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2 Background

2.1 Gibbs Random Fields

A physical system C is a dynamical composite of elements which interact with
each other as well as with the environment the system C is embedded in. The
elements are described by a vector of parameters φ = (φ1, . . . , φn). The physical
system C relates the vector φ to a set of observables Y = {Y1, . . . , Yk}

Y = C (φ?) (2.1)

In the case that the elements of the system C are continuously distributed over a
finite space Ω, the parameter vector φ is a function on Ω

φ(x) ∈ Rn x ∈ Ω (2.2)

called a Gibbs-Random-Field (GRF) [1]. The interactions of the elements of
the system C with the environment are characterized by an energy functional
EdataY (φ) called the data term, which couples the GRF φ(x) to the observables Y .
There is another energy form Eprior(φ, ∂jφ) within the system C called the prior.
Eprior(φ, ∂jφ) describes how the elements of C interact with each other. Together
both energy functionals form the total energy of the system C

EY (φ) = EdataY (φ) + Eprior(φ, ∂jφ) (2.3)

which is related to the probability distribution

p (φ|Y ) = p (Y |φ) · p(φ) ∼ exp (−EY (φ)) (2.4)

p (Y |φ) = exp
(
−EdataY (φ)

)
(2.5)

p (φ) = exp
(
−Eprior (φ)

)
(2.6)

The value of the probability distribution p(φ|Y ) at φ(x) = ˆφ(x) describes the
probability that the GRF φ(x) assumes the values φ̂(x) at each point x ∈ Ω. The
set of values φ̂(x) is what is called a configuration of the GRF φ
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EY (φ) is designed such that it is minimal once the GRF φ(x) fulfills the forward
problem in eq. (2.1)

φ? = argminφ (EY (φ)) (2.7)

The particular value φ? (x) of the GRF φ is the most probable configuration of
the distribution p(φ|Y ) due to eq. (2.4) and the solution to the inverse problem

φ? = C−1 (Y ) (2.8)

An example of a physical system containing a GRF is a camera C recording
an object O. The domain Ω ⊂ R2 is the focal plane of the camera C and the
object O is naturally projected onto the focal plane Ω producing the projection
IO. In theory the projection IO is a continuous function in the coordinate frame
of the plane O where the particular function value IO(x) is the light intensity the
object O reflects to the point x on the focal plane Ω. At the heart of the image
acquisition process of basically all modern camera systems lies the concept of a
CCD collecting the photons of the light at discrete positions xi,j called pixels

Icij ∈ R, xi,j ∈ Ω 1 < i < n, 1 < j < m (2.9)

The observables Y are the recorded intensities Icij at the pixels xi,j . In this sense
the camera C is a function which maps the continuous projection IO(x) to the
discretely sampled intensities Icij

Icij = Cij (IO) (2.10)

The intensity Icij is basically the number photons collected by the CCD at the
pixel xi,j . This number cannot be acquired deterministically, it is rather the result
of a stochastic process described as independently identically distributed (iid)
noise

Îcij = IO (xi,j) + n n ∼ p
(
Icij |IO (xi,j)

)
(2.11)

p(Icij |IO (xi,j)) is the likelihood that Icij assumes the value Îcij given the incoming
intensity IO(xi,j) at the pixel xi,j . Like in eq. (2.5) it is mapped to the data term
energy EIc(IO).

In order to infer the values of IO(xi,j) at the pixels xi,j from the noisy data Icij
we need to pose some form of regularity on the values IO(x) to counter the
pixel-wise noise imposed by the CCD in eq. (2.11). This can be achieved by
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(a) (b)

Figure 2.1: Figure 2.1a shows an image taken of an object O with a thermo-
graphic camera. A region of interest is shown where the contrast was
enhanced to visualize the noise corruption. Figure 2.1b shows the
result I?O of the minimization problem eq. (2.14) with the prior in
eq. (2.15). The noise is removed but the boundaries of O are over
smoothed

correlating the intensities IO(x) at all pixels with each other in the prior

p (IO) = exp
(
−Eprior (IO)

)
(2.12)

Eprior (IO) =
∫

Ω
E (IO (x) , IO (Ω/ {x})) dx (2.13)

where the integrand correlates the intensity IO(x) at the point x ∈ Ω with the
intensities at all other points Ω/ {x} so that the problem of inferring IO from the
data Ic becomes the minimization problem

I?O = argminIO (EIc (IO)) , EIc (IO) = EdataIc (IO) + Eprior (∇IO) (2.14)

However in practice for a n × n dimensional image Ic the minimization in eq.
(2.14) achieves a complexity of the order O(n4) since every pixel is correlated to
n2 − 1 pixels. Even for medium sized images with n = 500 the computations
involved in eq. (2.14) are practically infeasible.

To reduce the complexity the integrand E in eq. (2.13) can only correlate the
values IO(x) within a neighborhood Uxi,j ⊂ Ω with each other. One possible
and very simple way to implement E is to have it penalize the L2 norm of the

7
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(a) (b)

Figure 2.2: Local transformation of an image φ with a level-set S. Figure 2.2a
shows an image φ (x) with a line S along which the intensity values
are constant. At each point xS the vector ωS is the normal vector on
S. Figure 2.2b shows the result of the local distortion of S under the
action of the operator gδω . gδω acts on S by adding to ωS a spacial
dependent vector δω (x)

gradient∇IO(x)

EpriorL2
(∇IO) =

∫
Ω
‖∇ IO (x)‖2 dx (2.15)

where the gradient operation ∇ can be realized by finite differences. While
the prior in eq. (2.15) can be implemented in a very efficient manner, it has
an important drawback. It isotropically smooths the GRF IO regardless of the
underlying geometry of the object O being recorded. In figure 2.1a the image
Ic of an object O recorded by a thermographic camera is shown. A region of
interest with enhanced contrast is shown to visualize the noise corruption due
to the image measuring process in eq. (2.11). Figure 2.1b shows the result of
the minimization in eq. (2.14) with the L2 prior in eq. (2.13). EpriorL2

reduces the
noise in IO but due to its isotropic nature it over-smooths the boundaries of O. In
section 2.2 and following we will introduce a methodology aimed at designing
prior energies Eprior which incorporate information about the geometry of the
objects recorded in order to avoid the over-smoothing across their boundaries.
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2.2 Lie Groups and the Noether Theorem

2.2.1 Motivation

In section 2.1 we had claimed that the problem with the L2 prior

EL2 (φ) =
∫

Ω
‖∇φ‖2 (2.16)

over-smooths the GRF φ over the boundaries of the object recorded by the camera
C. In general the minimizers φ? of the energy EL2 are the constant functions
φ = const

Ac =
{
φ?c

∣∣∣φ?c = argminφ
(
EL2 (∇φ)

)
= c, c ∈ R

}
(2.17)

A slightly different description of the set of minimizers Ac goes as follows: given
φ?0 (x) = c0 we can generate all other possible minimizers φ?c by adding any
c ∈ R to φ?0 (x). We can label the action of adding a real number c ∈ R on to any
function φ (x) by gc

Ac = {φ?c (x) |φ?c = gc ◦ φ?0 = φ?0 + c, c ∈ R} (2.18)

Under the group of such actions Gconst = {gc} our set of minimizers Ac is
invariant

gd ◦Ac = Ac+d =
{
φ?c (x)

∣∣φ?c+d = φ?0 + c+ d, c ∈ R
}

= Ac (2.19)

as well as the L2 energy

gd ◦ EL2 (φ) =
∫

Ω
‖∇ (φ+ d)‖2 =

∫
Ω
‖∇φ‖2 (2.20)

In this sense we can state that the L2 prior pL2 (∇φ) is actually conditioned on
the group of constant transformations

pL2 (∇φ) = pL2 (∇φ|Gconst) (2.21)

since it is invariant under the entire set Gconst but under no other set. This is why
we call pL2 conditionally invariant with respect to Gconst. We observe that Gconst
is not a discrete set but a continuous set since the parameters c and d in eq. (2.18)
and eq. (2.19) are real valued numbers. In eq. (2.18) the set Gconst acts on the
functions φ? (x) by shifting their function values by constants.
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Now consider the set of transformations GΩ whose elements gωΩ ∈ GΩ operate
on the coordinate space Ω by warping it with the vector-field ω (x)

gωΩ ◦ x = x + ω (x) (2.22)

GΩ is the set of all possible deformations of the space Ω. Obviously any element
φ? (x) ∈ Ac is invariant under the action of GΩ since Ac is the set of constant
functions. Thus the prior pL2 (∇φ) is conditionally invariant under the combined
set GΩc = GΩ × Gconst

pL2 (∇φ) = pL2 (∇φ|GΩc) (2.23)

In the following we will argument that it is possible to introduce priors p (∇φ)
which allow for conditional invariance with respect to a larger set of transforma-
tions G = GΩ × Gi

p (∇φ) = p (∇φ|G) (2.24)

where the elements gωi ∈ Gi operate in a similar fashion like the gωΩ in eq. (2.22)
but on non constant functions φ (x)

˜φ (x) = gωiφ (x) = φ (x) + ωi (x) (2.25)

Similar to the definition of Ac in eq. (2.18) we can describe the maximizers of
p (∇φ) as being related to each other by the elements of G

A = {φ? |φ? = g ◦ φ?0 g ∈ G} (2.26)

The set GΩ contains operators which are purely geometric. The idea is to show
that A may be split into sub sets AΩ (φ?c) whose elements are related to each other
by the elements gωΩ ∈ GΩ

AΩ (φ?c) = {φ? |φ? (x) = φ?c (gωΩ ◦ x) , gωΩ ∈ GΩ } (2.27)
A = {AΩ (φ?c) |φ?c = gωi ◦ φ?0, gωi ∈ Gi } (2.28)

This is significant for the following reason: knowledge of the geometric set of
transformations GΩ under which p (∇φ) is conditionally invariant allows for a
reduction of the set of maximizersA to a setAred such that the elements φ?c ∈ Ared
are not related to each other by GΩ

Ared = {φ?c |φ?c = gωi ◦ φ?0, gωi ∈ Gi } (2.29)
φ?d (x) 6= φ?c (gωΩx) ∀gωΩ ∈ GΩ, φ

?
c,d ∈ Ared (2.30)

We may also turn the argument around: we could specify the geometric set of
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transformations GΩ and design a prior p (∇φ) which is conditionally invariant
under GΩ, thus having a reduced maximizer set Ared. To give hint of how the
prior p (∇φ) could be designed we need the definition of a level-set. A level-set
of an image φ?0 is a sub set Sc ⊂ Ω defined by

Sc = {x |φ?0 (x) = c} (2.31)

The action of an element g ∈ GΩ × Gi on an image φ (x) may be written as

g ◦ φ (x) = gωiφ (gωΩ ◦ x) (2.32)

where we have split g into its components gωi ∈ Gi and gωΩ ∈ GΩ. By the
definition of the action of gωΩ in eq. (2.22) we see that gωΩ is a geometrical
transformation that deforms the level-sets Sc (see figure 2.2). We are free to
define gωi so that it is orthogonal to gωΩ in the sense that the level-sets Sc are
invariant under gωi

Sc′ = gωi ◦ Sc = Sc (2.33)

since a transformation of Sc is purely geometrical. Now the level-set Sc may
alternatively be defined with the help of the vector-field ωδ (x) which (see figure
2.2) is the set of vectors tangent to Sc

Sc = {x |ωδ (x) · ∇φ?0 (x) = 0} (2.34)

In figure 2.2b we show an example of a level-set S which is distorted by the
operator gωδ ∈ GΩ. The resulting level-set S′ has the vector-field ω′δ (x) =
ωδ (x) + δ (x) as tangent vectors.

