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CHAPTER 1

Background

Carbon-Fiber reinforced polymer (CFRP) materials are becoming increasingly wide-
spread in automotive and aerospace industries, but also in consumer goods, due to their
adaptivity to different shapes, good rigidity and high strength-to-weight ratio. Improved
fabrication techniques are reducing the production costs and time to manufacture. The
properties of CFRP strongly depend on the processing of the material, thus defect detec-
tion and characterization are indispensable, especially for safety-relevant Active thermal
measurement methods have become vital for the assessment of the quality of CFRP mate-
rials. These methods are based on the evaluation of a previously excited heat flow in the
tested component and its disturbance by hidden defects, illustrated in Figure 1. The heat
flow is generated with a heat pulse or through sinusoidal modulation, observed with
a thermography camera, followed by a pixel-wise computation of the complex phase
between the excitation signal and the reflected infrared signal. This phase information
encodes the heat-loss within a penetration depth δ of the probed material, with depths of
1mm to 2mm typical for CFRPs.

Current state-of-the-art thermography imagers possess resolutions of only 640× 512
pixels and a noise equivalent temperature difference of 20mK. Nevertheless, these cam-
eras are very expensive, and the CFRP application domain requires the detection of de-
fects at the noise limit. Figure 1b shows the amplitude part of the recorded thermographic
image of a CFRP probe and figure 1c the phase part. The noise is clearly observable. On
the other hand, cameras in the visible spectrum are inexpensive and easily deliver images
of 10 mega-pixels per frame with very little noise (see figure 1d). Therefore our strategy
is to enhance the resolution of thermography images by utilizing high spatial frequency
information from a visible spectrum camera in an image fusion model which takes the
disparity between the imagers into account without requiring stereo calibration.

1. Optical Flow

The core topic of this thesis is optical flow. Optical Flow labels the task of densely
measuring the motion between two or more frames captured by a camera, or the dense
registration of two or more cameras on a pixel-by-pixel basis. Optical flow is a crucial step
in many areas of computer vision. For instance optical flow estimation is a part of video
compression (citation!!) used to detect areas of small brightness change, thus low motion.
The pixels of such areas of a video are then grouped together and stored in an memory
efficient manner. In recent years structure from stereography and structure from motion
(video from a single camera) have gained popularity as a means to capture 3D models
for film productions and also due to the availability of low cost 3D printing (citation!!).
In both the stereography and the structure from motion pipelines optical flow is used for
the triangulation of the dense point cloud, prior to generation of the final 3D mesh. In the
case of optical flow between two cameras both cameras, also called modalities may be of
different types. For instance in medical imaging multi-modal dense image registration is
used to fuse image information from CT and MR modalities of the human brain [?] and
of the human spine ??.

Let the optical flow between the individual images be denoted by the vector-field
d(x). A typical optical flow model consists of a term which relates d(x) to the data, called
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(a) Schematic (b) Thermo-Amplitude

(c) Thermo-Phase (d) Visual high resolution

FIGURE 1. A sinusoidal excitation source emits a thermal wave onto a
CFRP target. The target may contain a defect not visible on the surface,
but which can be detected in the infrared (b,c). However a visual image,
(d), can be acquired at a much higher resolution.

the likelihood. The other constituent is a term encoding the geometric properties of the
vector field d(x), called the prior. The goal of this thesis is to introduce a likelihood which
is suitable for the dense image registration of the thermo-graphic image in figure 1b with
the higher resolved visual spectrum image in figure 1d. The other main contribution is
the introduction of a new prior which borrows concepts from differential geometry to
impose assumptions the geometry of the optical flow d(x) to be estimated.

In the following we will give a short survey on the current types optical flow like-
lihoods and current state of the art priors. We will then introduce Lie algebras and the
Noether Theorem which will play a vital role the definition of our geometrical prior.

Among the earliest methods for optical flow estimation are the methods described
in the seminal papers of Horn and Schunck [?] and Lukas and Kanade [?]. In [?] the
following model for computing the flow between two frames of a video was proposed

(1) E (d) =

∫
Ω

(
y (x)− I

(
x + d(x)

))2
dx+ λ

∫
Ω

∑
i

‖∇di‖2 dx
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In eq. (1) the frame I is warped back to the frame y by the field d(x). The second integral
in eq. (1) imposes an isotropic smoothness constraint on the flow field d. The likelihood
in eq. (1) makes the assumption that the brightness of the scene recorded by the camera is
constant from frame to frame. This is a very strong constraint, which is rarely met in real
world multi-modal setups. For instance the intensities in figure 1b follow a completely
different distribution then those in figure 1d. Thus we need a model that can bring both
images onto a common intensity space. Furthermore the isotropic smoothness term in
eq. (1) does not allow for discontinuities in d. Several methods have been introduced
which remove the assumption of isotropic flow [?, ?]. These Methods include (citation!!)
TV-Regularization, anisotropic difusion guided by directional operators like the structure
tensor and level set methods of the Mumford-Shah type [?]. We will introduce a method-
ology for the geometrical characterization of anisotropic priors in section 4 following a
review of the TV-Regularization prior in section 5.

We will now discuss three statistical similarity measures (citation!!) for optical flow
which avoid the assumption of brightness constancy. For this we will take the two images
y and I to be random variables with the marginal distributions p (y) and p (I). Then the
mean and the variance are defined as

E (X) =

∫
X · p (X)(2)

Var (X) = E
(

(X − E (X))2
)

(3)

1.1. Mutual Information. Mutual Information (MI) is a popular similarity measure
used mainly in medical imaging where images from different modalities including MR,
CT and PET are registered against each other. For images y and I from two different
modalities capturing the same scene, MI is defined with the joint distribution p (y, I) by

(4) MI (y, I) =

∫
p (y, I) ln

p (y, I)

p (y) · p (I)
dydI

MI measures how strong the images y and I statistically depend on each other. In the
case that y and I are statistically independent, p (y, I) = p (y) · p (I), then by eq. (4) MI is
zero. On the other side, MI is maximal when y completely determined by I or vice versa.
However, as [?] puts it, MI does not explain the kind of dependency between images y
and I , its maxima are statistically but not visually meaningful, since it disregards any
spacial information, which is essential for optical flow. Thus optical flow likelihoods
based on MI usually tend to have many local minima rendering MI too unconstrained
for optical flow.

1.2. Correlation Ratio. To alleviate the problems with MI, [?] argument-ed that a
better similarity measure would be one that measures the functional relation between
the images y and I . The base key ingredient for their proposal is that the pixel values
I (x) and y (x) are assumed to be the realizations of random variables, which by abuse
of notation we denote by Î and ŷ. Then the normalized joint histogram of the images I
and y can be interpreted as the joint probability distribution p

(
ŷ, Î
)

, and the conditional
distribution

(5) p
(
ŷ| Î = I

)
=
p
(
ŷ, Î = I

)
p
(
Î = I

)
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encodes the spacial functional relationship between y and I . They introduced the Corre-
lation Ratio (CR)

(6) η (I|y) =
Var (φ? (y))

Var (I)
φ? (y) = argminφEI

(
(I − φ (y))2

)
The optimal function φ? was shown to be the expectation value of Î , conditioned on a
realization of ŷ

(7) φ? (y) = E
(
Î
∣∣∣ ŷ = y

)
=

∫
Ip (I| y) dI

The function φ(ŷ) maps any realization of ŷ to an expectation value of Î . As ŷ is a ran-
dom variable, φ(ŷ) is also at random. Its variance measures how well I is functionally
explained by a realization of ŷ. The measure in eq. (6) is bounded between 0 and 1, 0
indicating that y and I are independent, 1 indicating a functional relationship I = φ? (y).
The function φ? although not necessarily continuous, is measurable in the L2-sense. Thus
CR is a much stronger constraint then MI and has fewer, but more meaningful minima
[?].

1.3. Cross Correlation. Cross Correlation (citation!!) is the strongest constrained
similarity measure. It is basically an additional constraint to CR, namely that the func-
tional relationship in eq. 6 must be linear. Then η reduces to

(8) η (I|y) =
Cov (y, I)

Var (I) · Var (y)
I = λ · y

As we will see in section ?? a measure similar to eq. (8) will be computed based on the
assumption that both y and I are Gaussian. The Gaussian assumption is valid when both
cameras y and I produce Gaussian noise and the joint histogram is predominantly linear.
Linearity in the joint histogram occurs when the recorded scene contains materials with
uniform luminosity in the frequency bands of the cameras y and I .

2. Setup of the camera rig

The data acquisition apparatus consists of a visible spectrum camera (VSC) mounted
on top of a thermography camera (TC). The resolution of the VSC is 1226 × 1028 pixels
while that of the TC is 640 × 512 pixels, both cameras with a focal length of 25 mm. We
used a sinusoidal excitation source with a frequency of 0.1 Hz, which corresponds to a
penetration depth of approximately 1.3 mm in the CFRP.

