi _0(\ensuremath  {T^B_t}\circ \ensuremath  {\ensuremath  {{\bm  {x}}}})$ and \cref  {fig:GNAMotivCoordFrameStraight} the transformed coordinate frame $\setbox \z@ \hbox {\frozen@everymath \@emptytoks \mathsurround \z@ $\textstyle \Omega $}\mathaccent "0365{\Omega }=\ensuremath  {T^B_t}\circ \Omega _0$. $\setbox \z@ \hbox {\frozen@everymath \@emptytoks \mathsurround \z@ $\textstyle \Omega $}\mathaccent "0365{\Omega }$ has been deformed by the algorithm in eq.~(\ref  {eq:MotivSimpleAlgo}) in such a way that the level-set $S_{\phi _0,c}$ (indicated by the black line) appears to be straight and hence it is identified with the linear domain $\Omega ^{\epsilon }$ of the TV prior $E^{prior}_{TV}\left (\nabla \phi \right )$. \relax }}{111}{figure.caption.38}}
1574
\newlabel{fig:GNAMotivCurvImagesWithLevelSet}{{5.1}{111}{\Figref {fig:GNAMotivCurvImage} shows an image $\phi _0$ with parabolic level-sets according to \eqref {eq:GNAMotivLevelSet}. The white line indicates the level-sets $S_{\phi _0,c}$ with $39<c<43$. In \figref {fig:GNAMotivCoordFrame} the coordinate frame $\Omega _0$ is shown together with the level-sets $S_{\phi _0,c}$. \Figref {fig:GNAMotivCurvImageStraight} shows the warped image $\phi _0(\omegadeform \circ \vx )$ and \figref {fig:GNAMotivCoordFrameStraight} the transformed coordinate frame $\tilde {\Omega }=\omegadeform \circ \Omega _0$. $\tilde {\Omega }$ has been deformed by the algorithm in \eqref {eq:MotivSimpleAlgo} in such a way that the level-set $S_{\phi _0,c}$ (indicated by the black line) appears to be straight and hence it is identified with the linear domain $\Omega ^{\epsilon }$ of the TV prior $E^{prior}_{TV}\brackets {\nabla \phi }$. \relax }{figure.caption.38}{}}
1575
\newlabel{fig:GNAMotivCurvImagesWithLevelSet@cref}{{[figure][1][5]5.1}{111}}
1576
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {$\phi _0(\ensuremath {\ensuremath {{\bm {x}}}})$}}}{111}{subfigure.1.1}}
1577
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$\Omega _0$}}}{111}{subfigure.1.2}}
1578
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$\setbox \z@ \hbox {\frozen@everymath \@emptytoks \mathsurround \z@ $\textstyle \phi $}\mathaccent "0365{\phi }(\ensuremath {\ensuremath {{\bm {x}}}})=\phi _0(\ensuremath {T^B_t}\circ \ensuremath {\ensuremath {{\bm {x}}}})$}}}{111}{subfigure.1.3}}
1579
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {$\Omega ^{\epsilon }=\ensuremath {T^B_t}\circ \Omega _0$}}}{111}{subfigure.1.4}}
1580
\newlabel{sec:GNABasicIdea}{{5}{111}{The Basic Idea}{section*.39}{}}
1581
\newlabel{sec:GNABasicIdea@cref}{{[chapter][5][]5}{111}}
1582
\newlabel{eq:MotivBendingFlow}{{5.6}{112}{The Basic Idea}{equation.5.0.6}{}}
1583
\newlabel{eq:MotivBendingFlow@cref}{{[equation][6][5]5.6}{112}}
1584
\newlabel{eq:MotivBendingFlowIntegration}{{5.7}{112}{The Basic Idea}{equation.5.0.7}{}}
1585
\newlabel{eq:MotivBendingFlowIntegration@cref}{{[equation][7][5]5.7}{112}}
1586
\newlabel{eq:GNAMotivLevelSet}{{5.9}{112}{The Basic Idea}{equation.5.0.9}{}}
1587
\newlabel{eq:GNAMotivLevelSet@cref}{{[equation][9][5]5.9}{112}}
134 by gerald.mwangi at gmx
Worked on section 4) 23
1588
\citation{FieguthStatImProc}
230 by gerald.mwangi at gmx
work on modern noether3
1589
\newlabel{eq:MotivSimpleAlgo}{{5.10}{113}{The Basic Idea}{equation.5.0.10}{}}
1590
\newlabel{eq:MotivSimpleAlgo@cref}{{[equation][10][5]5.10}{113}}
1591
\@writefile{toc}{\contentsline {subsection}{\numberline {5.0.8}Newtonian Minimization}{113}{subsection.5.0.8}}
1592
\@writefile{brf}{\backcite{FieguthStatImProc}{{113}{5.0.8}{subsection.5.0.8}}}
1593
\newlabel{eq:eulerFlow}{{5.11}{113}{Newtonian Minimization}{equation.5.0.11}{}}
1594
\newlabel{eq:eulerFlow@cref}{{[equation][11][5]5.11}{113}}
1595
\newlabel{eq:steepestDescentInitialUpdate}{{5.13}{113}{Newtonian Minimization}{equation.5.0.13}{}}
1596
\newlabel{eq:steepestDescentInitialUpdate@cref}{{[equation][13][5]5.13}{113}}
1597
\newlabel{eq:steepestDescentInitialUpdate2}{{5.16}{114}{Newtonian Minimization}{equation.5.0.16}{}}
1598
\newlabel{eq:steepestDescentInitialUpdate2@cref}{{[equation][16][5]5.16}{114}}
1599
\@writefile{toc}{\contentsline {subsection}{\numberline {5.0.9}The dynamics of the level-sets $S$}{114}{subsection.5.0.9}}
1600
\newlabel{eq:noetherVariationChap4}{{5.18}{114}{The dynamics of the level-sets $S$}{equation.5.0.18}{}}
1601
\newlabel{eq:noetherVariationChap4@cref}{{[equation][18][5]5.18}{114}}
1602
\newlabel{eq:noetherPureIntensTransChap4}{{5.19}{114}{The dynamics of the level-sets $S$}{equation.5.0.19}{}}
1603
\newlabel{eq:noetherPureIntensTransChap4@cref}{{[equation][19][5]5.19}{114}}
1604
\newlabel{eq:noetherVariationPureSpacial}{{5.20}{114}{The dynamics of the level-sets $S$}{equation.5.0.20}{}}
1605
\newlabel{eq:noetherVariationPureSpacial@cref}{{[equation][20][5]5.20}{114}}
1606
\@writefile{lof}{\contentsline {figure}{\numberline {5.2}{\ignorespaces This figure shows a transformation of the level-set $S$ to $S^\prime $ along the vector $\ensuremath  {{\bm  {W}}}_m(\ensuremath  {\ensuremath  {{\bm  {x}}}})$. The region $\mathcal  {A}\subset \Omega $ is the region a section of $S$ traverses as it is shifted along $\ensuremath  {{\bm  {W}}}_m$ to the end position $S^\prime $. If the divergence of $\ensuremath  {{\bm  {W}}}_m$ vanishes, this means that the incoming flux of $\ensuremath  {{\bm  {W}}}_m$ equals the outgoing flux (both indicated by the red arrows), $\ensuremath  {{\bm  {W}}}_m\delimiter "026A30C _{S}=\ensuremath  {{\bm  {W}}}_m\delimiter "026A30C _{S^\prime }$\relax }}{115}{figure.caption.41}}
1607
\newlabel{fig:divergenceLevelSetShift}{{5.2}{115}{This figure shows a transformation of the level-set $S$ to $S^\prime $ along the vector $\vector {W}_m(\vx )$. The region $\mathcal {A}\subset \Omega $ is the region a section of $S$ traverses as it is shifted along $\vector {W}_m$ to the end position $S^\prime $. If the divergence of $\vector {W}_m$ vanishes, this means that the incoming flux of $\vector {W}_m$ equals the outgoing flux (both indicated by the red arrows), $\vector {W}_m\vert _{S}=\vector {W}_m\vert _{S^\prime }$\relax }{figure.caption.41}{}}
1608
\newlabel{fig:divergenceLevelSetShift@cref}{{[figure][2][5]5.2}{115}}
1609
\newlabel{eq:divergenceSource}{{5.21}{115}{The dynamics of the level-sets $S$}{equation.5.0.21}{}}
1610
\newlabel{eq:divergenceSource@cref}{{[equation][21][5]5.21}{115}}
1611
\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Dynamics of the normal vector $\ensuremath  {{\bm  {n}}}_S$}{115}{section*.40}}
1612
\newlabel{eq:divergenceSource2}{{5.22}{115}{Dynamics of the normal vector $\vector {n}_S$}{equation.5.0.22}{}}
1613
\newlabel{eq:divergenceSource2@cref}{{[equation][22][5]5.22}{115}}
1614
\newlabel{eq:gaussLaw}{{5.23}{115}{Dynamics of the normal vector $\vector {n}_S$}{equation.5.0.23}{}}
1615
\newlabel{eq:gaussLaw@cref}{{[equation][23][5]5.23}{115}}
1616
\newlabel{eq:gaussLaw2}{{5.24}{115}{Dynamics of the normal vector $\vector {n}_S$}{equation.5.0.24}{}}
1617
\newlabel{eq:gaussLaw2@cref}{{[equation][24][5]5.24}{115}}
1618
\newlabel{eq:gaussLawSurface}{{5.25}{116}{Dynamics of the normal vector $\vector {n}_S$}{equation.5.0.25}{}}
1619
\newlabel{eq:gaussLawSurface@cref}{{[equation][25][5]5.25}{116}}
1620
\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Dynamics of the tangential vector to $S$}{116}{section*.42}}
1621
\newlabel{sec:dynamicsTangential}{{5.0.9}{116}{Dynamics of the tangential vector to $S$}{section*.42}{}}
1622
\newlabel{sec:dynamicsTangential@cref}{{[subsection][9][5,0]5.0.9}{116}}
1623
\newlabel{eq:BlevelSet}{{5.27}{116}{Dynamics of the tangential vector to $S$}{equation.5.0.27}{}}
1624
\newlabel{eq:BlevelSet@cref}{{[equation][27][5]5.27}{116}}
1625
\newlabel{eq:newtonLevelSetMotivation}{{5.28}{116}{Dynamics of the tangential vector to $S$}{equation.5.0.28}{}}
1626
\newlabel{eq:newtonLevelSetMotivation@cref}{{[equation][28][5]5.28}{116}}
1627
\newlabel{eq:newtonLevelSetEnergyInvariant}{{5.29}{116}{Dynamics of the tangential vector to $S$}{equation.5.0.29}{}}
1628
\newlabel{eq:newtonLevelSetEnergyInvariant@cref}{{[equation][29][5]5.29}{116}}
1629
\newlabel{fig:proofBendingEnergy}{{5.3a}{117}{Subfigure 5 5.3a}{subfigure.5.3.1}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1630
\newlabel{sub@fig:proofBendingEnergy}{{(a)}{a}{Subfigure 5 5.3a\relax }{subfigure.5.3.1}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1631
\newlabel{fig:proofBendingEnergy@cref}{{[subfigure][1][5,3]5.3a}{117}}
1632
\@writefile{lof}{\contentsline {figure}{\numberline {5.3}{\ignorespaces \Cref  {fig:proofBendingEnergy} shows an image $\phi $ in which a group of level-sets with $47<\phi <53$ (indicated by the white area) all converge into one point $P$ at the top of the image. The line sections $S_{1,2}$ and $T_{1,2}$ enclose the region $\mathcal  {R}_B$ in eq.~(\ref  {eq:divLevelSetB}) and eq.~(\ref  {eq:divLevelSetBT}). The normal vectors $\ensuremath  {{\bm  {n}}}_{S_{1,2}}$ of lines $S_{1,2}$ are orthogonal to $\ensuremath  {{\bm  {b}}}_S$, hence the corresponding line integrals on the right hand side of eq.~(\ref  {eq:divLevelSetB}) vanish. In contrast the normal vectors $\ensuremath  {{\bm  {n}}}_{T_{1,2}}$ of lines $T_{1,2}$ are parallel to $\ensuremath  {{\bm  {b}}}_S$ so that the corresponding line integrals on the right hand side of eq.~(\ref  {eq:divLevelSetB}) do not vanish \relax }}{117}{figure.caption.43}}
1633
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{117}{subfigure.3.1}}
1634
\newlabel{eq:divergenceSourceB}{{5.30}{117}{Dynamics of the tangential vector to $S$}{equation.5.0.30}{}}
1635
\newlabel{eq:divergenceSourceB@cref}{{[equation][30][5]5.30}{117}}
1636
\newlabel{eq:divBVanish}{{5.31}{117}{Dynamics of the tangential vector to $S$}{equation.5.0.31}{}}
1637
\newlabel{eq:divBVanish@cref}{{[equation][31][5]5.31}{117}}
1638
\newlabel{eq:divergenceFreeVectorsNewton}{{5.32}{117}{Dynamics of the tangential vector to $S$}{equation.5.0.32}{}}
1639
\newlabel{eq:divergenceFreeVectorsNewton@cref}{{[equation][32][5]5.32}{117}}
1640
\newlabel{eq:divergenceFreeVectorsNewton2}{{5.33}{117}{Dynamics of the tangential vector to $S$}{equation.5.0.33}{}}
1641
\newlabel{eq:divergenceFreeVectorsNewton2@cref}{{[equation][33][5]5.33}{117}}
1642
\newlabel{eq:divergenceFreeVectorsNewton3}{{5.34}{118}{Dynamics of the tangential vector to $S$}{equation.5.0.34}{}}
1643
\newlabel{eq:divergenceFreeVectorsNewton3@cref}{{[equation][34][5]5.34}{118}}
1644
\newlabel{eq:divLevelSetB}{{5.35}{118}{Dynamics of the tangential vector to $S$}{equation.5.0.35}{}}
1645
\newlabel{eq:divLevelSetB@cref}{{[equation][35][5]5.35}{118}}
1646
\newlabel{eq:bendingGauge}{{5.36}{118}{Dynamics of the tangential vector to $S$}{equation.5.0.36}{}}
1647
\newlabel{eq:bendingGauge@cref}{{[equation][36][5]5.36}{118}}
1648
\newlabel{eq:divLevelSetBT}{{5.37}{118}{Dynamics of the tangential vector to $S$}{equation.5.0.37}{}}
1649
\newlabel{eq:divLevelSetBT@cref}{{[equation][37][5]5.37}{118}}
1650
\newlabel{eq:divLevelSetBT2}{{5.38}{118}{Dynamics of the tangential vector to $S$}{equation.5.0.38}{}}
1651
\newlabel{eq:divLevelSetBT2@cref}{{[equation][38][5]5.38}{118}}
1652
\newlabel{eq:newtonLevelSetEnergyNonInvariant}{{5.39}{119}{Dynamics of the tangential vector to $S$}{equation.5.0.39}{}}
1653
\newlabel{eq:newtonLevelSetEnergyNonInvariant@cref}{{[equation][39][5]5.39}{119}}
1654
\newlabel{eq:flowMotivation}{{5.40}{119}{Dynamics of the tangential vector to $S$}{equation.5.0.40}{}}
1655
\newlabel{eq:flowMotivation@cref}{{[equation][40][5]5.40}{119}}
1656
\@writefile{toc}{\contentsline {section}{\numberline {5.1}The Extended Least Action Algorithm}{119}{section.5.1}}
1657
\newlabel{eq:noetherVariation3}{{5.43}{119}{The Extended Least Action Algorithm}{equation.5.1.43}{}}
1658
\newlabel{eq:noetherVariation3@cref}{{[equation][43][5]5.43}{119}}
1659
\newlabel{eq:eulerLagrange3}{{5.45}{120}{The Extended Least Action Algorithm}{equation.5.1.45}{}}
1660
\newlabel{eq:eulerLagrange3@cref}{{[equation][45][5]5.45}{120}}
1661
\newlabel{eq:pureSpacialSymmetry3}{{5.46}{120}{The Extended Least Action Algorithm}{equation.5.1.46}{}}
1662
\newlabel{eq:pureSpacialSymmetry3@cref}{{[equation][46][5]5.46}{120}}
1663
\newlabel{eq:firstOrderSpacialUpdate}{{5.49}{120}{The Extended Least Action Algorithm}{equation.5.1.49}{}}
1664
\newlabel{eq:firstOrderSpacialUpdate@cref}{{[equation][49][5]5.49}{120}}
1665
\newlabel{eq:bendingOperator}{{5.50}{120}{The Extended Least Action Algorithm}{equation.5.1.50}{}}
1666
\newlabel{eq:bendingOperator@cref}{{[equation][50][5]5.50}{120}}
1667
\newlabel{eq:levelSetNewton}{{5.51}{120}{The Extended Least Action Algorithm}{equation.5.1.51}{}}
1668
\newlabel{eq:levelSetNewton@cref}{{[equation][51][5]5.51}{120}}
1669
\newlabel{eq:diffusionProcess}{{5.52}{120}{The Extended Least Action Algorithm}{equation.5.1.52}{}}
1670
\newlabel{eq:diffusionProcess@cref}{{[equation][52][5]5.52}{120}}
1671
\newlabel{eq:eulerFlow2}{{5.53}{121}{The Extended Least Action Algorithm}{equation.5.1.53}{}}
1672
\newlabel{eq:eulerFlow2@cref}{{[equation][53][5]5.53}{121}}
1673
\newlabel{eq:diffusionProcess3}{{5.54}{121}{The Extended Least Action Algorithm}{equation.5.1.54}{}}
1674
\newlabel{eq:diffusionProcess3@cref}{{[equation][54][5]5.54}{121}}
1675
\@writefile{toc}{\contentsline {subsubsection}{\nonumberline The Curvature Operator $\ensuremath  {{\bm  {K}}}$}{121}{section*.44}}
1676
\newlabel{eq:GNAdivergenceP}{{5.57}{121}{The Curvature Operator $\vector {K}$}{equation.5.1.57}{}}
1677
\newlabel{eq:GNAdivergenceP@cref}{{[equation][57][5]5.57}{121}}
1678
\newlabel{fig:curvatureOperator1}{{5.4a}{122}{Subfigure 5 5.4a}{subfigure.5.4.1}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1679
\newlabel{sub@fig:curvatureOperator1}{{(a)}{a}{Subfigure 5 5.4a\relax }{subfigure.5.4.1}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1680
\newlabel{fig:curvatureOperator1@cref}{{[subfigure][1][5,4]5.4a}{122}}
1681
\newlabel{fig:curvatureOperator2}{{5.4b}{122}{Subfigure 5 5.4b}{subfigure.5.4.2}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1682
\newlabel{sub@fig:curvatureOperator2}{{(b)}{b}{Subfigure 5 5.4b\relax }{subfigure.5.4.2}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1683
\newlabel{fig:curvatureOperator2@cref}{{[subfigure][2][5,4]5.4b}{122}}
1684
\@writefile{lof}{\contentsline {figure}{\numberline {5.4}{\ignorespaces Effect of the diffusion $\ensuremath  {\ensuremath  {{\bm  {x}}}}^\prime =\ensuremath  {T^B_t}\circ \ensuremath  {\ensuremath  {{\bm  {x}}}}$ (eq.~(\ref  {eq:diffusionProcess})) on the canonical momentum $\ensuremath  {{\bm  {P}}}$. \Cref  {fig:curvatureOperator1} shows a schematic picture of a region $\mathcal  {R}_B\subset \Omega $ between two level-sets $S_1$ and $S_2$. The canonical momentum (the vectors on the level-sets $S_{1,2}$) is denoted by $\ensuremath  {{\bm  {P}}}_{S_{1,2}}$. $\ensuremath  {{\bm  {P}}}$ changes its orientation when shifted along the level-sets $S_1$ and $S_2$ since the norm of the curvature operator $\ensuremath  {{\bm  {K}}}$ (eq.~(\ref  {eq:GNACurvatureDef})) is non zero. In \cref  {fig:curvatureOperator2} the level-sets $S_{1,2}$ have been deformed according to $\ensuremath  {\ensuremath  {{\bm  {x}}}}^\prime =\ensuremath  {T^B_t}\circ \ensuremath  {\ensuremath  {{\bm  {x}}}}$ such that the canonical momentum $\ensuremath  {{\bm  {P}}}$ becomes invariant with respect to shifts along $S_{1,2}$. In this case the norm of the curvature operator $\ensuremath  {{\bm  {K}}}$ vanishes\relax }}{122}{figure.caption.45}}