S′c = {x |(ωδ (x) + δ (x)) · ∇φ?0 (x) = 0} (2.35)

However it also possible to represent S′c with the help of a deformation of the
gradient operator∇ itself

S′c =
{
x′
∣∣ωδ (x′) · ∇δφ?0 (x′) = 0

}
(2.36)

The operator ∇δ loosely speaking encodes a reversal of the action of gωΩ on x so
that S′c can be represented with the same tangential vector-field as Sc but in the
new frame x′ = gωδ ◦ x. The operator ∇δ is called a pull-back of the gradient
∇. With the help of the pull-backs ∇δ it is possible to translate the notion of
conditional invariance with respect to GΩ to the requirement that p (∇δφ) must
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be constant with respect to variations of the vector-field δ (x)

δ

δδ (x)p (∇δφ) = 0 (2.37)

Given a specific form of the operators in GΩ, eq. (2.37) poses constraints on the
form of the differential operators in the prior p (∇δφ). Eq. (2.37) also ensures that
p (∇δφ) is indifferent to a large class of level-sets {S}, which are generated by GΩ
acting on S (see eq. (2.36)).

2.3 Lie Groups

In this section the set of operators G is taken to act on a vector spaceM. The set
G is called a group if there exists an operation · so that G contains

• the neutral element e ∈ G: e · g = g for all g ∈ G

• the inverse g−1 ∈ G if g ∈ G

The group G is called a Lie group [2, 3, 4] if the group operation

G× G 7−→ G : (x, y)→ x · y−1

is smooth in both x and y. The group operation ’·’ can also be used to define the
left action lg on G

lg : G→ G lg (h) = g · h g, h ∈ G (2.38)

lg is a smooth isomorphism in G. The elements of G may themselves be smooth
mappings defined on an r-dimensional space A

g : A → G, (a1, . . . , ar)→ ga1,...,ar (2.39)

In this case we say G is an r-dimensional Lie group. A classical example of a
Lie group is the group of invertible n-dimensional Matrices GL (R, n) over the
vector spaceM = Rn. The dimension of GL (R, n) is n2 and the group operation
· is the matrix multiplication. In section 2.2.1 we argument that the set G acts
in a two-fold manner on the functions φ (x) ∈ C∞ (Ω), namely by acting on the
spacial coordinates x ∈ Ω in eq. (2.22) and on the function values φ (x) them
selves in eq. (2.25). The spaces Ω and C∞ (Ω) are both vector spaces, that is the
addition operation ’+’ and multiplication with a factor λ ∈ R are defined in both
spaces. It is thus natural to combine both Ω and C∞ (Ω) to one single vector
spaceM = Ω× C∞ (Ω). However since the functions φ (x) are unknown and we
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would also like to place constraints on their derivatives φ,K (K is a multi-index),
we combine Ω together with the Jet space Jk (C∞ (Ω)),M = Ω × Jk (C∞ (Ω)).
Jk (C∞ (Ω)) is the set of smooth differentiable functions with compact support
in Ω and their derivatives up to order k. The points z ∈ M are vectors of the
independent variables x, the dependent variable φ (x) and its derivatives φ,K

z = (x, φ (x) , φ,K (x)) (2.40)

For this work we will focus only on first order derivatives, k = 1 so that the
vectors z have the form

z = (x, φ (x) ,∇φ (x)) (2.41)

The action of G onM is straightforward

z̃ =
(
x̃, φ̃ (x̃) , ∇̃φ̃ (x̃)

)
(2.42)

x̃ = ga1...ar ◦ x (2.43)

φ̃ = ga1...ar ◦ φ (2.44)

∇̃ = J−1∇, Jµν = dx̃µ
dxν

(2.45)

Since the elements ga1...ar are continuous in the parameters ai we are free define
to a smooth path γ in the parameter space A

γ :t→
(
a1 (t) . . . ar (t)

)
(2.46)

gγ(0) = e (2.47)

The derivative of gγ(t) with respect to t at t = 0 is an element of the tangential
space of G at the neutral element e ∈ G, TeG

d

dt
gγ(t)

∣∣∣∣
t=0

= Xe ∈ TeG (2.48)

The subscript on the vector Xe denotes that it belongs to TeG. The coordinates of
Xe relative to the spaceM can be computed when we look at the derivative of
the induced action of gγ(t) on the space of smooth functions with support onM,
F (M). The action of X on F (M) can be computed by evaluating F ∈ F (M)
on the tranformed vector z̃ = gγ(t) ◦ z and the taking the derivative with respect
to t at the neutral element e

XeF (z) = d

dt
F (z̃)

∣∣∣∣
t=0

=
r∑
i=1

(
ωiµ

d

dxµ
F (z) +ωφi

d

dφ
F (z) +Dφνi

d

d∂νφ
F (z)

)
αi

13
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(2.49)

where we have

ωiµ (x) = dx̃µ
dai

∣∣∣∣
t=0

ωφi (x, φ) = dφ̃

dai

∣∣∣∣∣
t=0

αi = dai
dt

∣∣∣∣
t=0

(2.50)

Dφνi = ∂νω
φ
i −

∑
µ

∂µω
i
ν∂µφ (2.51)

The function Dφνi is called the prolonged action of gγ(t) on the gradient operator
∇ (refer to appendix for derivation). Notice that while ωiµ and ωφi are functions
defined onM, the coefficientsαi are independent ofM. They are the components
of the vector Xe with respect to the r basis operators

Xe,i = ωiµ
d

dxµ
+ ωφi

d

dφ
+Dφνi

d

d∂νφ
(2.52)

so that Xe has the operator form

Xe =
∑
i

αiXe,i (2.53)

The vector Xe only exists in the tangential space at e ∈ G, Xe ∈ TeG. However it
is possible to construct a vector Yh at a location h ∈ G by relating it to Xe with a
map lh? called the push-forward

YhF (z) = (lh?Xe)F (z) = d

dt
F
(
lh
(
gγ(t)

)
◦ z
)∣∣∣∣
t=0

(2.54)

The vector Xe operates on the function F in eq. (2.49) as a differential operator
at the point e ◦ z = z. The effect of lh? is that it transports the vector Xe to the
vector Yh which operates on F at the point lh (e) ◦ z = h ◦ z. As Yh is a smooth
function with respect to h which is defined everywhere in G it is called a vector
field. The set of vector fields is the union of all the tangential spaces over G

TG =
⋃
h∈G

ThG (2.55)

It is important to keep in mind that the coordinates of the vector field Yh are the
operators h ∈ G and not the points z ∈M. Similar to Xe in eq. (2.53) the vector
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Yh has a coordinate representation with respect to the tangential space ThG

YhF (z) =
∑
i

α′iYh,i (2.56)

Yh,i = ω′iµ
d

dxµ
+ ω′φi

d

dφ
+D′φνi

d

d∂νφ
(2.57)

There exists a unique sub set G ⊂ TG called the Lie algebra. It defined as the set
of all vector fields Xh ∈ TG which are invariant under the left action lg for any
g ∈ G

lg?Xh = Xg·h =
∑
i

αiX
i
g·h ∀g ∈ G, Xh ∈ G (2.58)

From eq. (2.58) we see that a consequence of left invariance is that the coordinate
vector α is constant under the transformation lg. This is what is referred to as
the parallel transport of α along the transformation lg. The Lie algebra G has the
property that it is closed under the antisymmetric commutator [·, ·]

[Xh, Yh] = Zh ∈ G ∀Xh, Yh ∈ G (2.59)

It is the elements of the Lie algebra G which we will use as differential operators
in the prior p (∇φ) in eq. (2.37)

2.3.1 Noether’s First Theorem

[5, 6] We are now going to make eq. (2.24) more precise by considering the
negative log-prior energy

I = −lnp (∇φ) =
∫
Ω

E (x,∇φ) dx (2.60)

we are interested in the action of G (see eq. (??)]. The energy in eq. (2.60) is said
to preserved under the Lie group G if the following relation holds

I ′ =
∫
Ω

E ′
(
x′,∇φ′

)
dx′ =

∫
Ω

{
E (x,∇φ) + ∂iδQ

i
}
dx (2.61)

where the vector-field δQi is some arbitrary smooth function. If eq. (2.61) holds
then the resulting Euler-Lagrange equations [I] remain unchanged and thus
G is a symmetry of the Euler-Lagrange equations. In it was reasoned that the
knowledge of the symmetries of the Euler-Lagrange equations [I] can be used to
make assumptions on the form of the solutions φ? and thus narrow down the
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solution space. To be more precise, the first Noether Theorem states that if the
energy integral in eq. (2.61) is preserved under the transformations eq. (??) then
the Euler-Lagrange equations must fulfill

[I]ωφ = ∂µ (Wµ − δQµ) (2.62)

where

[I] = δI

δφ
− d

dxν
δI

δφ,ν
(2.63)

are the Euler-Lagrange equations of I and the field Wµ is defined by

Wµ = − δI

δφ,µ
ωφ + ωi

(
δI

δφ,µ
φ,i − δµ,iI

)
(2.64)

When eq. (2.62) is evaluated at the solution φ? of the Euler-Lagrange equation
[I] = 0 then Wµ must be divergence-free. The form of the divergence free
vector field Wµ dictates the form of the geometry of the level-sets of φ?. We
will now show an example where knowledge of the symmetry and thus the
divergence-free Wµ fields makes basic assumptions on the solution space of the
corresponding Euler-Lagrange equations possible.