3. Image Fusion

Our camera setup not only consists of two cameras with differing spectral responses,
the TC and the VSC also differ in spatial resolution. However the likelihoods given intro-
duced above have in common that they do not directly model the difference in resolution.
In figure 2a a model of the CCD of the low resolution TC is shown overlaid with a higher
resolution grid representing the VSC. The gray region in figure 2a symbolizes one pixel
of the TC and it can be seen that each pixel of the TC covers a group of pixels of the VSC.
Since the TC pixel has a finite surface, we need to specify how this pixel absorbs photons
landing at different points in its area in order to relate the covered pixels of the VSC to it.
The response of each individual pixel in the TC is called the point spread function (PSF),
Wσ (x, y), the vector (x, y) being the location on the surface of the TC pixel with respect to
the VSC coordinate frame. Figure 2b is the result of a theoretical model of a FLIR imager
similar our TC. The model, obtained by Hardie et al. [?], combines absorption properties
of the CCD pixel with physical properties of the camera lens. We can see that each TC
pixel has a non uniform response to incoming photons. Using this information we can
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(A) (B)

FIGURE 2. Figure 2a The thick grid depicts the CCD of the low resolution
thermographic camera. The finer grid a virtual super-resolved version of
the pixels in the TC. Figure 2b shows the point spread function Wσ (x, y)
of the gray pixel in figure 2a, taken from Hardie et al. [?]. It shows that
each pixel in the TC image has a non uniform response over its surface to
incoming photons.

model a super-resolved version S of the TC image y with the help of the PSF Wσ, by
stating that y is the result of the convolution of S with Wσ

(9) y = Wσs+ n n ∼ N (0|Cn)

The problem of estimating S is that there is an infinite amount of high resolution TC
images S? which relate to y via eq. (9) since the high spacial frequency components of S
are filtered out by Wσ. In [?] Hardie suggested use of a high resolution imager Ic whose
camera center is co-aligned (hence the subscript c) with the TC image y and correlated
with S. The rationale behind their approach is to combine the desired features such as
sharp edges and corners of Ic with the intensity spectrum of y into the super-resolved
image S, while avoiding limitations such as the noise model of y. The limitation of their
model is that the centers of the modalities y and Ic need to be co-linear. While this is the
case in remote sensing applications, the model needs to be extended to the general case
of two separated modalities. We will first outline the original model, and in chapter 3 we
will introduce a new model for optical flow based on [?].

The key ingredient in the model of [?] is that the intensities of S and Ic are assumed
to be samples drawn from the joint Gaussian p (S, Ic). As Ic is already fixed as input data
we can derive a conditional distribution for S via the Bayesian rule

p (S|Ic) =
p (S, Ic)

p (Ic)
∼ N

(
µs|Ic |Cs|Ic

)
(10)

Cs|Ic = Cs,s − C2
s,Ic · C

−1
Ic,Ic

(11)

µs|Ic (x) = µs + Cs,Ic · C−1
Ic,Ic

(Ic (x)− µIc)(12)

where the variances are computed globally

(13) Cu,v =

∫
Ω

(
u (x)− µu

)
·
(
v (x)− µv

)
dx

We see that the mean of S conditioned on Ic, µs|Ic is linear in the values of Ic, thus in
this model the intensities of S are assumed to be globally linearly related to the intensities
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(A) (B)

FIGURE 3. Local transformation of an image φ with a level-set S. Figure
3a shows an image φ (x) with a line S along which the intensity values
are constant. At each point xS the vector ωS is the normal vector on S.
Figure 3b shows the result of the local distortion of S under the action of
the operator gδω . gδω acts on S by adding to ωS a spacial dependent vector
δω (x)

of Ic. We combine eq. (10) with the Gaussian likelihood in eq. (9) to the posterior

(14) p (S|y, Ic) ∼ p (y|S) · p (S|Ic) = exp
(
−E (S)

)
with the associated energy

(15) E (S) =
1

2

∫
Ω

(
y (x)−WσS (x)

)2
· C−1

n dx+
1

2

∫
Ω

(
S (x)− µs|Ic (x)

)2
· C−1

s|Icdx

The minimization of eq. (15) and thus maximization of (14) with respect to S gives the
analytical solution [?]

(16) ŝ = µs|Ic + Cs|Ic ·W
T
σ

(
Wσ · Cs|Ic ·W

T
σ + Cn

)−1 (
y −Wσµs|Ic

)
Eq. (16) is intractable to compute due to the dense operator Wσ and the matrix-inverse
operation. In [?] a computationally tractable approximation was introduced

ŝ = µs|Ic + Cs̃|Ĩc ·
(
Cs̃|Ĩc + Cn

)−1 (
y − µ̃s|Ic

)
Ĩc = WσIc s̃ = Wσs ≈ y

The key issue is that this method requires both modalities, Ic and y, to be co-registered.
Since we are dealing with an optical flow problem y and thus S is shifted by a disparity
d (x) from Ic. This disparity has to be taken in to account by our model in chapter 3.
The second issue is that the assumption that S and Ic are globally joint Gaussian is not
supported by our data. However by computing Cs|Ic in local sub-domains of the space Ω
we can show that S and Ic are locally joint Gaussian. This will also be shown in chapter
3.

4. Lie Groups and the Noether Theorem

4.1. Motivation. In section 1 we had claimed that one of the problems in the model
of Horn and Schunck [?] (see eq. (??)) is that the L2 prior

(17) pL2 (∇d) = exp

(
−
∑
i

EL2 (di)

)
EL2 (φ) =

∫
Ω
‖∇φ‖2
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penalizes non-constant flow fields d. This poses a problem since objects moving against
each other generate a flow field d which must be discontinuous at the object boundaries.
In general the minimizers φ? of the energy EL2 are the constant functions φ = const. A
slightly different description of the set of minimizers goes as follows: given u?0 (x)2 = c0

we can generate all other possible minimizers φ?c by adding any c ∈ R to u?0 (x)

(18) Ac = {φ?c (x) |φ?c = φ?0 + c, c ∈ R}

We can label the action of adding a real number c ∈ R on to any function φ (x) by gc.
Under the group of such actions Gconst = {gc} our set of minimizers Ac is invariant

(19) gd ◦Ac = Ac+d =
{
φ?c (x)

∣∣φ?c+d = φ?0 + c+ d, c ∈ R
}

= Ac

as well as the L2 energy

(20) gd ◦ EL2 (φ) =

∫
Ω
‖∇ (φ+ d)‖2 =

∫
Ω
‖∇φ‖2

In this sense we can state that the L2 prior pL2 (∇φ) is actually conditioned on the group
of constant transformations

(21) pL2 (∇φ) = pL2 (∇φ|Gconst)

since it is invariant under the entire set Gconst but under no other set, this is why we
call pL2 conditionally invariant. The notion of conditional invariance serves as starting
point for the following discussion. The idea is to introduce a methodology for designing
p (∇φ) whose set of maxima A respects certain geometric constraints related to a group
of smooth transitions G whose elements g (x) ∈ G are non-constant functions over Ω.
This methodology will us deduce explicit constraints on p (∇φ) from expected geometric
properties of A. The starting point is the idea that A can be seen as being generated by
the group G

(22) A = {φ? |φ? = g ◦ φ?0 g ∈ G}

for some maximum φ?0. In figure 3a one possible maximum φ? ∈ A is shown which
contains a line S along which the intensities are constant

(23) S = {x |φ? (x) = 0,x ∈ Ω}

If under a deformation of S, caused by the action of any operator gδω ∈ G (see figure
3b) the prior p (∇φ) is invariant , it is clear the entire solution space A maximizes p (∇φ).
Hence p (∇φ) is conditioned on G

(24) p (∇φ) = p (∇φ|G)

The power of this argument is that we can define the group G, that is the specific types
of geometrical transformations in order to specify the set of maxima A which should not
be penalized by the prior p (∇φ). As we will see it is easier to specify G then it is to
directly specify A since the dimension of A is infinite, while G can be reduced to a finite
dimensional space called the Lie Algebra G This will lead us to a differential equation on
p (∇φ).

