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2 Background

2.1 Gibbs Random Fields

A physical system C'is a dynamical composite of elements which interact with
each other as well as with the environment the system C' is embedded in. The
elements are described by a vector of parameters ¢ = (¢1, ..., ¢,,). The physical
system C' relates the vector ¢ to a set of observables Y = {Y1,...,Y;}

Y: No clarity what the @.1)
star means.

In the case that the elements of the system C are continuously distributed over a
finite space (2, the parameter vector ¢ is a function on {2

p(x) eR" xeQ (2.2)

called a Gibbs-Random-Field (GRF) [1]. The interactions of the elements of
the system C with the environment are characterized by an energy functional
E{ata( ) called the data term, which couples the GRF ¢(x) to the observables Y.
There is another energy form EP™°" (¢, d;¢) within the system C called the prior.
EPrior(¢, 9;¢) describes how the elements of C interact with each other. Together
both energy functionals form the total energy of the system C'

Ey (¢) = E{**(¢) + E""(¢,0;¢) (2.3)

which is related to the probability distribution

p(9lY) =p(Y[¢) - p(¢) ~ exp (—Ey (4)) (24)
p(Y]g) = exp (—E§ () (25)
p(¢) = exp <_EP”0" (¢)) Inconsistent (2.6)

The value of the probability distribution p(¢|Y") g
probability that the GRF ¢(x) assumes the valug point x € (). The
set of values ¢(x) is what is called a configuratidg Qi@ GRF qSo




Ey (¢) is designed such that it is minimal once the GRF ¢(x) fulfills the forward
problem in eq.

¢* = argmin,, (Ey (¢)) (2.7)

The particular value ¢* (x) of the GRF ¢ is the most probable configuration of
the distribution p(¢|Y’) due to eq. and the solution to the inverse problem

¢*=C7H(Y) (2.8)

An example of a physical system containing a GRF is a camera C' recording
an object O. The domain  C R? is the focal plane of the camera C and the
object O is naturally projected onto the focal plane €2 producing the projection
Io. In theory the projection /o is a continuous function in the coordinate frame
of the plane O where the particular function value /o (x) is the light intensity the
object O reflects to the point x on the focal plane Q2. At the heart of the image
acquisition process of basically all modern camera systems lies the concept of a
CCD collecting the photons of the light at discrete positions x; ; called pixels

IeER, x;€0 1<i<nl<j<m (2.9)

The observables Y are the recorded intensities I, at the pixels x; ;. In this sense
the camera C'is a function which maps the contmuous projection Ip(x) to the

discretely sampled intensities /¢
Not realTy the *number* of photons. Maybe

I¢-::C%-(I ) *proportional* to the number. But actuallzélo)
v J there are also exponential / gamma
matio

The intensity If; is basically the himber photons collected by the CCD at the
pixel x; ;. This number cannot be acquu'ea %etermlmstlcally, it is rather the result
of a stochastic process described as independently identically distributed (iid)
noise

Ity =To (xig) +n n~p(I5lHo (xi))) (2.11)

p(I5;|1o (xi,5)) is the likelihood that I; assumes the value I¢, ; given the incoming
1nten51ty Io(x;,;) at the pixel x; ;. lee ineq. (2.5) itis mapped to the data term
energy Erc(Io).

In order to infer the values of Ip(x; ;) at the pixels x; ; from the noisy data / Iy
we need to pose some form of regularity on the valugs /o(x) to counter the
pixel-wise noise imposed by the CCD in eq. lmyﬁ an be achieved by

Try to avoid starting a sentence just
with "this". "This noise ..."



(@) (b)

Figure 2.1: Figure shows an image taken of an object O with a thermo-
graphic camera. A region of interest is shown where the contrast was
enhanced to visualize the noise corruption. Figure @ shows the
result I of the minimization problem eq. with the prior in
eq. . The noise is removed but the boundaries of O are over
smoothed

correlating the intensities /o (x) at all pixels with each other in the prior

p(Io) = exp (— "™ (o)) (212)

B (1) = [ € (1o ()10 (2 {x}) da (213)

where the integrand correlates the intensity /o(x) at the point x € 2 with the
intensities at all other points 2/ {x} so that the problem of inferring I from the
data /¢ becomes the minimization problem

Ify = argmin;_ (Ere (Ip)),  Ere(Io) = Ef#**(Io) + EP" (VIp)  (2.14)

However in practice for a n x n dimensional image /¢ the minimization in eq.
achieves a complexity of the order O(n?) since every pixel is correlated to
n” — 1 pixels. Even for medium sized images with n = 500 the computations
involved in eq. are practically infeasible.

Confusing?

To reduce the complexity the integrand £ in eq. can only correlate the
values Ip(x) within a neighborhood Uy, ; C Q with eacfrother. One possible
and very simple way to implement £ is to have it penalize the L, norm of the
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< S={z,0"(z) = const}

iguresho s the result of the local distortion gf S under the
actionmaitle@®OPENgtOT g5, . g5, acts on S by adding th wg a spacial
dependent vector 4,

Within the figure caption, it
feels a bit odd to refer to
"Figure 2.2". Just refer to
panel (a), panel (b) etc.

Bad spacing, caused by typing "eq.
gradient VIp(x) Latex thinks that the period is ending
a sentence. You need "eq.~"

B (o) = [ 19 To )| do 2.15)

where the gigdient operation V can be realized by finite differences. While
the prior @ﬂ_@ can be implemented in a very efficient manner, it has
an importaffterawback. It isotropically smooths the GRF I regardless of the
underlying geometry of the object O being recorded. In figurethe image
I°¢ of an object O recorded by a thermographic camera is shown. A region of
interest with enhanced contrast is shown to visualize the noise corruption due
to the image measuring process in eq. . Figure[2.1b| shows the result of
the minimization in eq. (2.14) with the L, prior in eq. (2.13). E7""" reduces the
noise in Ip but due to its isotropic nature it over-smooths the boundaries of O. In
sectionand following we will introduce a methodology aimed at designing
prior energies EP™°" which incorporate information about the geometry of the
objects recorded in order to avoid the over-smoothing across their boundaries.




2.2 Lie Groups and the Noether Theorem

2.2.1 Motivation

In section 2. Tjwe had claimed that the problem with the L prior

Er, () = [ IVoI? 2.16)

over-smooths the GRF ¢ over the boundaries of the object recorded by the camera

Confusing C| i ieral the minimizers ¢* of the energy Ey, are the constant functions

A, = {gbg ¢ = argmin, (Ep, (Vo)) =¢, c€ R} (2.17)

A slightly different description of the set of minimizers A. goes as follows: given
@5 (x) = cop we can generate all other possible minimizers ¢} by adding any
¢ € Rto ¢f (x). We can label the action of adding a real number ¢ € R on to any
function ¢ (x) by g.

Ac={0: (X) ¢z =gcogp =5 +c, c€R} (2.18)

Under the group of such actions Ggonst = {gc} our set of minimizers A, is
invariant

gaoAc=Acra={¢ (x) |05 a = +ct+d ceER}=A (2.19)

as well as the L, energy

910 1, 0) = [ IV@+d)I* = [ [Vo]? (2:20)

In this sense we can state that the Ly prior pr, (V¢) is actually conditioned on
the group of constant transformations

Why?
PL, (v¢) =DPLy (V¢‘Gconst) Y

since it is invariant under the entire set G, but und his is why
we call pr, conditionally invariant with respect to G.opst. We observe that G.op,¢
is not a discrete set but a continuous set since the parameters c and d in eq. (2.18)

and eq. (2.19) are real valued numbers. In eq. (2.18) the set G,y acts on the
functions ¢* (x) by shifting their function values by constants.

(2.21)




Now consider the set of transformations G, whose elements g,,o € G operate
on the coordinate space {2 by warping it with the vector-field w (x)

g2 00X =X+ w(x) (2.22)

Gq is the set of all possible deformations of the space 2. Obviously any element
¢* (x) € A. is invariant under the action of Gq since A, is the set of constant
functions. Thus the prior pz, (V¢) is conditionally invariant under the combined
set Gﬂc = GQ X Gconst

pL, (Vo) = pr, (V§|Gac) (2.23)

In the following we will argument that it is possible to introduce priors p (V¢)
which allow for conditional invariance with respect to a larger set of transforma-
tions G = G x G;

p(Vo) =p(V9[G) (2.24)

where the elements g, € G; operate in a similar fashion like the g, in eq. (2.22)
but on non constant functions ¢ (x)

@ 9 (x) = ¢ (x) + o' (x) (2.25)

Similar to the definition of A. in eq. (2.18) we can describe the maximizers of
p (V¢) as being related to each other by the elements of G

A={¢"|¢p" =god; gecG} (2.26)

The set G contains operators which are purely geometric. The idea is to show
that A may be split into sub sets Aq (¢};) whose elements are related to each other
by the elements g o € Gg

Ao (¢7) = {¢" 0" (%) = ¢z (gue 0 %), guo € Ga} (2.27)

A ={Aq (¢7) |9z = gui © ¥,  gui € Gi} (2.28)

This is significant for the following reason: knowledge of the geometric set of
transformations Gg under which p (V¢) is conditionally invariant allows for a

reduction of the set of maximizers A to a set A,.4 such that the elements ¢ € A,¢q
are not related to each other by Gq

Ared = {QS::( |¢Z = Gui © ¢67 i € Gz} (229)
¢q (%) # &7 (guex)  Vgue € Ga, ¢4 € Ared (2.30)

We may also turn the argument around: we could specify the geometric set of
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transformations Gg, and design a prior p (V¢) which is conditionally invariant
under Gq, thus having a reduced maximizer set A,.4. To give hint of how the
prior p (V¢) could be designed we need the definition of a level-set. A level-set
of an image ¢ is a sub set S, C (2 defined by

Se = {x|¢p (x) = c} (2.31)

The action of an element g € G x G; on an image ¢ (x) may be written as

go¢(x)=g,id(gue 0x) (2.32)

where we have split g into its components g, € G; and g o € Gq. By the
definition of the action of g e in eq. we see that g o is a geometrical
transformation that deforms the level-sets S, (see figure . We are free to
define g so that it is orthogonal to g e in the sense that the level-sets S, are
invariant under g,

S =g, 08:. = 5; (2.33)

since a transformation of S, is purely geometrical. Now the level-set S. may
alternatively be defined with the help of the vector-field ws (x) which (see figure
is the set of vectors tangent to S.