Kepler’s Two Body Problem

Kepler’s two body problem is the problem of calculating the problem of estimat-
ing the trajectory of a body of mass me (the earth) which is moving within the
vicinity of another body with mass ms (the sun). According to Newton there
exists a gravitational force between the masses coming from the energy V (r) of
the gravitational field surrounding the mass ms at the origin in R3

V (re (t)) = −me ·ms

r
r = ‖re − rs‖ (2.65)

The kinetic energy of the mass me is 1
2meṙ

2 so that the Lagrangian of the path
re (t) is

L (re (t)) = 1
2meṙ

2
e + 1

2meṙ
2
s − V (re (t)) (2.66)

The Euler-Lagrange equations are easily computed

r̈e + ms +me

r2 = 0 (2.67)

16



The parameter t is the time parameter of the two body system. The Kepler
Lagrangian in eq. (2.66) exhibits a symmetry under four different one parameter
Lie group actions, namely the action of time shift and rotations around the three
spacial axis (the group SO (3)× R)

t′ = t+ δt (2.68)
r′ = r + ∂θir

′δθi i = x, yorz (2.69)

where θi are rotation around the x-,y- or z-axis. From Noether’s theorem there
exist four corresponding conserved quantities:

H = 1
2meṙ

2 + V (re (t)) time shift (2.70)

lx = zẏ − yż Rotation around x-axis (2.71)
ly = zẋ− xż Rotation around y-axis (2.72)
lz = xẏ − yẋ Rotation around z-axis (2.73)

The conserved quantityH in eq. (2.70) is the Hamiltonian Energy of the two body
system. It constant time and thus manifests that the total energy of the two body
system does not dissipate away since there are no external forces interacting with
the two masses me and ms, that is the two body system is a closed system. The
vector l = (lx, ly, lz) (Eqs. eq. (2.71) to eq. (2.73)) is called the angular momentum
of the masses me and ms as they rotate around each other The solutions to the
Euler-Lagrange equations in eq. (2.67) are elliptic curves in the plane orthogonal
to l. The constancy of l with respect to the special orthogonal group SO (3) comes
the fact the plane is embedded in the euclidean coordinate space with unit metric,
rather some general Riemann space.

2.4 Total Variation

The earliest attempts to optimization in computer vision all had in common, the
use of isotropic priors for the regularization of the unknowns to be estimated. For
example one of the earliest attempts for image de-noising involves minimizing
the functional ([7])

E (u) =
∫ (

u− u0
)2
dx+ λ

2

∫
|∇u|2dx (2.74)

The first term in Eq. eq. (2.74) is the likelihood which states the minimizer
u? must be close in its intensity distribution to the given data u0. The second
term, the prior energy imposes smoothness on the minimizer u?. Both terms
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are quadratic in u and thus the Euler-Lagrange equations for E (u) are linear
in u making them computationally easy to solve. The problem with the prior
λ
2
∫
|∇u|2dx is that it does not allow the solutions u? to have discontinuities.

Different approaches for anisotropic priors exist, for instance [8] introduced a
quadratic prior

Eprior =
∫

(∇u)T D (∇u) (2.75)

The operator D is a local 2 × 2 symmetric valued matrix with eigenvectors
tangential to the level-sets of u0. This is why D steers the direction of the
gradients in Eq. eq. (2.75) in tangential direction of the level-sets, and thus
also of the discontinuities of u and u0. The upside is that the prior in Eq. eq.
(2.75) combined with the likelihood in Eq. eq. (2.90) still lead to Euler-Lagrange
equations linear in u. The downside of the prior in Eq. eq. (2.75) is that the
operator field D must be precomputed on the data u0, e.g with an eigenvalue
analysis of the structure tensor.

In the context of shock-filtering ([9, 10, 11]) it was shown that the functional

EL1 (u) =
∫
|∇u|dx (2.76)

has the appealing property that it does not penalize large discontinuities How-
ever its functional derivative with respect to u is ill conditioned in the case
∇u ≈ 0. To alleviate the case, [9] chose the approximative prior

EL1approx (u) =
∫ √
|∇u|2 + εdx (2.77)

which is well behaved for ε > 0. They were able to achieve good results with
relatively sharp preserved discontinuities with data u0 having low SNRs. Never
the less in the limit ε→ 0 the Euler-Lagrange equations become more and more
computationally instable. A theoretically more well conditioned form of TV is
needed which we will outline, following ([12]). To do this we need to explore
the function-space the minimizers of Eq. eq. (2.76) might belong to. Smooth
functions usmooth are functions for which∇u exists everywhere, thus they may be
minimizers of Eq. eq. (2.76). But functions udiscont containing discontinuities do
not have finite L1 norm of their gradients, EL1 (udiscont) =∞ since the gradient
∇udiscont does not exist at the discontinuities A generalization of Eq. eq. (2.76) is
possible if one assumes∇u to be a distribution, more precisely a radon measure
in the spaceM (Ω). If there exists a radon measure µ ∈ M (Ω), such that for
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every φ ∈ C0 (Ω) with compact domain, the following equality holds∫
Ω
u ·Divφdx = −

∫
φdµ <∞ (2.78)

then µ is called the weak derivative of u and we can identify∇u = µ. It is then
possible to define the function-space of bounded variation

BV = {u ∈ L1 (Ω) |∇u ∈M (Ω)} (2.79)

Now it is possible to define a norm on BV . By virtue of the Hölder relation there
exists a scalar C for which we can determine the upper bound of Eq. eq. (2.78)∫

Ω
u ·Divφdx ≤ C‖φ‖∞ (2.80)

The scalar C is the norm of the radon measure∇u and is called the total variation
of u

TV (u) = sup
{∫

Ω
u ·Divφdx | ‖φ‖∞ ≤ 1

}
(2.81)

As was discussed in [12] the functions u are geometrically piecewise smooth,
meaning there exists a partitioning {Ωk} of Ω such that (∇u)Ωk are L1 integrable.
If dlmk is a line segment in the intersection Ωm ∩ Ωk then TV (u) can be written
in the form

TV (u) =
∑
k

‖∇uΩk‖L1
+
∑
k<m

∫
Ωk∩Ωm

|uk − um| dlkm (2.82)

where uk the value of u on the portion of ∂Ωk which is interfacing with Ωm and
vice versa for um. The first term in eq. (2.82) penalizes the smooth parts of u
(the gradients (∇u)Ωk ) while the second term penalizes the length of the section
Ωm ∩ Ωk while maintaining the values uk,m and thus the jump |uk − um|. It
essentially penalizes the curvature of the line interfacing with both Ωk and Ωm.
We will make this point clear in the following section.

2.4.1 The Mean Curvature of Total Variation

In this section we will discuss the geometrical properties of the TV norm in eq.
(2.81). The sub-gradient of eq. (2.81) is equal to the set

∂TV (u) =
{
−Divσ

∣∣∣∣ σ · ν = 0 on ∂Ω, σ = ∇ u

|∇u|
if |∇u| 6= 0

}
(2.83)
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This set defines the set of lines L (v) = TV (u) + 〈Divσ|v − u〉 tangential to TV
at a point u ∈ BV . We define a one parameter Lie group γ (t), such that its
vector-field X fulfills the condition

X · u
(
ΓX (x0, t)

)
= 0 (2.84)

then its integral curves ΓX (t) = (x (t) , y (t)) are the level sets of u. The level sets
ΓX have a curvature κ and the standard formula for κ is

κ = 1∥∥∥Γ̇X∥∥∥3

L1

(ẋ · ÿ − ẏ · ẍ) (2.85)

If the vector field X is expressed by the coordinate vector ξ (x0) then it can be
shown κ is a function of the Laplacian relative to the coordinate vector ξ (x0).

κ (x0) = ∆ξξu (x0)
|∇u (x0) | (2.86)

This form can easily be transformed into a divergence quantity

κ = Div
( ∇ u

|∇u|

)
(2.87)

This shows us that the sub-gradient in Eq.: eq. (2.83) is equal to the curvature of
the level-sets ΓX (t)

κ = −∂TV (u) (2.88)

The eq. eq. (2.88) exposes the capital geometrical property of the TV norm:
The TV norm penalizes the curvature of the level-sets of an image. As κ is an
invariant of the Lie group SE (2), the group of rotations and translations, TV is
also an invariant of that group.

2.4.2 Image De-noising

Image de-noising is the problem of estimating a clean image u? given a noisy
image u0. The image u0 is connected to u? via

u0 = u? + n n ∼ D (2.89)
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whereD is some distribution and n is a noise term drawn fromD. u? is estimated
from the family of functionals

F (u) = 1
q

∫
Ω
|u− u0|qdx+ λTV (u) (2.90)

The degree q of the data term must be matched to the form of the distribution
D. Using the sub-gradient in eq eq. (2.83) the Euler-Lagrange equations can be
calculated

[F ] (u) =


|u? − u0|q−2 (u? − u0)− λDivφ inΩ

φ · ν = 0 on∂Ω
φ = ∇u

|∇u| |∇u| − nearly everywhere
(2.91)

As was discussed before the term Divφ is equal to the curvature κ on the level-set
of u. Thus the parameter λ controls how strong the curvature of the level-sets
are penalized. Never the less the functional eq. (2.90) still permits jumps in the
image u?.

2.5 Optical Flow

A prime example of an inverse problem in computer vision is optical flow.
Optical Flow labels the task of densely measuring the motion between two or
more frames captured by a camera, or the dense registration of two or more
cameras on a pixel-by-pixel basis. Optical flow is a crucial step in many areas
of computer vision. For instance optical flow estimation is a part of video
compression (citation!!) used to detect areas of the video in which the rate
brightness change is small. For example during the recording of a rigid scene
optical flow can be used to determine when the camera motion stalls. During
such periods the frames of the video can be stored in an memory efficient manner.
In recent years structure from stereography and structure from motion (video
from a single camera) have gained popularity as a means to capture 3D models
for film productions and also due to the availability of low cost 3D printing
(citation!!). In both the stereography and the structure from motion pipelines
optical flow is used for the triangulation of the dense point cloud, prior to
generation of the final 3D mesh. In the case of a dual-modal setup both cameras
may be of different types. For instance in medical imaging multi-modal dense
image registration is used to fuse image information from CT and MR modalities
of the human brain [13] and of the human spine [14].

Optical flow models belong to the category of inverse problems ([? ]).
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(a) (b) (c) (d)

Figure 2.3: Figure 2.3a: Two cameras are shown recording a scene from different
positions. The scene could could be a rigid scene or a dynamic scene
with moving objects. Figure 2.3c shows the image y captured from the
camera yc and figure 2.3d the image I from the camera Ic. Figure 2.3b
shows the optical flow d. The vectors in figure 2.3b indicate which
pixels x′ in I and x in y are mapped to each other.