1685
\newlabel{fig:curvatureOperator}{{5.4}{122}{Effect of the diffusion $\vx ^\prime =\omegadeform \circ \vx $ (\eqref {eq:diffusionProcess}) on the canonical momentum $\vector {P}$. \Figref {fig:curvatureOperator1} shows a schematic picture of a region $\mathcal {R}_B\subset \Omega $ between two level-sets $S_1$ and $S_2$. The canonical momentum (the vectors on the level-sets $S_{1,2}$) is denoted by $\vector {P}_{S_{1,2}}$. $\vector {P}$ changes its orientation when shifted along the level-sets $S_1$ and $S_2$ since the norm of the curvature operator $\vector {K}$ (\eqref {eq:GNACurvatureDef}) is non zero. In \figref {fig:curvatureOperator2} the level-sets $S_{1,2}$ have been deformed according to $\vx ^\prime =\omegadeform \circ \vx $ such that the canonical momentum $\vector {P}$ becomes invariant with respect to shifts along $S_{1,2}$. In this case the norm of the curvature operator $\vector {K}$ vanishes\relax }{figure.caption.45}{}}
1686
\newlabel{fig:curvatureOperator@cref}{{[figure][4][5]5.4}{122}}
1687
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{122}{subfigure.4.1}}
1688
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{122}{subfigure.4.2}}
1689
\newlabel{eq:GNAdivergencePintegral}{{5.58}{122}{The Curvature Operator $\vector {K}$}{equation.5.1.58}{}}
1690
\newlabel{eq:GNAdivergencePintegral@cref}{{[equation][58][5]5.58}{122}}
1691
\newlabel{eq:GNACurvatureDef}{{5.59}{122}{The Curvature Operator $\vector {K}$}{equation.5.1.59}{}}
1692
\newlabel{eq:GNACurvatureDef@cref}{{[equation][59][5]5.59}{122}}
1693
\@writefile{loa}{\contentsline {algorithm}{\numberline {3}{\ignorespaces Basic Newton Algorithm (BNA)\relax }}{123}{algorithm.3}}
1694
\newlabel{alg:basicNewtonMethod}{{3}{123}{Basic Newton Algorithm (BNA)\relax }{algorithm.3}{}}
1695
\newlabel{alg:basicNewtonMethod@cref}{{[algorithm][3][]3}{123}}
1696
\@writefile{loa}{\contentsline {algorithm}{\numberline {4}{\ignorespaces Diffusion Algorithm (DA) \relax }}{123}{algorithm.4}}
1697
\newlabel{alg:warpOnlyMethod}{{4}{123}{Diffusion Algorithm (DA) \relax }{algorithm.4}{}}
1698
\newlabel{alg:warpOnlyMethod@cref}{{[algorithm][4][]4}{123}}
1699
\@writefile{loa}{\contentsline {algorithm}{\numberline {5}{\ignorespaces Extended Least Action Algorithm (ELAA)\relax }}{123}{algorithm.5}}
1700
\newlabel{alg:GeneralizedNewtonMethod}{{5}{123}{Extended Least Action Algorithm (ELAA)\relax }{algorithm.5}{}}
1701
\newlabel{alg:GeneralizedNewtonMethod@cref}{{[algorithm][5][]5}{123}}
1702
\newlabel{fig:Army}{{5.5a}{124}{Subfigure 5 5.5a}{subfigure.5.5.1}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1703
\newlabel{sub@fig:Army}{{(a)}{a}{Subfigure 5 5.5a\relax }{subfigure.5.5.1}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1704
\newlabel{fig:Army@cref}{{[subfigure][1][5,5]5.5a}{124}}
1705
\newlabel{fig:ArmyNoise}{{5.5b}{124}{Subfigure 5 5.5b}{subfigure.5.5.2}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1706
\newlabel{sub@fig:ArmyNoise}{{(b)}{b}{Subfigure 5 5.5b\relax }{subfigure.5.5.2}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1707
\newlabel{fig:ArmyNoise@cref}{{[subfigure][2][5,5]5.5b}{124}}
1708
\newlabel{fig:ArmyGNA}{{5.5c}{124}{Subfigure 5 5.5c}{subfigure.5.5.3}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1709
\newlabel{sub@fig:ArmyGNA}{{(c)}{c}{Subfigure 5 5.5c\relax }{subfigure.5.5.3}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1710
\newlabel{fig:ArmyGNA@cref}{{[subfigure][3][5,5]5.5c}{124}}
1711
\newlabel{fig:ArmyBNA}{{5.5d}{124}{Subfigure 5 5.5d}{subfigure.5.5.4}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1712
\newlabel{sub@fig:ArmyBNA}{{(d)}{d}{Subfigure 5 5.5d\relax }{subfigure.5.5.4}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1713
\newlabel{fig:ArmyBNA@cref}{{[subfigure][4][5,5]5.5d}{124}}
1714
\@writefile{lof}{\contentsline {figure}{\numberline {5.5}{\ignorespaces \Cref  {fig:Army} shows a picture $\phi ^c$ of a person. $\phi ^c$ is taken to be free of noise. \Cref  {fig:ArmyNoise} is a noise corrupted version of $\phi ^c$ in \cref  {fig:Army}, $\phi ^d=\phi ^c+n$ where $n$ is iid Gaussian noise with a standard deviation $\sigma =100$. \Cref  {fig:ArmyGNA} shows the result of the ELAA (alg. \ref  {alg:GeneralizedNewtonMethod}) and \cref  {fig:ArmyBNA} the result of the BNA (alg. \ref  {alg:basicNewtonMethod})\relax }}{124}{figure.caption.46}}
1715
\newlabel{fig:ArmyTotal}{{5.5}{124}{\Figref {fig:Army} shows a picture $\phi ^c$ of a person. $\phi ^c$ is taken to be free of noise. \Figref {fig:ArmyNoise} is a noise corrupted version of $\phi ^c$ in \figref {fig:Army}, $\phi ^d=\phi ^c+n$ where $n$ is iid Gaussian noise with a standard deviation $\sigma =100$. \Figref {fig:ArmyGNA} shows the result of the ELAA (alg. \ref {alg:GeneralizedNewtonMethod}) and \figref {fig:ArmyBNA} the result of the BNA (alg. \ref {alg:basicNewtonMethod})\relax }{figure.caption.46}{}}
1716
\newlabel{fig:ArmyTotal@cref}{{[figure][5][5]5.5}{124}}
1717
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{124}{subfigure.5.1}}
1718
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{124}{subfigure.5.2}}
1719
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{124}{subfigure.5.3}}
1720
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{124}{subfigure.5.4}}
1721
\@writefile{toc}{\contentsline {subsection}{\numberline {5.1.1}Image De-noising}{124}{subsection.5.1.1}}
1722
\newlabel{eq:cameraLikelihood2}{{5.60}{124}{Image De-noising}{equation.5.1.60}{}}
1723
\newlabel{eq:cameraLikelihood2@cref}{{[equation][60][5]5.60}{124}}
1724
\newlabel{eq:minimizationIO2}{{5.61}{124}{Image De-noising}{equation.5.1.61}{}}
1725
\newlabel{eq:minimizationIO2@cref}{{[equation][61][5]5.61}{124}}
165 by gerald.mwangi at gmx
reviewing everything 15
1726
\citation{Middleburry}
230 by gerald.mwangi at gmx
work on modern noether3
1727
\@writefile{loa}{\contentsline {algorithm}{\numberline {6}{\ignorespaces Image de-noising analysis\relax }}{125}{algorithm.6}}
1728
\newlabel{alg:ImageDenoisingAnalysis}{{6}{125}{Image de-noising analysis\relax }{algorithm.6}{}}
1729
\newlabel{alg:ImageDenoisingAnalysis@cref}{{[algorithm][6][]6}{125}}
1730
\newlabel{eq:DenoiseFunctional}{{5.62}{125}{Image De-noising}{equation.5.1.62}{}}
1731
\newlabel{eq:DenoiseFunctional@cref}{{[equation][62][5]5.62}{125}}
1732
\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Analysis Method}{125}{section*.47}}
1733
\@writefile{brf}{\backcite{Middleburry}{{126}{5.1.1}{ALG@line.7}}}
1734
\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Total Variation based Image De-Noising}{126}{section*.48}}
1735
\newlabel{eq:DenoiseFunctionalTV}{{5.64}{126}{Total Variation based Image De-Noising}{equation.5.1.64}{}}
1736
\newlabel{eq:DenoiseFunctionalTV@cref}{{[equation][64][5]5.64}{126}}
1737
\newlabel{eq:bendingTV}{{5.66}{126}{Total Variation based Image De-Noising}{equation.5.1.66}{}}
1738
\newlabel{eq:bendingTV@cref}{{[equation][66][5]5.66}{126}}
1739
\newlabel{fig:ArmyMeanEnergy}{{5.6a}{127}{Subfigure 5 5.6a}{subfigure.5.6.1}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1740
\newlabel{sub@fig:ArmyMeanEnergy}{{(a)}{a}{Subfigure 5 5.6a\relax }{subfigure.5.6.1}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1741
\newlabel{fig:ArmyMeanEnergy@cref}{{[subfigure][1][5,6]5.6a}{127}}
1742
\newlabel{fig:ArmyStdDevEnergy}{{5.6b}{127}{Subfigure 5 5.6b}{subfigure.5.6.2}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1743
\newlabel{sub@fig:ArmyStdDevEnergy}{{(b)}{b}{Subfigure 5 5.6b\relax }{subfigure.5.6.2}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1744
\newlabel{fig:ArmyStdDevEnergy@cref}{{[subfigure][2][5,6]5.6b}{127}}
1745
\@writefile{lof}{\contentsline {figure}{\numberline {5.6}{\ignorespaces \Cref  {fig:ArmyMeanEnergy} shows the mean energy $\delimiter "426830A E^k\delimiter "526930B $ and \cref  {fig:ArmyStdDevEnergy} the standard deviation $\sigma _{E^k}$ per iteration $k$ for the Army image in \cref  {fig:Army}. The the ELAA (solid line) converges about twice as fast as the BNA (dashed line) according to \cref  {fig:ArmyMeanEnergy}. The standard deviation $\sigma _{E^k}$ in \cref  {fig:ArmyStdDevEnergy} converges approximately three times faster for the ELAA then for the BNA indicating that the ELAA is robuster to noise at every iteration $k$ \relax }}{127}{figure.caption.49}}
1746
\newlabel{fig:ArmyEnergy}{{5.6}{127}{\Figref {fig:ArmyMeanEnergy} shows the mean energy $\langle E^k\rangle $ and \figref {fig:ArmyStdDevEnergy} the standard deviation $\sigma _{E^k}$ per iteration $k$ for the Army image in \figref {fig:Army}. The the ELAA (solid line) converges about twice as fast as the BNA (dashed line) according to \figref {fig:ArmyMeanEnergy}. The standard deviation $\sigma _{E^k}$ in \figref {fig:ArmyStdDevEnergy} converges approximately three times faster for the ELAA then for the BNA indicating that the ELAA is robuster to noise at every iteration $k$ \relax }{figure.caption.49}{}}
1747
\newlabel{fig:ArmyEnergy@cref}{{[figure][6][5]5.6}{127}}
1748
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{127}{subfigure.6.1}}
1749
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{127}{subfigure.6.2}}
1750
\newlabel{eq:expCurv}{{5.67}{127}{Total Variation based Image De-Noising}{equation.5.1.67}{}}
1751
\newlabel{eq:expCurv@cref}{{[equation][67][5]5.67}{127}}
1752
\newlabel{eq:expCurvParameter}{{5.68}{127}{Total Variation based Image De-Noising}{equation.5.1.68}{}}
1753
\newlabel{eq:expCurvParameter@cref}{{[equation][68][5]5.68}{127}}
1754
\newlabel{fig:ArmyMeanCurvature}{{5.7a}{128}{Subfigure 5 5.7a}{subfigure.5.7.1}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1755
\newlabel{sub@fig:ArmyMeanCurvature}{{(a)}{a}{Subfigure 5 5.7a\relax }{subfigure.5.7.1}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1756
\newlabel{fig:ArmyMeanCurvature@cref}{{[subfigure][1][5,7]5.7a}{128}}
1757
\newlabel{fig:ArmyStdDevcurvature}{{5.7b}{128}{Subfigure 5 5.7b}{subfigure.5.7.2}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1758
\newlabel{sub@fig:ArmyStdDevcurvature}{{(b)}{b}{Subfigure 5 5.7b\relax }{subfigure.5.7.2}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1759
\newlabel{fig:ArmyStdDevcurvature@cref}{{[subfigure][2][5,7]5.7b}{128}}
1760
\newlabel{fig:ArmyCurvatureFit}{{5.7c}{128}{Subfigure 5 5.7c}{subfigure.5.7.3}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1761
\newlabel{sub@fig:ArmyCurvatureFit}{{(c)}{c}{Subfigure 5 5.7c\relax }{subfigure.5.7.3}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1762
\newlabel{fig:ArmyCurvatureFit@cref}{{[subfigure][3][5,7]5.7c}{128}}
1763
\@writefile{lof}{\contentsline {figure}{\numberline {5.7}{\ignorespaces \Cref  {fig:ArmyMeanCurvature} shows the mean curvature $\delimiter "426830A \ensuremath  {\left \delimiter 69645069 \ensuremath  {{\bm  {K}}} \right \delimiter 86422285 }^k\delimiter "526930B $ and \cref  {fig:ArmyStdDevcurvature} the standard deviation $\sigma _{\ensuremath  {\left \delimiter 69645069 \ensuremath  {{\bm  {K}}} \right \delimiter 86422285 }^k}$ per iteration $k$ for the Army image in \cref  {fig:Army}. For the DA (dotted line), which only depends on the TV prior $E^{prior}_{TV}$, $\delimiter "426830A \ensuremath  {\left \delimiter 69645069 \ensuremath  {{\bm  {K}}} \right \delimiter 86422285 }\delimiter "526930B $ has an exponential decay. For the ELAA (solid line) $\delimiter "426830A \ensuremath  {\left \delimiter 69645069 \ensuremath  {{\bm  {K}}} \right \delimiter 86422285 }\delimiter "526930B $ drops faster then for the DA, until a point where the data term $E^{data}$ prohibits further smoothing of the level-sets $S$. Then $\delimiter "426830A \ensuremath  {\left \delimiter 69645069 \ensuremath  {{\bm  {K}}} \right \delimiter 86422285 }\delimiter "526930B $ rises slightly and converges at a higher value. The BNA falls off slower then the ELAA and the DA and converging at a slightly higher value then the ELAA. The standard deviation $\sigma _{\ensuremath  {\left \delimiter 69645069 \ensuremath  {{\bm  {K}}} \right \delimiter 86422285 }}$ is for both the ELAA and the BNA comparatively of equal order and small and two orders of magnitude smaller then $\delimiter "426830A \ensuremath  {\left \delimiter 69645069 \ensuremath  {{\bm  {K}}} \right \delimiter 86422285 }\delimiter "526930B $. When comparing the ELAA and the BNA to the DA (dotted line) we can see that the data term $E^{data}$ has an impact on the noise distribution of the curvature $\ensuremath  {\left \delimiter 69645069 \ensuremath  {{\bm  {K}}} \right \delimiter 86422285 }$ particularly at later iterations $k>100$. \Cref  {fig:ArmyCurvatureFit} shows a fit of the exponential function in eq.~(\ref  {eq:expCurv}) to the curvature of the DA algorithm. The difference between the DA (solid line) and the fit (dashed line) is of the order $10^{4}$, an order of magnitude smaller then $\ensuremath  {\left \delimiter 69645069 \ensuremath  {{\bm  {K}}} \right \delimiter 86422285 }$ \relax }}{128}{figure.caption.50}}
1764
\newlabel{fig:ArmyCurvature}{{5.7}{128}{\Figref {fig:ArmyMeanCurvature} shows the mean curvature $\langle \norm {\vector {K}}^k\rangle $ and \figref {fig:ArmyStdDevcurvature} the standard deviation $\sigma _{\norm {\vector {K}}^k}$ per iteration $k$ for the Army image in \figref {fig:Army}. For the DA (dotted line), which only depends on the TV prior $E^{prior}_{TV}$, $\langle \norm {\vector {K}}\rangle $ has an exponential decay. For the ELAA (solid line) $\langle \norm {\vector {K}}\rangle $ drops faster then for the DA, until a point where the data term $E^{data}$ prohibits further smoothing of the level-sets $S$. Then $\langle \norm {\vector {K}}\rangle $ rises slightly and converges at a higher value. The BNA falls off slower then the ELAA and the DA and converging at a slightly higher value then the ELAA. The standard deviation $\sigma _{\norm {\vector {K}}}$ is for both the ELAA and the BNA comparatively of equal order and small and two orders of magnitude smaller then $\langle \norm {\vector {K}}\rangle $. When comparing the ELAA and the BNA to the DA (dotted line) we can see that the data term $E^{data}$ has an impact on the noise distribution of the curvature $\norm {\vector {K}}$ particularly at later iterations $k>100$. \Figref {fig:ArmyCurvatureFit} shows a fit of the exponential function in \eqref {eq:expCurv} to the curvature of the DA algorithm. The difference between the DA (solid line) and the fit (dashed line) is of the order $10^{4}$, an order of magnitude smaller then $\norm {\vector {K}}$ \relax }{figure.caption.50}{}}