Se = {x w5 (x) - V5 (x) = 0} (2.34)

In figure 2.2b] we show an example of a level-set S which is distorted by the
operator g,, € Gq. The resulting level-set S’ has the vector-field wj (x) =
ws (x) + 0 (x) as tangent vectors.

St = {x[(ws (x) + 6 (x)) - Ve (x) = 0} (2.35)

However it also possible to represent S, with the help of a deformation of the
gradient operator V itself

Sl = {x"|ws (x) - V505 (x') =0} (2.36)

The operator Vs loosely speaking encodes a reversal of the action of g o on x so
that S/, can be represented with the same tangential vector-field as S, but in the
new frame x’ = g,,, o x. The operator V; is called a pull-back of the gradient
V. With the help of the pull-backs V; it is possible to translate the notion of
conditional invariance with respect to Gg, to the requirement that p (V5¢) must

11



be constant with respect to variations of the vector-field ¢ (x)
This is probably

correct, but looks 1)

confusing. Is @P (Vs¢) =0 (2.37)

there a clearer way

to formulate thisGiven a specific form of the operators in G, eq. poses constraints on the
form of the differential operators in the prior p (V;5¢). Eq. also ensures that
p (Vs¢) is indifferent to a large class of level-sets { S}, which are generated by Gg

acting on S (see eq. (2.36)).

2.3 Lie Groups

In this section the set of operators G is taken to act on a vector space M. The set
G is called a group if there exists an operation - so that G contains

e the neutral elemente € G:e-g=gforallg € G
e theinverse g~! € Gifg € G

The group G is called a Lie group [2}13}14] if the group operation

GxG+——G:(z,y) >z -y !
is smooth in both  and y. The group operation "’ can also be used to define the
left action I, on G

ly:G—G l,(h)=g-h g,heG (2.38)

l4 is a smooth isomorphism in G. The elements of G may themselves be smooth
mappings defined on an r-dimensional space A

g:A—=G, (a1,...,a;) = Gar,...ar (2.39)

In this case we say G is an r-dimensional Lie group. A classical example of a
Lie group is the group of invertible n-dimensional Matrices GL (R, n) over the
vector space M = R™. The dimension of GL (R, n) is n? and the group operation
- is the matrix multiplication. In sectionwe argument that the set G acts
in a two-fold manner on the functions ¢ (x) € C* (£2), namely by acting on the
spacial coordinates x € 2 in eq. and on the function values ¢ (x) them
selves in eq. . The spaces €2 and C*° (€2) are both vector spaces, that is the
addition operation "+’ and multiplication with a factor A € R are defined in both
spaces. It is thus natural to combine both 2 and C* (2) to one single vector
space M = Q x C* (). However since the functions ¢ (x) are unknown and we

12



Cite?

would also like to place constraints on their derivatives ¢ x (K is a multi-index),
we combine ) together with the Jet space J* (C* (Q2)), M = Q x J* (C® (Q)).
J¥ (C> (Q)) is the set of smooth differentiable functions with compact support
in 2 and their derivatives up to order k. The points z € M are vectors of the
independent variables x, the dependent variable ¢ (x) and its derivatives ¢ x

zZ= (X7 ¢ (X) 7¢,K (X)) (240)

For this work we will focus only on first order derivatives, k¥ = 1 so that the
vectors z have the form

2= (x,6(x), Vo (x)) (2.41)
The action of G on M is straightforward

7= (%,6(%),Vé (%) (2.42)
X = Jay..a, OX (2.43)
QE = Jay...ar © ¢ (2.44)

dz,

-1 _ 4Ty
V=J"V, Ju, dz, (2.45)

Since the elements g,, .4, are continuous in the parameters a; we are free define
to a smooth path 7 in the parameter space A

v it = (ay (t)...a, (2)) (2.46)
Gy(0) =€ (2.47)

The derivative of g, ;) with respect to t at ¢ = 0 is an element of the tangential
space of G at the neutral element e € G, T.G

%g,y(t) o =X, eTG (248)
The subscript on the vector X, denotes that it belongs to 7,.G. The coordinates of
X relative to the space M can be computed when we look at the derivative of
the induced action of g,;) on the space of smooth functions with support on M,
F (M). The action of X on F (M) can be computed by evaluating F' € F (M)
on the tranformed vector z = g.(;) o z and the taking the derivative with respect
to t at the neutral element e

X.F(z) = %F(Z)

. r i d ¢d v d .
= ;(wuaF (2) +wi 35 (2) + Do de(z))az

13



(2.49)

where we have

w# (X) dai -0 Wy (Xa QS) da,; o «a dt =0 ( )
DY = dw! — > w0 (2.51)
W

The function D¢} is called the prolonged action of g,(;) on the gradient operator

V (refer to appendix for derivation). Notice that while wa and w? are functions
defined on M, the coefficients «; are independent of M. They are the components
of the vector X, with respect to the r basis operators

. d d d
Xei=w' — +wl— + Dg? 2.52
= g, T T P 5,8 (2:52)
so that X, has the operator form
Xe = Z aiXe,i (2.53)

The vector X, only exists in the tangential space at e € G, X, € T,G. However it
is possible to construct a vector Y}, at a location h € G by relating it to X, with a
map [+ called the push-forward

YoF () = (I X.) F (z) = dp (zh (gv(t)) o z)

== (2.54)

t=0

The vector X, operates on the function F in eq. as a differential operator
at the point e o z = z. The effect of [}~ is that it transports the vector X, to the
vector Y, which operates on F' at the point /;, (¢) oz = h o z. As Y}, is a smooth
function with respect to » which is defined everywhere in G it is called a vector
field. The set of vector fields is the union of all the tangential spaces over G

TG = |J TG (2.55)
heG

It is important to keep in mind that the coordinates of the vector field Y}, are the
operators h € G and not the points z € M. Similar to X, in eq. (2.53) the vector

14
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Y}, has a coordinate representation with respect to the tangential space 7,G

ViF (z) =Y ajYh, (2.56)
d d d
Yii=wi— 4wl — 4+ DY (2.57)
T M, do do, b

There exists a unique sub set G C TG called the Lie algebra. It defined as the set
of all vector fields X} € T'G which are invariant under the left action [/, for any
geG

lgXp=Xgn =Y X, Y9€G X4€G (2.58)

i
From eq. (2.58) we see that a consequence of left invariance is that the coordinate
vector « is constant under the transformation /,. This is what is referred to as

the parallel transport of a along the transformation /,. The Lie algebra G has the
property that it is closed under the antisymmetric commutator -, |

(Xn, Y] =2,€G VXy, Y4 €@ (2.59)
It is the elements of the Lie algebra G which we will use as differential operators

in the prior p (V¢) in eq.

2.3.1 Noether’s First Theorem

are now going to make eq. (2.24) more precise by considering the

gedt¥e log-prior energy

[=—Inp(Ve) = / £ (¢, V) du (2.60)
Q

we are interested in the action of G (se The energy in eq. (2.60) is said

to preserved under the Lie group G if thg followihg relation holds

I'= [ &, V¢)dd' = | 1€ (2, V) + 0:6Q" } d (2.61)

Q

then the resulting Euler-Lagrange equatio main unchanged and thus

where the vector-field §Q* is some arbitrary s@&dz function. If eq. (2.61) holds
G is a symmetry of the Euler-Lagrange equatiofis. In it was oned that the

knowledge of the symmetries of the Euler-Ligrange equatio n be used to
make assumptions on the form of the solufions ¢* and thus ow down the
N\ 15

Not sure that I saw where
the square bracket
notation was defined.



solution space. To be more precise, the first Noether Theorem statgsgisadiif the
energy integral in eq. (2.61) is preserved under the transformatio «@ en

the Euler-Lagrange equations must fulfill

1wy = 8, (WH — 5Q") (2.62)
where
ol d oI
] = 6 d oo, (2.63)

are the Euler-Lagrange equations of I and the field W* is defined by

oI oI ~
WH=———ws+wi | ——¢; —0""'I 2.64
50,0 (M,#Cb, > (2.64)
When eq. (2.62) is evaluated at the solution ¢* of the Euler-Lagrange equation
[I] = 0 then W#* must be divergence-free. The form of the divergence free

vector field W# dictates the form of the geometry of the level-sets of ¢*. We
will now show an example where knowledge of the symmetry and thus the
divergence-free W* fields makes basic assumptions on the solution space of the
corresponding Euler-Lagrange equations possible.

Kepler’'s Two Body Problem

Kepler’s two body problem is the problem of calculating the problem of estimat-
ing the trajectory of a body of mass m, (the earth) which is moving within the
vicinity of another body with mass m, (the sun). According to Newton there
exists a gravitational force between the masses coming from the energy V' (r) of
the gravitational field surrounding the mass mj at the origin in R?