In optical flow modeling the task at hand is to estimate the disparity between
two images y and I recorded by two cameras yc and Ic (see figure 2.3). Each
image is a map between the coordinate space Ω ⊂ R2 and the real numbers R.
Thus y (x) is the intensity recorded by the camera yc at the pixel location x ∈ Ω
while I (x′) is the intensity recorded by Ic at the location x′ ∈ Ω. In figure 2.3a
we have depicted a multi-modal setup in which the two cameras yc and Ic are
recording images (figures 2.3d and 2.3c) from different angles. In this context the
optical flow field is the unknown variable d which maps the location x′ in the
image I to the location x in the image y

x = x′ + d
(
x′
)

(2.92)

The optical field d is shown in figure 2.3b as a set of vectors at every pixel x′ ∈ Ω,
whose magnitude and orientation reflect the motion of the pixel x′. In an optical
flow model the the latent variableX is the vector d and the data Y are the images
y and I . The model is then described by the probability

p (d|y, I) = p (y, I|d) · p (d) (2.93)

In the following we will give a short survey on the current types optical flow like-
lihoods p (y, I|d) and current state of the art priors p (d). We will then introduce
Lie algebras and the Noether Theorem which will play a vital role the definition
of our geometrical prior.

Among the earliest methods for optical flow estimation are the methods de-
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(a) (b)

Figure 2.4

scribed in the seminal papers of Horn and Schunck [7] and Lukas and Kanade
[15]. In [7] the following model for computing the flow between two frames of a
video was proposed

Ey,I (d) = Edatay,I (d) + λEprior (d) (2.94)

Edatay,I (d) =
∫

Ω

(
y (x)− Id

(
x
))2

dx Id
(
x
)

= I
(
x + d(x)

)
(2.95)

Eprior (d) = λ

∫
Ω

∑
i

‖∇di‖2 dx (2.96)

In eq. (2.96) the frame I is warped back to the frame y by the field d(x). The
second integral in eq. (2.96) imposes an isotropic smoothness constraint on
the flow field d. The likelihood in eq. (2.96) makes the assumption that the
brightness of the scene recorded by the camera is constant from frame to frame.
This is a very strong constraint, which is rarely met in real world multi-modal
setups. Figure 2.4 shows two images recorded from a visual spectrum camera
(VSC, figure 2.4a) and a thermographic camera (TC, figure 2.4b). The recorded
object, here a carbon-fiber reinforced polymer (CFRP) has physically different
absorption and emission properties in the visual spectrum domain recorded by
the VSC then in the infra-red domain recorded by the TC. Thus the intensities in
figure 2.4a follow a completely different distribution then those in figure 2.4a .
We need a model that can bring both images onto a common intensity space.

Furthermore the isotropic smoothness term in eq. (2.96) does not allow for
discontinuities in d. Several methods have been introduced which remove the
assumption of isotropic flow [16, 17]. These Methods include (citation!!) TV-
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Regularization, anisotropic difusion guided by directional operators like the
structure tensor and level set methods of the Mumford-Shah type [18]. We will
introduce a methodology for the geometrical characterization of anisotropic
priors in section 2.2 following a review of the TV-Regularization prior in section
2.4.

We will now discuss three statistical similarity measures (citation!!) for optical
flow which avoid the assumption of brightness constancy. For this we will take
the two images y and I to be random variables with the marginal distributions
p (y) and p (I). Then the mean and the variance are defined as

E (X) =
∫
X · p (X) (2.97)

Var (X) = E
(
(X − E (X))2

)
(2.98)

2.5.1 Mutual Information

Mutual Information (MI) is a popular similarity measure used mainly in medical
imaging where images from different modalities including MR, CT and PET are
registered against each other. For images y and I from two different modalities
capturing the same scene, MI is defined with the joint distribution p (y, I) by

MI (y, I) =
∫
p (y, I) ln

p (y, I)
p (y) · p (I)dydI (2.99)

MI measures how strong the images y and I statistically depend on each other.
In the case that y and I are statistically independent, p (y, I) = p (y) · p (I), then
by eq. (2.99) MI is zero. On the other side, MI is maximal when y completely
determined by I or vice versa. In the context of optical flow MI is used to measure
the similarity between y and Id

Edatay,I (d) = −MI (y, Id) (2.100)

However, as [19] puts it, MI does not explain the kind of dependency between
images y and I , its maxima are statistically but not visually meaningful, since
it disregards any spacial information, which is essential for optical flow. Thus
optical flow likelihoods based on MI usually tend to have many local minima
rendering MI too unconstrained for optical flow.
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2.5.2 Correlation Ratio

To alleviate the problems with MI, [19] argument that a better similarity measure
would be one that measures the functional relation between the images y and
I . The base key ingredient for their proposal is that the pixel values I (x) and
y (x) are assumed to be the realizations of random variables, which by abuse
of notation we denote by Î and ŷ. Then the normalized joint histogram of the
images I and y can be interpreted as the joint probability distribution p

(
ŷ, Î

)
,

and the conditional distribution

p
(
ŷ| Î = I

)
=
p
(
ŷ, Î = I

)
p
(
Î = I

) (2.101)

encodes the spacial functional relationship between y and I . They introduced
the Correlation Ratio (CR)

η (I|y) = Var (φ? (y))
Var (I) Edatay,I (d) = −η (Id|y) (2.102)

The optimal function φ? was shown to be the expectation value of Î , conditioned
on a realization of ŷ

φ? (y) = E
(
Î
∣∣∣ ŷ = y

)
=
∫
Ip (I| y) dI (2.103)

The function φ(ŷ) maps any realization of ŷ to an expectation value of Î . As ŷ
is a random variable, φ(ŷ) is also at random. Its variance measures how well
I is functionally explained by a realization of ŷ. The measure in eq. (2.102) is
bounded between 0 and 1, 0 indicating that y and I are independent, 1 indicating
a functional relationship I = φ? (y). The function φ? although not necessarily
continuous, is measurable in the L2-sense. Thus CR is a much stronger constraint
then MI and has fewer, but more meaningful minima [19].

2.5.3 Cross Correlation

Cross Correlation (citation!!) is the strongest constrained similarity measure. It is
basically an additional constraint to CR, namely that the functional relationship
in eq. 2.102 must be linear. Then η reduces to

η (I|y) = Cov (y, I)
Var (I) · Var (y) I = λ · y (2.104)
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(a) (b)

Figure 2.5: Figure 2.5a The thick grid depicts the CCD of the low resolution
thermographic camera. The finer grid a virtual super-resolved version
of the pixels in the TC. Figure 2.5b shows the point spread function
Wσ (x, y) of the gray pixel in figure 2.5a, taken from Hardie et al. [20].
It shows that each pixel in the TC image has a non uniform response
over its surface to incoming photons.

As we will see in section ?? a measure similar to eq. (2.104) will be computed
based on the assumption that both y and I are Gaussian. The Gaussian assump-
tion is valid when both cameras y and I produce Gaussian noise and the joint
histogram is predominantly linear. Linearity in the joint histogram occurs when
the recorded scene contains materials with uniform luminosity in the frequency
bands of the cameras y and I .

2.6 Setup of the camera rig

The data acquisition apparatus consists of a visible spectrum camera (VSC)
mounted on top of a thermography camera (TC). The resolution of the VSC is
1226× 1028 pixels while that of the TC is 640× 512 pixels, both cameras with a
focal length of 25 mm. We used a sinusoidal excitation source with a frequency
of 0.1 Hz, which corresponds to a penetration depth of approximately 1.3 mm in
the CFRP.

2.7 Image Fusion

Our camera setup not only consists of two cameras with differing spectral re-
sponses, the TC and the VSC also differ in spatial resolution. However the
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likelihoods given introduced above have in common that they do not directly
model the difference in resolution. In figure 2.5a a model of the CCD of the low
resolution TC is shown overlaid with a higher resolution grid representing the
VSC. The gray region in figure 2.5a symbolizes one pixel of the TC and it can
be seen that each pixel of the TC covers a group of pixels of the VSC. Since the
TC pixel has a finite surface, we need to specify how this pixel absorbs photons
landing at different points in its area in order to relate the covered pixels of the
VSC to it. The response of each individual pixel in the TC is called the point
spread function (PSF), Wσ (x, y), the vector (x, y) being the location on the sur-
face of the TC pixel with respect to the VSC coordinate frame. Figure 2.5b is
the result of a theoretical model of a FLIR imager similar our TC. The model,
obtained by Hardie et al. [20], combines absorption properties of the CCD pixel
with physical properties of the camera lens. We can see that each TC pixel has
a non uniform response to incoming photons. Using this information we can
model a super-resolved version S of the TC image y with the help of the PSF Wσ,
by stating that y is the result of the convolution of S with Wσ

y = Wσs+ n n ∼ N (0|Cn) (2.105)

The problem of estimating S is that there is an infinite amount of high resolution
TC images S? which relate to y via eq. (2.105) since the high spacial frequency
components of S are filtered out by Wσ. In [21] Hardie suggested use of a high
resolution imager Ic whose camera center is co-aligned (hence the subscript c)
with the TC image y and correlated with S. The rationale behind their approach
is to combine the desired features such as sharp edges and corners of Ic with
the intensity spectrum of y into the super-resolved image S, while avoiding
limitations such as the noise model of y. The limitation of their model is that
the centers of the modalities y and Ic need to be co-linear. While this is the case
in remote sensing applications, the model needs to be extended to the general
case of two separated modalities. We will first outline the original model, and in
chapter 4 we will introduce a new model for optical flow based on [21].

The key ingredient in the model of [21] is that the intensities of S and Ic are
assumed to be samples drawn from the joint Gaussian p (S, Ic). As Ic is already
fixed as input data we can derive a conditional distribution for S via the Bayesian
rule

p (S|Ic) =p (S, Ic)
p (Ic)

∼ N
(
µs|Ic |Cs|Ic

)
(2.106)

Cs|Ic = Cs,s − C2
s,Ic · C

−1
Ic,Ic

(2.107)

µs|Ic (x) = µs + Cs,Ic · C−1
Ic,Ic

(Ic (x)− µIc) (2.108)
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where the variances are computed globally

Cu,v =
∫

Ω

(
u (x)− µu

)
·
(
v (x)− µv

)
dx (2.109)

We see that the mean of S conditioned on Ic, µs|Ic is linear in the values of Ic,
thus in this model the intensities of S are assumed to be globally linearly related
to the intensities of Ic. We combine eq. (2.106) with the Gaussian likelihood in eq.
(2.105) to the posterior

p (S|y, Ic) ∼ p (y|S) · p (S|Ic) = exp
(
−E (S)

)
(2.110)

with the associated energy

E (S) = 1
2

∫
Ω

(
y (x)−WσS (x)

)2
·C−1
n dx+1

2

∫
Ω

(
S (x)−µs|Ic (x)

)2
·C−1
s|Icdx (2.111)

The minimization of eq. (2.111) and thus maximization of (2.110) with respect to
S gives the analytical solution [21]

ŝ = µs|Ic + Cs|Ic ·W
T
σ

(
Wσ · Cs|Ic ·W

T
σ + Cn

)−1 (
y −Wσµs|Ic

)
(2.112)

