
[1] [2, 3] [4] [5] [6, 7, 8]) [6] [9]

1 Lie Groups and the Noether Theorem

In this section we are going to deal with the geometric properties of the prior
p (∇φ), specifically the properties of the set of maxima The idea is to intro-
duce a methodology for designing p (∇φ) whose set of maxima A respects cer-
tain geometric constraints related to a group of smooth transistions G. This
methodology will us deduce explicit constraints on p (∇φ) from expected geo-
metric properties of A. The starting point is the idea that A can be seen as
being generated by the group G

A = {φ? |φ? = g ◦ φ?0 g ∈ G} (1)

for some maximum φ?0. Since G is assumed to be a Lie group, that is, it is closed
under the group product, the choice of φ?0 is arbitrary. This way G defines the
topology of the set A, and as we will show, leads to a differential equation on
p (∇φ).

1.1 Lie Groups

Lie groups are groups of objects which are smooth functions on a manifold
at the same time being compatible with the group multiplication. For an n
dimensional Lie group G over a domain Ω the map

G×G 7−→ G : (x, y)→ x · y−1

is smooth in both x and y. One of the remarkable properties of Lie group theory
is that for every Lie group G there exists a unique structure called a Lie algebra
G. The Lie algebra is assotiated with the tangent space of G, TG. We introduce
the Lie algebra by defining a one parameter Lie group γ (t)

γ : R→ Gγ ∈ G (2)

γ (0) = e (3)

d

dt
γ (t)

∣∣∣∣
t=0

= X ∈ G (4)

The path γ is not unique, there are infinit many paths which have the same
tangential vector X at t = 0. This defines an equivalence relation: the paths γ1

and γ2 are equivalent, γ1 ∼ γ2 if

d

dt
γ1 (t)

∣∣∣∣
t=0

=
d

dt
γ2 (t)

∣∣∣∣
t=0

(5)

By Eq. eq. (5) we can group the paths γ into equivalence classes [γ] For the
vector X in eq. (4) we can find a descriptive formulation in form of a vector
field ω (z0) , z0 ∈ M where the space M is a smooth manifold upon which G
acts. The vector field X induces a path ΓX (z0, s) with the properties

d

dt
ΓX (z0, t) = X

(
ΓX (z0, t)

)
(6)

ΓX (z0, t)
∣∣
t=0

= z0; (7)
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The coordinates of X relative to the space M can be computed when we look
at the space of smooth functions with support on M, F (M). The action of
X on F (M) can be computed by evaluating F ∈ F (M) on the integral curve
ΓX (z0, s) and taking the derivative

d

ds
F
(
ΓX (z0, s)

)∣∣∣∣
s=0

= XF
(
ΓX (z0, s)

)∣∣
t=0

(8)

If F is one of the coordinate functions zi then the vector field X has the coeffi-
tients ωi (z0) relative to the basis in M

X · zi|z=z0
= ωi (z0) (9)

The set of differential operators {∂zi} can be interpreted as a basis of the Lie
algebra and the vector field ω (z0) is the coordinate representation of X at
the point z0 ∈ M . We would like build upon the discussion about the one
dimensional Lie Group Gγ and generalize it higher dimensionnal groups. An
m-dimensional Lie Group G is a set of elements which are parameterized by m
parameters

ga1...am ∈ G (10)

The parameters al define axis in the set G which themselves are one parameter
subgroups. For each parameter al there exists by extension of eq. (4) a vector
field Xl

d

dal
ga1...am

∣∣∣∣
a1...am=0

= Xl (11)

Just like in eq. (8) the vectorfields Xl each have a coordinate representation
relative to the space M

Xl =
∑
i

ξli (z0) · ∂zi (12)

The vector fields Xl constitute a basis for the Lie Algebra G. All one parameter
subgroups γ (see eq. (4)) can be represented as paths in the parameterspace of
G

γ (t) = ga1(t)...am(t) (13)

and the vectorfield X from eq. (4) is computed from the derivatives of the
parameters

d

dt
γ (t)

∣∣∣∣
t=0

=
∑
l

d

dt
al ·

d

dal
ga1...am

∣∣∣∣
t=0

=
∑
l

αlXl (14)

When we combine eq. (14) and eq. (12) we get a coordinate expression for the
coeffitient vectorfield ω in the basis of the Lie Algebra

ωi (z) =
∑
l

αl · ξi (z) (15)

The Lie algebra is connected to the infinitesimal Lie group Ur ⊂ G via

gU = 1+X ∈ Ur (16)

For the rest of this work we will focus on the space M = Ω × Jk (C∞ (Ω)).
The space Ω ⊂ Rn is an open subset and Jk (C∞ (Ω)) is the set of smooth
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differentiable functions with compact support in Ω and their derivatives up to
order k. The points z ∈ M are vectors of the independent variables x, the
dependent variable φ (x) and its derivatives φ,K where K is a multiindex

z = (x, φ (x) , φ,K (x)) (17)