Me * Mg

Vire(t)) = " r = ||re — rsl| (2.65)

The kinetic energy of the mass m, is m.7? so that the Lagrangian of the path
r. (t)is

L(r. () = %mrQ + %mrQ V(e () (2.66)

The Euler-Lagrange equations are easily computed

o+ MetMe (2.67)
T
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The parameter ¢ is the time parameter of the two body system. The Kepler
Lagrangian in eq. exhibits a symmetry under four different one parameter
Lie group actions, namely the action of time shift and rotations around the three
spacial axis (the group SO (3) x R)

' =t+6t (2.68)
r' =r+ 0y1'00; i=uz,yorz (2.69)

where 6; are rotation around the z-,y- or z-axis. From Noether’s theorem there
exist four corresponding conserved quantities:

1
H= §me7'“2 +V (re(t)) time shift (2.70)
l; = 2y — y2 Rotation around x-axis (2.71)
ly = z& — x% Rotation around y-axis (2.72)
l, = xyy —yi Rotation around z-axis (2.73)

The conserved quantity  in eq. is the Hamiltonian Energy of the two body
system. It constant time and thus manifests that the total energy of the two body
system does not dissipate away since there are no external forces interacting with
the two masses m. and m, that is the two body system is a closed system. The
vector 1 = (I,1y,1.) (Egs. eq. to eq. ) is called the angular momentum
of the masses m. and m; as they rotate around each other The solutions to the
Euler-Lagrange equations in eq. are elliptic curves in the plane orthogonal
to 1. The constancy of 1 with respect to the special orthogonal group SO (3) comes
the fact the plane is embedded in the euclidean coordinate space with unit metric,
rather some general Riemann space.

2.4 Total Variation

The earliest attempts to optimization in computer vision all had in common, the
use of isotropic priors for the regularization of the unknowns to be estimated. For

example one gfthe earliest attempts for image de-noising involves minimizing
the functio m
2
E (u) = / (u — uo) dx + % / \Vul|?dx (2.74)
The first term in Eq. eq. (2.74) is the likelihood which states the minimizer

u* must be close in its intensity distribution to the given data u". The second
term, the prior energy imposes smoothness on the minimizer v*. Both terms

17



are quadratic in v and thus the Euler-Lagrange equations for E (u) are linear
in v making them computationally easy to solve. The problem with the prior
2 [|Vu|?dz is that it does not allow the solutions u* to have discontinuities.
Different approaches for anisotropic priors exist, for instance [8] introduced a
quadratic prior

Eprior = / (Vu)' D (Vu) (2.75)

The operator D is a local 2 x 2 symmetric valued matrix with eigenvectors
tangential tg evel-sets of u’. This is why D steers the direction of the

2.75) is that the
=71 h an eigenvalue

equations linear in u. The downsidé
operator field D must be precomputed on the data
analysis of the structure tensor.

()
=7

Why the double brackets?

g ([9)[TOLIT]) it

Er, (u / |Vu|dx (2.76)

In the context of shock-filten as shown that the functional

has the appealing property that it does not penalize large discontinuities How-
ever its functional derivative with respect to w is ill conditioned in the case
Vu = 0. To alleviate the case, [9] chose the approximative prior

Eryappros (1) = / JIVul? + ede 2.77)

which is well behaved for ¢ > 0. They were able to achieve good results with
relatively sharp preserved discontinuities with data v having low SNRs. Neve
the less in the limit € — 0 the Euler-Lagrange equations become more andﬁodre‘-
Wput‘ationaﬂy instable. A theoretically more well conditioned form of TV is
needed which we will outline, following ([12]). To do this we need to explore
the function-space the minimizers of Eq. eq. might belong to. Smooth
functions g0tk are functions for which Vu exists everywhere, thus they may be
minimizers of Eq. eq. . But functions ug;scons containing discontinuities do
not have finite L; norm of their gradients, £, (tgiscont) = 00 since the gradient
Vugiscont does not exist at the discontinuities A generalization of Eq. eq is
possible if one assumes VuTo be a distribution, more precisely @ easure ?

in the space M (Q2). If there exists a radon measure ¢ € M (§2);such that for

18



every ¢ € Cp (2) with compact domain, the following equality holds

/ u - Divpdr = — / odp < oo (2.78)
Q

then 1 is called the weak derivative of v and we can identify Vu = p. It is then
possible to define the function-space of bounded variation

BV ={u€ Ly (Q)|Vu € M (Q)} (2.79)

Now it is possible to define a norm on BV'. By virtue of the Holder relation there
exists a scalar C' for which we can determine the upper bound of Eq. eq. (2.78)

/ u-Divéde < C||é||e (2.80)
Q

The scalar C is the norm of the radon measure Vu and is called the total variation
of u

TV (u) = sup {/Qu ‘Divedr | ||| < 1} (2.81)

As was discussed in [12] the functions u are geometrically piecewise smooth,
meaning there exists a partitioning {{2;} of 2 such that (Vu), are L, integrable.
If di, is a line segment in the intersection €2,,, N €, then TV (u) can be written
in the form

TV ()= 3 Vuoly, + 30 [ e | dia (282)
k k<m 2,N2m

where u;, the value of v on the portion of €2, which is interfacing with €2, and
vice versa for u,,. The first term in eq. penalizes the smooth parts of u
(the gradients (Vu)g, ) while the second term penalizes the length of the section
Q, N Q, while maintaining the values uy, ,,, and thus the jump |uy — uy,|. It
essentially penalizes the curvature of the line interfacing with both €2, and Q,,,.
We will make this point clear in the following section.

2.4.1 The Mean Curvature of Total Variation

In this section we will discuss the geometrical properties of the TV norm in eq.

(2.81). The sub-gradient of eq. (2.81) is equal to the set

Vu

c-v=00n0Q, o= Vi

OTV (u) = {—Diva

if [V # o} (2.83)
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This set defines the set of lines L (v) = TV (u) + (Divo|v — u) tangential to TV
at a point u € BV. We define a one parameter Lie group v (¢), such that its
vector-field X fulfills the condition

X -u (rX (%0, t)) =0 (2.84)

then its integral curves I'* (t) = (x (¢),y (t)) are the level sets of u. The level sets
'Y have a curvature x and the standard formula for « is

k= (&) (2.85)

If the vector field X is expressed by the coordinate vector £ (x¢) then it can be
shown « is a function of the Laplacian relative to the coordinate vector £ (xo).

Agg’u (X

0
K (X0) = Vo (x0)

)‘ (2.86)

This form can easily be transformed into a divergence quantity

k = Div (%) (2.87)

This shows us that the sub-gradient i§ Eq.: eq.Y2.83) is equal to the curvature of
the level-sets I'X (t) Why are these inconsistent?

Create one standard approach

k= —0TV (u) and stick to it. (2.88)

T exposes the capital geometrical property of the TV norm:
The T¥*IOTm penalizes the curvature of the level-sets of an image. As « is an
invariant of the Lie group SE (2), the group of rotations and translations, 7'V is
also an invariant of that group.

2.4.2 Image De-noising

Image de-noising is the problem of estimating a clean image u* given a noisy
image u°. The image u is connected to u* via

wW=u"+n n~D (2.89)
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where D is some distribution and n is a noise term drawn from D. u* is estimated
from the family of functionals
1
Flu) =2 / lu — u)idz + ATV (u) (2.90)
q.JQ
The degree ¢ of the data term must be matched to the form of the distribution
D. Using the sub-gradient in eq eq. (2.83) the Euler-Lagrange equations can be

calculated Spacing / formatting

|u* — u®)972 (u* — uY) — ADive in$)
[F] (u) = ¢-v= ondf) 1)
b= % |Vu| — nearly everywhere

As was discussed before the term Div¢ is eq ftvature x on o

of u. Thus the parameter A controls how strong the curvature of the level-sets
are penalized. Never the less the functional eq. (2.90) still permits jumps in the
image u*.

2.5 Optical Flow

A prime example of an inverse problem in computer vision is optical flow.
Optical Flow labels the task of densely measuring the motion between two or
more frames captured by a camera, or the dense registration of two or more
cameras on a p1xe1 -by-pixel basis. Optical flow is a crucial step in many areas
of computer yisiemeior instance optical flow estimation is a part of video
compressmused to detect areas of the video in which the rate
brightness change 1s small. For example during the recording of a rigid scene
optical flow can be used to determine when the camera motion stalls. During
such periods the frames of the video can be stored in an memory efficient manner.
In recent years structure from stereography and structure from motion (video
from a single camera) have gained popularity as a means to capture 3D models
. productions and also due to the availability of low cost 3D printing
@ both the stereography and the structure from motion pipelines
oW is used for the triangulation of the dense point cloud, prior to
generation of the final 3D mesh. In the case of a dual-modal setup both cameras
may be of different types. For instance in medical imaging multi-modal dense
image registration is used to fuse image information from CT and MR modalities
of the human brain [13] and of the human spine [14].

Optical flow models belong to the category of inverse problem
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ameras are shown recording a scene from different
. d be a rigid scene or a dynamic scene
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pixels x" in I and x in y are mapped to eac

In optical flow modeling the task at hand is to estimate the disparity between
two images y and I recorded by two cameras y. and I. (see figure . Each
image is a map between the coordinate space 2 C R? and the real numbers R.
Thus y (x) is the intensity recorded by the camera y. at the pixel location x €
while I (x') is the intensity recorded by I. at the location x’ € Q. In figure
we have depicted a multi-modal setup in which the two cameras y. and I, are

i pm different angles. In this context the
Dle d which maps the location x’ in the

image I to the location x in the image y
Normally present in
x =x'+d(x) order -- c and d. (2.92)

The optical field d is shown in figureas a set of vectors at every pixel x’ € ©,
whose magnitude and orientation reflect the motion of the pixel x’. In an optical
flow model the the latent variable X is the vector d and the data Y are the images
y and I. The model is then described by the probability

p(dly,I) =p(y,I|d)-p(d) (2.93)

In the following we will give a short survey on the current types optical flow like-
lihoods p (y, I|d) and current state of the art priors p (d). We will then introduce
Lie algebras and the Noether Theorem which will play a vital role the definition
of our geometrical prior.