Eq. (2.112) is intractable to compute due to the dense operator Wσ and the
matrix-inverse operation. In [22] a computationally tractable approximation was
introduced

ŝ = µs|Ic + Cs̃|Ĩc ·
(
Cs̃|Ĩc + Cn

)−1 (
y − µ̃s|Ic

)
(2.113)

Ĩc = WσIc s̃ = Wσs ≈ y (2.114)

The key issue is that this method requires both modalities, Ic and y, to be co-
registered. Since we are dealing with an optical flow problem y and thus S is
shifted by a disparity d (x) from Ic. This disparity has to be taken in to account
by our model in chapter 4. The second issue is that the assumption that S and Ic
are globally joint Gaussian is not supported by our data. However by computing
Cs|Ic in local sub-domains of the space Ω we can show that S and Ic are locally
joint Gaussian. This will also be shown in chapter 4.
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3 Geometrical Prior

We shall now proceed to introduce a prior based on the considerations made in
chapter 2.2. For this we review the structure tensor. Consider an image φ (x).
We would like to characterize the dominant strength and the orientation of∇φ
within a sub domain A ⊂ Ω. In [23] it was suggested that the orientation vector
n of the level sets in φA are constrained by

nT · ∇φ (x)
∣∣∣
x∈A

= 0 (3.1)

The vector n is assumed to be constant within the domain A. It can be computed
by minimizing the energy

J (n) = 1
2

∫
A
w (x) nT ·

(
∇φ (x)∇Tφ (x)

)
n = 1

2nTSn (3.2)

The matrix S is called the structure tensor. Since S is a symmetric matrix there
exists an orthogonal decomposition

S = V TDV D =
(
λ1 0
0 λ2

)
V = (v1,v2) (3.3)

The eigenvalues give of the squared strength of the gradient in the basis defined
by the columns of V . They characterize the structure in A in the following way

• λ1 > λ2: Strong linear level set with normal vector v1

• λ1 ≈ λ2 ≈ 0: No strong gradient, image is approximately constant

• λ1 ≈ λ2 � 0: No linear level sets, level sets have strong curvature

The constraint in eq. (3.1) can be explained with the method in Chapter 2.3 as
the action of the translational group T and the associated algebra T . The basis of
T are the Cartesian derivative operators ∂x and ∂y and the elements of T have
the form

X = ωx∂x + ωy∂y ∈ T (3.4)
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The integral curves of X , ΓX (s) (see eq. (??)) are the straight lines

ΓX (s) = x0 + ωs (3.5)

If s is the arc length of ΓX then the coefficient vector ω is the normalized vector
n and the constraint eq. (??) is written in terms of the vector field X

d

ds
φ
(
ΓX (s)

)∣∣∣∣
s=0

= Xφ (x0) = 0 (3.6)

Since the basis operators ∂x and ∂y commute, {∂x, ∂y} = 0 the vector field X is
translation invariant and as a consequence of eq. (3.6), the structure tensor S is
also translation invariant. Under the rotation group SO (2) the structure tensor
is not invariant. Nonetheless it has an important transformation property: the
transformed structure tensor S′ may be written in terms of the old matrix S and
the rotation matrix Rθ ∈ SO (2)

S′ = RTθ SRθ (3.7)

3.1 The Generalized Structure Tensor

In [24] a generalization of the structure tensor was introduced. The generalization
is based on the introduction of the canonical coordinates ξ (x) and η (x) which
pose a deformation of the Cartesian coordinate space Ω. The prime example
is the transformation from Cartesian to polar coordinates (x, y) → (r, θ). The
gradient with respect the new coordinates can be expressed with the Cartesian
coordinates via the Jacobian matrix J(

∂ξ
∂η

)
= J−1 ·

(
∂x
∂y

)
J =

(
ξx ηx
ξy ηy

)
(3.8)

The differential operators {∂ξ, ∂η} also form the basis for the algebra H of the
general Lie group H, that is [∂ξ, ∂η] = 0 if and only if the following conditions
hold

∂xξ = −∂yη (3.9)
∂yξ = ∂xη (3.10)
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The eqs. eq. (3.10) are the famous Cauchy-Riemann differential equations and
their combination give the separate wave equations

∆ξ = 0 (3.11)
∆η = 0 (3.12)

A solution of eq. (3.11) implies that there must also exist a solution for eq. (3.12).
This is why one calls the pair {ξ, η} a pair of conjugate functions. Within the
coordinate frame (ξ, η) the operators {∂ξ, ∂η} obey the natural conditions

∂ξξ = 1, ∂ξη = 0
∂ηξ = 0, ∂ηη = 1 (3.13)

The integral curves ΓX generated by the operators {∂ξ, ∂η} can be written as an
exponential Taylor series

ΓX (s) = exp (s ·X) X = ωξ∂ξ + ωη∂η (3.14)

Level set functions φ satisfying

d

ds
φ
(
ΓX (s)

)
= 0 (3.15)

may exist if and only if ([24]) the exponential series in eq. (3.14) separates which
according to the Baker-Hausdorff-Campbell formula is only the case when the
operators {∂ξ, ∂η} commute

exp (s ·X) = exp (s · ωξ∂ξ) · exp (s · ωη∂η)⇔ [∂ξ, ∂η] = 0 (3.16)

On the other side if the coordinate functions (ξ, η) satisfy the Cauchy-Riemann
equations (eqs. (??)) then one verifies that [∂ξ, ∂η] = 0

The Group O (2)

We will now show an example on the group O (2), the group of rotations and
dilations. The transformation of the Cartesian coordinate system to the polar
coordinates in 2 dimensions is given by the equations

x = r · cos (θ) (3.17)
y = r · sin (θ) (3.18)
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Using the expression in eq. (3.8) the Jacobian J is easily calculated

J = 1
r

(
x −y
y x

)
(3.19)

so that the derivative operators {∂ξ, ∂η} may be expressed in the Cartesian
domain

∂ξ = x∂x + y∂y ∂η = −y∂x + x∂y (3.20)

The coordinates ξ and η that satisfy eq. (3.13) with the derivative operators in eq.
(3.20) are functions of the Cartesian coordinates

ξ (x, y) = log (r) r =
√
x2 + y2 (3.21)

η (x, y) = arctan
(
y

x

)
(3.22)

The function η (x, y) is easily recognizable as the angle θ to the x-axis while the
function ξ (x, y) is not the radius r. This is because the operators {∂ξ, ∂η}must
both have the same dimension, that means they must be invariant dilations
r → λ · r.

The level sets of the algebra spun by the operators {∂ξ, ∂η} are linear with respect
to the coordinates (ξ, η) by virtue of eq. (3.13). Thus by arguments similar those
following eq. (??) , the authors in [24] introduced the generalized structure tensor
(GST)

Sξ,η =
∫ ( (∂ξφ)2 ∂ξφ∂ηφ

∂ξφ∂ηφ (∂ηφ)2

)
dξdη (3.23)

As Sξ,η is a symmetric matrix there exists a decomposition

Sξ,η = V TDV D =
(
λξ 0
0 λη

)
V = (v1,v2) (3.24)

The rotation matrix V acts in the (ξ, η) coordinate space. It does not necessar-
ily correspond to rotations in the Cartesian coordinates (x, y). See [24] for a
discussion on the steer-ability of the GST.
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3.1.1 The Transformation Properties of the GST

Within the generalized coordinate frame (ξ, η) the action of the group G manifests
itself as a translation

gε1,ε2 ◦
(
ξ
η

)
=
(
ξ + ε1
η + ε2

)
(3.25)

As mentioned before the basis operators {∂ξ, ∂η} and as a consequence all ele-
ments of the Lie algebra G commute with G (expand on left invariance!!)

gε1,ε2 ◦X = X ◦ gε1,ε2∀X ∈ G (3.26)

Another important fact is that under the transformation in eq. (3.25) the volume
element dξdη is invariant. The consequence is that the GST in eq. (3.23) is
invariant with respect to the generalized translation in eq. (3.25)

gε1,ε2 ◦ Sξ,η = Sξ,η (3.27)

The GST has another interesting transformation property. As eq. (3.24) indicates,
there exists an action of the rotation group SO (2) on the generalized coordinate
frame (ξ, η)

ξ′ = cos (θ) ξ + sin (θ) η (3.28)
η′ = −sin (θ) ξ + cos (θ) η (3.29)

The action of the transformation in eq. (3.29) yields a basis transformation of the
Lie algebra (∂ξ, ∂η)

∂′ξ = cos (θ) ∂ξ + sin (θ) ∂η (3.30)

∂′η = −sin (θ) ∂ξ + cos (θ) ∂η (3.31)

Under the change of basis in eq. (3.31) the GST transforms like a tensor

S′ξ,η = RTSξ,ηR R =
(

cos (θ) sin (θ)
−sin (θ) cos (θ)

)
(3.32)

It is important to note (see [24]) that the transformation in eq. (3.29) is not
necessarily connected to the rotations on the Cartesian space Ω the functions
ξ (x) and η (x) are embedded in. In fact it deforms the level sets corresponding
to (∂ξ, ∂η) in a highly non linear manner.
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3.2 Structure Tensor Based Prior

Our objective is to construct a prior P (∇φ) which is invariant to the transfor-
mations in eq. (3.32). We want to define a finite set of Lie groups Gi for which
the classes of level sets AGi are minimizer sets for P (∇φ) (see eq. (??)). The
methodology goes as follows: We define energy E (∇φ) (the negative log of
P (∇φ)) as a product of the determinants of the corresponding GSTs Sξi,ηi

E (∇φ) =
∏
i

Det (Sξiηi) (3.33)

The energy in eq. (3.33) inherits the translation invariance (only when φ ∈ AGi??)
of the GST in eq. (3.27), which we will show now. Due to the rotation invariance
of the determinants in eq. (3.33) we can write the individual determinants in
terms of their eigenvalues

Det (Sξiηi) = λξiληi (3.34)

We can write the eigenvalues λξi and ληi as the squares of the orthogonal opera-
tors Xξi and Xηi which constitute a rotation of the basis (∂ξi , ∂ηi)

Det (Sξiηi) = (Xξi (φ))2 (Xηi (φ))2 (3.35)

Under the adjoint action of the group Gi the operators Xξi and Xηi are invariant

d

ε1

(
gε1,ε2 ◦Xξ ◦ g−1

ε1,ε2

)∣∣∣∣
ε1,ε2=0

= [Xξ, ∂ξ] = 0 (3.36)

d

ε2

(
gε1,ε2 ◦Xξ ◦ g−1

ε1,ε2

)∣∣∣∣
ε1,ε2=0

= [Xξ, ∂η] = 0 (3.37)

eq. (3.37) also holds for Xηi . It is evident that under the adjoint action the deter-
minant Det (Sξiηi) remains invariant. Since the determinant Det (Sξiηi) vanishes
when φ ∈ AGi the whole energy in eq. (3.33) is invariant to any of the adjoint
actions of the Gi if φ is locally in any of the sets AGi