4.2. Lie Groups. Lie groups are groups of objects which are smooth functions on a
manifold at the same time being compatible with the group multiplication. For an n
dimensional Lie group G over a domain Ω the map

G×G 7−→ G : (x, y)→ x · y−1

is smooth in both x and y. One of the remarkable properties of Lie group theory is that for
every Lie group G there exists a unique structure called a Lie algebra G. The Lie algebra
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is assotiated with the tangent space of G, TG. We introduce the Lie algebra by defining a
one parameter Lie group γ (t)

γ : R→ Gγ ∈ G(25)

γ (0) = e(26)

d

dt
γ (t)

∣∣∣∣
t=0

= X ∈ G(27)

The path γ is not unique, there are infinit many paths which have the same tangential
vectorX at t = 0. This defines an equivalence relation: the paths γ1 and γ2 are equivalent,
γ1 ∼ γ2 if

(28)
d

dt
γ1 (t)

∣∣∣∣
t=0

=
d

dt
γ2 (t)

∣∣∣∣
t=0

By Eq. eq. (28) we can group the paths γ into equivalence classes [γ] For the vector X
in eq. (27) we can find a descriptive formulation in form of a vector field ω (z0) , z0 ∈ M
where the spaceM is a smooth manifold upon which G acts. The vector field X induces
a path ΓX (z0, s) with the properties

d

dt
ΓX (z0, t) = X

(
ΓX (z0, t)

)
(29)

ΓX (z0, t)
∣∣
t=0

= z0;(30)

The coordinates of X relative to the space M can be computed when we look at the
space of smooth functions with support on M, F (M). The action of X on F (M) can
be computed by evaluating F ∈ F (M) on the integral curve ΓX (z0, s) and taking the
derivative

(31)
d

ds
F
(
ΓX (z0, s)

)∣∣∣∣
s=0

= XF
(
ΓX (z0, s)

)∣∣
t=0

If F is one of the coordinate functions zi then the vector fieldX has the coeffitients ωi (z0)
relative to the basis inM
(32) X · zi|z=z0

= ωi (z0)

The set of differential operators {∂zi} can be interpreted as a basis of the Lie algebra and
the vector field ω (z0) is the coordinate representation ofX at the point z0 ∈M . We would
like build upon the discussion about the one dimensional Lie Group Gγ and generalize it
higher dimensionnal groups. An m-dimensional Lie Group G is a set of elements which
are parameterized by m parameters

(33) ga1...am ∈ G

The parameters al define axis in the set G which themselves are one parameter sub-
groups. For each parameter al there exists by extension of eq. (27) a vector field Xl

(34)
d

dal
ga1...am

∣∣∣∣
a1...am=0

= Xl

Just like in eq. (31) the vectorfields Xl each have a coordinate representation relative to
the spaceM

(35) Xl =
∑
i

ξli (z0) · ∂zi

The vector fieldsXl constitute a basis for the Lie Algebra G. All one parameter subgroups
γ (see eq. (27)) can be represented as paths in the parameterspace of G

(36) γ (t) = ga1(t)...am(t)
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and the vectorfield X from eq. (27) is computed from the derivatives of the parameters

(37)
d

dt
γ (t)

∣∣∣∣
t=0

=
∑
l

d

dt
al ·

d

dal
ga1...am

∣∣∣∣
t=0

=
∑
l

αlXl

When we combine eq. (37) and eq. (35) we get a coordinate expression for the coeffitient
vectorfield ω in the basis of the Lie Algebra

(38) ωi (z) =
∑
l

αl · ξi (z)

The Lie algebra is connected to the infinitesimal Lie group Ur ⊂ G via

(39) gU = 1 +X ∈ Ur
For the rest of this work we will focus on the space M = Ω × Jk (C∞ (Ω)). The space
Ω ⊂ Rn is an open subset and Jk (C∞ (Ω)) is the set of smooth differentiable functions
with compact support in Ω and their derivatives up to order k. The points z ∈ M are
vectors of the independent variables x, the dependent variable φ (x) and its derivatives
φ,K where K is a multiindex

(40) z = (x, φ (x) , φ,K (x))

For this work we will focus only on first order derivatives, k = 1 The vector field X then
has the form

(41) X = ωφ (z0) ∂φ +
n∑
i=1

ωi (z0) ∂xi

Under the action of gU points in C∞ (Ω)× Ω transform like

(42)

 x′

φ′ (x′)
φ′,j (x′)

 =

 x + ω (x)
φ (x) + ωφ (x) +

∑
i ωi (x) ∂xiφ (x)

φ,j (x) + ωφ,j (x)−
∑

i ∂xiφ∂xiωj (x)


4.3. Noether’s Theorem.
4.3.1. Motivation. In this section we will focus on geometric properties of the prior in

our model. We will assume the prior P (∇φ) which is only depends first order gradients
of the field φ (x). In general, priors have infinit sets of maxima φ?. For instance the
maximas of the prior PL2 (∇u) = −ln ‖∇u‖L2

in eq. (65) form the set of constant fields in
the domain Ω

(43) A = {u? |u? (x) = constx ∈ Ω}
It is trivial to see that there exists a one parameter Lie group of elements gc which take A
into its self

(44) gc : A→ A, u? → u? + c, c = const in Ω

and that PL2 (∇u) is invariant under the action of {gc}. Since c is constant in Ω, {gc} is
the only Lie group under which PL2 (∇u) is invariant. Knowledge of the solution set A
allows us to parameterize the solutions of the complete model in eq. (65) by

(45) u (x) = m+ h (x) m =
∥∥u0
∥∥
L2

It is known that the global mean value of the solution u? in the model in eq. (65) is
equal to that of the data u0 Thus the parameterization allows any gradient algorithm to
converge faster to the solution u? (x) given the initial guess

(46) uinit (x) = m, m =
∥∥u0
∥∥
L2

The solution spaceA ofPL2 (∇φ) is too trivial for most real applications, sincePL2 (∇φ)
penalizes any other solution u? /∈ A which contains struckture. We want to assume that a
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more general prior P (∇φ) which has maxima φ? (x) 6= const. The level-sets of each field
φ? (x) are taken to be the integral curves ΓX (s) corresponding to a vectorfield X of some
Lie algebra, X ∈ G. The space of the maxima of P (∇φ) is then entirely determined by
the Lie algebra G

(47) AG =

{
φ?
∣∣∣∣ ddsφ? (ΓX (s)

)
= 0∀X ∈ G

}
The action of the Lie group on elements of its own Lie algebra preserves the algebra

(48) g ·X · g−1 ∈ G ∀X ∈ G, g ∈ G

and by construnction the set maxima in eq. (47) it is apparent that G takes AG onto itself

(49) g ·AG = AG ∀g ∈ G

Since we have caracterized the prior P (∇φ) by the set of its maxima in eq. (47) which is
explained by the algebra of the group G we denote P (∇φ) as being conditioned on G,
P (∇φ |g ∈ G). But due to the invariance the maxima set in eq. (47) under the action of
G, P (∇φ) is invariant under G

(50) P (∇φ |g ∈ G) = const w.r.t g ∈ G

This property we call Conditional Invariance. The most important aspect of the above
discussion is that given geometrical assumptions on the solutions φ? in terms of G and
AG the condition in eq. (50) must be fullfilled, and thus it serves as a guidance in the
design of the prior P (∇φ |g ∈ G).

4.3.2. Noethers First Theorem. We are now going to make eq. (50) more precise by
considering the negative log-prior energy

(51) I = −lnP (∇φ) =

∫
Ω

E (x,∇φ) dx

we are interested in the action of G (see eq. (42)]. The energy in eq. (51) is said to
preserved under the Lie group G if the following relation holds

(52) I ′ =

∫
Ω

E ′
(
x′,∇φ′

)
dx′ =

∫
Ω

{
E (x,∇φ) + ∂iδQ

i
}
dx

where the vectorfield δQi is some arbitrary smooth function. If eq. (52) holds then the
resulting Euler-Lagrange equations [I] remain unchanged and thus G is a symmetry of
the Euler-Lagrange equations. In [?, ?] it was reasoned that the knowledge of the sym-
metries of the Euler-lagrange equations [I] can be used to make assumptions on the form
of the solutions φ? and thus narrow down the solution space. To be more precise, the
first Noether Theorem states that if the energy integral in eq. (52) is preserved under the
transformations eq. (42) then the Euler-lagrange equations must fullfill

(53) [I]ωφ = ∂µ (Wµ − δQµ)

where

(54) [I] =
δI

δφ
− d

dxν
δI

δφ,ν

are the Euler-Lagrange equations of I and the field Wµ is defined by

(55) Wµ = − δI

δφ,µ
ωφ + ωi

(
δI

δφ,µ
φ,i − δµ,iI

)
When eq. (53) is evaluated at the solution φ? of the Euler-Lagrange equation [I] = 0 then
Wµ must be divergence-free. The form of the divergence free vector field Wµ dictates the
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form of the geometry of the level-sets of φ?. We will now show an example where knowl-
edge of the symmetry and thus the divergence-free Wµ fields makes basic assumptions
on the solution space of the corresponding Euler-Lagrange equations possible.