Among the earliest methods for optical flow estimation are the methods de-
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Figure QC ) Caption.

scribed in the seminal papers of Horn and Schunck [7] and Lukas and Kanade
[15]. In [7] the following model for computing the flow between two frames of a
video was proposed

Ey1(d) = EJ%* (d) + AEP"" (d) (2.94)
B (@) = [ (560~ Ta()) do Talx) = 16x+d(x) 2.95)
EPToT (d) = A /Q ST IVdi|? dz (2.96)

In eq. the frame [ is warped back to the frame y by the field d(x). The
second integral in eq. imposes an isotropic smoothness constraint on
the flow field d. The likelihood in eq. makes the assumption that the
brightness of the scene recorded by the camera is constant from frame to frame.
This is a very strong constraint, which is rarely met in real world multi-modal
setups. Figure|2.4|shows two images recorded from a visual spectrum camera
(VSC, figure[2.4a) and a thermographic camera (TC, figure[2.4b). The recorded
object, here a carbon-fiber reinforced polymer (CFRP) has physically different
absorption and emission properties in the visual spectrum domain recorded by
the VSC then in the infra-red domain recorded by the TC. Thus the intensities in
figurefollow a completely different distribution then those in ﬁgure.
We need a model that can bring both images onto a common intensity space.

Furthermore the isotropic smoothness term in eq. does not allow for
discontinuities in d. Several methods have been introduced which remove the

assumption of isotropic flow [16} [17]. Thes%hods incl




Regularization, anisotropic difusion guided by directional operators like the
structure tensor and level set methods of the Mumford-Shah type [18]. We will
introduce a methodology for the geometrical characterization of anisotropic
priors in section[2.2]following a review of the TV-Regularization prior in section

We will now discuss three statistical similarity measures (citation!!) for optical
flow which avoid the assumption of brightness constancy. For this we will take
the two images y and I to be random variables with the marginal distributions
p(y) and p (). Then the mean and the variance are defined as

/ X p(X (2.97)
Var (X) = E (X - E(X))) (2.98)

2.5.1 Mutual Information

Mutual Information (MI) is a popular similarity measure used mainly in medical
imaging where images from different modalities including MR, CT and PET are
registered against each other. For images y and I from two different modalities
capturing the same scene, MI is defined with the joint distribution p (y, ) by

MI(y.D) = [p(yDin (pgyz)dydl (2.99)
MI measures how strong the images y and I statistically depend on each other.
In the case that y and I are statistically independent, p (y,1) = p(y) - p (1), then
by eq. Ml is zero. On the other side, MI is maximal when y completely
determined by I or vice versa. In the context of optical flow Ml is used to measure
the similarity between y and I4

B (d) = —M1I (y, Ia) (2.100)

However, as [19] puts it, MI does not explain the kind of dependency between
images y and I, its maxima are statistically but not visually meaningful, since
it disregards any spacial information, which is essential for optical flow. Thus
optical flow likelihoods based on MI usually tend to have many local minima
rendering MI too unconstrained for optical flow.
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2.5.2 Correlation Ratio

To alleviate the problems with MI, [19] argument that a better similarity measure
would be one that measures the functional relation between the images y and
I. The base key ingredient for their proposal is that the pixel values I (x) and
y (x) are assumed to be the realizations of random variables, which by abuse
of notation we denote by I and §. Then the normalized joint histogram of the

images I and y can be interpreted as the joint probability distribution p (y), I ),
and the conditional distribution

p(alf=1)= ZM (2.101)

(7=1)

encodes the spacial functional relationship between y and I. They introduced
the Correlation Ratio (CR)

nmw—%ﬁ%@%Tmr~mmw (2102)

The optimal function ¢* was shown to be the expectation value of I, conditioned
on a realization of §

A

¢ (y) =E (1

i=v) = [ Ip(1]y)dl 2103)

The function ¢(g) maps any realization of § to an expectation value of I. As9
is a random variable, ¢(7) is also at random. Its variance measures how well
I is functionally explained by a realization of . The measure in eq. is
bounded between 0 and 1, 0 indicating that y and I are independent, 1 indicating
a functional relationship I = ¢* (y). The function ¢* although not necessarily
continuous, is measurable in the Li-sense. Thus CR is a much stronger constraint
then MI and has fewer, but more meaningful minima [19].

2.5.3 Cross Correlation

Cross Correlation (citation!!) is the strongest constrained similarity measure. It is
basically an additional constraint to CR, namely that the functional relationship
in eq. must be linear. Then 7 reduces to

B Cov (y,I) B
n(ly) =g ) Var ) I'=Xy (2.104)
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Figure centering?

2 finera. The finer grid a virtual super-resolved version
of the plxels in the TC. Flgure@ shows the point spread function
Wy (z,y) of the gray pixel in flgure‘E taken from Hardie et al. [20].
It shows that each pixel in the TC image has a non uniform response
over its surface to incoming photons.

As we will see in semeasure similar to eq. (2.104) will be computed

based on the assumptidr=#tat both y and I are Gaussian. The Gaussian assump-
tion is valid when both cameras y and I produce Gaussian noise and the joint
histogram is predominantly linear. Linearity in the joint histogram occurs when
the recorded scene contains materials with uniform luminosity in the frequency
bands of the cameras y and 1.

2.6 Setup of the camera rig

The data acquisition apparatus consists of a visible spectrum camera (VSC)
mounted on top of a thermography camera (TC). The resolution of the VSC is
1226 x 1028 pixels while that of the TC is 640 x 512 pixels, both cameras with a
focal length of 25 mm. We used a sinusoidal excitation source with a frequency
of 0.1 Hz, which corresponds to a penetration depth of approximately 1.3 mm in
the CFRP.

2.7 Image Fusion

Our camera setup not only consists of two cameras with differing spectral re-
sponses, the TC and the VSC also differ in spatial resolution. However the
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likelihoods given introduced above have in common that they do not directly
model the difference in resolution. In ﬁgurea model of the CCD of the low
resolution TC is shown overlaid with a higher resolution grid representing the
VSC. The gray region in figure[2.5a]symbolizes one pixel of the TC and it can
be seen that each pixel of the TC covers a group of pixels of the VSC. Since the
TC pixel has a finite surface, we need to specify how this pixel absorbs photons
landing at different points in its area in order to relate the covered pixels of the
VSC to it. The response of each individual pixel in the TC is called the point
spread function (PSF), W, (z,y), the vector (x, y) being the location on the sur-
face of the TC pixel with respect to the VSC coordinate frame. Figure [2.5b]is
the result of a theoretical model of a FLIR imager similar our TC. The model,
obtained by Hardie et al. [20], combines absorption properties of the CCD pixel
with physical properties of the camera lens. We can see that each TC pixel has
a non uniform response to incoming photons. Using this information we can
model a super-resolved version S of the TC image y with the help of the PSF W,
by stating that y is the result of the convolution of S with W,

y=Wys+n n~N(0|Cy) (2.105)

The problem of estimating S is that there is an infinite amount of high resolution
TC images S* which relate to y via eq. since the high spacial frequency
components of S are filtered out by W,,. In [21] Hardie suggested use of a high
resolution imager /. whose camera center is co-aligned (hence the subscript c)
with the TC image y and correlated with S. The rationale behind their approach
is to combine the desired features such as sharp edges and corners of I, with
the intensity spectrum of y into the super-resolved image S, while avoiding
limitations such as the noise model of y. The limitation of their model is that
the centers of the modalities y and I. need to be co-linear. While this is the case
in remote sensing applications, the model needs to be extended to the general
case of two separated modalities. We will first outline the original model, and in
chapter[d]we will introduce a new model for optical flow based on [21].

The key ingredient in the model of [21] is that the intensities of S and I.. are
assumed to be samples drawn from the joint Gaussian p (S, I.). As I. is already
fixed as input data we can derive a conditional distribution for S via the Bayesian
rule

_p(S, 1)
p(S|le) = A N (usuclc‘suc) (2.106)
Cyr, = Css = C2p, - Cr Yy, (2.107)
Hs|1, (X) = ls + Cs,lc : C[;l[c (Ic (X) - MIC) (2108)
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where the variances are computed globally
Cup = /Q(u (%) — pou) + (v (%) — o) d (2.109)

We see that the mean of S conditioned on I, piz, is linear in the values of I,
thus in this model the intensities of S are assumed to be globally linearly related
to the intensities of I.. We combine eq. (2.106) with the Gaussian likelihood in eq.

to the posterior
p(Sly, Ie) ~ p(ylS) - p (S|I) = exp(—E(S)) (2.110)

with the associated energy

() =5 [ (560-Wo5 ) C ot 5 [ (860, () -Cohde @11)

The minimization of eq. (2.111) and thus maximization of (2.110) with respect to
S gives the analytical solution [21]

§= s, + Cupr, - WE (Wo Car, - WE+C) ™ (5= Wongr)  @112)

Eq. (2.112) is intractable to compute due to the dense operator W, and the
matrix-inverse operation. In [22] a computationally tractable approximation was
introduced

-1
=ty + Cyr - (Cor. +Cn) (v = i) (2.113)
I.=W,I, 5=W,s~y (2.114)

The key issue is that this method requires both modalities, I. and y, to be co-
registered. Since we are dealing with an optical flow problem y and thus S is
shifted by a disparity d (x) from I.. This disparity has to be taken in to account
by our model in chapter[d] The second issue is that the assumption that S and I.
are globally joint Gaussian is not supported by our data. However by computing
Cy\1. in local sub-domains of the space {2 we can show that S and /. are locally
joint Gaussian. This will also be shown in chapter