The open question which remains to be answered is, how does the energy eq.
(3.33) transform when φ is not locally contained in any of the AGi . The basis
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elements of two different Gi and Gj do not necessarily commute[
∂ξi , ∂ξj

]
6= 0 (3.38)[

∂ξi , ∂ηj

]
6= 0 (3.39)[

∂ηi , ∂ηj

]
6= 0 (3.40)

(3.41)

The question arises that when φ is locally within the vicinity of a particular
φ?i ∈ AGi , ‖φ− φ?i ‖ ≤ δ will it be brought further away from φ?i under the action
of Gj , that is ‖gj ◦ φ− φ?i ‖ ≤ δ′, δ′ > δ? Or can the groups Gi and Gj be related
to each other such that δ′ < δ? To answer this we look at the product algebra
Gi × Gj spun by the basis elements Xl. These operators may not be commutative
but may be in involution

[Xi, Xj ] =
∑
l

C li,jXl (3.42)

If this is the case then the commutator [Xi, Xj ] is also an element of the joint
algebra Gi ×Gj . (if φ is roughly linear, then a dilation ∂r will stretch the level sets
to a line thus resulting in a level-set of the translation group)

3.2.1 Analysis of the Eigenvalues of the Rotation Dilation Group

We will now turn our focus on the eigenvalues of the Rotation Dilation GST. We
use the polar coordinates from eq. (3.18). The integration window of the GST is

ξ0 − εξ < ξ0 < ξ0 + εξ (3.43)
φ0 − εφ < φ0 < φ0 + εφ (3.44)

where ξ0 = ln (r0) so that eq. (3.44) translates to a region around the curvature
radius r0 and the angle φ0. The level sets parameterized by the polar coordinates
in the region in eq. (3.44) are the sectional curves of constant curvature k−εξ0 <
k0 < k

εξ
0 , k0 = 1

r0
. The Rotation Dilation GST from eq. (3.23) can be written in

Cartesian coordinates

Sξ,η =
∫ y0+ε

y0−ε

∫ x0+ε

x0−ε

(
(∂ξφ)2 ∂ξφ∂ηφ

∂ξφ∂ηφ (∂ηφ)2

)
1
r2M (x, y) dxdy (3.45)

The mask M (x, y) enforces the conditions eq. (3.44). The orientations of the level
sets in this domain are fixed and thus This is why the minimum eigenvalue of
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the GST is zero only for level sets matching the curvature k0 and the orientation
φ0. Since the integration space of Sξ,η is centered around φ0, Sξ,η is not rotation
invariant. In figure 3.1a the image function I (x, y) = −r2 is depicted. The GST
was evaluated for r0 = 30 and φ0 = π

4 (Figures 3.1b to 3.1d) and φ0 = π
2 ((Figures

3.1e to 3.1g)). The eigenvalue corresponding to Xη, the derivative in angular
direction is denoted by λ2 (Figures 3.1d to 3.1g). It is observed that λ2 has a
minimum at the radius r0 = 30 and the angles φ0 = π

4 (figure 3.1d) and φ0 = π
2

(figure 3.1g). As a result the determinant of the GST is only minimal at exactly
those values (see figures 3.1b and 3.1e).
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 3.1: Figure 3.1a is the image I (r) = −r2, figures 3.1b to 3.1d are the
determinant, higher and lower eigenvalue of the GST for r0 = 30 and
φ0 = π

4 . Figures 3.1e to 3.1g are same for φ0 = π
2 . 37
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4 Geometrical Optical Flow Model

In this chapter we will introduce our new model optical flow based on the image
fusion algorithm from Hardie et al. [21]. We will address the two issues outlined
in section 2.7, namely that the images y and I (Figures ??b and ??d) are not
co-aligned and not joint Gaussian.

4.1 Disparity

The main objective of this chapter is to introduce a model which is capable of
estimating the optical flow d(x) mapping the low resolution TC image y (figure
2.4b ) to the high resolution VSC image I (figure 2.4a ). There basically three
problems with the data y and I .

Problem a: The images y and I have different intensity distributions, since the TC and
the VSC are sensitive to different spectra.

Problem b: The images y and I have different resolutions.

Problem c: The image I contains textural information which is not contained in y

As is explained in the background (see section 2) the optical flow d can only be
estimated with a likelihood p (y, I|d) which measures how similar the images
y and I are given d. However a likelihood that measures the similarity of the
intensities of y and I like the one in eq. (2.96) would fail since the intensities
cannot be compared due to problem a.

The difference in resolution in problem b causes an ambiguity of the optical field
d since the features in the lower resolved image y are blurred and it is not clear
which pixel in I relates to which pixel in y. To demonstrate the issue we have
created test data ysyn and Isyn in figure 4.1. Isyn in figure 4.1a shows a sharp
linear boundary and ysyn (figure 4.1b) is a convolution of Isyn with a Gaussian
Gσ of standard deviation σ = 5 which is translated by 10 pixels. We used the
model of Horn et. al

E (dsyn) = 1
2

∫
Ω

(
ysyn (x)− Isyndsyn (x)

)2
dx+ λ

2
∑
i

∫
Ω
‖∇dsyni (x)‖2 dx (4.1)
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(a) (b) (c) (d)

Figure 4.1: Figure 4.1a shows a synthetic high resolution image Isyn. In figure
4.1b we show a low resolution image ysyn. ysyn is computed by
convolution of Isyn with Gaussian Gσ with standard deviation σ = 5
and translated by 10 pixels relative to Isyn. Figure 4.1d shows the flow
d computed with the model in eq. (2.96), which does not incorporate
knowledge of the scale difference between ysyn and Isyn and figure
4.1c show the warped image Isynd

(see eq. (2.96)) to compute the optical flow dsyn mapping Isyn to ysyn (see figure
4.1d). Figure 4.1c shows the image Isyndsyn (x) = Isyn

(
x + dsyn (x)

)
. We can see

that the optical flow d corrupts the sharp boundary of Isyn in order to match it
to the varying gray levels of the blurred boundary in ysyn (figure 4.1b).

In order to solve problem a and b we need a method to transform I to an image
S which has the same intensity distribution as y but the same resolution as I . A
putative likelihood p (y, S|d) can measure how similar the images y and S are
given d.

If I a feature not existent in y or vice versa, the optical flow d is ambiguous and
the ambiguity may only be resolved upon removal of the contradicting feature.

In section 2.7 a method was introduced which produces a super-resolved image
S given co-aligned data y and Ic.

The model is defined by the posterior distribution for S (see eq. (2.106))

p (S|y, Ic) = p (y|S) · p (S|Ic) (4.2)

− ln (p (y|S)) = 1
2

∫
Ω

(
y (x)−WσS (x)

)2
· C−1

n dx (4.3)

− ln (p (S|Ic)) = 1
2

∫
Ω

(
S (x)− µs|Ic (x)

)2
· C−1

s|Icdx (4.4)
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with the conditional variance and mean

CS|Ic = CS,S − C2
S,Ic · C

−1
Ic,Ic

(4.5)

µS|Ic = µS + CS,Ic · C−1
Ic,Ic

(I − µI) (4.6)

In the conditional prior p (S|Ic) in eq. (4.4) pixels in S and in Ic have a one-on-one
relationship, so that it is natural to map pixels in I to S rather than to y directly.
We model the disparity between the images S and I by setting the co-aligned
VSC image Ic to be the result of the original VSC I , warped by an unknown
optical flow field d(x),

Ic (x) = I (x + d (x)) = Id (x) (4.7)

Substituting eq. (4.7) into eq. (4.2) and following, we obtain the posterior

p (S|y, I,d) = p (S|y, Id) (4.8)

with the energy

Epost (S,d) = 1
2

∫
Ω

(
y (x)−WσS (x)

)2
·C−1

n dx+ 1
2

∫
Ω

(
S (x)−µs|Id (x)

)2
·C−1

s|Id
dx

(4.9)

While keeping d fixed we minimize Epost (S,d) with respect to S and obtain
similar to eq. (2.113) a closed form solution for S

Ŝ = µs|Id + Cs̃|Ĩd
·
(
Cs̃|Ĩd

+ Cn
)−1 (

y − µ̃s|Id

)
(4.10)

We insert the simplified closed form expression for Ŝ from eq. (4.10) into Epost
and obtain an energy measuring the similarity between y and Ĩd = WσId

Edata (d) = Epost
(
Ŝ,d

)
(4.11)

= 1
2

∫
Ω

(
y (x)− f · Ĩd (x)

)2
· Cs|Ĩd

(
Cs|Ĩd

+ λCn
)−2

(4.12)

f = Cy,Ĩd
C−1
Ĩd,Ĩd

(4.13)

The data term Edata defines a likelihood for d

p (y, I|d) = exp (−Edata (d)) (4.14)

We remember that the problems with the data y and I are that they (a) have
different intensity distributions and (b) different resolutions. The likelihood in eq.
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(a) (b) (c) (d)

Figure 4.2: Figure 4.2a shows a synthetic high resolution image Isyn. In figure
4.2b we show a low resolution image ysyn. ysyn is computed by
convolution of Isyn with Gaussian Gσ with standard deviation σ = 5
and translated by 10 pixels relative to Isyn. Figure 4.2d shows the
flow d computed with the model in eq. (4.14), which incorporates
knowledge of the scale difference between ysyn and Isyn and figure
4.2c show the warped image Isynd

(4.14) solves the problems a and b elegantly in one approach by introducing the
latent variable S. The low resolution component of S, WσS is coupled through
the likelihood p (y|S) in eq. (4.3) to the TC image y. The prior p (S|I) in eq.
(4.4) couples S to the high resolution image I . As a result Id in Edata in eq.
(4.18) is filtered by the PSF Wσ to match the scale of y. Furthermore the factor f
transforms the intensity range of the filtered image Ĩd to a range similar to that
of y so that Edata is a measure for the similarity between y and f · Ĩd.