For this work we will focus only on first order derivatives, k = 1 The vector field
X then has the form

X = ωφ (z0) ∂φ +

n∑
i=1

ωi (z0) ∂xi
(18)

Under the action of gU points in C∞ (Ω)× Ω transform like x′

φ′ (x′)
φ′,j (x′)

 =

 x + ω (x)
φ (x) + ωφ (x) +

∑
i ωi (x) ∂xiφ (x)

φ,j (x) + ωφ,j (x)−
∑
i ∂xiφ∂xiωj (x)

 (19)

1.2 Noether’s Theorem

1.2.1 Motivation

In this section we will focus on geometric properties of the prior in our model.
We will assume the prior P (∇φ) which is only depends first order gradients of
the field φ (x). In general, priors have infinit sets of maxima φ?. For instance
the maximas of the prior PL2

(∇u) = −ln ‖∇u‖L2
in eq. (42) form the set of

constant fields in the domain Ω

A = {u? |u? (x) = constx ∈ Ω} (20)

It is trivial to see that there exists a one parameter Lie group of elements gc
which take A into its self

gc : A→ A, u? → u? + c, c = const in Ω (21)

and that PL2 (∇u) is invariant under the action of {gc}. Since c is constant in
Ω, {gc} is the only Lie group under which PL2

(∇u) is invariant. Knowledge of
the solution set A allows us to parameterize the solutions of the complete model
in eq. (42) by

u (x) = m+ h (x) m =
∥∥u0
∥∥
L2

(22)

It is known that the global mean value of the solution u? in the model in eq. (42)
is equal to that of the data u0 Thus the parameterization allows any gradient
algorithm to converge faster to the solution u? (x) given the initial guess

uinit (x) = m, m =
∥∥u0
∥∥
L2

(23)

The solution space A of PL2
(∇φ) is too trivial for most real applications,

since PL2
(∇φ) penalizes any other solution u? /∈ A which contains struckture.

We want to assume that a more general prior P (∇φ) which has maxima φ? (x) 6=
const. The level-sets of each field φ? (x) are taken to be the integral curves
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ΓX (s) corresponding to a vectorfield X of some Lie algebra, X ∈ G. The space
of the maxima of P (∇φ) is then entirely determined by the Lie algebra G

AG =

{
φ?
∣∣∣∣ ddsφ? (ΓX (s)

)
= 0∀X ∈ G

}
(24)

The action of the Lie group on elements of its own Lie algebra preserves the
algebra

g ·X · g−1 ∈ G ∀X ∈ G, g ∈ G (25)

and by construnction the set maxima in eq. (24) it is apparent that G takes AG
onto itself

g ·AG = AG ∀g ∈ G (26)

Since we have caracterized the prior P (∇φ) by the set of its maxima in eq. (24)
which is explained by the algebra of the group G we denote P (∇φ) as being
conditioned on G, P (∇φ |g ∈ G ). But due to the invariance the maxima set in
eq. (24) under the action of G, P (∇φ) is invariant under G

P (∇φ |g ∈ G ) = const w.r.t g ∈ G (27)

This property we call Conditional Invariance. The most important aspect of
the above discussion is that given geometrical assumptions on the solutions φ?

in terms of G and AG the condition in eq. (27) must be fullfilled, and thus it
serves as a guidance in the design of the prior P (∇φ |g ∈ G ).

1.2.2 Noethers First Theorem

We are now going to make eq. (27) more precise by considering the negative
log-prior energy

I = −lnP (∇φ) =

∫
Ω

E (x,∇φ) dx (28)

we are interested in the action of G (see eq. (19)]. The energy in eq. (28) is
said to preserved under the Lie group G if the following relation holds

I ′ =

∫
Ω

E ′ (x′,∇φ′) dx′ =

∫
Ω

{
E (x,∇φ) + ∂iδQ

i
}
dx (29)

where the vectorfield δQi is some arbitrary smooth function. If eq. (29) holds
then the resulting Euler-Lagrange equations [I] remain unchanged and thus G
is a symmetry of the Euler-Lagrange equations. In [2, 3] it was reasoned that
the knowledge of the symmetries of the Euler-lagrange equations [I] can be used
to make assumptions on the form of the solutions φ? and thus narrow down the
solution space. To be more precise, the first Noether Theorem states that if the
energy integral in eq. (29) is preserved under the transformations eq. (19) then
the Euler-lagrange equations must fullfill

[I]ωφ = ∂µ (Wµ − δQµ) (30)

where

[I] =
δI

δφ
− d

dxν
δI

δφ,ν
(31)
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are the Euler-Lagrange equations of I and the field Wµ is defined by

Wµ = − δI

δφ,µ
ωφ + ωi

(
δI

δφ,µ
φ,i − δµ,iI

)
(32)

When eq. (30) is evaluated at the solution φ? of the Euler-Lagrange equation
[I] = 0 then Wµ must be divergence-free. The form of the divergence free vector
field Wµ dictates the form of the geometry of the level-sets of φ?. We will now
show an example where knowledge of the symmetry and thus the divergence-free
Wµ fields makes basic assumptions on the solution space of the corresponding
Euler-Lagrange equations possible.