28



3 Geometrical Prior

We shall now proceed to introduce a prior based on the considerations made in
Chapter For this we review the structure tensor. Consider an image ¢ (x).
We would like to characterize the dominant strength and the orientation of V¢
within a sub domain A C Q. In [23] it was suggested that the orientation vector
n of the level sets in ¢4 are constrained by

n? . Ve (X)\ =0 3.1)

x€A

The vector n is assumed to be constant within the domain A. It can be computed
by minimizing the energy

J (n) = % /A w(x)nT - (Vqﬁ (x) VT (x)) n= %nTSn (3.2)

The matrix S is called the structure tensor. Since S is a symmetric matrix there
exists an orthogonal decomposition

S=vI'DV D= (Aol f2> V = (vy,v2) (3.3)

The eigenvalues give of the squared strength of the gradient in the basis defined
by the columns of V. They characterize the structure in A in the following way

e )1 > \g: Strong linear level set with normal vector v;
e )\ = A2 = 0: No strong gradient, image is approximately constant
e A\ = A2 > 0: No linear level sets, level sets have strong curvature

The constraint in eq. can be explained with the method in Chapteras
the action of the translational group T and the associated algebra 7. The basis of
T are the Cartesian derivative operators 0, and d, and the elements of 7 have
the form

X = w0y +wydy €T (3.4)
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The integral curves of X, T'X (s) @ e the straight lines

Y (5) = % + ws (3.5)
If s is the arc length g X then the coefficient vector w is the normalized vector
n and the constra @ ritten in terms of the vector field X

Lo(r¥ )| =xow)=0 (36)

ds s=0

Large gap —-- in general you don't want to start

< ) a new paragraph right after an equation.
Since the basis operators 0, and 9, commute, {0,, 0, } = 0 the vector field X is
translation invariant and as a consequence of eq. , the structure tensor S is
also translation invariant. Under the rotation group SO (2) the structure tensor
is not invariant. Nonetheless it has an important transformation property: the
transformed structure tensor S’ may be written in terms of the old matrix S and
the rotation matrix Ry € SO (2)

S’ = RISRy (3.7)

3.1 The Generalized Structure Tensor

In [24] a generalization of the structure tensor was introduced. The generalization
is based on the introduction of the canonical coordinates £ (x) and 7 (x) which
pose a deformation of the Cartesian coordinate space €. The prime example
is the transformation from Cartesian to polar coordinates (z,y) — (r,0). The
gradient with respect the new coordinates can be expressed with the Cartesian
coordinates via the Jacobian matrix J

65 _ 71, Oy _ S Mz
(o) =) - (&) e

The differential operators {0, 0, } also form the basis for the algebra # of the
general Lie group H, that is [0¢, 9] = 0 if and only if the following conditions
hold

0§ = —0yn (3.9
8,6 = o (3.10)
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3.10) are the famous Cauchy-Riemann differential equations and

theresmiDination give the separate wave equations

AE =0 (3.11)
An=0 (3.12)
A solution of eq. (3.11) implies that there must also exist a solution for eq. (3.12).

This is why one calls the pair {£,n} a pair of conjugate functions. Within the
coordinate frame (¢, 7)) the operators {0¢, 0, } obey the natural conditions

6552 1, 8577:0

D=0 dn=1 (3.13)

The integral curves I'X generated by the operators {0, 9, } can be written as an
exponential Taylor series

I (s)=exp(s-X) X =wede + w0, (3.14)
Level set functions ¢ satisfying

L (r¥(s) =0 (3.15)

ds '
may exist if and only if ([24]) the exponential series in eq. (|3.14 separates which

according to the Baker-Hausdorff-Campbell formula is only the case when the
operators {0, 0, } commute

exp (s X) =exp(s-wede)-exp (s-wyoy) < [0:,0y] =0 (3.16)

On the othepsiskesifathe coordinate functions (&, n) satisfy the Cauchy-Riemann
i en one verifies that [0¢, 9,] = 0

The Group O (2)

Clarify *why*. The thesis needs to focus on rationale, as much as
possible. Don't just tell the reader *what* you're doing! also
‘ 1 emphasize why.
1

We'will now show an example on the group O (2), the group of rotations and
dilations. The transformation of the Cartesian coordinate system to the polar
coordinates in 2 dimensions is given by the equations

x =r-cos(0) (3.17)
y=r-sin(0) (3.18)
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Using the expression in eq. the Jacobian J is easily calculated

_lfz —y
J—r<y x) (3.19)

so that the derivative operators {0¢,0,} may be expressed in the Cartesian
domain

Ot = 20, +y0y Op = —y0y + 20y (3.20)

The coordinates £ and 7 that satisfy eq. (3.13) with the derivative operators in eq.
(3.20) are functions of the Cartesian coordinates

E(x,y)=log(r) r=/z2+y? (3.21)

n(x,y) = arctan (i) (3.22)

The function 7 (z, y) is easily recognizable as the angle 6 to the z-axis while the
function & (z, y) is not the radius 7. This is because the operators {0, 0, } must
both have the same dimension, that means they must be invariant dilations
rT—=A-T.

Deliberate gap?

The level sets of the algebra spun by the operators {0, 0, } are linear with respect

to the cogueh £,n) by virtue of eq. . Thus by arguments similar those
followi{g eq. (??), tig authors in [24] introduced the generalized structure tensor

(GS T

0c0)"  DedOyd
Sen = / (0 Ny | ded 3.23
&m <8§¢8n¢ (877¢)2 § n ( )
As S¢, is a symmetric matrix there exists a decomposition
T Ae 0
Sen =V DV D= | V = (v1,v2) (3.24)
U

The rotation matrix V' acts in the (§,7) coordinate space. It does not necessar-
ily correspond to rotations in the Cartesian coordinates (x,y). See [24] for a
discussion on the steer-ability of the GST.
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3.1.1 The Transformation Properties of the GST

Within the generalized coordinate frame (&, 1) the action of the group G manifests
itself as a translation

o) — [Eta
(- () s

As mentioned before the basis operators {0¢, 0, } and as a consequence all ele-
ments of the Lie algebra G commute with G (expand on left invariance!!)

g€1,62 © X = X o gel,eQVX S g (326)

Another important fact is that under the transformation in eq. the volume
element dédn is invariant. The consequence is that the GST in eq. (3.23) is
invariant with respect to the generalized translation in eq. (3.25)

gel’62 e} 55777 = Sf»ﬁ (3.27)

The GST has another interesting transformation property. As eq. (3.24) indicates,
there exists an action of the rotation group SO (2) on the generalized coordinate
frame (&, 7)

¢ =cos(0) & +sin(0)n (3.28)

n' = —sin (0) £ + cos (0) n (3.29)
The action of the transformation in eq. (3.29) yields a basis transformation of the
Lie algebra (0¢, 0,)

J = cos (0) J¢ + sin (0) 9, (3.30)

9y, = —sin (0) d¢ + cos (0) I, (3.31)

Under the change of basis in eq. (3.31) the GST transforms like a tensor

; [ cos(#) sin(0)
St,=R"Se,R R_<—sin (0) cos (9)> (3.32)

It is important to note (see [24]) that the transformation in eq. is not
necessarily connected to the rotations on the Cartesian space €2 the functions
¢ (x) and 7 (x) are embedded in. In fact it deforms the level sets corresponding
to (0¢, Oy) in a highly non linear manner.
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3.2 Structure Tensor Based Prior

Our objective is to construct a prior P (V¢) which is invariant to the transfor-
mations in eq. (3.32). We want to define a finite set of Lie g
the classes of level sets Ag, are minimizer sets for P (V¢)(see eq. (??))) The

P (V¢)) as a product of the determmants of the corresponding GSTS St mi

E(Vg) = HDet (S&m) (3.33)

The energy in eq. (3.33) inherits the translation invariance (only when ¢ € Ag,??)
of the GST in eq. (3.27), which we will show now. Due to the rotation invariance

of the determinants in eq. (3.33) we can write the individual determinants in
terms of their eigenvalues

Det (S, ) = Ae A (3.34)

We can write the eigenvalues )¢, and ), as the squares of the orthogonal opera-
tors X¢, and X, which constitute a rotation of the basis (0¢,, 9y,)

Det (Sg.,) = (X, (¢)>2 (X, (¢))2 (3.35)

Under the adjoint action of the group G; the operators X¢, and X,, are invariant

= [Xe,0e) =0 (3.36)

d —1
a (961752 © Xf 0 g€1,€2)

€1,e2=0

= [X¢,0y] =0 (3.37)

d ~1
eq. (3.37) also holds for X, . It is evident that under the adjoint action the deter-
minant Det (Og,,, ) remains invariant. Since the determinant Det (S¢,,,) vanishes
when ¢ € Ag, the whole energy in eq. 3.33p is invariant to any of the adjoint
actions of the G; if ¢ is locally in any of the sets Ag,

Seems like a lost fragment.
Doesn't read all that clearly.