4.3.3. Kepler’s Two Body Problem. Keplers two body problem is the problem of calcu-
lating the problem of estimating the trajectory of a body of mass me (the earth) which is
moving within the vicinity of another body with mass ms (the sun). According to New-
ton there exists a gravitational force between the masses coming from the energy V (r) of
the gravitational field surrounding the mass ms at the origin in R3

(56) V (re (t)) = −me ·ms

r
r = ‖re − rs‖

The kinetic energy of the mass me is 1
2meṙ

2 so that the Lagrangian of the path re (t) is

(57) L (re (t)) =
1

2
meṙ

2
e +

1

2
meṙ

2
s − V (re (t))

The Euler-Lagrange equations are easily computed

(58) r̈e +
ms +me

r2
= 0

The parameter t is the time parameter of the two body system. The Kepler Lagrangian
in eq. (57) exhibits a symmetry under four different one parameter Lie group actions,
namely the action of time shift and rotations around the three spacial axis (the group
SO (3)× R)

t′ = t+ δt(59)

r′ = r + ∂θir
′δθi i = x, yorz(60)

where θi are rotation around the x-,y- or z-axis. From Noethers theorem there exist four
corresponding conserved quantities:

H =
1

2
meṙ

2 + V (re (t)) time shift(61)

lx = zẏ − yż Rotation around x-axis(62)
ly = zẋ− xż Rotation around y-axis(63)
lz = xẏ − yẋ Rotation around z-axis(64)

The conserved quantityH in eq. (61) is the Hamiltonian Energy of the two body system.
It constant time and thus manifests that the total energy of the two body system does not
disipate away since there are no external forces interacting with the two masses me and
ms, that is the two body system is a closed system. The vector l = (lx, ly, lz) (eqs. eq.
(62) to eq. (64)) is called the angular momentum of the masses me and ms as they rotate
around eachother. The solutions to the Euler-Lagrange equations in eq. (58) are elliptic
curves in the plane orthorgonal to l. The constancy of l with respect to the special orthog-
onal group SO (3) comes the fact the plane is embedded in the eucleadian coordinate
space with unit metric, rather some general riemanian space.

5. Total Variation

The earliest attempts to optimization in computer vision all had in common, the use
of isotropic priors for the regularization of the unknowns to be estimated. For example
one of the earliest attempts for image denoising invloves minimizing the functional ([?])

(65) E (u) =

∫ (
u− u0

)2
dx+

λ

2

∫
|∇u|2dx

The first term in eq eq. (65) is the likelyhood which states the minimizer u? must be
close in its intensity distribution to the given data u0. The second term, the prior energy

13



imposes smoothness on the minimizer u?. Both terms are quadratic in u and thus the
Euler-Lagrange equations for E (u) are linear in u making them computationally easy to
solve. The problem with the prior λ

2

∫
|∇u|2dx is that it does not allow the solutions u?

to have discontinuities. Different approaches for anisotropic priors exist, for instance [?]
introduced a quadratic prior

(66) Eprior =

∫
(∇u)T D (∇u)

The operator D is a local 2 × 2 symmteric valued matrix with eigenvectors tangential to
the level-sets of u0. This is why D steers the direction of the gradients in eq eq. (66) in
tangential direction of the level-sets, and thus also of the discontinuities of u and u0. The
upside is that the prior in eq eq. (66) combined with the likelyhood in eq eq. (81) still
lead to Euler-Lagrange equations linear in u. The downside of the prior in eq eq. (66)
is that the operator field D must be precomputed on the data u0, e.g with an eigenvalue
analysis of the structure tensor.

In the context of shock-filtering ([?, ?, ?]) it was shown that the functional

(67) EL1 (u) =

∫
|∇u|dx

has the appealing property that it does not penalize larg disconinuities. However its
functional derivative with respect to u is ill conditioned in the case ∇u ≈ 0. To alleviate
the case, [?] chose the approximative prior

(68) EL1approx (u) =

∫ √
|∇u|2 + εdx

which is well behaved for ε > 0. They were able to achieve good results with relatively
sharp preserved discontinuities with data u0 having low SNRs. Never the less in the limit
ε→ 0 the Euler-Lagrange equations become more and more computationally instable. A
theoretically more well conditioned form of TV is needed which we will outline, follow-
ing ([?]). To do this we need to explore the functionspace the minimizers of eq eq. (67)
might belong to. Smooth functions usmooth are functions for which∇u exists everywhere,
thus they may be minimizers of eq eq. (67). But functions udiscont containing discontinu-
ities do not have finite L1 norm of their gradients, EL1 (udiscont) = ∞ since the gradient
∇udiscont does not exist at the disconinuities. A generalization of eq eq. (67) is possible
if one assumes ∇u to be a distribution, more precisely a radon meassure in the space
M (Ω). If there exists a radon meassure µ ∈ M (Ω), such that for every φ ∈ C0 (Ω) with
compact domain, the following equality holds

(69)
∫

Ω
u ·Divφdx = −

∫
φdµ <∞

then µ is called the weak derivative of u and we can identify ∇u = µ. It is then possible
to define the functionspace of bounded variation

(70) BV = {u ∈ L1 (Ω) |∇u ∈M (Ω)}

Now it is possible to define a norm on BV . By virtue of the Hölder relation there exists a
scalar C for which we can determin the upper bound of eq eq. (69)

(71)
∫

Ω
u ·Divφdx ≤ C‖φ‖∞

The scalar C is the norm of the radon meassure∇u and is called the total variation of u

(72) TV (u) = sup
{∫

Ω
u ·Divφdx | ‖φ‖∞ ≤ 1

}
14



As was discussed in [?] the functions u are geometrically piecewise smooth, meaning
there exists a partitioning {Ωk} of Ω such that (∇u)Ωk

are L1 integrable. If dlmk is a line
segment in the intersection Ωm ∩ Ωk then TV (u) can be written in the form

(73) TV (u) =
∑
k

‖∇uΩk‖L1
+
∑
k<m

∫
Ωk∩Ωm

|uk − um| dlkm

where uk the value of u on the portion of ∂Ωk which is interfacing with Ωm and vice versa
for um. The first term in eq. (73) penalizes the smooth parts of u (the gradients (∇u)Ωk

)
while the second term penalizes the length of the section Ωm ∩ Ωk while maintaining the
values uk,m and thus the jump |uk − um|. It essentially penalizes the curvature of the line
interfaceing with both Ωk and Ωm. We will make this point clear in the following section.

5.1. The Mean Curvature of Total Variation. In this section we will discuss the geo-
metrical properties of the TV norm in eq. (72). The subgradient of eq. (72) is equal to the
set

(74) ∂TV (u) =

{
−Divσ

∣∣∣∣ σ · ν = 0 on ∂Ω, σ =
∇ u

|∇u|
if |∇u| 6= 0

}
This set defines the set of lines L (v) = TV (u) + 〈Divσ|v − u〉 tangential to TV at a point
u ∈ BV . We define a one parameter Lie group γ (t), such that its vectorfield X fullfills
the condition

(75) X · u
(
ΓX (x0, t)

)
= 0

then its integral curves ΓX (t) = (x (t) , y (t)) are the level sets of u. The level sets ΓX have
a curvature κ and the standard formula for κ is

(76) κ =
1∥∥∥Γ̇X
∥∥∥3

L1

(ẋ · ÿ − ẏ · ẍ)

If the vector field X is expressed by the coordinate vector ξ (x0) then it can be shown κ is
a function of the laplacian relative to the coordinate vector ξ (x0).

(77) κ (x0) =
∆ξξu (x0)

|∇u (x0) |
This form can easily be transformed into a divergence quantity

(78) κ = Div
(
∇ u

|∇u|

)
This shows us that the subgradient in eq: eq. (74) is equal to the curvature of the levelsets
ΓX (t)

(79) κ = −∂TV (u)

The eq. eq. (79) exposes the capital geometrical property of the TV norm: The TV norm
penalizes the curvature of the level-sets of an image. As κ is an invariant of the Lie group
SE (2), the group of rotations and translations, TV is also an invariant of that group.

5.2. Image Denoising. Image denoising is the problem of estimating a clean image
u? given a noisy image u0. The image u0 is connected to u? via

(80) u0 = u? + n n ∼ D
where D is some distribution and n is a noise term drawn from D. u? is estimated from
the familly of functionals

(81) F (u) =
1

q

∫
Ω
|u− u0|qdx+ λTV (u)
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The degree q of the data term must be matched to the form of the distribution D. Using
the subgradient in eq eq. (74) the Euler-Lagrange equations can be calculated

(82) [F ] (u) =


|u? − u0|q−2

(
u? − u0

)
− λDivφ inΩ

φ · ν = 0on∂Ω

φ =
∇u
|∇u|

|∇u| − nearly everywhere

As was discussed before the term Divφ is equal to the curvature κ on the level-set of u.
Thus the parameter λ controls how strong the curvature of the level-sets are penalized.
Never the less the functional eq. (81) still permits jumps in the image u?.
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CHAPTER 2

Geometrical Prior

We shall now proceed to introduce a prior based on the considerations made in chap-
ter 4. For this we review the structure tensor. Conider an image φ (x). We would like
to characterize the domminant strength and the orientation of ∇φ within a subdomain
A ⊂ Ω. In [?] it was suggested that the orientation vector n of the level sets in φA are
constrained by

(83) nT · ∇φ (x)
∣∣
x∈A = 0

The vector n is assumed to be constant within the domain A. It can be computed by
minimizing the energy

(84) J (n) =
1

2

∫
A
w (x) nT ·

(
∇φ (x)∇Tφ (x)

)
n =

1

2
nTSn

The matrix S is called the structure tensor. Since S is a symmetric matrix there exists an
orthorgonal decomposition

(85) S = V TDV D =

(
λ1 0
0 λ2

)
V = (v1,v2)

The eigenvalues give of the squared strength of the gradient in the basis defined by the
columns of V . They characterize the structure in A in the following way

• λ1 > λ2: Strong linear level set with normal vector v1

• λ1 ≈ λ2 ≈ 0: No strong gradient, image is approximately constant
• λ1 ≈ λ2 � 0: No linear level sets, level sets have strong curvature