1765
\newlabel{fig:ArmyCurvature@cref}{{[figure][7][5]5.7}{128}}
1766
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{128}{subfigure.7.1}}
1767
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{128}{subfigure.7.2}}
1768
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{128}{subfigure.7.3}}
1769
\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Structure Tensor Prior}{128}{section*.51}}
1770
\newlabel{eq:DenoiseFunctionalST}{{5.70}{128}{Structure Tensor Prior}{equation.5.1.70}{}}
1771
\newlabel{eq:DenoiseFunctionalST@cref}{{[equation][70][5]5.70}{128}}
1772
\newlabel{eq:structtensPriorRotInv2}{{5.71}{128}{Structure Tensor Prior}{equation.5.1.71}{}}
1773
\newlabel{eq:structtensPriorRotInv2@cref}{{[equation][71][5]5.71}{128}}
1774
\newlabel{fig:ArmyMeanEnergyGnaDaST}{{5.8a}{129}{Subfigure 5 5.8a}{subfigure.5.8.1}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1775
\newlabel{sub@fig:ArmyMeanEnergyGnaDaST}{{(a)}{a}{Subfigure 5 5.8a\relax }{subfigure.5.8.1}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1776
\newlabel{fig:ArmyMeanEnergyGnaDaST@cref}{{[subfigure][1][5,8]5.8a}{129}}
1777
\newlabel{fig:ArmyMeanEnergyGnaST}{{5.8b}{129}{Subfigure 5 5.8b}{subfigure.5.8.2}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1778
\newlabel{sub@fig:ArmyMeanEnergyGnaST}{{(b)}{b}{Subfigure 5 5.8b\relax }{subfigure.5.8.2}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1779
\newlabel{fig:ArmyMeanEnergyGnaST@cref}{{[subfigure][2][5,8]5.8b}{129}}
1780
\newlabel{fig:ArmyMeanEnergyGnaBnaDiffST}{{5.8c}{129}{Subfigure 5 5.8c}{subfigure.5.8.3}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1781
\newlabel{sub@fig:ArmyMeanEnergyGnaBnaDiffST}{{(c)}{c}{Subfigure 5 5.8c\relax }{subfigure.5.8.3}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1782
\newlabel{fig:ArmyMeanEnergyGnaBnaDiffST@cref}{{[subfigure][3][5,8]5.8c}{129}}
1783
\@writefile{lof}{\contentsline {figure}{\numberline {5.8}{\ignorespaces \Cref  {fig:ArmyMeanEnergyGnaDaST} shows the mean energy $\delimiter "426830A E\delimiter "526930B $ as a function of the iteration $k$ for the ELAA (solid line) and the DA (dotted line) for the structure tensor model. \Cref  {fig:ArmyMeanEnergyGnaST} shows a close up of $\delimiter "426830A E\delimiter "526930B _{ELAA}$ for $k\geq 10$ and \cref  {fig:ArmyMeanEnergyGnaBnaDiffST} shows the difference between $\delimiter "426830A E\delimiter "526930B _{BNA}$ and $\delimiter "426830A E\delimiter "526930B _{ELAA}$. From \cref  {fig:ArmyMeanEnergyGnaST} we can see that the mean energy for the ELAA $\delimiter "426830A E\delimiter "526930B _{ELAA}$ is $2$ orders of magnitude smaller then the mean energy for the DA and by \cref  {fig:ArmyMeanEnergyGnaBnaDiffST} only slightly smaller then $\delimiter "426830A E\delimiter "526930B _{BNA}$. Thus the effect of the diffusion process in eq.~(\ref  {eq:diffusionProcess}) on the minimization of the energy $E$ in eq.~(\ref  {eq:DenoiseFunctionalST}) is at most marginal\relax }}{129}{figure.caption.52}}
1784
\newlabel{fig:MeanEnergyST}{{5.8}{129}{\Figref {fig:ArmyMeanEnergyGnaDaST} shows the mean energy $\langle E\rangle $ as a function of the iteration $k$ for the ELAA (solid line) and the DA (dotted line) for the structure tensor model. \Figref {fig:ArmyMeanEnergyGnaST} shows a close up of $\langle E\rangle _{ELAA}$ for $k\geq 10$ and \figref {fig:ArmyMeanEnergyGnaBnaDiffST} shows the difference between $\langle E\rangle _{BNA}$ and $\langle E\rangle _{ELAA}$. From \figref {fig:ArmyMeanEnergyGnaST} we can see that the mean energy for the ELAA $\langle E\rangle _{ELAA}$ is $2$ orders of magnitude smaller then the mean energy for the DA and by \figref {fig:ArmyMeanEnergyGnaBnaDiffST} only slightly smaller then $\langle E\rangle _{BNA}$. Thus the effect of the diffusion process in \eqref {eq:diffusionProcess} on the minimization of the energy $E$ in \eqref {eq:DenoiseFunctionalST} is at most marginal\relax }{figure.caption.52}{}}
1785
\newlabel{fig:MeanEnergyST@cref}{{[figure][8][5]5.8}{129}}
1786
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{129}{subfigure.8.1}}
1787
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{129}{subfigure.8.2}}
1788
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{129}{subfigure.8.3}}
1789
\newlabel{eq:BlevelSetST}{{5.72}{129}{Structure Tensor Prior}{equation.5.1.72}{}}
1790
\newlabel{eq:BlevelSetST@cref}{{[equation][72][5]5.72}{129}}
1791
\newlabel{eq:bendingOperatorST0}{{5.73}{129}{Structure Tensor Prior}{equation.5.1.73}{}}
1792
\newlabel{eq:bendingOperatorST0@cref}{{[equation][73][5]5.73}{129}}
1793
\newlabel{fig:ArmyStdDevEnergyGnaDaST}{{5.9a}{130}{Subfigure 5 5.9a}{subfigure.5.9.1}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1794
\newlabel{sub@fig:ArmyStdDevEnergyGnaDaST}{{(a)}{a}{Subfigure 5 5.9a\relax }{subfigure.5.9.1}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1795
\newlabel{fig:ArmyStdDevEnergyGnaDaST@cref}{{[subfigure][1][5,9]5.9a}{130}}
1796
\newlabel{fig:ArmyStdDevEnergyGnaST}{{5.9b}{130}{Subfigure 5 5.9b}{subfigure.5.9.2}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1797
\newlabel{sub@fig:ArmyStdDevEnergyGnaST}{{(b)}{b}{Subfigure 5 5.9b\relax }{subfigure.5.9.2}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1798
\newlabel{fig:ArmyStdDevEnergyGnaST@cref}{{[subfigure][2][5,9]5.9b}{130}}
1799
\newlabel{fig:ArmyStdDevEnergyGnaBnaDiffST}{{5.9c}{130}{Subfigure 5 5.9c}{subfigure.5.9.3}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1800
\newlabel{sub@fig:ArmyStdDevEnergyGnaBnaDiffST}{{(c)}{c}{Subfigure 5 5.9c\relax }{subfigure.5.9.3}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1801
\newlabel{fig:ArmyStdDevEnergyGnaBnaDiffST@cref}{{[subfigure][3][5,9]5.9c}{130}}
1802
\@writefile{lof}{\contentsline {figure}{\numberline {5.9}{\ignorespaces \Cref  {fig:ArmyStdDevEnergyGnaDaST} shows the standard deviation $\sigma _E$ as a function of the iteration $k$ for the ELAA (solid line) and the DA (dotted line) for the structure tensor model. \Cref  {fig:ArmyStdDevEnergyGnaST} shows a close up of $\sigma _{E,ELAA}$ for $k\geq 10$ and \cref  {fig:ArmyStdDevEnergyGnaBnaDiffST} shows the difference between $\sigma _{E,BNA}$ and $\sigma _{E,ELAA}$. We essentially see the same behavior for the standard deviation $\sigma _E$ as for the mean energy in \cref  {fig:MeanEnergyST}: By \cref  {fig:ArmyStdDevEnergyGnaST} the standard deviation energy for the ELAA $\sigma _{E,ELAA}$ is $1$ order of magnitude smaller that of the DA and by \cref  {fig:ArmyStdDevEnergyGnaBnaDiffST} only slightly smaller then $\sigma _{E,BNA}$. Hence the diffusion process eq.~(\ref  {eq:diffusionProcess}) has a marginal contribution to the statistical robustness of the minimizers of $E$ in eq.~(\ref  {eq:DenoiseFunctionalST})\relax }}{130}{figure.caption.53}}
1803
\newlabel{fig:StdDevEnergyST}{{5.9}{130}{\Figref {fig:ArmyStdDevEnergyGnaDaST} shows the standard deviation $\sigma _E$ as a function of the iteration $k$ for the ELAA (solid line) and the DA (dotted line) for the structure tensor model. \Figref {fig:ArmyStdDevEnergyGnaST} shows a close up of $\sigma _{E,ELAA}$ for $k\geq 10$ and \figref {fig:ArmyStdDevEnergyGnaBnaDiffST} shows the difference between $\sigma _{E,BNA}$ and $\sigma _{E,ELAA}$. We essentially see the same behavior for the standard deviation $\sigma _E$ as for the mean energy in \figref {fig:MeanEnergyST}: By \figref {fig:ArmyStdDevEnergyGnaST} the standard deviation energy for the ELAA $\sigma _{E,ELAA}$ is $1$ order of magnitude smaller that of the DA and by \figref {fig:ArmyStdDevEnergyGnaBnaDiffST} only slightly smaller then $\sigma _{E,BNA}$. Hence the diffusion process \eqref {eq:diffusionProcess} has a marginal contribution to the statistical robustness of the minimizers of $E$ in \eqref {eq:DenoiseFunctionalST}\relax }{figure.caption.53}{}}
1804
\newlabel{fig:StdDevEnergyST@cref}{{[figure][9][5]5.9}{130}}
1805
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{130}{subfigure.9.1}}
1806
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{130}{subfigure.9.2}}
1807
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{130}{subfigure.9.3}}
1808
\newlabel{eq:bendingOperatorST1}{{5.74}{130}{Structure Tensor Prior}{equation.5.1.74}{}}
1809
\newlabel{eq:bendingOperatorST1@cref}{{[equation][74][5]5.74}{130}}
1810
\newlabel{eq:bendingOperatorST}{{5.75}{130}{Structure Tensor Prior}{equation.5.1.75}{}}
1811
\newlabel{eq:bendingOperatorST@cref}{{[equation][75][5]5.75}{130}}
1812
\newlabel{fig:EnergyWsizeGnaST}{{5.10a}{131}{Subfigure 5 5.10a}{subfigure.5.10.1}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1813
\newlabel{sub@fig:EnergyWsizeGnaST}{{(a)}{a}{Subfigure 5 5.10a\relax }{subfigure.5.10.1}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1814
\newlabel{fig:EnergyWsizeGnaST@cref}{{[subfigure][1][5,10]5.10a}{131}}
1815
\newlabel{fig:CurvatureWsizeGnaST}{{5.10b}{131}{Subfigure 5 5.10b}{subfigure.5.10.2}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1816
\newlabel{sub@fig:CurvatureWsizeGnaST}{{(b)}{b}{Subfigure 5 5.10b\relax }{subfigure.5.10.2}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1817
\newlabel{fig:CurvatureWsizeGnaST@cref}{{[subfigure][2][5,10]5.10b}{131}}
1818
\newlabel{fig:InitialEnergyGnaST}{{5.10c}{131}{Subfigure 5 5.10c}{subfigure.5.10.3}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1819
\newlabel{sub@fig:InitialEnergyGnaST}{{(c)}{c}{Subfigure 5 5.10c\relax }{subfigure.5.10.3}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1820
\newlabel{fig:InitialEnergyGnaST@cref}{{[subfigure][3][5,10]5.10c}{131}}
1821
\newlabel{fig:InitialCurvatureGnaST}{{5.10d}{131}{Subfigure 5 5.10d}{subfigure.5.10.4}{}}
227 by gerald.mwangi at gmx
moved background section to new chapter in main text: modern noether
1822
\newlabel{sub@fig:InitialCurvatureGnaST}{{(d)}{d}{Subfigure 5 5.10d\relax }{subfigure.5.10.4}{}}
230 by gerald.mwangi at gmx
work on modern noether3
1823
\newlabel{fig:InitialCurvatureGnaST@cref}{{[subfigure][4][5,10]5.10d}{131}}
1824
\@writefile{lof}{\contentsline {figure}{\numberline {5.10}{\ignorespaces Study of the dependency the mean energy $\delimiter "426830A E^k\delimiter "526930B _{ELAA}$ and the mean curvature $\delimiter "426830A \ensuremath  {\left \delimiter 69645069 K \right \delimiter 86422285 }\delimiter "526930B $ on the window size $\sigma _{ST}$ of the structure tensor prior $E^{prior}_{ST}$. \Cref  {fig:EnergyWsizeGnaST} shows the mean energy $\delimiter "426830A E^k\delimiter "526930B _{ELAA}$ per iteration $k\geq 100$ for various $\sigma _{ST}$ and \cref  {fig:CurvatureWsizeGnaST} the mean curvature $\delimiter "426830A \ensuremath  {\left \delimiter 69645069 K \right \delimiter 86422285 }\delimiter "526930B $, also for various $\sigma _{ST}$. Figures \ref  {fig:InitialEnergyGnaST} and \ref  {fig:InitialCurvatureGnaST} show the initial energy $\delimiter "426830A E^k\delimiter "526930B _{ELAA}$ and the initial curvature $\delimiter "426830A \ensuremath  {\left \delimiter 69645069 K \right \delimiter 86422285 }\delimiter "526930B $ for $k=0$. In \cref  {fig:EnergyWsizeGnaST} we can see that for smaller $\sigma _{ST}$ the energy $\delimiter "426830A E^k\delimiter "526930B _{ELAA}$ converges to lower values. Conversely for larger window sizes $\sigma _{ST}$ the mean energy profiles $\delimiter "426830A E^k\delimiter "526930B _{ELAA}$ per $\sigma _{ST}$ converge. In \cref  {fig:CurvatureWsizeGnaST} we observe a similar behavior for the curvature $\delimiter "426830A \ensuremath  {\left \delimiter 69645069 K \right \delimiter 86422285 }\delimiter "526930B $: For small $\sigma _{ST}$ the curvature $\delimiter "426830A \ensuremath  {\left \delimiter 69645069 K \right \delimiter 86422285 }\delimiter "526930B $ is comparatively large. As $\sigma _{ST}$ rises the profile of $\delimiter "426830A \ensuremath  {\left \delimiter 69645069 K \right \delimiter 86422285 }\delimiter "526930B $ per $\sigma _{ST}$ converge, albeit at lower values. Figures \ref  {fig:InitialEnergyGnaST} and \ref  {fig:InitialCurvatureGnaST} show that the initial energy and the initial curvature for $\sigma _{ST}=3$ have half the values then for the larger window sizes $\sigma _{ST}=13\cdots  63$\relax }}{131}{figure.caption.54}}
1825
\newlabel{fig:WsizeGnaST}{{5.10}{131}{Study of the dependency the mean energy $\langle E^k\rangle _{ELAA}$ and the mean curvature $\langle \norm {K}\rangle $ on the window size $\sigma _{ST}$ of the structure tensor prior $E^{prior}_{ST}$. \Figref {fig:EnergyWsizeGnaST} shows the mean energy $\langle E^k\rangle _{ELAA}$ per iteration $k\geq 100$ for various $\sigma _{ST}$ and \figref {fig:CurvatureWsizeGnaST} the mean curvature $\langle \norm {K}\rangle $, also for various $\sigma _{ST}$. Figures \ref {fig:InitialEnergyGnaST} and \ref {fig:InitialCurvatureGnaST} show the initial energy $\langle E^k\rangle _{ELAA}$ and the initial curvature $\langle \norm {K}\rangle $ for $k=0$. In \figref {fig:EnergyWsizeGnaST} we can see that for smaller $\sigma _{ST}$ the energy $\langle E^k\rangle _{ELAA}$ converges to lower values. Conversely for larger window sizes $\sigma _{ST}$ the mean energy profiles $\langle E^k\rangle _{ELAA}$ per $\sigma _{ST}$ converge. In \figref {fig:CurvatureWsizeGnaST} we observe a similar behavior for the curvature $\langle \norm {K}\rangle $: For small $\sigma _{ST}$ the curvature $\langle \norm {K}\rangle $ is comparatively large. As $\sigma _{ST}$ rises the profile of $\langle \norm {K}\rangle $ per $\sigma _{ST}$ converge, albeit at lower values. Figures \ref {fig:InitialEnergyGnaST} and \ref {fig:InitialCurvatureGnaST} show that the initial energy and the initial curvature for $\sigma _{ST}=3$ have half the values then for the larger window sizes $\sigma _{ST}=13\cdots 63$\relax }{figure.caption.54}{}}
1826
\newlabel{fig:WsizeGnaST@cref}{{[figure][10][5]5.10}{131}}
1827
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{131}{subfigure.10.1}}
1828
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{131}{subfigure.10.2}}
1829
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{131}{subfigure.10.3}}
1830
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{131}{subfigure.10.4}}
1831
\newlabel{eq:RelativeEnergyST}{{5.76}{132}{Structure Tensor Prior}{equation.5.1.76}{}}
1832
\newlabel{eq:RelativeEnergyST@cref}{{[equation][76][5]5.76}{132}}
1833
\@writefile{toc}{\contentsline {section}{\numberline {5.2}summary}{132}{section.5.2}}
1834
\newlabel{eq:totEnergyGenNewton2}{{5.77}{133}{summary}{equation.5.2.77}{}}
1835
\newlabel{eq:totEnergyGenNewton2@cref}{{[equation][77][5]5.77}{133}}
1836
\newlabel{eq:eulerLagrangeGRF3}{{5.78}{133}{summary}{equation.5.2.78}{}}
1837