The open question which remains to be answered is, how does the energy eq.
(3.33) transform when ¢ is not locally contained in any of the Ag,. The basis
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elements of two different G; and G; do not necessarily commute

{5&7 3@} #0 (3.38)
(0e,,0n,] # 0 (3.39)
(00020, #0 (3.40)

The question arises that when ¢ is locally within the vicinity of a particular
¢or € Ag,, ||o — ¢7|| < 6 will it be brought further away from ¢} under the action
of Gj, thatis ||g; o ¢ — ¢F|| < &', &' > 6? Or can the groups G; and G; be related
to each other such that ¢’ < 6? To answer this we look at the product algebra
G; x G; spun by the basis elements X;. These operators may not be commutative
but may be in involution

[Xi, X;] Z (3.42)

If this is the case then the commutator [X;, X;] is also an element of the joint
algebra G; x G;. (if ¢ is roughly linear, then a dilation 0, will stretch the level sets
to a line thus resulting in a level-set of the translation group)

3.2.1 Analysis of the Eigenvalues of the Rotation Dilation Group

We will now turn our focus on the eigenvalues of the Rotation Dilation GST. We
use the polar coordinates from eq. {3.18). The integration window of the GST is

§o —€c <& <o+ e (3.43)
b0 — €y < Po < g0 + € (3.44)

where & = In (1) so that eq. (3.44) translates to a region around the curvature
radius r and the anile ¢o. The level sets parameterized by the polar coordinates

in the reglon in eq | are the sectional curves of constant curvature ko ¢ <

ko < k: , ko = =-. The Rotation Dilation GST from eq. can be written in
Carte51an coordmates
Yo+e rxote a (z) ) ¢3 (Z5
(O 5 " M z,y) dzd 3.45

The mask M (x,y) enforces the conditions eq. . The orientations of the level
sets in this domain are fixed and thus This is why the minimum eigenvalue of
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the GST is zero only for level sets matching the curvature kg and the orientation
¢o. Since the integration space of S¢ ,, is centered around ¢y, S¢ ,, is not rotation

invariant. In figurethe image function I (z,y) = —r? is depicted;: f he GST

was evalui. d for rg = 30 and ¢g = 7 (Figuresl?;.lE'to and ¢g = ures

to 3.7)). JThe eigenvalue corresponding to X, the derivative i gular
direction 18"&#€noted by )\ (Figures to E) It is observed that \s has a
minimum at the radius 9 = 30 and the angles ¢y = 7 (figure and ¢g = 5
(figure. As a result the determinant of the GST is only minimal at exactly

those values (see figures and .
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Too many panels in one figure, with very little labelling /

caption.
with more commentary.
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Figure 3.1: Flgure is the 1mage I(r ) =

=7 Flgurestoare same for o = 5.
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Probably should be restructured into two figures
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4 Geometrical Optical Flow Model

In this chapter we will introduce our new model optical flow based on the image
fusion algorithm from Hardie et al. [21]. We will addregsstires=tuse es outlined

in sectlon namely that the images y and I (Figures ??b and ?2d) dye not
co-aligned and not joint Gaussian.

Check that Latex isn't complaining
about any undefined references before

4.1 Dlsparlty sending thesis for reading.

The main objective of this chapter is to introduce a model which is capable of
estimating the optical flow d(x) mapping the low resolution TC image y (figure
[2.4D]) to the high resolution VSC image I (figure[2.4a]). There basically three
problems with the data y and I.

m a: The images y and I have different intensity distributions, since the TC and
the VSC are sensitive to different spectra.

b: The images y and I have different resolutions.
c: The image I contains textural information which is not contained in y

As is explained in the background (see section the optical flow d can only be
estimated with a likelihood p (y, I|d) which measures how similar the images
y and I are given d. However a likelihood that measures the similarity of the
intensities of y and I like the one in eq. would fail since the intensities
cannot be compared due to problem a.

Unusual
formatting.

The difference in resolution in problem b causes an ambiguity of the optical field
d since the features in the lower resolved image y are blurred and it is not clear
which pixel in I relates to which pixel in y. To demonstrate the issue we have
created test data y*¥" and I*¥" in figure[4.1] I*¥" in figure [4.1a|shows a sharp
linear boundary and y*¥" (figure[4.1b) is a convolution of I*¥" with a Gaussian
G, of standard deviation o = 5 which is translated by 10 pixels. We used the
model of Horn et. al

E(dsy"):;/g(ysy”(x) I3 (x >dﬂc~l— Z/ IV (%)) da (4.1)
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(a) (b)

Figure 4.1: Figure showg a synthetic high resolution image 7°¥". In figure
low resolution image y*¥". y*¥" is computed by
convolution of I%¥"™ with Gaussian GG, with standard deviation o = 5
and translated by 10 pixels relative to /°¥". Figure[d.Id|shows the flow
d computed with the model in eq. (2.96), which does not incorporate
knowledge of the scale difference between y*¥" and I°*¥" and figure

show the warped image I;*"

(see eq. (2.96)) to compute the optical flow d*¥" mapping I*¥" to y*¥" (see figure
M. Figurelﬂlshows the image I}Y,. (x) = I*¥"(x + d*¥" (x)). We can see
that the optical flow d corrupts the sharp boundary of 7°¥" in order to match it
to the varying gray levels of the blurred boundary in y*¥" (figure[4.1b).

In order to solve problem a and b we need a method to transform  to an image
S which has the same intensity distribution as y but the same resolution as 1. A
putative likelihood p (y, S|d) can measure how similar the images y and S are
given d.

ure not existent in y or vice versa, the optical flow d is ambiguous and
e biguity may only be resolved upon removal of the contradicting feature.

In sectiona method was introduced which produces a super-resolved image
S given co-aligned data y and /..

The model is defined by the posterior distribution for S (see eq. (2.106))

p(Sly,Ic) = p (ylS) - p (S|L) (4.2)
p(lS)) = 2/ (x))Q.c,;ldx 4.3)
—In(p(S|L)) 2/ — g, (X )) O} de (4.4)
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with the conditional variance and mean
Csjr. =Cs,s —Csp. - Cprly. (4.5)
psir, = ts + Cs1. - Crly (I — pr) (4.6)

In the conditional prior p (S|1.) ineq. pixels in S and in /. have a one-on-one
relationship, so that it is natural to map pixels in I to S rather than to y directly.
We model the disparity between the images S and I by setting the co-aligned
VSC image I.. to be the result of the original VSC I, warped by an unknown
optical flow field d(x),

I(x) = I (x +d (x)) = [a (x) (47)

Substituting eq. {£.7) into eq. and following, we obtain the posterior

with the energy
Epost (S,d) = 1/ (y (x)-WyS (x)) -C; dax+ = / —p )) C 1 dx
pOS ) 2 Jo o s|Id s|lIq
4.9)

While keeping d fixed we minimize Ej (S, d) with respect to S and obtain
similar to eq. (2.113) a closed form solution for S

§ = gt + Cay (Cazy + ) (v i) (4.10)

We insert the simplified closed form expression for S from eq.~ into Epost
and obtain an energy measuring the similarity between y and I4 = W,Iq4

FEadata ( ) post (S d) (411)
;/ —fIa(x ))2 Cyi, (Cs|fd + >‘Cn>_2 (4.12)
Cy,zdcfd i, (4.13)

The data term E,4,;, defines a likelihood for d

p(y,I|d) = exp (—Egata (d)) (4.14)

We remember that the problems with the data y and I are that they (a) have
different intensity distributions and (b) different resolutions. The likelihood in eq.
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Figure 4.2: Figure shows a synthetic high resolution image 7°¥". In figure
we show a low resolution image y*¥". y*¥" is computed by
convolution of I*¥" with Gaussian G, with standard deviation o = 5
and translated by 10 pixels relative to /°¥". Flgure [£.2d]shows the
flow d computed with the model in eq. , which incorporates
knowledge of the scale difference between ysy" and I°Y" and figure
show the warped image 1"

(4.14) solves the problems a and b elegantly in one approach by introducing the
latent variable S. The low resolution component of S, W, S is coupled through
the likelihood p (y|S) in eq. to the TC image y. The prior p(S|I) in eq.
4.4) couples S to the high resolution image I. As a result Iq in Eg4, in eq.
4.18) is filtered by the PSF W,, to match the scale of y. Furthermore the factor f
transforms the intensity range of the filtered image I4 to a range similar to that
of y so that E4q4, is a measure for the similarity between y and f - 1.

’,

Unusual spacing.

To demonstrate that our likelihood E4, in eq. respects the difference in
scale between y and I we have estimated the flow with E,, as the similarity
measure for the data y*¥" and I*¥" in figure The standard deviation o in
Ejiqtqe was set to o = 5 and the factor f is automatically computed as f ~ 1
since the intensity distributions of y*¥" and I°¥" are aproximately the same. The
image I3"" is convolved with W, The resulting image 7*Y" has the same scale as
y*¥". The resulting optical flow d*" is shown in figure[d.2d] Notice the blurred
boundary d*¥" around the linear feature in 7°Y" (figure|4.2a). This is the result of
Edata in eq. 12[) measurlng the difference between y*¥" and the blurred image

IP" =Wl . Ineq. ( we see I}”". The linear boundary has been warped
by dsvn w1thout being Corrupted hke in figure[.1q]
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All figures should be centered.

0 50 100 150 200 250
VSC

(@)

Figure 4.3: Joint Histogram of the TC image figure and the VSC image figure
[2.4a]. We observe that there is no linear relationship between the TC
and the VSC

Not sure how these I don't really see how the
images are useful. relationships in figure 4.3 and
4.4 are terribly different.

7 VSC image Histogram
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Figure 4.4: Different roi’s and their joint histograms. A grid is shown in the
VSC and the TC image to emphasize the disparity between them.