The constraint in eq. (83) can be explained with the method in Chapter 4.2 as the action
of the translational group T and the assotiated algebra T . The basis of T are the cartesian
derivative operators ∂x and ∂y and the elements of T have the form

(86) X = ωx∂x + ωy∂y ∈ T

The integral curves of X , ΓX (s) (see eq. (29)) are the straight lines

(87) ΓX (s) = x0 + ωs

If s is the arc length of ΓX then the coeffitient vector ω is the normalized vector n and the
constraint eq. (??) is written in terms of the vector field X

(88)
d

ds
φ
(
ΓX (s)

)∣∣∣∣
s=0

= Xφ (x0) = 0

Since the basis operators ∂x and ∂y commute, {∂x, ∂y} = 0 the vector field X is trans-
lation invariant and as a consequence of eq. (88), the structure tensor S is also translation
invariant. Under the rotation group SO (2) the structure tensor is not invariant. Nonethe-
less it has an important transformation property: the transformed structure tensor S′may
be written in terms of the old matrix S and the rotation matrix Rθ ∈ SO (2)

(89) S′ = RTθ SRθ
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1. The Generalized Structure Tensor

In [?] a generalisation of the structure tensor was introduced. The generalisation is
based on the introduction of the canonical coordinates ξ (x) and η (x) which pose a de-
formation of the cartesian coordinate space Ω. The prime example is the transformation
from cartesian to polar coordinates (x, y) → (r, θ). The gradient with respect the new
coordinates can be expressed with the cartesian coordinates via the jacobian matrix J

(90)
(
∂ξ
∂η

)
= J−1 ·

(
∂x
∂y

)
J =

(
ξx ηx
ξy ηy

)
The differential operators {∂ξ, ∂η} also form the basis for the algebraH of the general Lie
group H, that is [∂ξ, ∂η] = 0 if and only if the following conditions hold

∂xξ = −∂yη(91)
∂yξ = ∂xη(92)

The eqs. eq. (92) are the famous Cauchy-Riemann differential equations and their com-
bination give the separate wave equations

∆ξ = 0(93)
∆η = 0(94)

A solution of eq. (93) implies that there must also exist a solution for eq. (94). This is why
one calls the pair {ξ, η} a pair of conjugate functions. Within the coordinate frame (ξ, η)
the operators {∂ξ, ∂η} obey the natural conditions

(95) ∂ξξ = 1, ∂ξη = 0
∂ηξ = 0, ∂ηη = 1

The integral curves ΓX generated by the operators {∂ξ, ∂η} can be written as an exponen-
tial taylor series

(96) ΓX (s) = exp (s ·X) X = ωξ∂ξ + ωη∂η

Level set functions φ satisfying

(97)
d

ds
φ
(
ΓX (s)

)
= 0

may exist if and only if ([?]) the exponential series in eq. (96) seperates which according
to the Baker-Hausdorff-Campbell formula is only the case when the operators {∂ξ, ∂η}
commute

(98) exp (s ·X) = exp (s · ωξ∂ξ) · exp (s · ωη∂η)⇔ [∂ξ, ∂η] = 0

On the otherside if the coordinate functions (ξ, η) satisfy the Cauchy-Riemann equations
(eqs. (??)) then one verifys that [∂ξ, ∂η] = 0

The Group O (2). We will now show an example on the group O (2), the group of
rotations and dilations. The transformation of the cartesian coordinate system to the
polar coordinates in 2 dimensions is given by the equations

x = r · cos (θ)(99)

y = r · sin (θ)(100)

Using the expression in eq. (90) the jacobian J is easily calculated

(101) J =
1

r

(
x −y
y x

)
so that the derivative operators {∂ξ, ∂η}may be expressed in the cartesian domain

(102) ∂ξ = x∂x + y∂y ∂η = −y∂x + x∂y
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The coordinates ξ and η that satisfy eq. (95) with the derivative operators in eq. (102) are
functions of the cartesian coordinates

ξ (x, y) = log (r) r =
√
x2 + y2(103)

η (x, y) = arctan
(y
x

)
(104)

The function η (x, y) is easily recognisable as the angle θ to the x-axis while the function
ξ (x, y) is not the radius r. This is because the operators {∂ξ, ∂η}must both have the same
dimension, that means they must be invariant dilations r → λ · r.

The level sets of the algebra spun by the operators {∂ξ, ∂η} are linear with respect to
the coordinates (ξ, η) by virtue of eq. (95). Thus by arguments similar those following eq.
(??) , the authors in [?] introduced the generalized structure tensor (GST)

(105) Sξ,η =

∫ (
(∂ξφ)2 ∂ξφ∂ηφ

∂ξφ∂ηφ (∂ηφ)2

)
dξdη

As Sξ,η is a symmetric matrix there exists a decomposition

(106) Sξ,η = V TDV D =

(
λξ 0
0 λη

)
V = (v1,v2)

The rotation matrix V acts in the (ξ, η) coordinate space. It does not neccessarily cor-
respond to rotations in the cartesian coordinates (x, y). See [?] for a discussion on the
steerability of the GST.

1.1. The Transformation Properties of the GST. Within the generalized coordinate
frame (ξ, η) the action of the group G manifests itsself as a translation

(107) gε1,ε2 ◦
(
ξ
η

)
=

(
ξ + ε1
η + ε2

)
As mentioned before the basis operators {∂ξ, ∂η} and as a consequence all elements of the
Lie algebra G commute with G (expand on left invariance!!)

(108) gε1,ε2 ◦X = X ◦ gε1,ε2∀X ∈ G

Another important fact is that under the transformation in eq. (107) the volume element
dξdη is invariant. The consequence is that the GST in eq. (105) is invariant with respect
to the generalized translation in eq. (107)

(109) gε1,ε2 ◦ Sξ,η = Sξ,η

The GST has another interesting transformation property. As eq. (106) indicates, there
exists an action of the rotation group SO (2) on the generalized coordinate frame (ξ, η)

ξ′ = cos (θ) ξ + sin (θ) η(110)

η′ = −sin (θ) ξ + cos (θ) η(111)

The action of the transformation in eq. (111) yields a basis transformation of the Lie
algebra (∂ξ, ∂η)

∂′ξ = cos (θ) ∂ξ + sin (θ) ∂η(112)

∂′η = −sin (θ) ∂ξ + cos (θ) ∂η(113)

Under the change of basis in eq. (113) the GST transforms like a tensor

(114) S′ξ,η = RTSξ,ηR R =

(
cos (θ) sin (θ)
−sin (θ) cos (θ)

)
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It is important to note (see [?]) that the transformation in eq. (111) is not neccessarily
connected to the rotations on the cartesian space Ω the functions ξ (x) and η (x) are em-
bedded in. In fact it deforms the level sets corresponding to (∂ξ, ∂η) in a highly non linear
manner.

2. Structure Tensor Based Prior

Our objective is to construct a prior P (∇φ) which is invariant to the transformations
in eq. (114). We want to define a finite set of Lie groups Gi for which the classes of level
sets AGi are minimizer sets for P (∇φ) (see eq. (47)). The methodology goes as follows:
We define energy E (∇φ) (the negative log of P (∇φ)) as a product of the determinants
of the corresponding GSTs Sξi,ηi

(115) E (∇φ) =
∏
i

Det (Sξiηi)

The energy in eq. (115) inherits the translation invariance (only when φ ∈ AGi??) of
the GST in eq. (109), which we will show now. Due to the rotation invariance of the
determinants in eq. (115) we can write the individual determinants in terms of their
eigenvalues

(116) Det (Sξiηi) = λξiληi

We can write the eigenvalues λξi and ληi as the squares of the orthorgonal operators Xξi
and Xηi which constitute a rotation of the basis (∂ξi , ∂ηi)

(117) Det (Sξiηi) = (Xξi (φ))2 (Xηi (φ))2

Under the adjoint action of the group Gi the operators Xξi and Xηi are invariant

d

ε1

(
gε1,ε2 ◦Xξ ◦ g−1

ε1,ε2

)∣∣∣∣
ε1,ε2=0

= [Xξ, ∂ξ] = 0(118)

d

ε2

(
gε1,ε2 ◦Xξ ◦ g−1

ε1,ε2

)∣∣∣∣
ε1,ε2=0

= [Xξ, ∂η] = 0(119)

eq. (119) also holds for Xηi . It is evident that under the adjoint action the determinant
Det (Sξiηi) remains invariant. Since the determinant Det (Sξiηi) vanishes when φ ∈ AGi
the whole energy in eq. (115) is invariant to any of the adjoint actions of the Gi if φ is
locally in any of the sets AGi

The open question which remains to be answered is, how does the energy eq. (115)
transform when φ is not locally contained in any of the AGi . The basis elements of two
different Gi and Gj do not neccessarily commute[

∂ξi , ∂ξj
]
6= 0(120) [

∂ξi , ∂ηj
]
6= 0(121) [

∂ηi , ∂ηj
]
6= 0(122)