\newlabel{eq:eulerLagrangeGRF3@cref}{{[equation][78][5]5.78}{133}}
1838
\newlabel{eq:diffusionProcess2}{{5.79}{133}{summary}{equation.5.2.79}{}}
1839
\newlabel{eq:diffusionProcess2@cref}{{[equation][79][5]5.79}{133}}
140 by gerald.mwangi at gmx
Worked on section conclusion 2
1840
\citation{NoetherTheoremDeu,NoetherTheroemEng}
230 by gerald.mwangi at gmx
work on modern noether3
1841
\@writefile{toc}{\contentsline {chapter}{\numberline {6}Conclusions}{135}{chapter.6}}
140 by gerald.mwangi at gmx
Worked on section conclusion 2
1842
\@writefile{lof}{\addvspace {10\p@ }}
1843
\@writefile{lot}{\addvspace {10\p@ }}
1844
\@writefile{lol}{\addvspace {10\p@ }}
1845
\@writefile{loa}{\addvspace {10\p@ }}
230 by gerald.mwangi at gmx
work on modern noether3
1846
\@writefile{brf}{\backcite{NoetherTheoremDeu}{{135}{6}{chapter.6}}}
1847
\@writefile{brf}{\backcite{NoetherTheroemEng}{{135}{6}{chapter.6}}}
1848
\newlabel{eq:noetherTheoremConclusion}{{6.1}{135}{Conclusions}{equation.6.0.1}{}}
1849
\newlabel{eq:noetherTheoremConclusion@cref}{{[equation][1][6]6.1}{135}}
141 by gerald.mwangi at gmx
Worked on section conclusion 3
1850
\citation{Bigun1987,BigunBook}
230 by gerald.mwangi at gmx
work on modern noether3
1851
\newlabel{eq:noetherTheoremConclusionLeftInv}{{6.2}{136}{Conclusions}{equation.6.0.2}{}}
1852
\newlabel{eq:noetherTheoremConclusionLeftInv@cref}{{[equation][2][6]6.2}{136}}
1853
\@writefile{brf}{\backcite{Bigun1987}{{136}{6}{equation.6.0.2}}}
1854
\@writefile{brf}{\backcite{BigunBook}{{136}{6}{equation.6.0.2}}}
141 by gerald.mwangi at gmx
Worked on section conclusion 3
1855
\citation{FieguthStatImProc}
230 by gerald.mwangi at gmx
work on modern noether3
1856
\newlabel{eq:flowEulerConclusion}{{6.5}{137}{Conclusions}{equation.6.0.5}{}}
1857
\newlabel{eq:flowEulerConclusion@cref}{{[equation][5][6]6.5}{137}}
1858
\newlabel{eq:flowBabetteConclusion}{{6.6}{137}{Conclusions}{equation.6.0.6}{}}
1859
\newlabel{eq:flowBabetteConclusion@cref}{{[equation][6][6]6.6}{137}}
1860
\@writefile{brf}{\backcite{FieguthStatImProc}{{137}{6}{equation.6.0.6}}}
1861
\newlabel{eq:curvaturePriorConclusion}{{6.7}{137}{Conclusions}{equation.6.0.7}{}}
1862
\newlabel{eq:curvaturePriorConclusion@cref}{{[equation][7][6]6.7}{137}}
1863
\newlabel{eq:curvatureConclusion}{{6.8}{138}{Conclusions}{equation.6.0.8}{}}
1864
\newlabel{eq:curvatureConclusion@cref}{{[equation][8][6]6.8}{138}}
1865
\newlabel{eq:curvatureTVConclusion}{{6.9}{138}{Conclusions}{equation.6.0.9}{}}
1866
\newlabel{eq:curvatureTVConclusion@cref}{{[equation][9][6]6.9}{138}}
172 by gerald.mwangi at gmx
reviewing everything 20
1867
\citation{PeskinQFT}
1868
\citation{misner1973gravitation}
1869
\citation{rovelli2007quantum}
1870
\citation{becker2006string}
230 by gerald.mwangi at gmx
work on modern noether3
1871
\@writefile{toc}{\contentsline {section}{\numberline {6.1}Outlook}{139}{section.6.1}}
1872
\@writefile{brf}{\backcite{PeskinQFT}{{139}{6.1}{section.6.1}}}
1873
\@writefile{brf}{\backcite{misner1973gravitation}{{139}{6.1}{section.6.1}}}
1874
\@writefile{brf}{\backcite{rovelli2007quantum}{{139}{6.1}{section.6.1}}}
1875
\@writefile{brf}{\backcite{becker2006string}{{139}{6.1}{section.6.1}}}
180 by gerald.mwangi at gmx
Started corrections. Added appendix on top manifolds
1876
\citation{LeeSmoothManifolds}
230 by gerald.mwangi at gmx
work on modern noether3
1877
\@writefile{toc}{\contentsline {chapter}{\numberline {A}Smooth Manifolds}{140}{appendix.A}}
180 by gerald.mwangi at gmx
Started corrections. Added appendix on top manifolds
1878
\@writefile{lof}{\addvspace {10\p@ }}
1879
\@writefile{lot}{\addvspace {10\p@ }}
1880
\@writefile{lol}{\addvspace {10\p@ }}
1881
\@writefile{loa}{\addvspace {10\p@ }}
230 by gerald.mwangi at gmx
work on modern noether3
1882
\newlabel{App:SmoothManifolds}{{A}{140}{Smooth Manifolds}{appendix.A}{}}
1883
\newlabel{App:SmoothManifolds@cref}{{[appendix][1][2147483647]A}{140}}
1884
\@writefile{brf}{\backcite{LeeSmoothManifolds}{{140}{A}{appendix.A}}}
1885
\@writefile{toc}{\contentsline {subsection}{\numberline {A.0.1}Topological Spaces}{140}{subsection.A.0.1}}
1886
\newlabel{def:TopManifold}{{21}{141}{Topological Manifold}{definition.21}{}}
1887
\newlabel{def:TopManifold@cref}{{[definition][21][2147483647]21}{141}}
1888
\citation{LeeSmoothManifolds}
1889
\newlabel{lem:countBasis}{{10}{142}{Countable Basis of a topological Manifold}{lemma.10}{}}
1890
\newlabel{lem:countBasis@cref}{{[lemma][10][2147483647]10}{142}}
1891
\@writefile{brf}{\backcite{LeeSmoothManifolds}{{142}{A.0.1}{equation.A.0.1}}}
1892
\newlabel{enum:ConnectLocPath}{{1}{142}{Connectivity of a Manifold}{Item.3}{}}
1893
\newlabel{enum:ConnectLocPath@cref}{{[enumi][1][2147483647]1}{142}}
1894
\newlabel{enum:ConnectGlobPath}{{2}{142}{Connectivity of a Manifold}{Item.4}{}}
1895
\newlabel{enum:ConnectGlobPath@cref}{{[enumi][2][2147483647]2}{142}}
1896
\@writefile{toc}{\contentsline {subsection}{\numberline {A.0.2}Smooth Manifolds}{143}{subsection.A.0.2}}
1897
\newlabel{def:smoothAtlas}{{24}{143}{Atlas and Smooth Manifold}{definition.24}{}}
1898
\newlabel{def:smoothAtlas@cref}{{[definition][24][2147483647]24}{143}}
1899
\newlabel{eq:localCoordinates}{{A.4}{144}{Smooth Manifolds}{equation.A.0.4}{}}
1900
\newlabel{eq:localCoordinates@cref}{{[equation][4][2147483647,1]A.4}{144}}
1901
\newlabel{eq:coordinateTransform}{{A.6}{144}{Coordinate Transformation}{equation.A.0.6}{}}
1902
\newlabel{eq:coordinateTransform@cref}{{[equation][6][2147483647,1]A.6}{144}}
1903
\@writefile{toc}{\contentsline {section}{\numberline {A.1}The Tangent Space $T_p M$}{145}{section.A.1}}
1904
\newlabel{eq:derivationDef}{{A.7}{145}{Derivation}{equation.A.1.7}{}}
1905
\newlabel{eq:derivationDef@cref}{{[equation][7][2147483647,1]A.7}{145}}
1906
\newlabel{eq:derivationDef2}{{A.8}{145}{Derivation}{equation.A.1.8}{}}
1907
\newlabel{eq:derivationDef2@cref}{{[equation][8][2147483647,1]A.8}{145}}
1908
\newlabel{def:tangSpace}{{27}{145}{Tangential Space}{definition.27}{}}
1909
\newlabel{def:tangSpace@cref}{{[definition][27][2147483647]27}{145}}
1910
\newlabel{lem:tangentSpaceLinear}{{12}{146}{Linearity}{lemma.12}{}}
1911
\newlabel{lem:tangentSpaceLinear@cref}{{[lemma][12][2147483647]12}{146}}
1912
\newlabel{lem:derivationProp}{{13}{146}{Properties of Derivations}{lemma.13}{}}
1913
\newlabel{lem:derivationProp@cref}{{[lemma][13][2147483647]13}{146}}
1914
\newlabel{item:PropDeriv1}{{1}{146}{Properties of Derivations}{Item.5}{}}
1915
\newlabel{item:PropDeriv1@cref}{{[enumi][1][2147483647]1}{146}}
1916
\newlabel{item:PropDeriv2}{{2}{146}{Properties of Derivations}{Item.6}{}}
1917
\newlabel{item:PropDeriv2@cref}{{[enumi][2][2147483647]2}{146}}
1918
\newlabel{proof:PropDeriv1}{{A.13}{146}{The Tangent Space $T_p M$}{equation.A.1.13}{}}
1919
\newlabel{proof:PropDeriv1@cref}{{[equation][13][2147483647,1]A.13}{146}}
1920
\@writefile{toc}{\contentsline {subsection}{\numberline {A.1.1}The Push-Forward}{147}{subsection.A.1.1}}
1921
\newlabel{def:pushForward}{{28}{147}{Push-Forward}{definition.28}{}}
1922
\newlabel{def:pushForward@cref}{{[definition][28][2147483647]28}{147}}
1923
\newlabel{eq:pushForward}{{A.14}{147}{Push-Forward}{equation.A.1.14}{}}
1924
\newlabel{eq:pushForward@cref}{{[equation][14][2147483647,1]A.14}{147}}
1925
\newlabel{lem:pushForwardproperties}{{14}{147}{Properties of Push-Forwards}{lemma.14}{}}
1926
\newlabel{lem:pushForwardproperties@cref}{{[lemma][14][2147483647]14}{147}}
1927
\newlabel{item:linPushForward}{{1}{147}{Properties of Push-Forwards}{Item.7}{}}
1928
\newlabel{item:linPushForward@cref}{{[enumi][1][2147483647]1}{147}}
1929
\newlabel{item:chainPushForward}{{2}{147}{Properties of Push-Forwards}{Item.8}{}}
1930
\newlabel{item:chainPushForward@cref}{{[enumi][2][2147483647]2}{147}}
1931
\newlabel{item:identPushForward}{{3}{147}{Properties of Push-Forwards}{Item.9}{}}
1932
\newlabel{item:identPushForward@cref}{{[enumi][3][2147483647]3}{147}}
1933
\newlabel{item:diffeoPushForward}{{4}{147}{Properties of Push-Forwards}{Item.10}{}}
1934
\newlabel{item:diffeoPushForward@cref}{{[enumi][4][2147483647]4}{147}}
1935
\newlabel{proof:linPushForward}{{A.15}{147}{The Push-Forward}{equation.A.1.15}{}}
1936
\newlabel{proof:linPushForward@cref}{{[equation][15][2147483647,1]A.15}{147}}
1937
\newlabel{prop:equivRelation}{{5}{148}{Equivalence Relation}{proposition.5}{}}
1938
\newlabel{prop:equivRelation@cref}{{[proposition][5][2147483647]5}{148}}
1939
\newlabel{eq:equivalenceRelationDerivation}{{A.18}{148}{Equivalence Relation}{equation.A.1.18}{}}
1940
\newlabel{eq:equivalenceRelationDerivation@cref}{{[equation][18][2147483647,1]A.18}{148}}
1941
\citation{LeeSmoothManifolds}
1942
\newlabel{def:inclusionMap}{{29}{149}{Inclusion Map}{definition.29}{}}
1943
\newlabel{def:inclusionMap@cref}{{[definition][29][2147483647]29}{149}}
1944
\newlabel{prop:tangentialInclusion}{{6}{149}{Tangential Inclusion Map $\iota _\star $}{proposition.6}{}}
1945
\newlabel{prop:tangentialInclusion@cref}{{[proposition][6][2147483647]6}{149}}
1946
\@writefile{brf}{\backcite{LeeSmoothManifolds}{{149}{A.1.1}{equation.A.1.21}}}
1947
\newlabel{eq:inclMapSurjective}{{A.24}{149}{The Push-Forward}{equation.A.1.24}{}}
1948
\newlabel{eq:inclMapSurjective@cref}{{[equation][24][2147483647,1]A.24}{149}}
1949
\@writefile{toc}{\contentsline {section}{\numberline {A.2}The Basis of $T_p M$}{150}{section.A.2}}
1950
\newlabel{def:euclDirectionalDeriv}{{30}{150}{Euclidean Directional Derivative}{definition.30}{}}
1951
\newlabel{def:euclDirectionalDeriv@cref}{{[definition][30][2147483647]30}{150}}
1952
\newlabel{eq:euclDirectionalDeriv}{{A.27}{150}{Euclidean Directional Derivative}{equation.A.2.27}{}}
1953
\newlabel{eq:euclDirectionalDeriv@cref}{{[equation][27][2147483647,1]A.27}{150}}
1954
\newlabel{eq:euclDirectionMap}{{A.28}{150}{The Basis of $T_p M$}{equation.A.2.28}{}}
1955
\newlabel{eq:euclDirectionMap@cref}{{[equation][28][2147483647,1]A.28}{150}}
1956
\newlabel{lem:basisOfTRn}{{15}{151}{Basis of $T_a\mathbb {R}^n$}{lemma.15}{}}
1957
\newlabel{lem:basisOfTRn@cref}{{[lemma][15][2147483647]15}{151}}
1958
\newlabel{eq:directionalDerivative}{{A.32}{151}{}{equation.A.2.32}{}}
1959
\newlabel{eq:directionalDerivative@cref}{{[equation][32][2147483647,1]A.32}{151}}
1960
\newlabel{eq:vectorOperatorRep}{{A.33}{151}{The Basis of $T_p M$}{equation.A.2.33}{}}
1961
\newlabel{eq:vectorOperatorRep@cref}{{[equation][33][2147483647,1]A.33}{151}}
1962
\newlabel{eq:pushForwardCoordinates}{{A.35}{152}{The Basis of $T_p M$}{equation.A.2.35}{}}
1963
\newlabel{eq:pushForwardCoordinates@cref}{{[equation][35][2147483647,1]A.35}{152}}
1964
\newlabel{eq:coordinateTransformTp}{{A.36}{152}{The Basis of $T_p M$}{equation.A.2.36}{}}
1965
\newlabel{eq:coordinateTransformTp@cref}{{[equation][36][2147483647,1]A.36}{152}}
1966
\@writefile{toc}{\contentsline {section}{\numberline {A.3}Vector Fields}{152}{section.A.3}}
1967
\citation{LeeSmoothManifolds}
1968
\newlabel{eq:tangentialBundle}{{A.37}{153}{Tangential Bundle}{equation.A.3.37}{}}
1969
\newlabel{eq:tangentialBundle@cref}{{[equation][37][2147483647,1]A.37}{153}}
1970
\@writefile{brf}{\backcite{LeeSmoothManifolds}{{153}{A.3}{lemma.16}}}
1971
\newlabel{lem:smoothVectorFields}{{17}{154}{Smooth Vector Fields}{lemma.17}{}}
1972
\newlabel{lem:smoothVectorFields@cref}{{[lemma][17][2147483647]17}{154}}
1973
\@writefile{toc}{\contentsline {section}{\numberline {A.4}Push-Forwards on $\mathcal  {T}(M)$}{154}{section.A.4}}
1974
\newlabel{eq:FRelated1}{{A.43}{154}{Push-Forwards on $\mathcal {T}(M)$}{equation.A.4.43}{}}
1975
\newlabel{eq:FRelated1@cref}{{[equation][43][2147483647,1]A.43}{154}}
1976
\newlabel{eq:FRelated2}{{A.44}{155}{$F$-Related}{equation.A.4.44}{}}
1977
\newlabel{eq:FRelated2@cref}{{[equation][44][2147483647,1]A.44}{155}}
1978
\newlabel{prop:vectorFieldPushForward}{{7}{155}{Push-Forward on $\mathcal {T}(M)$}{proposition.7}{}}
1979
\newlabel{prop:vectorFieldPushForward@cref}{{[proposition][7][2147483647]7}{155}}
1980
\newlabel{eq:FRelated3}{{A.45}{155}{Push-Forwards on $\mathcal {T}(M)$}{equation.A.4.45}{}}
1981
\newlabel{eq:FRelated3@cref}{{[equation][45][2147483647,1]A.45}{155}}
1982
\newlabel{eq:pushForwardCoordinatesVectorField}{{A.47}{155}{Push-Forwards on $\mathcal {T}(M)$}{equation.A.4.47}{}}
1983
\newlabel{eq:pushForwardCoordinatesVectorField@cref}{{[equation][47][2147483647,1]A.47}{155}}
1984
\@writefile{toc}{\contentsline {section}{\numberline {A.5}Integral Curves and Flows}{156}{section.A.5}}
1985
\newlabel{eq:fundamentalTheoremMotiv}{{A.48}{156}{Integral Curves and Flows}{equation.A.5.48}{}}
1986
\newlabel{eq:fundamentalTheoremMotiv@cref}{{[equation][48][2147483647,1]A.48}{156}}
1987
\newlabel{def:integralCurve}{{35}{156}{Integral Curve}{definition.35}{}}
1988
\newlabel{def:integralCurve@cref}{{[definition][35][2147483647]35}{156}}
1989
\newlabel{eq:integralCurveDerivative}{{A.50}{156}{Integral Curve}{equation.A.5.50}{}}
1990
\newlabel{eq:integralCurveDerivative@cref}{{[equation][50][2147483647,1]A.50}{156}}
1991
\citation{LeeSmoothManifolds}
1992
\newlabel{eq:integralCurveDerivative2}{{A.53}{157}{Integral Curves and Flows}{equation.A.5.53}{}}
1993
\newlabel{eq:integralCurveDerivative2@cref}{{[equation][53][2147483647,1]A.53}{157}}
1994
\newlabel{eq:integralCurveDerivativeDiffEq}{{A.54}{157}{Integral Curves and Flows}{equation.A.5.54}{}}
1995
\newlabel{eq:integralCurveDerivativeDiffEq@cref}{{[equation][54][2147483647,1]A.54}{157}}
1996
\newlabel{theorem:ODE}{{3}{157}{ODE Existence, Uniqueness and Smoothness}{theorem.3}{}}
1997
\newlabel{theorem:ODE@cref}{{[theorem][3][2147483647]3}{157}}
228 by gerald.mwangi at gmx
work on modern noether
1998
\@writefile{brf}{\backcite{LeeSmoothManifolds}{{157}{A.5}{theorem.3}}}
230 by gerald.mwangi at gmx
work on modern noether3
1999
\newlabel{eq:curveFlow}{{A.57}{158}{Integral Curves and Flows}{equation.A.5.57}{}}
2000
\newlabel{eq:curveFlow@cref}{{[equation][57][2147483647,1]A.57}{158}}
2001
\newlabel{eq:diffeoFlow}{{A.58}{158}{Integral Curves and Flows}{equation.A.5.58}{}}
2002
\newlabel{eq:diffeoFlow@cref}{{[equation][58][2147483647,1]A.58}{158}}
2003
\newlabel{eq:flowDiffEq}{{A.59}{158}{Integral Curves and Flows}{equation.A.5.59}{}}
2004
\newlabel{eq:flowDiffEq@cref}{{[equation][59][2147483647,1]A.59}{158}}
2005
\newlabel{theorem:FundamentalTheoremOnFlows}{{4}{158}{Fundamental Theorem on Flows}{theorem.4}{}}
2006
\newlabel{theorem:FundamentalTheoremOnFlows@cref}{{[theorem][4][2147483647]4}{158}}
2007
\citation{LeeSmoothManifolds}
2008
\@writefile{brf}{\backcite{LeeSmoothManifolds}{{159}{A.5}{theorem.4}}}
2009
\newlabel{eq:invariantVectorField}{{A.60}{159}{Integral Curves and Flows}{equation.A.5.60}{}}
2010
\newlabel{eq:invariantVectorField@cref}{{[equation][60][2147483647,1]A.60}{159}}
2011
\@writefile{toc}{\contentsline {subsection}{\numberline {A.5.1}The Lie Derivative}{159}{subsection.A.5.1}}
2012
\newlabel{eq:naiveLieDerivative}{{A.61}{160}{The Lie Derivative}{equation.A.5.61}{}}
2013
\newlabel{eq:naiveLieDerivative@cref}{{[equation][61][2147483647,1]A.61}{160}}