1.2.3 Kepler’s Two Body Problem

Keplers two body problem is the problem of calculating the problem of estimat-
ing the trajectory of a body of mass me (the earth) which is moving within the
vicinity of another body with mass ms (the sun). According to Newton there
exists a gravitational force between the masses coming from the energy V (r) of
the gravitational field surrounding the mass ms at the origin in R3

V (re (t)) = −me ·ms

r
r = ‖re − rs‖ (33)

The kinetic energy of the mass me is 1
2meṙ

2 so that the Lagrangian of the path
re (t) is

L (re (t)) =
1

2
meṙ

2
e +

1

2
meṙ

2
s − V (re (t)) (34)

The Euler-Lagrange equations are easily computed

r̈e +
ms +me

r2
= 0 (35)

The parameter t is the time parameter of the two body system. The Kepler
Lagrangian in eq. (34) exhibits a symmetry under four different one parameter
Lie group actions, namely the action of time shift and rotations around the
three spacial axis (the group SO (3)× R)

t′ = t+ δt (36)

r′ = r + ∂θir
′δθi i = x, yorz (37)

where θi are rotation around the x-,y- or z-axis. From Noethers theorem there
exist four corresponding conserved quantities:

H =
1

2
meṙ

2 + V (re (t)) time shift (38)

lx = zẏ − yż Rotation around x-axis (39)

ly = zẋ− xż Rotation around y-axis (40)

lz = xẏ − yẋ Rotation around z-axis (41)

The conserved quantity H in eq. (38) is the Hamiltonian Energy of the two
body system. It constant time and thus manifests that the total energy of
the two body system does not disipate away since there are no external forces
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interacting with the two masses me and ms, that is the two body system is a
closed system. The vector l = (lx, ly, lz) (eqs. eq. (39) to eq. (41)) is called the
angular momentum of the masses me and ms as they rotate around eachother.
The solutions to the Euler-Lagrange equations in eq. (35) are elliptic curves
in the plane orthorgonal to l. The constancy of l with respect to the special
orthogonal group SO (3) comes the fact the plane is embedded in the eucleadian
coordinate space with unit metric, rather some general riemanian space.

2 Total Variation

The earliest attempts to optimization in computer vision all had in common, the
use of isotropic priors for the regularization of the unknowns to be estimated.
For example one of the earliest attempts for image denoising invloves minimizing
the functional ([4])

E (u) =

∫ (
u− u0

)2
dx+

λ

2

∫
|∇u|2dx (42)

The first term in eq eq. (42) is the likelyhood which states the minimizer u?

must be close in its intensity distribution to the given data u0. The second
term, the prior energy imposes smoothness on the minimizer u?. Both terms
are quadratic in u and thus the Euler-Lagrange equations for E (u) are linear
in u making them computationally easy to solve. The problem with the prior
λ
2

∫
|∇u|2dx is that it does not allow the solutions u? to have discontinuities.

Different approaches for anisotropic priors exist, for instance [5] introduced a
quadratic prior

Eprior =

∫
(∇u)

T
D (∇u) (43)

The operator D is a local 2× 2 symmteric valued matrix with eigenvectors tan-
gential to the level-sets of u0. This is why D steers the direction of the gradients
in eq eq. (43) in tangential direction of the level-sets, and thus also of the dis-
continuities of u and u0. The upside is that the prior in eq eq. (43) combined
with the likelyhood in eq eq. (58) still lead to Euler-Lagrange equations linear
in u. The downside of the prior in eq eq. (43) is that the operator field D must
be precomputed on the data u0, e.g with an eigenvalue analysis of the structure
tensor.

In the context of shock-filtering ([6, 7, 8]) it was shown that the functional

EL1 (u) =

∫
|∇u|dx (44)

has the appealing property that it does not penalize larg disconinuities. However
its functional derivative with respect to u is ill conditioned in the case ∇u ≈ 0.
To alleviate the case, [6] chose the approximative prior

EL1approx (u) =

∫ √
|∇u|2 + εdx (45)

which is well behaved for ε > 0. They were able to achieve good results with
relatively sharp preserved discontinuities with data u0 having low SNRs. Never
the less in the limit ε→ 0 the Euler-Lagrange equations become more and more
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computationally instable. A theoretically more well conditioned form of TV is
needed which we will outline, following ([9]). To do this we need to explore
the functionspace the minimizers of eq eq. (44) might belong to. Smooth
functions usmooth are functions for which ∇u exists everywhere, thus they may
be minimizers of eq eq. (44). But functions udiscont containing discontinuities do
not have finite L1 norm of their gradients, EL1