To demonstrate that our likelihood Edata in eq. (4.14) respects the difference in
scale between y and I we have estimated the flow with Edata as the similarity
measure for the data ysyn and Isyn in figure 4.1. The standard deviation σ in
Edata was set to σ = 5 and the factor f is automatically computed as f ≈ 1
since the intensity distributions of ysyn and Isyn are aproximately the same. The
image Isynd is convolved with Wσ. The resulting image Ĩsyn has the same scale as
ysyn. The resulting optical flow dsyn is shown in figure 4.2d. Notice the blurred
boundary dsyn around the linear feature in Isyn (figure 4.2a). This is the result of
Edata in eq. (4.14) measuring the difference between ysyn and the blurred image
Ĩsynd = WσI

syn
d . In eq. (4.2c) we see Isynd . The linear boundary has been warped

by dsyn without being corrupted like in figure 4.1c.
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(a)

Figure 4.3: Joint Histogram of the TC image figure 2.4b and the VSC image figure
2.4a . We observe that there is no linear relationship between the TC
and the VSC

VSC image TC image Histogram

(a) (b) (c)

(d) (e) (f)

Figure 4.4: Different roi’s and their joint histograms. A grid is shown in the
VSC and the TC image to emphasize the disparity between them.
The gridsize is 10 pixels. In the histograms we see there is a linear
relationship between the VSC and the TC roi’s
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(a) (b) (c)

Figure 4.5: Median conditional variance Ĉσ,as|I for a = 5 (figure 4.5a), a = 23
(figure 4.5b) and a = 33 (figure 4.5c). We can see that for small values
of a Ĉσ,as|I has a minimum at σ < 2, and for larger values of a the

profile changes so that the minimum of Ĉσ,as|I is at σ ≥ 10

4.2 Localization

The assumption that the intensities of the images y and I are globally linear
related is a very strong constraint that can hold in most cases only unimodal data.
In the case of the VSC and TC data in figure ?? the assumption of linearity fails.
In figure 4.3 the global joint histogram of the VSC and the TC image is shown.
We can see that the distribution in the joint histogram lacks a linear relationship
between the TC and the VSC. However in figure 4.4 we have evaluated the
histogram within local region of interests. The histograms in figures 4.4c and 4.4f
show that within the roi’s the assumption of linearity between the intensities of
the TC and the VSC is well supported. Therefore we propose a local version of
the variance in eq. (2.109)

Cu,v (x0) =
∫

Ω
ω (x− x0) (u (x)− E (u,x0)) · (v (x)− E (v,x0)) (4.15)

where ω is a window function which we take to be constant within a subset
W ⊂ Ω

ω (x) =
{ 1
|W |−1 0 ≤ x, y ≤ a

0 else
(4.16)

Then Cσ,as|I (x) becomes a local meassure that meassures how linear the intensities
of y and I are within the sub domain W . The problem that arises is how large
to set the window size a. If it is set too small the signal to noise ratio will be
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too small so that not enough information of the features in the TC and the VSC
image are captured to robustly register them. On the other hand if a is set too
large we eventually loose the local linearity between the TC and the VSC image.
In figure 4.5 we have plotted the median conditional variance

Ĉσ,as|I = median
(
Cσ,as|I (x)

)
(4.17)

as a function of σ for three fixed values of the window size a. In figure 4.5a
(a = 5) Ĉσ,as|I has a minimum for σ < 2, and in figure 4.5c (a = 33) it is minimal

for σ ≥ 10. The profile of Ĉσ,as|I changes from monotonic increasing to monotonic
decreasing for small to large values of a. Since we know the value for the scale
parameter σ, σ? = 2 from the ccd resolutions of the cameras, the idea find the
optimal value a? such that Ĉσ,a

?

s|I is minimal at σ = σ?. For a = 23 this is the case
as we see in figure 4.5b. Thus for the data in figure ?? a? = 23 is the optimal
value so that Ĉσ,a

?

s|I has physically meaningful minimum σ? = 2. The local data
term Edata now has the form

Edata (d) = 1
2

∫
Ω

(
y (x)− f(x) · Ĩd (x)

)2
· Cσ

?,a?

s|Ĩd
(x)

(
Cσ

?,a?

s|Ĩd
(x) + λCn

)−2

(4.18)

f(x) = Cy,Ĩd
(x)C−1

Ĩd,Ĩd
(x) (4.19)

and together with our prior from chapter 3 the energy for the complete optical
flow model is

E (d) = Edata (d) + λ

2

(∑
i

Det (S (di))
)

(4.20)

The matrix S (di) is the structure tensor (see eq. (3.2)) acting on each component
of the optical flow d. In this model we are making the assumption that the motion
boundaries are locally linear. This assumption is valid for object boundaries
with small curvature but as we will see in chapter ?? this assumption fails at
junction points in the optical flow field, since those are where objects are partially
occluding each other and moving in opposite directions.

4.3 The solution algorithm

To minimize 4.20 and obtain the optimum flow field d̂ we deploy a simple
newton scheme with a nested linearization of 4.20. The linearized model is
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solved by a conjugate gradients algorithm with block Jacobi preconditioning.
The problem with this approach is that the regularizer is quartic in the flow field
components and thus the linearization becomes numeric instable for the initial
steps of the algorithm.

Algorithm 1 Optical Flow with Structure Tensor prior

Initialize d0 = 0
Set r0 = δE(d)

δd (d0)
scale s = sMax
while s > 1 do

downsample ys = Gs ? y0, Is = Gs ? I0
while ‖r‖ > ε or k < N do

set dk+1 = dk + αδ

expand E (dk+1) = E (dk) + αbTk δ + α2

2 δ
TQkδ

solve Qkδ = bk for δ with conjugate gradients and suitable precondi-
tioning

compute dk+1 = dk + αδ, k → k + 1
end while
upsample dN , set d0 = dN , k = 0
s = s− 1

end while

The problem arises in step 9 of the iterative algorithm. The second functional
derivative Qk of the energy model 4.20 consists of one part comming from the
likelihood and one part coming from the prior, Qk = Qdatak + λQregk . The matrix
Qregk is the second derivative of the prior in 4.20 with respect to d. At small k
its eigenvalues are small due to the initial guess d0 = 0. The matrix Qdatak is
the second derivative of the likelihood in eq. (4.20). In regions where there is
no motion the eigen values of Qdatak are also small. This makes the linearized
solution in step 9 numerically instable. Our solution to this problem is to extend
4.20 to include an L2 prior on the flow field d but with a small lagrange multiplier
λ2

E (d) =
∫ (

y − ŝI,d
)2 · Cs|Id + λ

2

(∑
i

(Det (S (di)) + λ2 ‖∇di‖)
)

(4.21)

With the L2 prior in 4.21 the linearized solution in step 9 becomes numerically
stable.
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5 Results

5.1 Uni-Modal Data

We will now discuss the results of our optical flow method on the middleburry
data set for which there exists ground truth (GT). As the GT is the true flow field
for the data we use it to asses the quality of the computed optical flow. To do this
we define the Endpoint error (EPE) and the angular error (AE) as

eEPE = ‖v− vgt‖ (5.1)
eAE = cos (^ (v,vgt)) ∈ {−1, 1} (5.2)

The EPE eEPE meassures how well the computed optical flow v fits the true
optical flow vgt. In cases where v does not match vgt well, we would still like to
check how both vectors are aligned. This alignment is depicted by the AE values
ranging between −1, for minimal alignment (worst case), and 1 for maximal
alignment (best case).

5.1.1 Middleburry Dataset

In figure 5.1 the rubber whale sequence of the middleburry data set is shown, and
in figure 5.1b the corresponding ground truth vgt. In figure 5.1d the computed
flow-field v is shown for a filter size of 11, while in figure 5.1c the resulting flow
for the TV model is shown. Figures 5.3 and 5.4 show different region of interrests
(roi) for which the EPE and AE are shown on a pixel basis for the structure tensor
model and Figures 5.5 and 5.6 show the same for the TV model. We can observe
from the comparison between figures 5.1d and 5.1c that the TV model produces
smoother results which are closer to the ground truth (figure 5.1b). In tables 5.1
and 5.4 the median values for the EPE and AE in various region of interrests are
listed. Indeed we can obeserve that the EPE for the TV is approximately half the
value of that of the structure tensor model. We chose the median as opposed to
the mean EPE as it is robust outlier values of the EPE at single pixel locations
and thus gives a better assessment of the quality of the flow within the roi.
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Figure Filtersize Median, Min, Max EPE Median, Min, Max AE

figure 5.3a
7 2.36, 0.01, 7.24 0.42, −1.00, 1.00
9 1.32, 0.00, 6.02 0.87, −1.00, 1.00
11 1.15, 0.00, 6.45 0.91, −1.00, 1.00

figure 5.3f
7 0.84, 0.01, 13.35 0.87, −1.00, 1.00
9 0.46, 0.01, 8.23 0.97, −1.00, 1.00
11 0.40, 0.00, 8.25 0.98, −1.00, 1.00

figure 5.4a
7 0.47, 0.01, 5.22 0.97, −0.96, 1.00
9 0.28, 0.00, 3.71 0.99, −1.00, 1.00
11 0.25, 0.00, 2.50 0.99, −1.00, 1.00

figure 5.4f
7 0.44, 0.00, 2.73 0.98, −1.00, 1.00
9 0.34, 0.00, 2.65 0.99, −1.00, 1.00
11 0.30, 0.00, 3.12 0.99, −1.00, 1.00

Table 5.1: EPE and AE analysis
EPE and AE values for different region of interests and filter sizes (Figures 5.3a to
5.4f). The second column shows the median, minimum and maximum EPE per
roi. The third column shows the median, minimum and maximum AE per roi.
The table shows that the EPE gets better with increasing filtersize. Despite this
the values for roi’s with non-linear geometry (figure 5.3) generally have higher
EPE values than the roi’s with linear or constant geometry (figure 5.4)

Table 5.1 shows also how the EPE and the AE vary with increasing filtersize:
The EPE decreases while the AE increases. In figure 5.4 the roi’s have mostly a
constant motion field or a motion field with linear boundary, thus according to
table 5.1 they have lower EPE values then the roi’s in figure 5.3. The roi with
the largest discrepancy from the group of linear motions is figure 5.3a which
depicts a rotating wheel. Since the wheel is largely free of texture, the motion
field (figure 5.3d) is penalized by the structure tensor prior in such a way that
it aquires spurious linear motion boundaries. This is the reason for its high
EPE value. The roi in figure 5.3f shows another case of a motion field violating
the assumption of linear motion boundaries. In the ground truth roi in figure
5.3j there are two junction points where three objects are occluding and moving
against each other. This type of motion is penalized by the structure tensor
prior so that the flow at these points is oversmoothed. The TV model (ref!) like
the structure tensor model penalizes non linear motion boundaries. figure 5.5d
shows the result of the TV model for the wheel roi. Just like in the structure
tensor model, the flow on the circumference of the wheel is heavily penalized
resulting in high EPE values and wrong AE values (see table 5.4). figure 5.5i
shows the resulting flow of the TV model at the two junctions in figure 5.5f.
Similar to our proposed prior the flow is oversmoothed at the junctions resulting
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Figure Median, Min, Max EPE Median, Min, Max AE
figure 5.5a 1.38, 0.00, 5.83 0.92, −1.00, 1.00
figure 5.5f 0.20, 0.00, 3.34 1.00, −1.00, 1.00
figure 5.6a 0.04, 0.00, 2.08 1.00, −1.00, 1.00
figure 5.6f 0.09, 0.00, 2.06 1.00, −1.00, 1.00

Table 5.2: EPE and AE analysis
EPE and AE values for different region of interests for the TV model (Figures
5.5a to 5.6f). The first column shows the median, minimum and maximum EPE
per roi. The second column shows the median, minimum and maximum AE per
roi. Compared to table 5.1 the median EPE is lower for nearly all roi’s, while the
median AE do not differ that much

Figure Filtersize Median, Min, Max EPE Median, Min, Max AE

figure 5.7a
7 0.73, 0.00, 6.80 0.99, −1.00, 1.00
9 0.60, 0.00, 7.29 0.99, −1.00, 1.00
11 0.96, 0.01, 15.60 0.98, −1.00, 1.00

figure 5.7f
7 0.36, 0.00, 7.00 1.00, 0.00, 1.00
9 0.27, 0.00, 6.79 1.00, 0.00, 1.00
11 0.41, 0.01, 6.55 1.00, 0.00, 1.00

Table 5.3: EPE and AE analysis
EPE and AE values for different region of interests and filter sizes (Figures ??
to ??). Since the motion boundaries in figure 5.2a are all curvilinear there is no
correlation between the filtersize and the EPE.

in high EPE values (see table 5.4).