2014
\newlabel{eq:lieDerivative}{{A.62}{160}{Lie Derivative}{equation.A.5.62}{}}
2015
\newlabel{eq:lieDerivative@cref}{{[equation][62][2147483647,1]A.62}{160}}
2016
\newlabel{prop:Commutator}{{8}{160}{Commutator}{proposition.8}{}}
2017
\newlabel{prop:Commutator@cref}{{[proposition][8][2147483647]8}{160}}
2018
\newlabel{eq:commutatorApp}{{A.63}{160}{Commutator}{equation.A.5.63}{}}
2019
\newlabel{eq:commutatorApp@cref}{{[equation][63][2147483647,1]A.63}{160}}
2020
\newlabel{eq:lieDerivCommutator}{{A.64}{160}{Commutator}{equation.A.5.64}{}}
2021
\newlabel{eq:lieDerivCommutator@cref}{{[equation][64][2147483647,1]A.64}{160}}
2022
\newlabel{eq:fundamentalTheoremPartdLieDeriv}{{A.71}{161}{The Lie Derivative}{equation.A.5.71}{}}
2023
\newlabel{eq:fundamentalTheoremPartdLieDeriv@cref}{{[equation][71][2147483647,1]A.71}{161}}
144 by gerald.mwangi at gmx
writing appendix
2024
\citation{MansfieldInvarCalc,OlverSymmetry}
230 by gerald.mwangi at gmx
work on modern noether3
2025
\@writefile{toc}{\contentsline {chapter}{\numberline {B}Lie Groups}{162}{appendix.B}}
2026
\@writefile{lof}{\addvspace {10\p@ }}
2027
\@writefile{lot}{\addvspace {10\p@ }}
2028
\@writefile{lol}{\addvspace {10\p@ }}
2029
\@writefile{loa}{\addvspace {10\p@ }}
2030
\newlabel{sec:AppLieGroups}{{B}{162}{Lie Groups}{appendix.B}{}}
2031
\newlabel{sec:AppLieGroups@cref}{{[appendix][2][2147483647]B}{162}}
2032
\@writefile{toc}{\contentsline {section}{\numberline {B.1}The Prolonged Action}{162}{section.B.1}}
2033
\newlabel{sec:AppProlongedAction}{{B.1}{162}{The Prolonged Action}{section.B.1}{}}
2034
\newlabel{sec:AppProlongedAction@cref}{{[subappendix][1][2147483647,2]B.1}{162}}
2035
\newlabel{eq:AppProlongedAction}{{B.1}{162}{The Prolonged Action}{equation.B.1.1}{}}
2036
\newlabel{eq:AppProlongedAction@cref}{{[equation][1][2147483647,2]B.1}{162}}
2037
\@writefile{brf}{\backcite{MansfieldInvarCalc}{{162}{B.1}{equation.B.1.1}}}
2038
\@writefile{brf}{\backcite{OlverSymmetry}{{162}{B.1}{equation.B.1.1}}}
2039
\newlabel{eq:AppProlActionDeriv}{{B.5}{162}{The Prolonged Action}{equation.B.1.5}{}}
2040
\newlabel{eq:AppProlActionDeriv@cref}{{[equation][5][2147483647,2]B.5}{162}}
2041
\@writefile{toc}{\contentsline {section}{\numberline {B.2}Geometrical Meaning of the Commutator $\ensuremath  {\left [{\cdot ,\cdot }\right ]}$}{163}{section.B.2}}
2042
\newlabel{sec:AppCommutator}{{B.2}{163}{Geometrical Meaning of the Commutator $\squarebrackets {\cdot ,\cdot }$}{section.B.2}{}}
2043
\newlabel{sec:AppCommutator@cref}{{[subappendix][2][2147483647,2]B.2}{163}}
2044
\newlabel{eq:AppCommutator}{{B.13}{163}{Geometrical Meaning of the Commutator $\squarebrackets {\cdot ,\cdot }$}{equation.B.2.13}{}}
2045
\newlabel{eq:AppCommutator@cref}{{[equation][13][2147483647,2]B.13}{163}}
2046
\newlabel{eq:AppComm1}{{B.17}{164}{Geometrical Meaning of the Commutator $\squarebrackets {\cdot ,\cdot }$}{equation.B.2.17}{}}
2047
\newlabel{eq:AppComm1@cref}{{[equation][17][2147483647,2]B.17}{164}}
2048
\newlabel{eq:AppComm2}{{B.18}{164}{Geometrical Meaning of the Commutator $\squarebrackets {\cdot ,\cdot }$}{equation.B.2.18}{}}
2049
\newlabel{eq:AppComm2@cref}{{[equation][18][2147483647,2]B.18}{164}}
2050
\@writefile{toc}{\contentsline {section}{\numberline {B.3}Derivation Of Noethers Theorem}{164}{section.B.3}}
2051
\newlabel{sec:AppNoether}{{B.3}{164}{Derivation Of Noethers Theorem}{section.B.3}{}}
2052
\newlabel{sec:AppNoether@cref}{{[subappendix][3][2147483647,2]B.3}{164}}
2053
\newlabel{eq:AppNoetherTotEnergy}{{B.19}{164}{Derivation Of Noethers Theorem}{equation.B.3.19}{}}
2054
\newlabel{eq:AppNoetherTotEnergy@cref}{{[equation][19][2147483647,2]B.19}{164}}
2055
\newlabel{eq:AppNoetherLieAlg}{{B.20}{164}{Derivation Of Noethers Theorem}{equation.B.3.20}{}}
2056
\newlabel{eq:AppNoetherLieAlg@cref}{{[equation][20][2147483647,2]B.20}{164}}
2057
\newlabel{eq:AppNoetherStatement1}{{B.21}{165}{Derivation Of Noethers Theorem}{equation.B.3.21}{}}
2058
\newlabel{eq:AppNoetherStatement1@cref}{{[equation][21][2147483647,2]B.21}{165}}
2059
\newlabel{eq:AppNoetherStatement2}{{B.22}{165}{Derivation Of Noethers Theorem}{equation.B.3.22}{}}
2060
\newlabel{eq:AppNoetherStatement2@cref}{{[equation][22][2147483647,2]B.22}{165}}
2061
\newlabel{eq:AppNoetherProof0}{{B.24}{165}{Derivation Of Noethers Theorem}{equation.B.3.24}{}}
2062
\newlabel{eq:AppNoetherProof0@cref}{{[equation][24][2147483647,2]B.24}{165}}
2063
\newlabel{eq:AppNoetherProof1}{{B.25}{165}{Derivation Of Noethers Theorem}{equation.B.3.25}{}}
2064
\newlabel{eq:AppNoetherProof1@cref}{{[equation][25][2147483647,2]B.25}{165}}
2065
\newlabel{eq:AppNoetherProof2}{{B.29}{166}{Derivation Of Noethers Theorem}{equation.B.3.29}{}}
2066
\newlabel{eq:AppNoetherProof2@cref}{{[equation][29][2147483647,2]B.29}{166}}
2067
\newlabel{eq:AppNoetherProof3}{{B.30}{166}{Derivation Of Noethers Theorem}{equation.B.3.30}{}}
2068
\newlabel{eq:AppNoetherProof3@cref}{{[equation][30][2147483647,2]B.30}{166}}
2069
\newlabel{eq:AppNoetherProof4}{{B.31}{166}{Derivation Of Noethers Theorem}{equation.B.3.31}{}}
2070
\newlabel{eq:AppNoetherProof4@cref}{{[equation][31][2147483647,2]B.31}{166}}
2071
\newlabel{eq:AppNoetherProof5}{{B.32}{166}{Derivation Of Noethers Theorem}{equation.B.3.32}{}}
2072
\newlabel{eq:AppNoetherProof5@cref}{{[equation][32][2147483647,2]B.32}{166}}
2073
\newlabel{eq:AppNoetherProof7}{{B.33}{166}{Derivation Of Noethers Theorem}{equation.B.3.33}{}}
2074
\newlabel{eq:AppNoetherProof7@cref}{{[equation][33][2147483647,2]B.33}{166}}
2075
\newlabel{eq:AppNoetherProof6}{{B.34}{166}{Derivation Of Noethers Theorem}{equation.B.3.34}{}}
2076
\newlabel{eq:AppNoetherProof6@cref}{{[equation][34][2147483647,2]B.34}{166}}
2077
\newlabel{eq:AppNoetherProof8}{{B.35}{166}{Derivation Of Noethers Theorem}{equation.B.3.35}{}}
2078
\newlabel{eq:AppNoetherProof8@cref}{{[equation][35][2147483647,2]B.35}{166}}
2079
\newlabel{eq:AppNoetherProof10}{{B.36}{167}{Derivation Of Noethers Theorem}{equation.B.3.36}{}}
2080
\newlabel{eq:AppNoetherProof10@cref}{{[equation][36][2147483647,2]B.36}{167}}
2081
\newlabel{eq:AppNoetherProof11}{{B.38}{167}{Derivation Of Noethers Theorem}{equation.B.3.38}{}}
2082
\newlabel{eq:AppNoetherProof11@cref}{{[equation][38][2147483647,2]B.38}{167}}
2083
\newlabel{eq:AppNoetherLieAlgExp}{{B.39}{167}{Derivation Of Noethers Theorem}{equation.B.3.39}{}}
2084
\newlabel{eq:AppNoetherLieAlgExp@cref}{{[equation][39][2147483647,2]B.39}{167}}
2085
\newlabel{eq:AppNoetherProof12}{{B.40}{167}{Derivation Of Noethers Theorem}{equation.B.3.40}{}}
2086
\newlabel{eq:AppNoetherProof12@cref}{{[equation][40][2147483647,2]B.40}{167}}
2087
\@writefile{toc}{\contentsline {subsection}{\numberline {B.3.1}Connection between $\ensuremath  {{\mathbf  {B}}}_m$, $\ensuremath  {{\mathbf  {W}}}_m$ and $\ensuremath  {\left [{\mathcal  {E}}\right ]}$}{167}{subsection.B.3.1}}
2088
\newlabel{eq:AppBendingNoetherCurrent1}{{B.42}{168}{Connection between $\vectorheader {B}_m$, $\vectorheader {W}_m$ and $\squarebrackets {\mathcal {E}}$}{equation.B.3.42}{}}
2089
\newlabel{eq:AppBendingNoetherCurrent1@cref}{{[equation][42][2147483647,2]B.42}{168}}
2090
\newlabel{eq:AppBendingNoetherCurrent2}{{B.43}{168}{Connection between $\vectorheader {B}_m$, $\vectorheader {W}_m$ and $\squarebrackets {\mathcal {E}}$}{equation.B.3.43}{}}
2091
\newlabel{eq:AppBendingNoetherCurrent2@cref}{{[equation][43][2147483647,2]B.43}{168}}
2092
\newlabel{eq:AppBendingNoetherCurrent3}{{B.44}{168}{Connection between $\vectorheader {B}_m$, $\vectorheader {W}_m$ and $\squarebrackets {\mathcal {E}}$}{equation.B.3.44}{}}
2093
\newlabel{eq:AppBendingNoetherCurrent3@cref}{{[equation][44][2147483647,2]B.44}{168}}
2094
\newlabel{eq:AppBendingNoetherCurrent4}{{B.45}{168}{Connection between $\vectorheader {B}_m$, $\vectorheader {W}_m$ and $\squarebrackets {\mathcal {E}}$}{equation.B.3.45}{}}
2095
\newlabel{eq:AppBendingNoetherCurrent4@cref}{{[equation][45][2147483647,2]B.45}{168}}
2096
\newlabel{eq:AppBendingNoetherCurrent5}{{B.46}{168}{Connection between $\vectorheader {B}_m$, $\vectorheader {W}_m$ and $\squarebrackets {\mathcal {E}}$}{equation.B.3.46}{}}
2097
\newlabel{eq:AppBendingNoetherCurrent5@cref}{{[equation][46][2147483647,2]B.46}{168}}
2098
\newlabel{eq:AppBendingNoetherCurrent6}{{B.47}{168}{Connection between $\vectorheader {B}_m$, $\vectorheader {W}_m$ and $\squarebrackets {\mathcal {E}}$}{equation.B.3.47}{}}
2099
\newlabel{eq:AppBendingNoetherCurrent6@cref}{{[equation][47][2147483647,2]B.47}{168}}
2100
\newlabel{eq:AppBendingNoetherCurrent7}{{B.48}{168}{Connection between $\vectorheader {B}_m$, $\vectorheader {W}_m$ and $\squarebrackets {\mathcal {E}}$}{equation.B.3.48}{}}
2101
\newlabel{eq:AppBendingNoetherCurrent7@cref}{{[equation][48][2147483647,2]B.48}{168}}
2102
\newlabel{eq:AppBendingLevelSet}{{B.49}{168}{Connection between $\vectorheader {B}_m$, $\vectorheader {W}_m$ and $\squarebrackets {\mathcal {E}}$}{equation.B.3.49}{}}
2103
\newlabel{eq:AppBendingLevelSet@cref}{{[equation][49][2147483647,2]B.49}{168}}
2104
\@writefile{toc}{\contentsline {chapter}{\numberline {C}The Bending Algebra}{169}{appendix.C}}
2105
\@writefile{lof}{\addvspace {10\p@ }}
2106
\@writefile{lot}{\addvspace {10\p@ }}
2107
\@writefile{lol}{\addvspace {10\p@ }}
2108
\@writefile{loa}{\addvspace {10\p@ }}
2109
\@writefile{toc}{\contentsline {section}{\numberline {C.1}The curvature operator}{169}{section.C.1}}
2110
\newlabel{sec:AppCurv}{{C.1}{169}{The curvature operator}{section.C.1}{}}
2111
\newlabel{sec:AppCurv@cref}{{[subappendix][1][2147483647,3]C.1}{169}}
2112
\newlabel{eq:AppDiffusionProcess}{{C.1}{169}{The curvature operator}{equation.C.1.1}{}}
2113
\newlabel{eq:AppDiffusionProcess@cref}{{[equation][1][2147483647,3]C.1}{169}}
2114
\newlabel{eq:AppEulerLagrangeGRF2}{{C.3}{169}{The curvature operator}{equation.C.1.3}{}}
2115
\newlabel{eq:AppEulerLagrangeGRF2@cref}{{[equation][3][2147483647,3]C.3}{169}}
2116
\newlabel{eq:DivPChange}{{C.6}{169}{The curvature operator}{equation.C.1.6}{}}
2117
\newlabel{eq:DivPChange@cref}{{[equation][6][2147483647,3]C.6}{169}}
167 by gerald.mwangi at gmx
reviewing everything 17
2118
\citation{BrediesMathemBildverarbeitung}
230 by gerald.mwangi at gmx
work on modern noether3
2119
\newlabel{eq:DivPIntegral}{{C.7}{170}{The curvature operator}{equation.C.1.7}{}}
2120
\newlabel{eq:DivPIntegral@cref}{{[equation][7][2147483647,3]C.7}{170}}
2121
\newlabel{eq:DivPChange2}{{C.9}{170}{The curvature operator}{equation.C.1.9}{}}
2122
\newlabel{eq:DivPChange2@cref}{{[equation][9][2147483647,3]C.9}{170}}
2123
\@writefile{brf}{\backcite{BrediesMathemBildverarbeitung}{{170}{C.1}{equation.C.1.9}}}
2124
\newlabel{eq:DivPIntegral2}{{C.10}{170}{The curvature operator}{equation.C.1.10}{}}
2125
\newlabel{eq:DivPIntegral2@cref}{{[equation][10][2147483647,3]C.10}{170}}
2126
\newlabel{eq:DivPIntegral3}{{C.12}{170}{The curvature operator}{equation.C.1.12}{}}
2127
\newlabel{eq:DivPIntegral3@cref}{{[equation][12][2147483647,3]C.12}{170}}
2128
\newlabel{eq:DivPChange3}{{C.14}{170}{The curvature operator}{equation.C.1.14}{}}
2129
\newlabel{eq:DivPChange3@cref}{{[equation][14][2147483647,3]C.14}{170}}
2130
\newlabel{eq:CurvOperator}{{C.15}{171}{The curvature operator}{equation.C.1.15}{}}
2131
\newlabel{eq:CurvOperator@cref}{{[equation][15][2147483647,3]C.15}{171}}
2132
\newlabel{eq:AppCurveCoeff}{{C.17}{171}{The curvature operator}{equation.C.1.17}{}}
2133
\newlabel{eq:AppCurveCoeff@cref}{{[equation][17][2147483647,3]C.17}{171}}
2134
\@writefile{toc}{\contentsline {section}{\numberline {C.2}TV Image Denoising, supplementary results}{172}{section.C.2}}
2135
\newlabel{sec:AppTVSupplementary}{{C.2}{172}{TV Image Denoising, supplementary results}{section.C.2}{}}
2136
\newlabel{sec:AppTVSupplementary@cref}{{[subappendix][2][2147483647,3]C.2}{172}}
2137
\newlabel{fig:Grove}{{C.1a}{172}{Subfigure C C.1a}{subfigure.C.1.1}{}}
180 by gerald.mwangi at gmx
Started corrections. Added appendix on top manifolds
2138
\newlabel{sub@fig:Grove}{{(a)}{a}{Subfigure C C.1a\relax }{subfigure.C.1.1}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2139
\newlabel{fig:Grove@cref}{{[subfigure][1][2147483647,3,1]C.1a}{172}}
2140
\newlabel{fig:Grove-Noise}{{C.1b}{172}{Subfigure C C.1b}{subfigure.C.1.2}{}}
180 by gerald.mwangi at gmx
Started corrections. Added appendix on top manifolds
2141
\newlabel{sub@fig:Grove-Noise}{{(b)}{b}{Subfigure C C.1b\relax }{subfigure.C.1.2}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2142
\newlabel{fig:Grove-Noise@cref}{{[subfigure][2][2147483647,3,1]C.1b}{172}}
2143
\newlabel{fig:Grove-GNA}{{C.1c}{172}{Subfigure C C.1c}{subfigure.C.1.3}{}}
180 by gerald.mwangi at gmx
Started corrections. Added appendix on top manifolds
2144
\newlabel{sub@fig:Grove-GNA}{{(c)}{c}{Subfigure C C.1c\relax }{subfigure.C.1.3}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2145
\newlabel{fig:Grove-GNA@cref}{{[subfigure][3][2147483647,3,1]C.1c}{172}}
2146
\newlabel{fig:Grove-BNA}{{C.1d}{172}{Subfigure C C.1d}{subfigure.C.1.4}{}}
180 by gerald.mwangi at gmx
Started corrections. Added appendix on top manifolds
2147
\newlabel{sub@fig:Grove-BNA}{{(d)}{d}{Subfigure C C.1d\relax }{subfigure.C.1.4}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2148
\newlabel{fig:Grove-BNA@cref}{{[subfigure][4][2147483647,3,1]C.1d}{172}}
2149
\newlabel{fig:Grove-MeanEnergy}{{C.1e}{172}{Subfigure C C.1e}{subfigure.C.1.5}{}}
180 by gerald.mwangi at gmx
Started corrections. Added appendix on top manifolds
2150
\newlabel{sub@fig:Grove-MeanEnergy}{{(e)}{e}{Subfigure C C.1e\relax }{subfigure.C.1.5}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2151
\newlabel{fig:Grove-MeanEnergy@cref}{{[subfigure][5][2147483647,3,1]C.1e}{172}}
2152
\newlabel{fig:Grove-StdDevEnergy}{{C.1f}{172}{Subfigure C C.1f}{subfigure.C.1.6}{}}
180 by gerald.mwangi at gmx
Started corrections. Added appendix on top manifolds
2153
\newlabel{sub@fig:Grove-StdDevEnergy}{{(f)}{f}{Subfigure C C.1f\relax }{subfigure.C.1.6}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2154
\newlabel{fig:Grove-StdDevEnergy@cref}{{[subfigure][6][2147483647,3,1]C.1f}{172}}
2155
\newlabel{fig:Grove-MeanCurvature}{{C.1g}{172}{Subfigure C C.1g}{subfigure.C.1.7}{}}
180 by gerald.mwangi at gmx
Started corrections. Added appendix on top manifolds
2156
\newlabel{sub@fig:Grove-MeanCurvature}{{(g)}{g}{Subfigure C C.1g\relax }{subfigure.C.1.7}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2157
\newlabel{fig:Grove-MeanCurvature@cref}{{[subfigure][7][2147483647,3,1]C.1g}{172}}
2158
\newlabel{fig:GroveCurvatureFit}{{C.1h}{172}{Subfigure C C.1h}{subfigure.C.1.8}{}}
180 by gerald.mwangi at gmx
Started corrections. Added appendix on top manifolds
2159
\newlabel{sub@fig:GroveCurvatureFit}{{(h)}{h}{Subfigure C C.1h\relax }{subfigure.C.1.8}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2160
\newlabel{fig:GroveCurvatureFit@cref}{{[subfigure][8][2147483647,3,1]C.1h}{172}}
2161