(123)

The question arises that when φ is locally within the vicinity of a particular φ?i ∈ AGi ,
‖φ− φ?i ‖ ≤ δ will it be brought further away from φ?i under the action of Gj , that is
‖gj ◦ φ− φ?i ‖ ≤ δ′, δ′ > δ? Or can the groups Gi and Gj be related to each other such that
δ′ < δ? To answer this we look at the product algebra Gi × Gj spun by the basis elements
Xl. These operators may not be commutative but may be in involution

(124) [Xi, Xj ] =
∑
l

C li,jXl
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If this is the case then the commutator [Xi, Xj ] is also an element of the joint algebra
Gi × Gj . (if φ is roughly linear, then a dilation ∂r will stretch the level sets to a line thus
resulting in a levelset of the translation group)

2.1. Analysis of the Eigenvalues of the Rotation Dilation Group. We will now turn
our focus on the eigenvalues of the Rotation Dilation GST. We use the polar coordinates
from eq. (100). The integration window of the GST is

ξ0 − εξ < ξ0 < ξ0 + εξ(125)
φ0 − εφ < φ0 < φ0 + εφ(126)

where ξ0 = ln (r0) so that eq. (126) translates to a region around the curvature radius r0

and the angle φ0. The level sets parameterised by the polar coordinates in the region in
eq. (126) are the sectional curves of constant curvature k−εξ0 < k0 < k

εξ
0 , k0 = 1

r0
. The

Rotation Dilation GST from eq. (105) can be written in cartesian coordinates

(127) Sξ,η =

∫ y0+ε

y0−ε

∫ x0+ε

x0−ε

(
(∂ξφ)2 ∂ξφ∂ηφ

∂ξφ∂ηφ (∂ηφ)2

)
1

r2
M (x, y) dxdy

The mask M (x, y) enforces the conditions eq. (126). The orientations of the level sets in
this domain are fixed and thus This is why the minimum eigenvalue of the GST is zero
only for level sets matching the curvature k0 and the orientation φ0. Since the integration
space of Sξ,η is centered around φ0, Sξ,η is not rotation invariant. In figure 1a the image
function I (x, y) = −r2 is depicted. The GST was evaluated for r0 = 30 and φ0 = π

4
(Figures 1b to 1d) and φ0 = π

2 ((Figures 1e to 1g)). The eigenvalue corresponding to Xη,
the derivative in angular direction is denoted by λ2 (Figures 1d to 1g). It is observed that
λ2 has a minimum at the radius r0 = 30 and the angles φ0 = π

4 (figure 1d) and φ0 = π
2

(figure 1g). As a result the determinant of the GST is only minimal at exactly those values
(see figures 1b and 1e).
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(A) (B)

(C) (D)

(E) (F)

(G)

FIGURE 1. Figure 1a is the image I (r) = −r2, figures 1b to 1d are the
determinant, higher and lower eigenvalue of the GST for r0 = 30 and
φ0 = π

4 . Figures 1e to 1g are same for φ0 = π
2 .
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CHAPTER 3

Geometrical Optical Flow Model

In this chapter we will introduce our new model optical flow based on the image
fusion algorithm from Hardie et al. [?]. We will adress the two issues outlined in section
3, namely that the images y and I (Figures 1b and 1d) are not co-aligned and not joint
Gaussian.

1. Disparity

To solve the problem that the images y and I are not co-aligned we need a mapping
between the pixels of y and those of I . However the problem exists that the modalities
producing the images y and I have different native resolutions so that it is not clear how
the pixels of I should be mapped to pixels in y. In section [?] a method was introduced
which produces a super-resolved image S given co-aligned data y and Ic. In that model
pixels in S and in Ic have a one-on-one relationship, so that it is natural to map pixels in
I to S rather than to y directly. We model the disparity between the images S and I by
setting the co-aligned VSC image Ic to be the result of the original VSC I , warped by an
unknown optical flow field d(x),

(128) Ic (x) = I (x + d (x)) = Id (x)

Substituting eq. (128) into eq. (14) and following, we obtain the likelihood

(129) p (s|y, I,d) = p (s|y, Id)

with the energy

(130) Edata (S,d) =
1

2

∫
Ω

(
y (x)−WσS (x)

)2
·C−1

n dx+
1

2

∫
Ω

(
S (x)−µs|Id (x)

)2
·C−1

s|Iddx

We can insert the simplified closed form expression for Ŝ from eq. (??) into Edata

(131) Edata (d) =
1

2

∫
Ω

(
y (x)− f · Ĩd (x)

)2
· Cs|Ĩd

(
Cs|Ĩd + λCn

)−2
f = Cy,ĨdC

−1
Ĩd,Ĩd

The data term Edata defines a likelihood for d

(132) p (y, I|d) = exp (−Edata (d))

and has the following interesting properties: the factor f transforms the intensity range
of the image Id to a range similar to that of y so that Edata is a measure for the similarity
between y and f · Id. Furthermore as f · Id and y become more similar the conditional
variance converges Cs|I → 0. Thus in the vicinity of the optimal solution d̂ the posterior
distribution eq. (137) becomes sharper.

The minimization of eq. (137) with respect to d(x) is an ill-posed problem. For re-
gions VI of I and Vy of y in which I and y contain little structural information, a pixel
xI ∈ VI can be mapped to any pixel in Vy, meaning that d (xI) is ambiguous. This prob-
lem is referred to as the aperture-problem of optical flow (refs...). We therefore apply a
smoothness prior for d (x). A common choice for such a prior would be the total vari-
ation (TV) norm, [?, ?], . However we will use our structure tensor based prior from
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(A)

FIGURE 1. Joint Histogram of the TC image figure 1b and the VSC image
figure 1d. We observe that there is no linear relationship between the TC
and the VSC

VSC image TC image Histogram

(A) (B) (C)

(D) (E) (F)

FIGURE 2. Different roi’s and their joint histograms. A grid is shown in
the VSC and the TC image to emphasize the disparity between them. The
gridsize is 10 pixels. In the histograms we see there is a linear relationship
between the VSC and the TC roi’s

chapter 2 which is well suited for linear displacements which occur often in multimodal
setups. Combining (132) and pST (∇d) we obtain the posterior

(133) p (d|y, I) = p (y, I|d) · pST (∇d)

2. Localization

The assumption that the intensities of the images y and I are globally linear related
is a very strong constraint that can hold in most cases only unimodal data. In the case of
the VSC and TC data in figure 1 the assumption of linearity fails. In figure 1 the global
joint histogram of the VSC and the TC image is shown. We can see that the distribution in
the joint histogram lacks a linear relationship between the TC and the VSC. However in
figure 2 we have evaluated the histogram within local region of interests. The histograms
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(A) (B) (C)

FIGURE 3. Median conditional variance Ĉσ,as|I for a = 5 (figure 3a), a = 23

(figure 3b) and a = 33 (figure 3c). We can see that for small values of a Ĉσ,as|I
has a minimum at σ < 2, and for larger values of a the profile changes so
that the minimum of Ĉσ,as|I is at σ ≥ 10

in figures 2c and 2f show that within the roi’s the assumption of linearity between the
intensities of the TC and the VSC is well supported. Therefore we propose a local version
of the variance in eq. (13)

(134) Cu,v (x0) =

∫
Ω
ω (x− x0) (u (x)− E (u,x0)) · (v (x)− E (v,x0))

where ω is a window function which we take to be constant within a subset W ⊂ Ω

(135) ω (x) =

{ 1
|W |−1 0 ≤ x, y ≤ a

0 else

Then Cσ,as|I (x) becomes a local meassure that meassures how linear the intensities of y
and I are within the sub domain W . The problem that arises is how large to set the
window size a. If it is set too small the signal to noise ratio will be too small so that not
enough information of the features in the TC and the VSC image are captured to robustly
register them. On the other hand if a is set too large we eventually loose the local linearity
between the TC and the VSC image. In figure 3 we have plotted the median conditional
variance

(136) Ĉσ,as|I = median
(
Cσ,as|I (x)

)
as a function of σ for three fixed values of the window size a. In figure 3a (a = 5) Ĉσ,as|I has

a minimum for σ < 2, and in figure 3c (a = 33) it is minimal for σ ≥ 10. The profile of Ĉσ,as|I
changes from monotonic increasing to monotonic decreasing for small to large values of
a. Since we know the value for the scale parameter σ, σ? = 2 from the ccd resolutions of
the cameras, the idea find the optimal value a? such that Ĉσ,a

?

s|I is minimal at σ = σ?. For
a = 23 this is the case as we see in figure 3b. Thus for the data in figure 1 a? = 23 is the
optimal value so that Ĉσ,a

?

s|I has physically meaningful minimum σ? = 2. The local data
term Edata now has the form

Edata (d) =
1

2

∫
Ω

(
y (x)− f(x) · Ĩd (x)

)2
· Cσ

?,a?

s|Ĩd
(x)
(
Cσ

?,a?

s|Ĩd
(x) + λCn

)−2
(137)

f(x) = Cy,Ĩd(x)C−1
Ĩd,Ĩd

(x)(138)
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and together with our prior from chapter 2 the energy for the complete optical flow model
is

(139) E (d) = Edata (d) +
λ

2

(∑
i

Det (S (di))

)
The matrix S (di) is the structure tensor (see eq. (84)) acting on each component of the

optical flow d. In this model we are making the assumption that the motion boundaries
are locally linear. This assumption is valid for object boundaries with small curvature
but as we will see in chapter ?? this assumption fails at junction points in the optical
flow field, since those are where objects are partially occluding each other and moving in
opposite directions.