(udiscont) =∞ since the gradient
∇udiscont does not exist at the disconinuities. A generalization of eq eq. (44) is
possible if one assumes ∇u to be a distribution, more precisely a radon meassure
in the space M (Ω). If there exists a radon meassure µ ∈ M (Ω), such that for
every φ ∈ C0 (Ω) with compact domain, the following equality holds∫

Ω

u ·Divφdx = −
∫
φdµ <∞ (46)

then µ is called the weak derivative of u and we can identify ∇u = µ. It is then
possible to define the functionspace of bounded variation

BV = {u ∈ L1 (Ω) |∇u ∈M (Ω)} (47)

Now it is possible to define a norm on BV . By virtue of the Hölder relation
there exists a scalar C for which we can determin the upper bound of eq eq.
(46) ∫

Ω

u ·Divφdx ≤ C‖φ‖∞ (48)

The scalar C is the norm of the radon meassure ∇u and is called the total
variation of u

TV (u) = sup

{∫
Ω

u ·Divφdx | ‖φ‖∞ ≤ 1

}
(49)

As was discussed in [9] the functions u are geometrically piecewise smooth,
meaning there exists a partitioning {Ωk} of Ω such that (∇u)Ωk

are L1 inte-
grable. If dlmk is a line segment in the intersection Ωm ∩ Ωk then TV (u) can
be written in the form

TV (u) =
∑
k

‖∇uΩk
‖L1

+
∑
k<m

∫
Ωk∩Ωm

|uk − um| dlkm (50)

where uk the value of u on the portion of ∂Ωk which is interfacing with Ωm and
vice versa for um. The first term in eq. (50) penalizes the smooth parts of u
(the gradients (∇u)Ωk

) while the second term penalizes the length of the section
Ωm ∩ Ωk while maintaining the values uk,m and thus the jump |uk − um|. It
essentially penalizes the curvature of the line interfaceing with both Ωk and Ωm.
We will make this point clear in the following section.

2.1 The Mean Curvature of Total Variation

In this section we will discuss the geometrical properties of the TV norm in eq.
(49). The subgradient of eq. (49) is equal to the set

∂TV (u) =

{
−Divσ

∣∣∣∣ σ · ν = 0 on ∂Ω, σ =
∇ u

|∇u|
if |∇u| 6= 0

}
(51)
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This set defines the set of lines L (v) = TV (u) + 〈Divσ|v− u〉 tangential to TV
at a point u ∈ BV . We define a one parameter Lie group γ (t), such that its
vectorfield X fullfills the condition

X · u
(
ΓX (x0, t)

)
= 0 (52)

then its integral curves ΓX (t) = (x (t) , y (t)) are the level sets of u. The level
sets ΓX have a curvature κ and the standard formula for κ is

κ =
1∥∥∥Γ̇X
∥∥∥3

L1

(ẋ · ÿ − ẏ · ẍ) (53)

If the vector field X is expressed by the coordinate vector ξ (x0) then it can be
shown κ is a function of the laplacian relative to the coordinate vector ξ (x0).

κ (x0) =
∆ξξu (x0)

|∇u (x0) |
(54)

This form can easily be transformed into a divergence quantity

κ = Div

(
∇ u

|∇u|

)
(55)

This shows us that the subgradient in eq: eq. (51) is equal to the curvature of
the levelsets ΓX (t)

κ = −∂TV (u) (56)

The eq. eq. (56) exposes the capital geometrical property of the TV norm:
The TV norm penalizes the curvature of the level-sets of an image. As κ is an
invariant of the Lie group SE (2), the group of rotations and translations, TV
is also an invariant of that group.

2.2 Image Denoising

Image denoising is the problem of estimating a clean image u? given a noisy
image u0. The image u0 is connected to u? via

u0 = u? + n n ∼ D (57)

whereD is some distribution and n is a noise term drawn fromD. u? is estimated
from the familly of functionals

F (u) =
1

q

∫
Ω

|u− u0|qdx+ λTV (u) (58)

The degree q of the data term must be matched to the form of the distribution
D. Using the subgradient in eq eq. (51) the Euler-Lagrange equations can be
calculated

[F ] (u) =


|u? − u0|q−2

(
u? − u0

)
− λDivφ inΩ

φ · ν = 0on∂Ω

φ =
∇u
|∇u|

|∇u| − nearly everywhere

(59)

As was discussed before the term Divφ is equal to the curvature κ on the level-set
of u. Thus the parameter λ controls how strong the curvature of the level-sets
are penalized. Never the less the functional eq. (58) still permits jumps in the
image u?.
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