\newlabel{fig:Evergreen}{{C.1i}{172}{Subfigure C C.1i}{subfigure.C.1.9}{}}
180 by gerald.mwangi at gmx
Started corrections. Added appendix on top manifolds
2162
\newlabel{sub@fig:Evergreen}{{(i)}{i}{Subfigure C C.1i\relax }{subfigure.C.1.9}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2163
\newlabel{fig:Evergreen@cref}{{[subfigure][9][2147483647,3,1]C.1i}{172}}
2164
\newlabel{fig:Evergreen-Noise}{{C.1j}{172}{Subfigure C C.1j}{subfigure.C.1.10}{}}
180 by gerald.mwangi at gmx
Started corrections. Added appendix on top manifolds
2165
\newlabel{sub@fig:Evergreen-Noise}{{(j)}{j}{Subfigure C C.1j\relax }{subfigure.C.1.10}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2166
\newlabel{fig:Evergreen-Noise@cref}{{[subfigure][10][2147483647,3,1]C.1j}{172}}
2167
\newlabel{fig:Evergreen-GNA}{{C.1k}{172}{Subfigure C C.1k}{subfigure.C.1.11}{}}
180 by gerald.mwangi at gmx
Started corrections. Added appendix on top manifolds
2168
\newlabel{sub@fig:Evergreen-GNA}{{(k)}{k}{Subfigure C C.1k\relax }{subfigure.C.1.11}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2169
\newlabel{fig:Evergreen-GNA@cref}{{[subfigure][11][2147483647,3,1]C.1k}{172}}
2170
\newlabel{fig:Evergreen-BNA}{{C.1l}{172}{Subfigure C C.1l}{subfigure.C.1.12}{}}
180 by gerald.mwangi at gmx
Started corrections. Added appendix on top manifolds
2171
\newlabel{sub@fig:Evergreen-BNA}{{(l)}{l}{Subfigure C C.1l\relax }{subfigure.C.1.12}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2172
\newlabel{fig:Evergreen-BNA@cref}{{[subfigure][12][2147483647,3,1]C.1l}{172}}
2173
\newlabel{fig:Evergreen-MeanEnergy}{{C.1m}{172}{Subfigure C C.1m}{subfigure.C.1.13}{}}
180 by gerald.mwangi at gmx
Started corrections. Added appendix on top manifolds
2174
\newlabel{sub@fig:Evergreen-MeanEnergy}{{(m)}{m}{Subfigure C C.1m\relax }{subfigure.C.1.13}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2175
\newlabel{fig:Evergreen-MeanEnergy@cref}{{[subfigure][13][2147483647,3,1]C.1m}{172}}
2176
\newlabel{fig:Evergreen-StdDevEnergy}{{C.1n}{172}{Subfigure C C.1n}{subfigure.C.1.14}{}}
180 by gerald.mwangi at gmx
Started corrections. Added appendix on top manifolds
2177
\newlabel{sub@fig:Evergreen-StdDevEnergy}{{(n)}{n}{Subfigure C C.1n\relax }{subfigure.C.1.14}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2178
\newlabel{fig:Evergreen-StdDevEnergy@cref}{{[subfigure][14][2147483647,3,1]C.1n}{172}}
2179
\newlabel{fig:Evergreen-MeanCurvature}{{C.1o}{172}{Subfigure C C.1o}{subfigure.C.1.15}{}}
180 by gerald.mwangi at gmx
Started corrections. Added appendix on top manifolds
2180
\newlabel{sub@fig:Evergreen-MeanCurvature}{{(o)}{o}{Subfigure C C.1o\relax }{subfigure.C.1.15}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2181
\newlabel{fig:Evergreen-MeanCurvature@cref}{{[subfigure][15][2147483647,3,1]C.1o}{172}}
2182
\newlabel{fig:EvergreenCurvatureFit}{{C.1p}{172}{Subfigure C C.1p}{subfigure.C.1.16}{}}
180 by gerald.mwangi at gmx
Started corrections. Added appendix on top manifolds
2183
\newlabel{sub@fig:EvergreenCurvatureFit}{{(p)}{p}{Subfigure C C.1p\relax }{subfigure.C.1.16}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2184
\newlabel{fig:EvergreenCurvatureFit@cref}{{[subfigure][16][2147483647,3,1]C.1p}{172}}
2185
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {input image}}}{172}{subfigure.1.1}}
2186
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$\phi _0$}}}{172}{subfigure.1.2}}
2187
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$\phi ^\star _{ELAA}$}}}{172}{subfigure.1.3}}
2188
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {$\phi ^\star _{BNA}$}}}{172}{subfigure.1.4}}
2189
\@writefile{lof}{\contentsline {subfigure}{\numberline{(e)}{\ignorespaces {}}}{172}{subfigure.1.5}}
2190
\@writefile{lof}{\contentsline {subfigure}{\numberline{(f)}{\ignorespaces {}}}{172}{subfigure.1.6}}
2191
\@writefile{lof}{\contentsline {subfigure}{\numberline{(g)}{\ignorespaces {}}}{172}{subfigure.1.7}}
2192
\@writefile{lof}{\contentsline {subfigure}{\numberline{(h)}{\ignorespaces {}}}{172}{subfigure.1.8}}
2193
\@writefile{lof}{\contentsline {subfigure}{\numberline{(i)}{\ignorespaces {input image}}}{172}{subfigure.1.9}}
2194
\@writefile{lof}{\contentsline {subfigure}{\numberline{(j)}{\ignorespaces {$\phi _0$}}}{172}{subfigure.1.10}}
2195
\@writefile{lof}{\contentsline {subfigure}{\numberline{(k)}{\ignorespaces {$\phi ^\star _{ELAA}$}}}{172}{subfigure.1.11}}
2196
\@writefile{lof}{\contentsline {subfigure}{\numberline{(l)}{\ignorespaces {$\phi ^\star _{BNA}$}}}{172}{subfigure.1.12}}
2197
\@writefile{lof}{\contentsline {subfigure}{\numberline{(m)}{\ignorespaces {}}}{172}{subfigure.1.13}}
2198
\@writefile{lof}{\contentsline {subfigure}{\numberline{(n)}{\ignorespaces {}}}{172}{subfigure.1.14}}
2199
\@writefile{lof}{\contentsline {subfigure}{\numberline{(o)}{\ignorespaces {}}}{172}{subfigure.1.15}}
2200
\@writefile{lof}{\contentsline {subfigure}{\numberline{(p)}{\ignorespaces {}}}{172}{subfigure.1.16}}
2201
\newlabel{fig:Dumptruck}{{C.1a}{173}{Subfigure C C.1a}{subfigure.C.1.1}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2202
\newlabel{sub@fig:Dumptruck}{{(a)}{a}{Subfigure C C.1a\relax }{subfigure.C.1.1}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2203
\newlabel{fig:Dumptruck@cref}{{[subfigure][1][2147483647,3,1]C.1a}{173}}
2204
\newlabel{fig:Dumptruck-Noise}{{C.1b}{173}{Subfigure C C.1b}{subfigure.C.1.2}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2205
\newlabel{sub@fig:Dumptruck-Noise}{{(b)}{b}{Subfigure C C.1b\relax }{subfigure.C.1.2}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2206
\newlabel{fig:Dumptruck-Noise@cref}{{[subfigure][2][2147483647,3,1]C.1b}{173}}
2207
\newlabel{fig:Dumptruck-GNA}{{C.1c}{173}{Subfigure C C.1c}{subfigure.C.1.3}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2208
\newlabel{sub@fig:Dumptruck-GNA}{{(c)}{c}{Subfigure C C.1c\relax }{subfigure.C.1.3}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2209
\newlabel{fig:Dumptruck-GNA@cref}{{[subfigure][3][2147483647,3,1]C.1c}{173}}
2210
\newlabel{fig:Dumptruck-BNA}{{C.1d}{173}{Subfigure C C.1d}{subfigure.C.1.4}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2211
\newlabel{sub@fig:Dumptruck-BNA}{{(d)}{d}{Subfigure C C.1d\relax }{subfigure.C.1.4}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2212
\newlabel{fig:Dumptruck-BNA@cref}{{[subfigure][4][2147483647,3,1]C.1d}{173}}
2213
\newlabel{fig:Dumptruck-MeanEnergy}{{C.1e}{173}{Subfigure C C.1e}{subfigure.C.1.5}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2214
\newlabel{sub@fig:Dumptruck-MeanEnergy}{{(e)}{e}{Subfigure C C.1e\relax }{subfigure.C.1.5}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2215
\newlabel{fig:Dumptruck-MeanEnergy@cref}{{[subfigure][5][2147483647,3,1]C.1e}{173}}
2216
\newlabel{fig:Dumptruck-StdDevEnergy}{{C.1f}{173}{Subfigure C C.1f}{subfigure.C.1.6}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2217
\newlabel{sub@fig:Dumptruck-StdDevEnergy}{{(f)}{f}{Subfigure C C.1f\relax }{subfigure.C.1.6}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2218
\newlabel{fig:Dumptruck-StdDevEnergy@cref}{{[subfigure][6][2147483647,3,1]C.1f}{173}}
2219
\newlabel{fig:Dumptruck-MeanCurvature}{{C.1g}{173}{Subfigure C C.1g}{subfigure.C.1.7}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2220
\newlabel{sub@fig:Dumptruck-MeanCurvature}{{(g)}{g}{Subfigure C C.1g\relax }{subfigure.C.1.7}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2221
\newlabel{fig:Dumptruck-MeanCurvature@cref}{{[subfigure][7][2147483647,3,1]C.1g}{173}}
2222
\newlabel{fig:DumptruckCurvatureFit}{{C.1h}{173}{Subfigure C C.1h}{subfigure.C.1.8}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2223
\newlabel{sub@fig:DumptruckCurvatureFit}{{(h)}{h}{Subfigure C C.1h\relax }{subfigure.C.1.8}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2224
\newlabel{fig:DumptruckCurvatureFit@cref}{{[subfigure][8][2147483647,3,1]C.1h}{173}}
2225
\newlabel{fig:Basketball}{{C.1i}{173}{Subfigure C C.1i}{subfigure.C.1.9}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2226
\newlabel{sub@fig:Basketball}{{(i)}{i}{Subfigure C C.1i\relax }{subfigure.C.1.9}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2227
\newlabel{fig:Basketball@cref}{{[subfigure][9][2147483647,3,1]C.1i}{173}}
2228
\newlabel{fig:Basketball-Noise}{{C.1j}{173}{Subfigure C C.1j}{subfigure.C.1.10}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2229
\newlabel{sub@fig:Basketball-Noise}{{(j)}{j}{Subfigure C C.1j\relax }{subfigure.C.1.10}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2230
\newlabel{fig:Basketball-Noise@cref}{{[subfigure][10][2147483647,3,1]C.1j}{173}}
2231
\newlabel{fig:Basketball-GNA}{{C.1k}{173}{Subfigure C C.1k}{subfigure.C.1.11}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2232
\newlabel{sub@fig:Basketball-GNA}{{(k)}{k}{Subfigure C C.1k\relax }{subfigure.C.1.11}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2233
\newlabel{fig:Basketball-GNA@cref}{{[subfigure][11][2147483647,3,1]C.1k}{173}}
2234
\newlabel{fig:Basketball-BNA}{{C.1l}{173}{Subfigure C C.1l}{subfigure.C.1.12}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2235
\newlabel{sub@fig:Basketball-BNA}{{(l)}{l}{Subfigure C C.1l\relax }{subfigure.C.1.12}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2236
\newlabel{fig:Basketball-BNA@cref}{{[subfigure][12][2147483647,3,1]C.1l}{173}}
2237
\newlabel{fig:Basketball-MeanEnergy}{{C.1m}{173}{Subfigure C C.1m}{subfigure.C.1.13}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2238
\newlabel{sub@fig:Basketball-MeanEnergy}{{(m)}{m}{Subfigure C C.1m\relax }{subfigure.C.1.13}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2239
\newlabel{fig:Basketball-MeanEnergy@cref}{{[subfigure][13][2147483647,3,1]C.1m}{173}}
2240
\newlabel{fig:Basketball-StdDevEnergy}{{C.1n}{173}{Subfigure C C.1n}{subfigure.C.1.14}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2241
\newlabel{sub@fig:Basketball-StdDevEnergy}{{(n)}{n}{Subfigure C C.1n\relax }{subfigure.C.1.14}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2242
\newlabel{fig:Basketball-StdDevEnergy@cref}{{[subfigure][14][2147483647,3,1]C.1n}{173}}
2243
\newlabel{fig:Basketball-MeanCurvature}{{C.1o}{173}{Subfigure C C.1o}{subfigure.C.1.15}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2244
\newlabel{sub@fig:Basketball-MeanCurvature}{{(o)}{o}{Subfigure C C.1o\relax }{subfigure.C.1.15}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2245
\newlabel{fig:Basketball-MeanCurvature@cref}{{[subfigure][15][2147483647,3,1]C.1o}{173}}
2246
\newlabel{fig:BasketballCurvatureFit}{{C.1p}{173}{Subfigure C C.1p}{subfigure.C.1.16}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2247
\newlabel{sub@fig:BasketballCurvatureFit}{{(p)}{p}{Subfigure C C.1p\relax }{subfigure.C.1.16}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2248
\newlabel{fig:BasketballCurvatureFit@cref}{{[subfigure][16][2147483647,3,1]C.1p}{173}}
2249
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {input image}}}{173}{subfigure.1.1}}
2250
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$\phi _0$}}}{173}{subfigure.1.2}}
2251
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$\phi ^\star _{ELAA}$}}}{173}{subfigure.1.3}}
2252
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {$\phi ^\star _{BNA}$}}}{173}{subfigure.1.4}}
2253
\@writefile{lof}{\contentsline {subfigure}{\numberline{(e)}{\ignorespaces {}}}{173}{subfigure.1.5}}
2254
\@writefile{lof}{\contentsline {subfigure}{\numberline{(f)}{\ignorespaces {}}}{173}{subfigure.1.6}}
2255
\@writefile{lof}{\contentsline {subfigure}{\numberline{(g)}{\ignorespaces {}}}{173}{subfigure.1.7}}
2256
\@writefile{lof}{\contentsline {subfigure}{\numberline{(h)}{\ignorespaces {}}}{173}{subfigure.1.8}}
2257
\@writefile{lof}{\contentsline {subfigure}{\numberline{(i)}{\ignorespaces {input image}}}{173}{subfigure.1.9}}
2258
\@writefile{lof}{\contentsline {subfigure}{\numberline{(j)}{\ignorespaces {$\phi _0$}}}{173}{subfigure.1.10}}
2259
\@writefile{lof}{\contentsline {subfigure}{\numberline{(k)}{\ignorespaces {$\phi ^\star _{ELAA}$}}}{173}{subfigure.1.11}}
2260
\@writefile{lof}{\contentsline {subfigure}{\numberline{(l)}{\ignorespaces {$\phi ^\star _{BNA}$}}}{173}{subfigure.1.12}}
2261
\@writefile{lof}{\contentsline {subfigure}{\numberline{(m)}{\ignorespaces {}}}{173}{subfigure.1.13}}
2262
\@writefile{lof}{\contentsline {subfigure}{\numberline{(n)}{\ignorespaces {}}}{173}{subfigure.1.14}}
2263
\@writefile{lof}{\contentsline {subfigure}{\numberline{(o)}{\ignorespaces {}}}{173}{subfigure.1.15}}
2264
\@writefile{lof}{\contentsline {subfigure}{\numberline{(p)}{\ignorespaces {}}}{173}{subfigure.1.16}}
2265
\newlabel{fig:MiniCooper}{{C.1a}{174}{Subfigure C C.1a}{subfigure.C.1.1}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2266
\newlabel{sub@fig:MiniCooper}{{(a)}{a}{Subfigure C C.1a\relax }{subfigure.C.1.1}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2267
\newlabel{fig:MiniCooper@cref}{{[subfigure][1][2147483647,3,1]C.1a}{174}}
2268
\newlabel{fig:MiniCooper-Noise}{{C.1b}{174}{Subfigure C C.1b}{subfigure.C.1.2}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2269
\newlabel{sub@fig:MiniCooper-Noise}{{(b)}{b}{Subfigure C C.1b\relax }{subfigure.C.1.2}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2270
\newlabel{fig:MiniCooper-Noise@cref}{{[subfigure][2][2147483647,3,1]C.1b}{174}}
2271
\newlabel{fig:MiniCooper-GNA}{{C.1c}{174}{Subfigure C C.1c}{subfigure.C.1.3}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2272
\newlabel{sub@fig:MiniCooper-GNA}{{(c)}{c}{Subfigure C C.1c\relax }{subfigure.C.1.3}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2273
\newlabel{fig:MiniCooper-GNA@cref}{{[subfigure][3][2147483647,3,1]C.1c}{174}}
2274
\newlabel{fig:MiniCooper-BNA}{{C.1d}{174}{Subfigure C C.1d}{subfigure.C.1.4}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2275
\newlabel{sub@fig:MiniCooper-BNA}{{(d)}{d}{Subfigure C C.1d\relax }{subfigure.C.1.4}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2276
\newlabel{fig:MiniCooper-BNA@cref}{{[subfigure][4][2147483647,3,1]C.1d}{174}}
2277
\newlabel{fig:MiniCooper-MeanEnergy}{{C.1e}{174}{Subfigure C C.1e}{subfigure.C.1.5}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2278
\newlabel{sub@fig:MiniCooper-MeanEnergy}{{(e)}{e}{Subfigure C C.1e\relax }{subfigure.C.1.5}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2279
\newlabel{fig:MiniCooper-MeanEnergy@cref}{{[subfigure][5][2147483647,3,1]C.1e}{174}}
2280
\newlabel{fig:MiniCooper-StdDevEnergy}{{C.1f}{174}{Subfigure C C.1f}{subfigure.C.1.6}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2281
\newlabel{sub@fig:MiniCooper-StdDevEnergy}{{(f)}{f}{Subfigure C C.1f\relax }{subfigure.C.1.6}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2282
\newlabel{fig:MiniCooper-StdDevEnergy@cref}{{[subfigure][6][2147483647,3,1]C.1f}{174}}
2283
\newlabel{fig:MiniCooper-MeanCurvature}{{C.1g}{174}{Subfigure C C.1g}{subfigure.C.1.7}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2284