3. The solution algorithm

To minimize 139 and obtain the optimum flow field d̂ we deploy a simple newton
scheme with a nested linearization of 139. The linearized model is solved by a conjugate
gradients algorithm with block Jacobi preconditioning. The problem with this approach
is that the regularizer is quartic in the flow field components and thus the linearization
becomes numeric instable for the initial steps of the algorithm.

Algorithm 1 Optical Flow with Structure Tensor prior

Initialize d0 = 0

Set r0 = δE(d)
δd (d0)

scale s = sMax
while s > 1 do

downsample ys = Gs ? y0, Is = Gs ? I0

while ‖r‖ > ε or k < N do
set dk+1 = dk + αδ

expand E (dk+1) = E (dk) + αbTk δ + α2

2 δ
TQkδ

solve Qkδ = bk for δ with conjugate gradients and suitable preconditioning
compute dk+1 = dk + αδ, k → k + 1

end while
upsample dN , set d0 = dN , k = 0
s = s− 1

end while

The problem arises in step 9 of the iterative algorithm. The second functional deriv-
ative Qk of the energy model 139 consists of one part comming from the likelihood and
one part coming from the prior, Qk = Qdatak + λQregk . The matrix Qregk is the second de-
rivative of the prior in 139 with respect to d. At small k its eigenvalues are small due to
the initial guess d0 = 0. The matrix Qdatak is the second derivative of the likelihood in eq.
(139). In regions where there is no motion the eigen values of Qdatak are also small. This
makes the linearized solution in step 9 numerically instable. Our solution to this prob-
lem is to extend 139 to include an L2 prior on the flow field d but with a small lagrange
multiplier λ2

(140) E (d) =

∫
(y − ŝI,d)2 · Cs|Id +

λ

2

(∑
i

(Det (S (di)) + λ2 ‖∇di‖)

)
With the L2 prior in 140 the linearized solution in step 9 becomes numerically stable.
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CHAPTER 4

Results

1. Uni-Modal Data

We will now discuss the results of our optical flow method on the middleburry data
set for which there exists ground truth (GT). As the GT is the true flow field for the data
we use it to asses the quality of the computed optical flow. To do this we define the
Endpoint error (EPE) and the angular error (AE) as

eEPE = ‖v − vgt‖(141)

eAE = cos (^ (v,vgt)) ∈ {−1, 1}(142)

The EPE eEPE meassures how well the computed optical flow v fits the true optical flow
vgt. In cases where v does not match vgt well, we would still like to check how both
vectors are aligned. This alignment is depicted by the AE values ranging between−1, for
minimal alignment (worst case), and 1 for maximal alignment (best case).

Figure Filtersize Median, Min, Max EPE Median, Min, Max AE

figure 3a
7 2.36, 0.01, 7.24 0.42, −1.00, 1.00
9 1.32, 0.00, 6.02 0.87, −1.00, 1.00
11 1.15, 0.00, 6.45 0.91, −1.00, 1.00

figure 3f
7 0.84, 0.01, 13.35 0.87, −1.00, 1.00
9 0.46, 0.01, 8.23 0.97, −1.00, 1.00
11 0.40, 0.00, 8.25 0.98, −1.00, 1.00

figure 4a
7 0.47, 0.01, 5.22 0.97, −0.96, 1.00
9 0.28, 0.00, 3.71 0.99, −1.00, 1.00
11 0.25, 0.00, 2.50 0.99, −1.00, 1.00

figure 4f
7 0.44, 0.00, 2.73 0.98, −1.00, 1.00
9 0.34, 0.00, 2.65 0.99, −1.00, 1.00
11 0.30, 0.00, 3.12 0.99, −1.00, 1.00

TABLE 1. EPE and AE analysis

EPE and AE values for different region of interests and filter sizes (Figures 3a to 4f). The
second column shows the median, minimum and maximum EPE per roi. The third

column shows the median, minimum and maximum AE per roi. The table shows that
the EPE gets better with increasing filtersize. Despite this the values for roi’s with

non-linear geometry (figure 3) generally have higher EPE values than the roi’s with
linear or constant geometry (figure 4)

1.1. Middleburry Dataset. In figure 1 the rubber whale sequence of the middleburry
data set is shown, and in figure 1b the corresponding ground truth vgt. In figure 1d the
computed flow-field v is shown for a filter size of 11, while in figure 1c the resulting flow
for the TV model is shown. Figures 3 and 4 show different region of interrests (roi) for
which the EPE and AE are shown on a pixel basis for the structure tensor model and
Figures 5 and 6 show the same for the TV model. We can observe from the comparison
between figures 1d and 1c that the TV model produces smoother results which are closer
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Figure Median, Min, Max EPE Median, Min, Max AE
figure 5a 1.38, 0.00, 5.83 0.92, −1.00, 1.00
figure 5f 0.20, 0.00, 3.34 1.00, −1.00, 1.00
figure 6a 0.04, 0.00, 2.08 1.00, −1.00, 1.00
figure 6f 0.09, 0.00, 2.06 1.00, −1.00, 1.00

TABLE 2. EPE and AE analysis

EPE and AE values for different region of interests for the TV model (Figures 5a to 6f).
The first column shows the median, minimum and maximum EPE per roi. The second
column shows the median, minimum and maximum AE per roi. Compared to table 1

the median EPE is lower for nearly all roi’s, while the median AE do not differ that much

Figure Filtersize Median, Min, Max EPE Median, Min, Max AE

figure 7a
7 0.73, 0.00, 6.80 0.99, −1.00, 1.00
9 0.60, 0.00, 7.29 0.99, −1.00, 1.00
11 0.96, 0.01, 15.60 0.98, −1.00, 1.00

figure 7f
7 0.36, 0.00, 7.00 1.00, 0.00, 1.00
9 0.27, 0.00, 6.79 1.00, 0.00, 1.00
11 0.41, 0.01, 6.55 1.00, 0.00, 1.00

TABLE 3. EPE and AE analysis

EPE and AE values for different region of interests and filter sizes (Figures ?? to ??).
Since the motion boundaries in figure 2a are all curvilinear there is no correlation

between the filtersize and the EPE.

Figure Median, Min, Max EPE Median, Min, Max AE
figure 8a 0.44, 0.00, 6.12 1.00, −1.00, 1.00
figure 8f 0.12, 0.01, 7.38 1.00, 0.00, 1.00

TABLE 4. EPE and AE analysis

EPE and AE values for different region of interests for the TV model (Figures ?? to ??).
The first column shows the median, minimum and maximum EPE per roi. The second
column shows the median, minimum and maximum AE per roi. Compared to table 1

the median EPE is lower for nearly all roi’s, while the median AE do not differ that much

to the ground truth (figure 1b). In tables 1 and 4 the median values for the EPE and AE
in various region of interrests are listed. Indeed we can obeserve that the EPE for the
TV is approximately half the value of that of the structure tensor model. We chose the
median as opposed to the mean EPE as it is robust outlier values of the EPE at single pixel
locations and thus gives a better assessment of the quality of the flow within the roi.

Table 1 shows also how the EPE and the AE vary with increasing filtersize: The EPE
decreases while the AE increases. In figure 4 the roi’s have mostly a constant motion
field or a motion field with linear boundary, thus according to table 1 they have lower
EPE values then the roi’s in figure 3. The roi with the largest discrepancy from the group
of linear motions is figure 3a which depicts a rotating wheel. Since the wheel is largely
free of texture, the motion field (figure 3d) is penalized by the structure tensor prior in
such a way that it aquires spurious linear motion boundaries. This is the reason for its
high EPE value. The roi in figure 3f shows another case of a motion field violating the
assumption of linear motion boundaries. In the ground truth roi in figure 3j there are
two junction points where three objects are occluding and moving against each other.
This type of motion is penalized by the structure tensor prior so that the flow at these
points is oversmoothed. The TV model (ref!) like the structure tensor model penalizes
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non linear motion boundaries. figure 5d shows the result of the TV model for the wheel
roi. Just like in the structure tensor model, the flow on the circumference of the wheel is
heavily penalized resulting in high EPE values and wrong AE values (see table 4). figure
5i shows the resulting flow of the TV model at the two junctions in figure 5f. Similar
to our proposed prior the flow is oversmoothed at the junctions resulting in high EPE
values (see table 4).