On the otherside both models are faithful to roi’s with constant motion or linear
motion boundaries (see figures 5.4 and 5.6). In figure 5.4d we see that the
structure tensor model inflicts more of the texture from the underlying data
(figure 5.4a) on the estimated flow then the TV model (see figure 5.6d for the
result of the TV model) thus leading to a slightly higher EPE value (table 5.1).
Figure 5.4i shows an example of an roi with a linear motion boundary for the
structure tensor model. Comparing it to the corresponding result for the TV
model figure 5.4i, we see that the structure tensor model produces sharper lineat
motion boundaries.

In figure 5.2 another sequence of the middleburry data set is shown. In this
sequence the camera is rotating around a hydrangea. As the ground truth shows
there are no linear motion boundaries, thus only the constant motion of the
background is correctly detected (upto some artifacts in the upper left corner in
figure 5.2d), see the EPE and AE values in figure 5.7 and table 5.3.
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(a) (b)

(c) (d)

Figure 5.1: Rubberwhale Sequence
Figure 5.1a shows one frame of the sequence. figure 5.1d shows the estimated
optical flow, figure 5.1c the result of the TV model and figure 5.1b shows the
provided ground truth
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(a) (b)

(c) (d)

Figure 5.2: Hydrangea Sequence
Figure 5.2a shows one frame of the sequence. figure 5.2d shows the estimated
optical flow, figure 5.2c the result of the TV model and figure 5.2b shows the
provided ground truth
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Region of interest EPE AE Resulting Flow Ground Truth vgt

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.3: Error Analysis ST model: This figure shows two examples of motion
field with nonlinear boundaries. In figure 5.3c we see that along
the circumference of the wheel the EPE has the largest values and
in figure 5.3h the is largest the junction point where three objects ar
moving against each other.

Region of interest EPE AE Resulting Flow Ground Truth vgt

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.4: Error Analysis ST: This figure shows two examples of motion fields
with linear boundaries. In figures 5.4d and 5.4i we can see that the
resulting flow with texture inflicted from the data. Nevertheless the
EPE values are nearly homogenous and small (see figures 5.4c and
5.4h)
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Region of interest EPE AE Resulting Flow Ground Truth vgt

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.5: Error Analysis TV model: This figure shows two examples of motion
field with nonlinear boundaries. In figure 5.5c we see that along
the circumference of the wheel the EPE has the largest values and
in figure 5.5h the is largest the junction point where three objects ar
moving against each other.

Region of interest EPE AE Resulting Flow Ground Truth vgt

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.6: Error Analysis TV: This figure shows two examples of motion fields
with linear boundaries. In figures 5.6d and 5.6i we can see that the
resulting flow with texture inflicted from the data. Nevertheless the
EPE values are nearly homogenous and small (see figures 5.6c and
5.6h)
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Region of interest EPE AE Resulting Flow Ground Truth vgt

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.7: Error Analysis:
Second Column: Endpoint Error, Third Column: Angular Error.

Region of interest EPE AE Resulting Flow Ground Truth vgt

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.8: Error Analysis:
Second Column: Endpoint Error, Third Column: Angular Error.
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Figure Median, Min, Max EPE Median, Min, Max AE
figure 5.8a 0.44, 0.00, 6.12 1.00, −1.00, 1.00
figure 5.8f 0.12, 0.01, 7.38 1.00, 0.00, 1.00

Table 5.4: EPE and AE analysis
EPE and AE values for different region of interests for the TV model (Figures ??
to ??). The first column shows the median, minimum and maximum EPE per
roi. The second column shows the median, minimum and maximum AE per
roi. Compared to table 5.1 the median EPE is lower for nearly all roi’s, while the
median AE do not differ that much

5.2 Eigenvalue analysis and the stabilization parameter
λ2

In chapter 4 we stated that the L2 term in eq. (4.21) is needed to support the
numerical stability of the model. We will back this statement now. Figures 5.9,
5.10 and 5.11 show the largest eigenvalue of Qireg, σiQ at each iteration on the
coarsest scale of the pyramid for different values of λ2. They all show that σNQ
rises to a maximum after which it decreases and converges. The initial value of
σiQ is of the order of λ2 indicating that in the initial steps the L2 term in eq. (4.21)
governs the regularization. As the number of iterations increases the structure
tensor determinant gets more weight, until the point where its influence over
weighs that of the L2 term As can be seen this point comes after fewer iterations
the smaller λ2 is set. On the other side Figures 5.13, 5.14 and 5.15 show the
vector b, that is the Euler-Lagrange equation vector for different values of λ2.
Comparing the magnitude of b in Figures 5.13, 5.14 and 5.15 we see that for
λ2 = 10−9 b is several orders of magnitude larger then the other cases, which
leads to longer convergence rates or numerically instable solution. This means
we have a tradeoff between

• λ2 ∼ 10−3: Faster convergence but less influence of structure tensor (need
i > 40 iterations for ST to act)

• λ2 ∼ 10−9: slower convergence but more influence of structure tensor
(need only i > 1 iterations for ST to act)

We choose λ2 = 10−6 since in this case b is of the same order of magnitude as for
λ2 = 10−3 but as we see in figure 5.10 the structure tensor only needs 4 iterations
untils its eigenvalues overweigh the eigenvalues of the L2 term. We also choose
N = 10 for the number of iterations per pyramid scale, since according to figure
?? the update vector δ gets unstable after 15 iterations.
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Figure 5.9: λ2 = 10−3 Figure 5.10: λ2 = 10−6

Figure 5.11: λ2 = 10−9

Figure 5.12: Analysis of the largest eigenvalue σiQ of Qreg
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Figure 5.13: λ2 = 10−3 Figure 5.14: λ2 = 10−6

Figure 5.15: λ2 = 10−9

Figure 5.16: Analysis of the Euler-Lagrange vector b
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Figure 5.17: Analysis of the Euler-Lagrange vector δeq. (??)
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6 Multimodal Optical Flow

6.1 Estimation of the resolution parameter σ

Our optical flow model eq. (??) is based on the assumption that the modalities to
be registered have a linear relationship in their intensity spectrum. This is not
the case for TC images and VSC images of arbitrary objects. However in the case
of bare CFRPs the linearity assumption holds. CFRPs are black bodies when in
thermal equilibrium at 30 degC since the emmisivity of carbon is approximately
0.98 (see [? ]). It is in this case that in the amplitude image in figure ??b the
CFRP has a uniform amplitude. In the visual spectrum domain (figure ??d) the
CFRP is not a perfect black body due to the reflective nature of the epoxy coating,
however the epoxy coating is uniformly distributed so that the reflections do
not cause image gradients, which are not correlated to geometric features. Since
the TC and the VSC have different resolutions we must take the difference in
resolution into account. This difference in resolution is encoded in the scale
parameter σ of our local likelihood model in eq. (2.105). The local conditional
variance Cs̃|Ĩ (x) in eq. (??) is a meassure for the similarity of the TC image y, and
thus s and the VSC image I with a local subdomainW ⊂ Ω. The local conditional
variance Cs̃|Ĩ (x) has two parameters we need to estimate: the scale parameter σ
from the likelihood in eq. (2.105) and the window size a of the window function
ω. Since Cs̃|Ĩ (x) is varies spacially we compute its median value Ĉs|Ĩ . In figure ??
we have plotted for various window sizes a the median conditional variance Ĉs|Ĩ
over the filter size σ. We can see that for window sizes a ≤ 23 Ĉs|Ĩ has minima at
σ ≈ 0 while for larger window sizes a ≥ 31 it tends to be minimal at filtersizes
σ > 6. Figure ?? show their optimum σ? plotted over the window size a. We
see that window sizes a < 21 and A > 31 lead to unrealistic scale differences
σ? ≈ 0 and σ? ≥ 6, since the actual difference in scale must be σ ≈ 2 judged by
the resolutions of the VSC and the TC. This value is produced only at a = 23
and a = 27 and we choose a = 23 since Cs̃|Ĩ (x) is smaller compared to the case
a = 27.

In figure ?? we show the resulting optical flow for different region of interests
(roi). Figures 6.2a and 6.2f show the resulting optical flow d which match the
corresponding VSC image I and TC image y in the table. Fow each roi we
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Figure 6.1: 6.1a: Dependence of Cs̃|Ĩ on the scaling parameter σ. 6.1b: Joint
Histogram p (y, I) of the TC and smoothed VSC image pair y and Ĩ at
the optimum σ? = 4, the scale at which y and Ĩ are maximally linear.

computed the joint histogram p (y, I) (Figures 6.2b and 6.2g). In figure 6.2b
p (y, I) has two isolated maxima which is sufficient for for a linear relationship
between y and I . In figure 6.2g the linearity is obstructed to a minor degree
since the TC image in figure 6.2j has a slight structural difference in the lower
left corner compared to figure 6.2h.
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Flow Joint Histogram VSC I warped VSC Id TC y

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6.2: Multimodal Optical Flow: The resulting flow d, VSC image I , the
warped VSC Id, the TC image y as well as the joint histogram p (y, I)
are shown for different region of interests. We can observe that the
boundaries of the flow are blurred. This comes from the window
function ω in the local likelihood. The joint likelihood p (y, I) was
evaluated only for the roi’s. It has at most two maxima, which suffices
to constitute a linear relationship between y and I . A grid is overlaid
on the roi’s for I , Id and y with 10 pixels per element to visually asses
the quality of the flow. We can see the larger features are correctly
matched, while smaller features are matched in a suboptimal fashion

??
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