\newlabel{sub@fig:MiniCooper-MeanCurvature}{{(g)}{g}{Subfigure C C.1g\relax }{subfigure.C.1.7}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2285
\newlabel{fig:MiniCooper-MeanCurvature@cref}{{[subfigure][7][2147483647,3,1]C.1g}{174}}
2286
\newlabel{fig:MiniCooperCurvatureFit}{{C.1h}{174}{Subfigure C C.1h}{subfigure.C.1.8}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2287
\newlabel{sub@fig:MiniCooperCurvatureFit}{{(h)}{h}{Subfigure C C.1h\relax }{subfigure.C.1.8}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2288
\newlabel{fig:MiniCooperCurvatureFit@cref}{{[subfigure][8][2147483647,3,1]C.1h}{174}}
2289
\newlabel{fig:Beanbags}{{C.1i}{174}{Subfigure C C.1i}{subfigure.C.1.9}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2290
\newlabel{sub@fig:Beanbags}{{(i)}{i}{Subfigure C C.1i\relax }{subfigure.C.1.9}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2291
\newlabel{fig:Beanbags@cref}{{[subfigure][9][2147483647,3,1]C.1i}{174}}
2292
\newlabel{fig:Beanbags-Noise}{{C.1j}{174}{Subfigure C C.1j}{subfigure.C.1.10}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2293
\newlabel{sub@fig:Beanbags-Noise}{{(j)}{j}{Subfigure C C.1j\relax }{subfigure.C.1.10}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2294
\newlabel{fig:Beanbags-Noise@cref}{{[subfigure][10][2147483647,3,1]C.1j}{174}}
2295
\newlabel{fig:Beanbags-GNA}{{C.1k}{174}{Subfigure C C.1k}{subfigure.C.1.11}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2296
\newlabel{sub@fig:Beanbags-GNA}{{(k)}{k}{Subfigure C C.1k\relax }{subfigure.C.1.11}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2297
\newlabel{fig:Beanbags-GNA@cref}{{[subfigure][11][2147483647,3,1]C.1k}{174}}
2298
\newlabel{fig:Beanbags-BNA}{{C.1l}{174}{Subfigure C C.1l}{subfigure.C.1.12}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2299
\newlabel{sub@fig:Beanbags-BNA}{{(l)}{l}{Subfigure C C.1l\relax }{subfigure.C.1.12}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2300
\newlabel{fig:Beanbags-BNA@cref}{{[subfigure][12][2147483647,3,1]C.1l}{174}}
2301
\newlabel{fig:Beanbags-MeanEnergy}{{C.1m}{174}{Subfigure C C.1m}{subfigure.C.1.13}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2302
\newlabel{sub@fig:Beanbags-MeanEnergy}{{(m)}{m}{Subfigure C C.1m\relax }{subfigure.C.1.13}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2303
\newlabel{fig:Beanbags-MeanEnergy@cref}{{[subfigure][13][2147483647,3,1]C.1m}{174}}
2304
\newlabel{fig:Beanbags-StdDevEnergy}{{C.1n}{174}{Subfigure C C.1n}{subfigure.C.1.14}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2305
\newlabel{sub@fig:Beanbags-StdDevEnergy}{{(n)}{n}{Subfigure C C.1n\relax }{subfigure.C.1.14}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2306
\newlabel{fig:Beanbags-StdDevEnergy@cref}{{[subfigure][14][2147483647,3,1]C.1n}{174}}
2307
\newlabel{fig:Beanbags-MeanCurvature}{{C.1o}{174}{Subfigure C C.1o}{subfigure.C.1.15}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2308
\newlabel{sub@fig:Beanbags-MeanCurvature}{{(o)}{o}{Subfigure C C.1o\relax }{subfigure.C.1.15}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2309
\newlabel{fig:Beanbags-MeanCurvature@cref}{{[subfigure][15][2147483647,3,1]C.1o}{174}}
2310
\newlabel{fig:BeanbagsCurvatureFit}{{C.1p}{174}{Subfigure C C.1p}{subfigure.C.1.16}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2311
\newlabel{sub@fig:BeanbagsCurvatureFit}{{(p)}{p}{Subfigure C C.1p\relax }{subfigure.C.1.16}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2312
\newlabel{fig:BeanbagsCurvatureFit@cref}{{[subfigure][16][2147483647,3,1]C.1p}{174}}
2313
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {input image}}}{174}{subfigure.1.1}}
2314
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$\phi _0$}}}{174}{subfigure.1.2}}
2315
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$\phi ^\star _{ELAA}$}}}{174}{subfigure.1.3}}
2316
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {$\phi ^\star _{BNA}$}}}{174}{subfigure.1.4}}
2317
\@writefile{lof}{\contentsline {subfigure}{\numberline{(e)}{\ignorespaces {}}}{174}{subfigure.1.5}}
2318
\@writefile{lof}{\contentsline {subfigure}{\numberline{(f)}{\ignorespaces {}}}{174}{subfigure.1.6}}
2319
\@writefile{lof}{\contentsline {subfigure}{\numberline{(g)}{\ignorespaces {}}}{174}{subfigure.1.7}}
2320
\@writefile{lof}{\contentsline {subfigure}{\numberline{(h)}{\ignorespaces {}}}{174}{subfigure.1.8}}
2321
\@writefile{lof}{\contentsline {subfigure}{\numberline{(i)}{\ignorespaces {input image}}}{174}{subfigure.1.9}}
2322
\@writefile{lof}{\contentsline {subfigure}{\numberline{(j)}{\ignorespaces {$\phi _0$}}}{174}{subfigure.1.10}}
2323
\@writefile{lof}{\contentsline {subfigure}{\numberline{(k)}{\ignorespaces {$\phi ^\star _{ELAA}$}}}{174}{subfigure.1.11}}
2324
\@writefile{lof}{\contentsline {subfigure}{\numberline{(l)}{\ignorespaces {$\phi ^\star _{BNA}$}}}{174}{subfigure.1.12}}
2325
\@writefile{lof}{\contentsline {subfigure}{\numberline{(m)}{\ignorespaces {}}}{174}{subfigure.1.13}}
2326
\@writefile{lof}{\contentsline {subfigure}{\numberline{(n)}{\ignorespaces {}}}{174}{subfigure.1.14}}
2327
\@writefile{lof}{\contentsline {subfigure}{\numberline{(o)}{\ignorespaces {}}}{174}{subfigure.1.15}}
2328
\@writefile{lof}{\contentsline {subfigure}{\numberline{(p)}{\ignorespaces {}}}{174}{subfigure.1.16}}
2329
\newlabel{fig:Urban}{{C.1a}{175}{Subfigure C C.1a}{subfigure.C.1.1}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2330
\newlabel{sub@fig:Urban}{{(a)}{a}{Subfigure C C.1a\relax }{subfigure.C.1.1}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2331
\newlabel{fig:Urban@cref}{{[subfigure][1][2147483647,3,1]C.1a}{175}}
2332
\newlabel{fig:Urban-Noise}{{C.1b}{175}{Subfigure C C.1b}{subfigure.C.1.2}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2333
\newlabel{sub@fig:Urban-Noise}{{(b)}{b}{Subfigure C C.1b\relax }{subfigure.C.1.2}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2334
\newlabel{fig:Urban-Noise@cref}{{[subfigure][2][2147483647,3,1]C.1b}{175}}
2335
\newlabel{fig:Urban-GNA}{{C.1c}{175}{Subfigure C C.1c}{subfigure.C.1.3}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2336
\newlabel{sub@fig:Urban-GNA}{{(c)}{c}{Subfigure C C.1c\relax }{subfigure.C.1.3}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2337
\newlabel{fig:Urban-GNA@cref}{{[subfigure][3][2147483647,3,1]C.1c}{175}}
2338
\newlabel{fig:Urban-BNA}{{C.1d}{175}{Subfigure C C.1d}{subfigure.C.1.4}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2339
\newlabel{sub@fig:Urban-BNA}{{(d)}{d}{Subfigure C C.1d\relax }{subfigure.C.1.4}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2340
\newlabel{fig:Urban-BNA@cref}{{[subfigure][4][2147483647,3,1]C.1d}{175}}
2341
\newlabel{fig:Urban-MeanEnergy}{{C.1e}{175}{Subfigure C C.1e}{subfigure.C.1.5}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2342
\newlabel{sub@fig:Urban-MeanEnergy}{{(e)}{e}{Subfigure C C.1e\relax }{subfigure.C.1.5}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2343
\newlabel{fig:Urban-MeanEnergy@cref}{{[subfigure][5][2147483647,3,1]C.1e}{175}}
2344
\newlabel{fig:Urban-StdDevEnergy}{{C.1f}{175}{Subfigure C C.1f}{subfigure.C.1.6}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2345
\newlabel{sub@fig:Urban-StdDevEnergy}{{(f)}{f}{Subfigure C C.1f\relax }{subfigure.C.1.6}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2346
\newlabel{fig:Urban-StdDevEnergy@cref}{{[subfigure][6][2147483647,3,1]C.1f}{175}}
2347
\newlabel{fig:Urban-MeanCurvature}{{C.1g}{175}{Subfigure C C.1g}{subfigure.C.1.7}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2348
\newlabel{sub@fig:Urban-MeanCurvature}{{(g)}{g}{Subfigure C C.1g\relax }{subfigure.C.1.7}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2349
\newlabel{fig:Urban-MeanCurvature@cref}{{[subfigure][7][2147483647,3,1]C.1g}{175}}
2350
\newlabel{fig:UrbanCurvatureFit}{{C.1h}{175}{Subfigure C C.1h}{subfigure.C.1.8}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2351
\newlabel{sub@fig:UrbanCurvatureFit}{{(h)}{h}{Subfigure C C.1h\relax }{subfigure.C.1.8}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2352
\newlabel{fig:UrbanCurvatureFit@cref}{{[subfigure][8][2147483647,3,1]C.1h}{175}}
2353
\newlabel{fig:Schefflera}{{C.1i}{175}{Subfigure C C.1i}{subfigure.C.1.9}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2354
\newlabel{sub@fig:Schefflera}{{(i)}{i}{Subfigure C C.1i\relax }{subfigure.C.1.9}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2355
\newlabel{fig:Schefflera@cref}{{[subfigure][9][2147483647,3,1]C.1i}{175}}
2356
\newlabel{fig:Schefflera-Noise}{{C.1j}{175}{Subfigure C C.1j}{subfigure.C.1.10}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2357
\newlabel{sub@fig:Schefflera-Noise}{{(j)}{j}{Subfigure C C.1j\relax }{subfigure.C.1.10}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2358
\newlabel{fig:Schefflera-Noise@cref}{{[subfigure][10][2147483647,3,1]C.1j}{175}}
2359
\newlabel{fig:Schefflera-GNA}{{C.1k}{175}{Subfigure C C.1k}{subfigure.C.1.11}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2360
\newlabel{sub@fig:Schefflera-GNA}{{(k)}{k}{Subfigure C C.1k\relax }{subfigure.C.1.11}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2361
\newlabel{fig:Schefflera-GNA@cref}{{[subfigure][11][2147483647,3,1]C.1k}{175}}
2362
\newlabel{fig:Schefflera-BNA}{{C.1l}{175}{Subfigure C C.1l}{subfigure.C.1.12}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2363
\newlabel{sub@fig:Schefflera-BNA}{{(l)}{l}{Subfigure C C.1l\relax }{subfigure.C.1.12}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2364
\newlabel{fig:Schefflera-BNA@cref}{{[subfigure][12][2147483647,3,1]C.1l}{175}}
2365
\newlabel{fig:Schefflera-MeanEnergy}{{C.1m}{175}{Subfigure C C.1m}{subfigure.C.1.13}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2366
\newlabel{sub@fig:Schefflera-MeanEnergy}{{(m)}{m}{Subfigure C C.1m\relax }{subfigure.C.1.13}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2367
\newlabel{fig:Schefflera-MeanEnergy@cref}{{[subfigure][13][2147483647,3,1]C.1m}{175}}
2368
\newlabel{fig:Schefflera-StdDevEnergy}{{C.1n}{175}{Subfigure C C.1n}{subfigure.C.1.14}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2369
\newlabel{sub@fig:Schefflera-StdDevEnergy}{{(n)}{n}{Subfigure C C.1n\relax }{subfigure.C.1.14}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2370
\newlabel{fig:Schefflera-StdDevEnergy@cref}{{[subfigure][14][2147483647,3,1]C.1n}{175}}
2371
\newlabel{fig:Schefflera-MeanCurvature}{{C.1o}{175}{Subfigure C C.1o}{subfigure.C.1.15}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2372
\newlabel{sub@fig:Schefflera-MeanCurvature}{{(o)}{o}{Subfigure C C.1o\relax }{subfigure.C.1.15}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2373
\newlabel{fig:Schefflera-MeanCurvature@cref}{{[subfigure][15][2147483647,3,1]C.1o}{175}}
2374
\newlabel{fig:ScheffleraCurvatureFit}{{C.1p}{175}{Subfigure C C.1p}{subfigure.C.1.16}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2375
\newlabel{sub@fig:ScheffleraCurvatureFit}{{(p)}{p}{Subfigure C C.1p\relax }{subfigure.C.1.16}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2376
\newlabel{fig:ScheffleraCurvatureFit@cref}{{[subfigure][16][2147483647,3,1]C.1p}{175}}
2377
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {input image}}}{175}{subfigure.1.1}}
2378
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$\phi _0$}}}{175}{subfigure.1.2}}
2379
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$\phi ^\star _{ELAA}$}}}{175}{subfigure.1.3}}
2380
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {$\phi ^\star _{BNA}$}}}{175}{subfigure.1.4}}
2381
\@writefile{lof}{\contentsline {subfigure}{\numberline{(e)}{\ignorespaces {}}}{175}{subfigure.1.5}}
2382
\@writefile{lof}{\contentsline {subfigure}{\numberline{(f)}{\ignorespaces {}}}{175}{subfigure.1.6}}
2383
\@writefile{lof}{\contentsline {subfigure}{\numberline{(g)}{\ignorespaces {}}}{175}{subfigure.1.7}}
2384
\@writefile{lof}{\contentsline {subfigure}{\numberline{(h)}{\ignorespaces {}}}{175}{subfigure.1.8}}
2385
\@writefile{lof}{\contentsline {subfigure}{\numberline{(i)}{\ignorespaces {input image}}}{175}{subfigure.1.9}}
2386
\@writefile{lof}{\contentsline {subfigure}{\numberline{(j)}{\ignorespaces {$\phi _0$}}}{175}{subfigure.1.10}}
2387
\@writefile{lof}{\contentsline {subfigure}{\numberline{(k)}{\ignorespaces {$\phi ^\star _{ELAA}$}}}{175}{subfigure.1.11}}
2388
\@writefile{lof}{\contentsline {subfigure}{\numberline{(l)}{\ignorespaces {$\phi ^\star _{BNA}$}}}{175}{subfigure.1.12}}
2389
\@writefile{lof}{\contentsline {subfigure}{\numberline{(m)}{\ignorespaces {}}}{175}{subfigure.1.13}}
2390
\@writefile{lof}{\contentsline {subfigure}{\numberline{(n)}{\ignorespaces {}}}{175}{subfigure.1.14}}
2391
\@writefile{lof}{\contentsline {subfigure}{\numberline{(o)}{\ignorespaces {}}}{175}{subfigure.1.15}}
2392
\@writefile{lof}{\contentsline {subfigure}{\numberline{(p)}{\ignorespaces {}}}{175}{subfigure.1.16}}
2393
\newlabel{fig:Mequon}{{C.1a}{176}{Subfigure C C.1a}{subfigure.C.1.1}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2394
\newlabel{sub@fig:Mequon}{{(a)}{a}{Subfigure C C.1a\relax }{subfigure.C.1.1}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2395
\newlabel{fig:Mequon@cref}{{[subfigure][1][2147483647,3,1]C.1a}{176}}
2396
\newlabel{fig:Mequon-Noise}{{C.1b}{176}{Subfigure C C.1b}{subfigure.C.1.2}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2397
\newlabel{sub@fig:Mequon-Noise}{{(b)}{b}{Subfigure C C.1b\relax }{subfigure.C.1.2}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2398
\newlabel{fig:Mequon-Noise@cref}{{[subfigure][2][2147483647,3,1]C.1b}{176}}
2399
\newlabel{fig:Mequon-GNA}{{C.1c}{176}{Subfigure C C.1c}{subfigure.C.1.3}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2400
\newlabel{sub@fig:Mequon-GNA}{{(c)}{c}{Subfigure C C.1c\relax }{subfigure.C.1.3}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2401
\newlabel{fig:Mequon-GNA@cref}{{[subfigure][3][2147483647,3,1]C.1c}{176}}
2402
\newlabel{fig:Mequon-BNA}{{C.1d}{176}{Subfigure C C.1d}{subfigure.C.1.4}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2403
\newlabel{sub@fig:Mequon-BNA}{{(d)}{d}{Subfigure C C.1d\relax }{subfigure.C.1.4}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2404
\newlabel{fig:Mequon-BNA@cref}{{[subfigure][4][2147483647,3,1]C.1d}{176}}
2405
\newlabel{fig:Mequon-MeanEnergy}{{C.1e}{176}{Subfigure C C.1e}{subfigure.C.1.5}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2406
\newlabel{sub@fig:Mequon-MeanEnergy}{{(e)}{e}{Subfigure C C.1e\relax }{subfigure.C.1.5}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2407
\newlabel{fig:Mequon-MeanEnergy@cref}{{[subfigure][5][2147483647,3,1]C.1e}{176}}
2408
\newlabel{fig:Mequon-StdDevEnergy}{{C.1f}{176}{Subfigure C C.1f}{subfigure.C.1.6}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2409
\newlabel{sub@fig:Mequon-StdDevEnergy}{{(f)}{f}{Subfigure C C.1f\relax }{subfigure.C.1.6}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2410