The gridsize is 10 pixels. In the histograms ww

relationship between the VSC and the T (

No, the linear relationship isn't
very clear. You need to convince
the reader.
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Remind the reader what the role of 'a' is. Don't just
refer to 'a', explain the implication of the choices
behind the three panels.
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4 / /
// 21 48
2l - e T 45 ‘
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spatial standard deviation o spatial standard deviation o spatial standard deviation o
() (b) (c)
Figure 4.5: Median conditional variance C’g’]‘"for a=25 (El?,‘re Eﬂ‘m
(ﬁgure@ 2 m re. at for snix
of a C;’I has g 1At 0 < 2, and for larger values of a the

profile changes so that the minimum of C’gua isato > 10

4.2 Localization

The assumption that the intensities of the images y and I are globally linear
related is a very strong constraint that cgghold in most cases only unimodal data.
In the case of the VSC and TC date assumption of linearity fails.
In figurethe global joint histograltr o€ VSC and the TC image is shown.
We can see that the distribution in the joint histogram lacks a linear relationship
between the TC and the VSC. However in figure 4.4) we have evaluated the
histogram within local region of interests. The histograms in ﬁguresand
show that within th€ rof$ the assumption of linearity between the intensities of

the TC and the VSC is wdl] supported. Therefore we propose a local version of
the variance in eq. (2.109)

Acronyms are
capitalized.

Cusr(0) = [ wlx=x0) () ~E(ux0) - (0 (x) ~E(v.x0))  (@15)

where w is a window function which we take to be constant within a subset
W cCQ

A 0<my <
w (x) = {W—l Sy (4.16)

0 else

Then C’;I“ (x) becomes a local meassure that meassures how linear the intensities
of y and I are within the sub domain . The problem that arises is how large

to set the window size a. If it is set too small the signal to noise ratio will be
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I don't see where this is
convincingly demonstrated. Don't
make the reader look around -- you
need to make it clear *where* a
claim or concept is shown.

too small so that not enough information of the features in the TC and the VSC
image are captured to robustly register them. On the other hand if a is set too
large we eventualll he local linearity between the TC and the VSC image.
In figurewe have plotted the median conditional variance

Where do you
show this?

C7% = median (C”’“ (x (4.17)

s|I s|I

as a function of o for ghree fixed values of the window size a. In flgure
(a=5)C% sl * has a miflimum for o < 2, and in figure4.5¢|(a = 33) it is minimal

for o > 10. The profife of CS| ' changes from monotonic increasing to monotonic
decreasing for small{o large values of a. Since we know the va
parameter 0, 0* = 2 ftom the ccd resolutions of the cameras,
optimal value a* such that Cg"]'f is minimal at 0 = o*. For a = 23 this 1s the case
as we see in figure Thus for the data in figure ?? a* = 23 is the optimal
value so that C7%¢ 51 has physically meaningful minimum ¢* = 2. The local data
term F 4, now has the form

a find the

Pl

Einta (d) = [ (v00 = 1) I () - 07 0 (€ () 2,

(4.18)
Fx)=C,;,(x)C7 1 (%) (4.19)

and together with our prior from chapterthe energy for the complete optical
flow model is

E(d) = Eaata (d) + % (Z Det (S <dz->>> (4.20)

The matrix S (d;) is the structure tensor (see eq. .) acting on each component
of the optical flow d. In this model we are making the assumption that the motion
boundaries are locally linear. This assumptign id for object boundaries
with small curvature but as we will sg€1n chapter ?? thiSissumption fails at
junction points in the optical flow field, s1 e=p?PCre objects are partially

occluding each other and moving in opposite directions.
So where will you go with this observation? So you're saying that
the assumption fails ... so what? Does this matter? Will you be
testing this? Will you be following up on this concept?

4.3 The solution algorithm

To minimize and obtain the optimum flow field d we deploy a simple
ton scheme with a nested linearization of The linearized model is
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solved by a conjugate gradients algorithm with block Jacobi preconditioning.

The problem with this approach is that the regylas#®T1s quar Qe ﬂow field
components and thus the linearization beca fle initial
steps of the algorithm.

Algorithm 1 Optical Flow with Structure Tensor prior

Initialize dy = 0
Set rg = 5?7&‘[) (do)
scale s = Spax
while s > 1 do
downsample y; = G5 % yo, Is = G5 % Iy
while ||r|| > eor k < N do
setdi+; =dg + ad
expand E (dy11) = E (dy) + abld + %ZéTde
solve Q10 = by, for § with conjugate gradients and suitable precondi-
tioning
computedyy; =dg +ad, k= k+1
end while
upsample dy, setdy = dn, k=0
s=s—1
end while

The problem arises in step Elof the iterative algorithm. The second functional
derivative )i of the energy model-con51sts of one part comming from the
likelihood and one part coming from the prior, Qi = Q{4 + A\Q;’. The matrix
Q79 is the second derivative of the prior inw1th respect to d. At small &
its eigenvalues are small due to the initial guess dy = 0. The matrix Q{*® is
the second derivative of the likelihood in eq. 20). In regions where there is
no motion t f Q4% are also small. This makes the linearized
solution in sinstable. Our solution to this problem is to extend

to include an Ly prior on the flow field d but with a sma @ range multiplier
A2

E(d) = / (y—31.a)° Cyrg + % (Z (Det (S (di)) + A2 Hde'H)) (4.21)

%

With the L, prior inthe linearized solution in step Elbecomes numerically
stable.
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5 Resulis

5.1 Uni-Modal Data

We will now discuss the results of our optical flow method on the middleburry
data set for which there exists ground truth (GT). As the GT is the true flow field
for the data we use it to asses the quality of the computed optical flow. To do this
we define the Endpoint error (EPE) and the angular error (AE) as

eppPE = ||V — Vgl (5.1)
eAar = cos (< (v,vg)) € {-1,1} (5.2)

The EPE erpr meassures how well the computed optical flow v fits the true
optical flow v;. In cases where v does not match v, well, we would still like to
check how both vectors are aligned. This alignment is depicted by the AE values
ranging between —1, for minimal alignment (worst case), and 1 for maximal
alignment (best case).

5.1.1 Middleburry Dataset

figure[5.1|the rubber whale sequence of th@dleburry data set is shown, an
tigure[5.1b|the corresponding ground truth vg. In figure the computed
ow-field v is shown for a filter size of 11, while in figure the resulting flow
for the TV model is shown. Figuresandshow different region of interrests
i) for which the EPE and AE are shown on a pixel basis for the structure tensor
del and Figuresandshow the same for the TV model. We can observe
arison between figures:@ andthat the TV model produces

i e closer to the ground truth (ﬁgure. In tablesf5.1
andthe median values for the ? i : i t
listed. Indeed we can obeserve that the EPE for the TV is approximately half the
value of that of the structure tensor model. We chose the median as opposed to
the mean EPE as it is robust outlier values of the EPE at single pixel locations
nd thus gives a better assessment of the quality of the flow within the roi.

46 ‘\\~\~. This is hard to read. You have all sorts of figure panel
references, but it is very hard for the reader to keep
track. Details about individual panels should probably be
moved into the figure captions, because they are out of
context here.



Not sure this list of numbers is very useful for the reader.

You have to ask yourself -- what are you really trying to
show to the reader?, what are you trying to say?, and does
this figure or table do so?

Figure Filtersize : o Median Min N
7 2.36,0.01,7.24 0.42, —1.00, 1.00
figure[5.3a| 9 1.32,0.00, 6.02 0.87, —1.00, 1.00

11 1.15,0.00, 6.45 0.91, —1.00, 1.00
7 0.84,0.01,13.35 0.87, —1.00, 1.00

figure[5.3f 9 0.46,0.01, 8.23 0.97, —1.00, 1.00
11 0.40, 0.00, 8.25 0.98, —1.00, 1.00

7 0.47,0.01, 5.22 0.97, —0.96, 1.00

ﬁgure@ 9 0.28, 0.00, 3.71 0.99, —1.00, 1.00
11 0.25, 0.00, 2.50 0.99, —1.00, 1.00

7 0.44, 0.00, 2.73 0.98, —1.00, 1.00

0.34, 0.00, 2.65 0.99, —1.00, 1.00

tigure 9

0.30, 0.00, 3.12 0.99, —1.00, 1.00

e 5.1: EPE and AE analysis
EPE and AE values for different region of interests and filter sizes
. The second column shows the median, minimum and maximum EPE per
roi. The third column shows the median, minimum and maximum AE per roi.
The table shows that the EPE gets better with increasing filtersize. Despite this
the values for roi’s with non-linear geometry (figure generally have higher
EPE values than the roi’s with linear or constant geometry (figure

Table |5.1| shows also how the EPE and the AE vary with increasing filtersize:
The EPE decreases while the AE increases. In figurethe roi’s have mostly a
constant motion field or a motion field with linear boundary, thus according to
tablethey have lower EPE values then the roi’s in figure The roi with
the largest discrepancy from the group of linear motions is figure which
depicts a rotating wheel. Since the wheel is largely free of texture, the motion
field (figure is penalized by the structure tensor prior in such a way that
it aquires spurious linear motion boundaries. This is the reason for its high
EPE value. The roi in figureshows another case of a motion field violating
the assumption of linear motion boundaries. In the ground truth roi in figure
ﬁthere are two junction points where three objects are occluding and moving
against each other. This type of motion is penalized by the structure tensor
prior so that the flow at these points is oversmoothed. The TV model (ref!) like
the structure tensor model penalizes non linear motion boundaries. figure
shows the result of the TV model for the wheel roi. Just like in the structure
tensor model, the flow on the circumference of the wheel is heavily penalized
resulting in high EPE values and wrong AE values (see table . figure
shows the resulting flow of the TV model at the two junctions in figure
Similar to our proposed prior the flow is oversmoothed at the junctions resulting
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See comments from previous page. I don't think
this is very useful, or at least needs changing
to be made useful.

igure Median, Min, Max EPE | Median, Min, Max AE
figure|5.5a 1.38, 0.00, 5.83 0.92, —1.00, 1.00
figurel5.5 0.20, 0.00, 3.34 1.00, —1.00, 1.00
figure|5.6a 0.04, 0.00, 2.08 1.00, —1.00, 1.00
figure[5.6 0.09, 0.00, 2.06 1.00, —1.00, 1.00

Table 5.2: EPE and AE analysis
EPE and AE values for different region of interests for the TV model (Figures
to 5.6f). The first column shows the median, minimum and maximum EPE
per roi. The second column shows the median, minimum and maximum AE per
roi. Compared to table[5.1|the median EPE is lower for nearly all roi’s, while the
median AE do not differ that much

Figure Filtersize | Median, Min, Max EPE | Median, Min, Max AE

7 0.73, 0.00, 6.80 0.99, —1.00, 1.00
figure[5.7a] 9 0.60, 0.00, 7.29 0.99, —1.00, 1.00

11 0.96, 0.01, 15.60 0.98, —1.00, 1.00

7 0.36, 0.00, 7.00 1.00, 0.00, 1.00

figure[5.7f 9 0.27, 0.00, 6.79 1.00, 0.00, 1.00
11 0.41,0.01, 6.55 1.00, 0.00, 1.00 /
TABTE S 3T EPE and AL anary o

| and AE values for different region of interests and filter sizes (Figs 7 ,
m ce the motion boundaries in figureare all curvilinear ther®s

orteladdn between the filtersize and the EPE.

in high EPE values (see table.