On the otherside both models are faithful to roi’s with constant motion or linear mo-
tion boundaries (see figures 4 and 6). In figure 4d we see that the structure tensor model
inflicts more of the texture from the underlying data (figure 4a) on the estimated flow
then the TV model (see figure 6d for the result of the TV model) thus leading to a slightly
higher EPE value (table 1). Figure 4i shows an example of an roi with a linear motion
boundary for the structure tensor model. Comparing it to the corresponding result for
the TV model figure 4i, we see that the structure tensor model produces sharper lineat
motion boundaries.

In figure 2 another sequence of the middleburry data set is shown. In this sequence
the camera is rotating around a hydrangea. As the ground truth shows there are no linear
motion boundaries, thus only the constant motion of the background is correctly detected
(upto some artifacts in the upper left corner in figure 2d), see the EPE and AE values in
figure 7 and table 3.

(A) (B)

(C) (D)

FIGURE 1. Rubberwhale Sequence
Figure 1a shows one frame of the sequence. figure 1d shows the estimated optical flow,

figure 1c the result of the TV model and figure 1b shows the provided ground truth

2. Eigenvalue analysis and the stabilization parameter λ2

In chapter 3 we stated that the L2 term in eq. (140) is needed to support the numerical
stability of the model. We will back this statement now. Figures 9, 10 and 11 show the
largest eigenvalue of Qireg, σiQ at each iteration on the coarsest scale of the pyramid for
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(A) (B)

(C) (D)

FIGURE 2. Hydrangea Sequence
Figure 2a shows one frame of the sequence. figure 2d shows the estimated optical flow,

figure 2c the result of the TV model and figure 2b shows the provided ground truth

Region of interest EPE AE Resulting Flow Ground Truth vgt

(A) (B) (C) (D) (E)

(F) (G) (H) (I) (J)

FIGURE 3. Error Analysis ST model: This figure shows two examples of
motion field with nonlinear boundaries. In figure 3c we see that along the
circumference of the wheel the EPE has the largest values and in figure
3h the is largest the junction point where three objects ar moving against
each other.

different values of λ2. They all show that σNQ rises to a maximum after which it decreases
and converges. The initial value of σiQ is of the order of λ2 indicating that in the initial
steps the L2 term in eq. (140) governs the regularization. As the number of iterations
increases the structure tensor determinant gets more weight, until the point where its
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Region of interest EPE AE Resulting Flow Ground Truth vgt

(A) (B) (C) (D) (E)

(F) (G) (H) (I) (J)

FIGURE 4. Error Analysis ST: This figure shows two examples of motion
fields with linear boundaries. In figures 4d and 4i we can see that the
resulting flow with texture inflicted from the data. Nevertheless the EPE
values are nearly homogenous and small (see figures 4c and 4h)

Region of interest EPE AE Resulting Flow Ground Truth vgt

(A) (B) (C) (D) (E)

(F) (G) (H) (I) (J)

FIGURE 5. Error Analysis TV model: This figure shows two examples of
motion field with nonlinear boundaries. In figure 5c we see that along the
circumference of the wheel the EPE has the largest values and in figure
5h the is largest the junction point where three objects ar moving against
each other.

influence over weighs that of the L2 term As can be seen this point comes after fewer
iterations the smaller λ2 is set. On the other side Figures 13, 14 and 15 show the vector
b, that is the Euler-Lagrange equation vector for different values of λ2. Comparing the
magnitude of b in Figures 13, 14 and 15 we see that for λ2 = 10−9 b is several orders
of magnitude larger then the other cases, which leads to longer convergence rates or
numerically instable solution. This means we have a tradeoff between

• λ2 ∼ 10−3: Faster convergence but less influence of structure tensor (need i > 40
iterations for ST to act)
• λ2 ∼ 10−9: slower convergence but more influence of structure tensor (need only
i > 1 iterations for ST to act)
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Region of interest EPE AE Resulting Flow Ground Truth vgt

(A) (B) (C) (D) (E)

(F) (G) (H) (I) (J)

FIGURE 6. Error Analysis TV: This figure shows two examples of motion
fields with linear boundaries. In figures 6d and 6i we can see that the
resulting flow with texture inflicted from the data. Nevertheless the EPE
values are nearly homogenous and small (see figures 6c and 6h)

Region of interest EPE AE Resulting Flow Ground Truth vgt

(A) (B) (C) (D) (E)

(F) (G) (H) (I) (J)

FIGURE 7. Error Analysis:
Second Column: Endpoint Error, Third Column: Angular Error.

We choose λ2 = 10−6 since in this case b is of the same order of magnitude as for
λ2 = 10−3 but as we see in figure 10 the structure tensor only needs 4 iterations untils
its eigenvalues overweigh the eigenvalues of the L2 term. We also choose N = 10 for the
number of iterations per pyramid scale, since according to figure ?? the update vector δ
gets unstable after 15 iterations.
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Region of interest EPE AE Resulting Flow Ground Truth vgt

(A) (B) (C) (D) (E)

(F) (G) (H) (I) (J)

FIGURE 8. Error Analysis:
Second Column: Endpoint Error, Third Column: Angular Error.

FIGURE 9. λ2 = 10−3 FIGURE 10. λ2 = 10−6

FIGURE 11. λ2 = 10−9

FIGURE 12. Analysis of the largest eigenvalue σiQ of Qreg

33



FIGURE 13. λ2 = 10−3 FIGURE 14. λ2 = 10−6

FIGURE 15. λ2 = 10−9

FIGURE 16. Analysis of the Euler-Lagrange vector b
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FIGURE 17. Analysis of the Euler-Lagrange vector δeq. (??)
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CHAPTER 5

Multimodal Optical Flow

1. Estimation of the resolution parameter σ

Our optical flow model eq. (??) is based on the assumption that the modalities to
be registered have a linear relationship in their intensity spectrum. This is not the case
for TC images and VSC images of arbitrary objects. However in the case of bare CFRPs
the linearity assumption holds. CFRPs are black bodies when in thermal equilibrium at
30 degC since the emmisivity of carbon is approximately 0.98 (see [?]). It is in this case
that in the amplitude image in figure 1b the CFRP has a uniform amplitude. In the visual
spectrum domain (figure 1d) the CFRP is not a perfect black body due to the reflective
nature of the epoxy coating, however the epoxy coating is uniformly distributed so that
the reflections do not cause image gradients, which are not correlated to geometric fea-
tures. Since the TC and the VSC have different resolutions we must take the difference
in resolution into account. This difference in resolution is encoded in the scale parameter
σ of our local likelihood model in eq. (9). The local conditional variance Cs̃|Ĩ (x) in eq.
(??) is a meassure for the similarity of the TC image y, and thus s and the VSC image I
with a local subdomain W ⊂ Ω. The local conditional variance Cs̃|Ĩ (x) has two param-
eters we need to estimate: the scale parameter σ from the likelihood in eq. (9) and the
window size a of the window function ω. Since Cs̃|Ĩ (x) is varies spacially we compute its

median value Ĉs|Ĩ . In figure ?? we have plotted for various window sizes a the median

conditional variance Ĉs|Ĩ over the filter size σ. We can see that for window sizes a ≤ 23

Ĉs|Ĩ has minima at σ ≈ 0 while for larger window sizes a ≥ 31 it tends to be minimal at
filtersizes σ > 6. Figure ?? show their optimum σ? plotted over the window size a. We
see that window sizes a < 21 and A > 31 lead to unrealistic scale differences σ? ≈ 0 and
σ? ≥ 6, since the actual difference in scale must be σ ≈ 2 judged by the resolutions of the
VSC and the TC. This value is produced only at a = 23 and a = 27 and we choose a = 23
since Cs̃|Ĩ (x) is smaller compared to the case a = 27.

In figure ?? we show the resulting optical flow for different region of interests (roi).
Figures 2a and 2f show the resulting optical flow d which match the corresponding VSC
image I and TC image y in the table. Fow each roi we computed the joint histogram
p (y, I) (Figures 2b and 2g). In figure 2b p (y, I) has two isolated maxima which is suffi-
cient for for a linear relationship between y and I . In figure 2g the linearity is obstructed
to a minor degree since the TC image in figure 2j has a slight structural difference in the
lower left corner compared to figure 2h.
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FIGURE 1. 1a: Dependence of Cs̃|Ĩ on the scaling parameter σ. 1b: Joint
Histogram p (y, I) of the TC and smoothed VSC image pair y and Ĩ at the
optimum σ? = 4, the scale at which y and Ĩ are maximally linear.

Flow Joint Histogram VSC I warped VSC Id TC y

(A) (B) (C) (D) (E)

(F) (G) (H) (I) (J)

FIGURE 2. Multimodal Optical Flow: The resulting flow d, VSC image I ,
the warped VSC Id, the TC image y as well as the joint histogram p (y, I)
are shown for different region of interests. We can observe that the bound-
aries of the flow are blurred. This comes from the window function ω in
the local likelihood. The joint likelihood p (y, I) was evaluated only for
the roi’s. It has at most two maxima, which suffices to constitute a linear
relationship between y and I . A grid is overlaid on the roi’s for I , Id and
y with 10 pixels per element to visually asses the quality of the flow. We
can see the larger features are correctly matched, while smaller features
are matched in a suboptimal fashion

??
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