\newlabel{fig:Mequon-StdDevEnergy@cref}{{[subfigure][6][2147483647,3,1]C.1f}{176}}
2411
\newlabel{fig:Mequon-MeanCurvature}{{C.1g}{176}{Subfigure C C.1g}{subfigure.C.1.7}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2412
\newlabel{sub@fig:Mequon-MeanCurvature}{{(g)}{g}{Subfigure C C.1g\relax }{subfigure.C.1.7}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2413
\newlabel{fig:Mequon-MeanCurvature@cref}{{[subfigure][7][2147483647,3,1]C.1g}{176}}
2414
\newlabel{fig:MequonCurvatureFit}{{C.1h}{176}{Subfigure C C.1h}{subfigure.C.1.8}{}}
207 by gerald.mwangi at gmx
Started Convex opt section15
2415
\newlabel{sub@fig:MequonCurvatureFit}{{(h)}{h}{Subfigure C C.1h\relax }{subfigure.C.1.8}{}}
230 by gerald.mwangi at gmx
work on modern noether3
2416
\newlabel{fig:MequonCurvatureFit@cref}{{[subfigure][8][2147483647,3,1]C.1h}{176}}
2417
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {input image}}}{176}{subfigure.1.1}}
2418
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$\phi _0$}}}{176}{subfigure.1.2}}
2419
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$\phi ^\star _{ELAA}$}}}{176}{subfigure.1.3}}
2420
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {$\phi ^\star _{BNA}$}}}{176}{subfigure.1.4}}
2421
\@writefile{lof}{\contentsline {subfigure}{\numberline{(e)}{\ignorespaces {}}}{176}{subfigure.1.5}}
2422
\@writefile{lof}{\contentsline {subfigure}{\numberline{(f)}{\ignorespaces {}}}{176}{subfigure.1.6}}
2423
\@writefile{lof}{\contentsline {subfigure}{\numberline{(g)}{\ignorespaces {}}}{176}{subfigure.1.7}}
2424
\@writefile{lof}{\contentsline {subfigure}{\numberline{(h)}{\ignorespaces {}}}{176}{subfigure.1.8}}
2425
\@writefile{toc}{\contentsline {chapter}{\numberline {D}Multimodal Optical Flow}{177}{appendix.D}}
169 by gerald.mwangi at gmx
reviewing everything 19
2426
\@writefile{lof}{\addvspace {10\p@ }}
2427
\@writefile{lot}{\addvspace {10\p@ }}
2428
\@writefile{lol}{\addvspace {10\p@ }}
2429
\@writefile{loa}{\addvspace {10\p@ }}
230 by gerald.mwangi at gmx
work on modern noether3
2430
\newlabel{sec:AppOptflow}{{D}{177}{Multimodal Optical Flow}{appendix.D}{}}
2431
\newlabel{sec:AppOptflow@cref}{{[appendix][4][2147483647]D}{177}}
2432
\newlabel{eq:AppNoiseModel}{{D.3}{177}{Multimodal Optical Flow}{equation.D.0.3}{}}
2433
\newlabel{eq:AppNoiseModel@cref}{{[equation][3][2147483647,4]D.3}{177}}
2434
\newlabel{eq:AppLogLikelihood}{{D.4}{177}{Multimodal Optical Flow}{equation.D.0.4}{}}
2435
\newlabel{eq:AppLogLikelihood@cref}{{[equation][4][2147483647,4]D.4}{177}}
2436
\newlabel{eq:AppJointGaussian}{{D.5}{178}{Multimodal Optical Flow}{equation.D.0.5}{}}
2437
\newlabel{eq:AppJointGaussian@cref}{{[equation][5][2147483647,4]D.5}{178}}
2438
\newlabel{eq:AppConditional}{{D.8}{178}{Multimodal Optical Flow}{equation.D.0.8}{}}
2439
\newlabel{eq:AppConditional@cref}{{[equation][8][2147483647,4]D.8}{178}}
2440
\newlabel{eq:AppPostEnergy}{{D.10}{178}{Multimodal Optical Flow}{equation.D.0.10}{}}
2441
\newlabel{eq:AppPostEnergy@cref}{{[equation][10][2147483647,4]D.10}{178}}
2442
\newlabel{eq:AppOptimalHighRes}{{D.11}{178}{Multimodal Optical Flow}{equation.D.0.11}{}}
2443
\newlabel{eq:AppOptimalHighRes@cref}{{[equation][11][2147483647,4]D.11}{178}}
169 by gerald.mwangi at gmx
reviewing everything 19
2444
\citation{ZhangSpatialResEnhWavelet}
167 by gerald.mwangi at gmx
reviewing everything 17
2445
\bibdata{OpticalFlowPapers}
230 by gerald.mwangi at gmx
work on modern noether3
2446
\newlabel{eq:AppSimMeasure}{{D.14}{179}{Multimodal Optical Flow}{equation.D.0.14}{}}
2447
\newlabel{eq:AppSimMeasure@cref}{{[equation][14][2147483647,4]D.14}{179}}
2448
\@writefile{brf}{\backcite{ZhangSpatialResEnhWavelet}{{179}{D}{equation.D.0.14}}}
2449
\newlabel{eq:AppSimMeasure2}{{D.17}{179}{Multimodal Optical Flow}{equation.D.0.17}{}}
2450
\newlabel{eq:AppSimMeasure2@cref}{{[equation][17][2147483647,4]D.17}{179}}
2451
\newlabel{eq:AppflowDataTerm2}{{D.18}{179}{Multimodal Optical Flow}{equation.D.0.18}{}}
2452
\newlabel{eq:AppflowDataTerm2@cref}{{[equation][18][2147483647,4]D.18}{179}}
2453
\newlabel{eq:AppflowDataTermLocal}{{D.20}{179}{Multimodal Optical Flow}{equation.D.0.20}{}}
2454
\newlabel{eq:AppflowDataTermLocal@cref}{{[equation][20][2147483647,4]D.20}{179}}
180 by gerald.mwangi at gmx
Started corrections. Added appendix on top manifolds
2455
\bibcite{AmbrosioApproxFunctionalTConverg}{{1}{1990}{{Ambrosio and Tortorelli}}{{}}}
208 by gerald.mwangi at gmx
Started Convex opt section16
2456
\bibcite{arrow1958studies}{{2}{1958}{{Arrow et~al.}}{{Arrow, Hurwicz, Uzawa, and Chenery}}}
2457
\bibcite{Middleburry}{{3}{2011}{{Baker et~al.}}{{Baker, Scharstein, Lewis, Roth, Black, and Szeliski}}}
2458
\bibcite{becker2006string}{{4}{2006}{{Becker et~al.}}{{Becker, Becker, and Schwarz}}}
2459
\bibcite{Bhattacharya2009}{{5}{2009}{{Bhattacharya and Das}}{{}}}
2460
\bibcite{BigunBook}{{6}{2006}{{Bigun}}{{}}}
2461
\bibcite{Bigun1987}{{7}{1987}{{Bigun and Granlund}}{{}}}
2462
\bibcite{BishopNeuralNetworkPatRec}{{8}{1995}{{Bishop}}{{}}}
2463
\bibcite{BlackAnandanRobustOpticalFlow}{{9}{1996}{{Black and Anandan}}{{}}}
2464
\bibcite{bredies2008forward}{{10}{2008}{{Bredies}}{{}}}
2465
\bibcite{BrediesMathemBildverarbeitung}{{11}{2011}{{Bredies and Lorenz}}{{}}}
230 by gerald.mwangi at gmx
work on modern noether3
2466
\@writefile{toc}{\contentsline {chapter}{\nonumberline Bibliography}{180}{appendix*.60}}
74 by gerald.mwangi at gmx
modded chapter6 added results
2467
\@writefile{lof}{\addvspace {10\p@ }}
2468
\@writefile{lot}{\addvspace {10\p@ }}
2469
\@writefile{lol}{\addvspace {10\p@ }}
2470
\@writefile{loa}{\addvspace {10\p@ }}
208 by gerald.mwangi at gmx
Started Convex opt section16
2471
\bibcite{Bruhn-CombLocGlobMeth}{{12}{2004}{{Bruhn et~al.}}{{Bruhn, Weickert, and Schn\"{o}rr}}}
2472
\bibcite{CachierCrossCorrRegistration}{{13}{2000}{{Cachier and Pennec}}{{}}}
2473
\bibcite{campbell2011RemoteSensing}{{14}{2011}{{Campbell and Wynne}}{{}}}
2474
\bibcite{CasellesGeoActCont}{{15}{}{{Caselles et~al.}}{{Caselles, Kimmel, and Sapiro}}}
2475
\bibcite{Chambolle2004}{{16}{2004}{{Chambolle}}{{}}}
2476
\bibcite{chambollePockPrimalDual}{{17}{2011}{{Chambolle and Pock}}{{}}}
2477
\bibcite{ChefdHotel2001}{{18}{2001}{{Chefd'Hotel et~al.}}{{Chefd'Hotel, Hermosillo, and Faugeras}}}
2478
\bibcite{chen1997convergence}{{19}{1997}{{Chen and Rockafellar}}{{}}}
2479
\bibcite{combettes1993foundations}{{20}{1993}{{Combettes}}{{}}}
2480
\bibcite{combettes2004solving}{{21}{2004}{{Combettes*}}{{}}}
2481
\bibcite{combettes2007douglas}{{22}{2007}{{Combettes and Pesquet}}{{}}}
2482
\bibcite{combettes2011proximal}{{23}{2011}{{Combettes and Pesquet}}{{}}}
2483
\bibcite{maupertuis1740LeastActionBodyRest}{{24}{1740}{{de~Maupertuis}}{{}}}
2484
\bibcite{MaupertuiPointMassLeastAction}{{25}{1746}{{de~Maupertuis}}{{}}}
2485
\bibcite{eckstein1992douglas}{{26}{1992}{{Eckstein and Bertsekas}}{{}}}
2486
\bibcite{edelman1993MRI}{{27}{1993}{{Edelman and Warach}}{{}}}
2487
\bibcite{EvansLevelSetMeanCurvature}{{28}{1999}{{Evans and Spruck}}{{}}}
2488
\bibcite{FadiliTV}{{29}{2011}{{Fadili and Peyre}}{{}}}
2489
\bibcite{FanCFRP}{{30}{2008}{{Fan et~al.}}{{Fan, Santare, and Advani}}}
2490
\bibcite{FaugerasCrossCorrMatching}{{31}{2002}{{Faugeras and Keriven}}{{}}}
2491
\bibcite{OlverMovingFrame1}{{32}{1998}{{Fels and Olver}}{{}}}
2492
\bibcite{OlverMovingFrame2}{{33}{1999}{{Fels and Olver}}{{}}}
2493
\bibcite{FerraroTransfInvLieGroup}{{34}{1988}{{Ferraro and Caelli}}{{}}}
2494
\bibcite{ferreiraCFRP}{{35}{2016}{{Ferreira et~al.}}{{Ferreira, N{\'o}voa, and Marques}}}
2495
\bibcite{feynman1942principle}{{36}{1942}{{Feynman}}{{}}}
2496
\bibcite{FeynmanLectures}{{37}{1963}{{Feynman et~al.}}{{Feynman, Leighton, and Sands}}}
2497
\bibcite{feynman1964electroLectures}{{38}{1964}{{Feynman et~al.}}{{Feynman, Leighton, and Sands}}}
2498
\bibcite{FieguthStatImProc}{{39}{2010}{{Fieguth}}{{}}}
2499
\bibcite{fischerMathForPhysicists}{{40}{1988}{{Fischer and Kaul}}{{}}}
2500
\bibcite{flir}{{41}{}{{FLIR}}{{}}}
2501
\bibcite{freitagfunktionentheorie}{{42}{}{{Freitag and Busam}}{{}}}
2502
\bibcite{gulerP}{{43}{1991}{{G{\"u}ler}}{{}}}
2503
\bibcite{HanVideoComprOpticalFlow99}{{44}{1999}{{Han and Podilchuk}}{{}}}
2504
\bibcite{HanVideoComprOpticalFlow}{{45}{2001}{{Han and Podilchuk}}{{}}}
2505
\bibcite{HardieInfraRedSuperRes}{{46}{1998}{{Hardie et~al.}}{{Hardie, Barnard, Bognar, Armstrong, and Watson}}}
2506
\bibcite{HardieSpacialImageResEnhancement}{{47}{2004}{{Hardie et~al.}}{{Hardie, Eismann, and Wilson}}}
2507
\bibcite{Hartley-Zisserman-multiple_view_geometry_book}{{48}{2003}{{Hartley and Zisserman}}{{}}}
2508
\bibcite{hentschke2017principle}{{49}{2017}{{Hentschke}}{{}}}
2509
\bibcite{hertz1893electric}{{50}{1893}{{Hertz}}{{}}}
2510
\bibcite{HirschmuellerSemiGlobalMatching}{{51}{2008}{{Hirschm{\"u}ller}}{{}}}
2511
\bibcite{Horn-Schunck}{{52}{1981}{{Horn and Schunck}}{{}}}
2512
\bibcite{hsieh2003CT}{{53}{2003}{{Hsieh}}{{}}}
2513
\bibcite{khanCFRP}{{54}{2011}{{Khan and Kim}}{{}}}
2514
\bibcite{KichenassamyConformalCurvFlow}{{55}{1996}{{Kichenassamy et~al.}}{{Kichenassamy, Kumar, Olver, Tannenbaum, and Yezzi}}}
2515
\bibcite{KimMultiViewTOF}{{56}{2009}{{Kim et~al.}}{{Kim, Theobalt, Diebel, Kosecka, Miscusik, and Thrun}}}
2516
\bibcite{KirillovLieGroup}{{57}{2008}{{Kirillov}}{{}}}
2517
\bibcite{Kondermann-SurfMeasure}{{58}{2008}{{Kondermann et~al.}}{{Kondermann, Kondermann, and Garbe}}}
2518
\bibcite{KugoGaugeTheory}{{59}{1997}{{Kugo}}{{}}}
2519
\bibcite{kuypers2005klassische}{{60}{2005}{{Kuypers}}{{}}}
2520
\bibcite{landau1976mechanics}{{61}{1976}{{Landau and Lifshitz}}{{}}}
2521
\bibcite{landau1961electrodynamics}{{62}{1961}{{Landau et~al.}}{{Landau, Lifshitz, Sykes, Bell, and Dill}}}
2522
\bibcite{LeeSmoothManifolds}{{63}{2015}{{Lee}}{{}}}
2523
\bibcite{lions1979splitting}{{64}{1979}{{Lions and Mercier}}{{}}}
2524
\bibcite{LoweSIFT}{{65}{2004}{{Lowe}}{{}}}
2525
\bibcite{LukasKanadeImageReg}{{66}{1981}{{Lucas et~al.}}{{Lucas, Kanade, et~al.}}}
2526
\bibcite{MaesMutualInformationRegistration}{{67}{1997}{{Maes et~al.}}{{Maes, Collignon, Vandermeulen, Marchal, and Suetens}}}
2527
\bibcite{MansfieldInvarCalc}{{68}{2010}{{Mansfield}}{{}}}
2528
\bibcite{martinet1972determination}{{69}{1972}{{Martinet}}{{}}}
2529
\bibcite{maxwell1865physical}{{70}{1865}{{Maxwell}}{{}}}
2530
\bibcite{meolaLockIn}{{71}{2006}{{Meola et~al.}}{{Meola, Carlomagno, Squillace, and Vitiello}}}
2531
\bibcite{mercier1979topics}{{72}{1979}{{Mercier}}{{}}}
2532
\bibcite{misner1973gravitation}{{73}{1973}{{Misner et~al.}}{{Misner, Thorne, and Wheeler}}}
2533
\bibcite{moreau1962P}{{74}{1962}{{Moreau}}{{}}}
2534
\bibcite{MumfordShah}{{75}{1989}{{Mumford and Shah}}{{}}}
2535
\bibcite{NagelEnkelmannAnisSmoothOptFlow}{{76}{1986}{{Nagel and Enkelmann}}{{}}}
2536
\bibcite{nair2012high}{{77}{2012}{{Nair et~al.}}{{Nair, Lenzen, Meister, Sch{\"a}fer, Garbe, and Kondermann}}}
2537
\bibcite{NetschCrossCorrRegistr}{{78}{2001}{{Netsch et~al.}}{{Netsch, Rosch, van Muiswinkel, and Weese}}}
2538
\bibcite{newton1687philosophiae}{{79}{1687}{{Newton}}{{}}}
2539
\bibcite{NitzbergStructTensDiffusion}{{80}{1992}{{Nitzberg and Shiota}}{{}}}
2540
\bibcite{NoetherTheoremDeu}{{81}{1918}{{Noether}}{{}}}
2541
\bibcite{NoetherTheroemEng}{{82}{1971}{{Noether}}{{}}}
2542
\bibcite{OlverSymmetry}{{83}{1979}{{Olver et~al.}}{{}}}
2543
\bibcite{OsherRudinShockFilter}{{84}{1990}{{Osher and Rudin}}{{}}}
2544
\bibcite{PapenbergTVOpticalFlow}{{85}{2006}{{Papenberg et~al.}}{{Papenberg, Bruhn, Brox, Didas, and Weickert}}}
2545
\bibcite{boyd2014proximal}{{86}{2014}{{Parikh et~al.}}{{Parikh, Boyd, et~al.}}}
2546
\bibcite{passty1979ergodic}{{87}{1979}{{Passty}}{{}}}
2547
\bibcite{PeskinQFT}{{88}{1995}{{Peskin and Schroeder}}{{}}}
2548
\bibcite{pock2009algorithm}{{89}{2009}{{Pock et~al.}}{{Pock, Cremers, Bischof, and Chambolle}}}
2549
\bibcite{PollefeysSelfCalibMetricRecon}{{90}{1999}{{Pollefeys and Koch}}{{}}}
2550
\bibcite{popov1980modification}{{91}{1980}{{Popov}}{{}}}
2551
\bibcite{PollefeysKeyFrame3DRecons}{{92}{2005}{{Repko and Pollefeys}}{{}}}
2552
\bibcite{RocheCorrRatio}{{93}{1998{}}{{Roche et~al.}}{{Roche, Malandain, Ayache, and Pennec}}}
2553
\bibcite{Roche98CorrelRatio}{{94}{1998{}}{{Roche et~al.}}{{Roche, Malandain, Pennec, and Ayache}}}
2554
\bibcite{RocheUnifyingMaxLikelihoodRegistration}{{95}{1999}{{Roche et~al.}}{{Roche, Malandain, and Ayache}}}
2555
\bibcite{RockafellarProxPoint}{{96}{1976}{{Rockafellar}}{{}}}
2556
\bibcite{RockafellarConvexAnalysis}{{97}{2015}{{Rockafellar}}{{}}}
2557
\bibcite{rovelli2007quantum}{{98}{2007}{{Rovelli}}{{}}}
2558
\bibcite{RudinShockFilter}{{99}{1987}{{Rudin}}{{}}}
2559
\bibcite{RudinOsherFatemiTotalVariation}{{100}{1992}{{Rudin et~al.}}{{Rudin, Osher, and Fatemi}}}
2560
\bibcite{rue2005gaussian}{{101}{2005}{{Rue and Held}}{{}}}
2561
\bibcite{ScharsteinSterDepthStructLight}{{102}{2003}{{Scharstein and Szeliski}}{{}}}
2562
\bibcite{LenzenVariational}{{103}{2009}{{Scherzer et~al.}}{{Scherzer, Grasmair, Grossauer, Haltmeier, and Lenzen}}}
2563
\bibcite{SnavelyPhotoTourism}{{104}{2006}{{Snavely et~al.}}{{Snavely, Seitz, and Szeliski}}}
2564
\bibcite{SnavelyModellingWorld}{{105}{2008}{{Snavely et~al.}}{{Snavely, Seitz, and Szeliski}}}
2565
\bibcite{SpiessbergerFusionLockin}{{106}{2008}{{Spiessberger et~al.}}{{Spiessberger, Gleiter, and G.}}}
2566
\bibcite{SunRothOpticalFlowCVPR2010}{{107}{2010}{{Sun et~al.}}{{Sun, Roth, and Black}}}
2567
\bibcite{svaiter2011weak}{{108}{2011}{{Svaiter}}{{}}}
2568
\bibcite{PollefeysLiveMetric3DReconstructionICCV2013}{{109}{2013}{{Tanskanen et~al.}}{{Tanskanen, Kolev, Meier, Camposeco, Saurer, and Pollefeys}}}
2569
\bibcite{tehraniCFRP}{{110}{2013}{{Tehrani et~al.}}{{Tehrani, Boroujeni, Hartman, Haugh, Case, and Al-Haik}}}
2570
\bibcite{HermosilloPHDMatching}{{111}{2002}{{Valadez}}{{}}}
2571
\bibcite{vardi1985PET}{{112}{1985}{{Vardi et~al.}}{{Vardi, Shepp, and Kaufman}}}
2572
\bibcite{VeseMultPhaseLevelset}{{113}{2002}{{Vese and Chan}}{{}}}
2573
\bibcite{WassermanAllStatistics}{{114}{2004}{{Wasserman}}{{}}}
2574
\bibcite{wedel2009improved}{{115}{2009}{{Wedel et~al.}}{{Wedel, Pock, Zach, Bischof, and Cremers}}}
2575
\bibcite{weickertAnisDiffTheory}{{116}{1996}{{Weickert}}{{}}}
2576
\bibcite{weicketAnisotropicDiffusionBook}{{117}{1998}{{Weickert}}{{}}}
2577
\bibcite{wuLockIn}{{118}{1998}{{Wu and Busse}}{{}}}
2578
\bibcite{YezziZoelleiVarJointSegRegGeomCont}{{119}{2001}{{Yezzi et~al.}}{{Yezzi, Z\"{o}llei, and Kapur}}}
2579
\bibcite{youla1982image}{{120}{1982}{{Youla and Webb}}{{}}}
2580
\bibcite{ZachTVL1OpticalFlow}{{121}{2007}{{Zach et~al.}}{{Zach, Pock, and Bischof}}}
2581
\bibcite{ZetscheLimitsOfLinFilters}{{122}{1990}{{Zetzsche and Barth}}{{}}}
2582
\bibcite{ZhangSpatialResEnhWavelet}{{123}{2011}{{Zhang}}{{}}}
2583
\bibcite{ZhuFusionTOFandStereoVisForDepth}{{124}{2008}{{Zhu et~al.}}{{Zhu, Wang, Yang, and Davis}}}
145 by gerald.mwangi at gmx
writing appendix 2
2584
\global\@altsecnumformattrue