On th models are faithful to roi’s with constant motion or linear
motion bounaaries (see figures 5.4 and f.6). In figure we see that the
structure tensor model inflicts more of the texture from the underlying data
(figure on the estimated flow then the TV model (see figurefor the
result of the TV model) thus leading to a slightly higher EPE value (table .
Figureshows an example of an roi with a linear motion boundary for the
structure tensor model. Comparing it to the corresponding result for the TV
model figure we see that the structure tensor model produces sharper lineat
motion boundaries.

In figure [5.2] another sequence of the middleburry data set is shown. In this
sequence the camera is rotating around a hydrangea. As the ground truth shows
there are no linear motion boundaries, thus only the constant motion of the
background is correctly detected (upto some artifacts in the upper left corner in

figure[5.2d), see the EPE and AE values in figure[5.7/and table[5.3}
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Figure 5.1: Rubberwhale Sequence

Many things need changing:

- figure should be centered
- a bit more space between images
- label each panel with a word or two

Figureshows one frame of the sequence. figureshows the estimated
optical flow, figurethe result of the TV model and figureshows the
provided ground truth

The caption needs to be much clearer in terms
of what is being shown. How does (d) show
optical flow, what colour implies what sort
of flow? How is (c) the "result" of the TV
model? What result?, what notation?, what
equation in the text?
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Figure 5.2: Hydrangea Sequence
Figureshows one frame of the sequence. figureshows the estimated
optical flow, figurethe result of the TV model and figureshows the
provided ground truth

The caption doesn't just define
the figure, it also needs to
highlight what is significant or
interesting. What do you want
the reader to observe?
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Figure 5.3: Error Analysis ST model: This figure shows two examples of motion
field with nonlinear boundaries. In figure we see that along
the circumference of the wheel the EPE has the largest values and
in figurethe is largest the junction point where three objects ar

moving against each other.
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Figure 5.4: Error Analysis ST: This figure shows two examples of motion fields

with linear boundaries. In figures@

andwe can see that the

resulting flow with texture inflicted from the data. Nevertheless the
EPE values are nearly homogenous and small (see figuresand

Z

These figures and captions are
much better -- there is labelling
in the figure, and the captions
get at the significance of the

figure.
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Figure 5.5: Error Analysis TV model: This figure shows two examples of motion
field with nonlinear boundaries. In figure we see that along
the circumference of the wheel the EPE has the largest values and
in figurethe is largest the junction point where three objects ar

moving against each other.
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Figure 5.6: Error Analysis TV: This figure shows two examples of motion fields
with linear boundaries. In figuresand we can see that the
resulting flow with texture inflicted from the data. Nevertheless the
EPE values are nearly homogenous and small (see figuresand

5.6h)
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Figure 5.7: Error Analysis:
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Second Column: Endpoint Error, Third Column: Angular Error.
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Figure 5.8: Error Analysis:
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Second Column: Endpoint Error, Third Column: Angular Error.
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Figure Median, Min, Max EPE | Median, Min, Max AE
figure|5.8a 0.44,0.00, 6.12 1.00, —1.00, 1.00
figure[5.8 0.12,0.01, 7.38 1.00, 0.00, 1.00

Table 5.4: EPE and AE analysis
EPE and AE values for different region of interests for the TV model (Figures ??
to ??). The first column shows the median, minimum and maximum EPE per
roi. The second column shows the median, minimum and maximum AE per
roi. Compared to table[5.T]the median EPE is lower for nearly all roi’s, while the
median AE do not differ that much

5.2 Eigenvalue analysis and the stabilization parameter
A2

In chapterwe stated that the L, term in eq. is needed to support the
numerical stability of the model. We will back this statement now. Figures[5.9}
5.10[and [5.11]show the largest eigenvalue of Q.. , oy, at each iteration on the
coarsest scale of the pyramid for different values of \2. They all show that ag
rises to a maximum after which it decreases and converges. The initial value of
aiQ is of the order of )\ indicating that in the initial steps the L, term in eq.
governs the regularization. As the number of iterations increases the structure
tensor determinant gets more weight, until the point where its influence over
weighs that of the Ly term As can be seen this point comes after fewer iterations
the smaller ) is set. On the other side Figures[5.13} [5.14] and [5.15| show the
vector b, that is the Euler-Lagrange equation vector for different values of A;.
Comparing the magnitude of b in Figures 5.13] [5.14]and [5.15| we see that for
Ao = 1079 b is several orders of magnitude larger then the other cases, which
leads to longer convergence rates or numerically instable solution. This means
we have a tradeoff between

e )y ~ 1073; Faster convergence but less influence of structure tensor (need
i > 40 iterations for ST to act)

e \y ~ 107%: slower convergence but more influence of structure tensor
(need only ¢ > 1 iterations for ST to act)

We choose \s = 1079 since in this case b is of the same order of magnitude as for
A2 = 1073 but as we see in figurethe structure tensor only needs 4 iterations
untils its eigenvalues overweigh the eigenvalues of the L, term. We also choose
N = 10 for the number of iterations per pyramid scale, since according to figure
?? the update vector ¢ gets unstable after 15 iterations.
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This chapter didn't seem complete,
so I stopped reading at this point.

6 Multimodal Optical Flow

6.1 Estimation of the resolution parameter o

Our optical flow model eq. (??) is based on the assumption that the modalities to
be registered have a linear relationship in their intensity spectrum. This is not
the case for TC images and VSC images of arbitrary objects. However in the case
of bare CFRPs the linearity assumption holds. CFRPs are black bodies when in
thermal equilibrium at 30 deg C since the emmisivity of carbon is approximately
0.98 (see [? ]). Itis in this case that in the amplitude image in figure ??b the
CFRP has a uniform amplitude. In the visual spectrum domain (figure ??d) the
CFRP is not a perfect black body due to the reflective nature of the epoxy coating,
however the epoxy coating is uniformly distributed so that the reflections do
not cause image gradients, which are not correlated to geometric features. Since
the TC and the VSC have different resolutions we must take the difference in
resolution into account. This difference in resolution is encoded in the scale
parameter o of our local likelihood model in eq. 2.105). The local conditional
variance Cy ; (x) in eq. (??) is a meassure for the similarity of the TC image y, and
thus s and the VSC image I with a local subdomain W C 2. The local conditional
variance Cy 7 (x) has two parameters we need to estimate: the scale parameter o
from the likelihood in eq. and the window size a of the window function
w. Since Cy j (x) is varies spacially we compute its median value C;. In figure 22

we have plotted for various window sizes a the median conditional variance C'; ;

over the filter size 0. We can see that for window sizes a < 23 C’S| 7 has minima at
o ~ 0 while for larger window sizes a > 31 it tends to be minimal at filtersizes
o > 6. Figure ?? show their optimum ¢* plotted over the window size a. We
see that window sizes a < 21 and A > 31 lead to unrealistic scale differences
o* =~ 0and o* > 6, since the actual difference in scale must be o ~ 2 judged by
the resolutions of the VSC and the TC. This value is produced only at a = 23
and a = 27 and we choose a = 23 since Cj; (x) is smaller compared to the case
a=27.

In figure ?? we show the resulting optical flow for different region of interests
(roi). Figures[6.2a]and [6.2f]show the resulting optical flow d which match the
corresponding VSC image I and TC image y in the table. Fow each roi we
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Figure 6.1: Dependence of Cy; on the scaling parameter o. Joint

Histogram p (y, I) of the TC and smoothed VSC image pair y and I at
the optimum o* = 4, the scale at which y and I are maximally linear.

computed the joint histogram p (y, I) (Figures and [6.2g). In figure

p (v, I) has two isolated maxima which is sufficient for for a linear relationship
between y and I. In figure |6.2g| the linearity is obstructed to a minor degree
since the TC image in figure|6.2j|has a slight structural difference in the lower
left corner compared to figure|6.2
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Figure 6.2: Multimodal Optical Flow: The resulting flow d, VSC image I, the

??

warped VSC 14, the TC image y as well as the joint histogram p (y, I)
are shown for different region of interests. We can observe that the
boundaries of the flow are blurred. This comes from the window
function w in the local likelihood. The joint likelihood p (y, I) was
evaluated only for the roi’s. It has at most two maxima, which suffices
to constitute a linear relationship between y and I. A grid is overlaid
on the roi’s for I, 14 and y with 10 pixels per element to visually asses
the quality of the flow. We can see the larger features are correctly
matched, while smaller features are matched in a suboptimal fashion
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