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1 Introduction

The main topic of this thesis is concerned about symmetries in the mathematical
modeling of computer vision problems. Many objects in nature posses among
others the notable characteristic of symmetry regarding their attributes such as
their form and color. A symmetry of an object O is such that if O undergoes
a specific transformation g, then it appears for an observer to be unchanged.
Say we have a computer vision problem involving the object O, modeled with a
mathematical modelM . It is natural to reflect the symmetry of the objectOwithin
the model M , such that M is invariant in some sense under the transformation
g. The goal of this theses is to analyze the structure of the symmetries of a
mathematical model M . We will prove that knowledge of the symmetries of M
may lead to significant speed ups of any algorithm using M .

Symmetries generally fall into two categories: global and local symmetries. A ball
of uniform color for instance does not change its appearance to an observer upon
rotation around an arbitrary axis through the center of the ball. This example is
one of global symmetry since the ball as a whole is transformed (rotated). We can
formally describe the global symmetry of the object O in the following way: If
the surface of the object is described by the functional relationship φO(x) = const
(e.g. φO(x) = x2 + y2 + z2 = 1 for a ball of unit radius) then our intuition of
global symmetry is equal to the statement that φO(x) = const is invariant under
the global transformation x′ = g ◦ x

φO(g ◦ x) = φO(x) (1.1)

Not all objects in nature are symmetric with respect to global transformations. For
example in figure 1.1 an image of a leaf is shown. Since the leaf is not symmetric
with respect to any global transformation g, its projection onto the image plane
Ω is not symmetric with respect any global transformation gΩ on Ω. However if
we inspect local regions of the leaf, that is we zoom into those regions at various
locations on the leaf, we see that the features of the leaf within the regions do
posses symmetries. Figure 1.1b shows a close up of the region highlighted in
figure 1.1a through which a vein of the leaf runs. The vein appears to be linear
and thus symmetric towards translations along its tangential direction. This
symmetry is reflected by the vectors at each position of the vein. They indicate
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(a) (b)

Figure 1.1: Figure 1.1a shows an image of a leaf. The leaf clearly has no global
symmetry. Figure 1.1b shows a close-up of the region around a vein
of the leaf, indicated by the box in figure 1.1a. The vectors in figure
1.1b along the vein indicate local translations which leave the vein
invariant.

local translations, which leave the vein invariant. A local transformation as
indicated by the vectors in figure 1.1b may be represented by the vector field
ωΩ(x) such that the local transformation gΩ(x) = x+ ωΩ(x) leaves the image φ
invariant

φ
(
x+ ωΩ(x)

)
= φ (x) (1.2)

In general we cannot assume that gΩ(x) in eq. (1.2) is unique since there can
always exist a vector field ωΩ′(x) 6= ωΩ(x) which satisfies eq. (1.2). On the
other side any transformation gΩ satisfying eq. (1.2) uniquely determines the
geometry of φ for if we were to draw lines along the tangential vectors ωΩ(x) by
connecting xwith x+ ωΩ(x) we would reconstruct the object O from gΩ(x).

The process of acquiring information from our physical reality is problematic
itself in many ways. For one, the information which we may wish to gather may
lay hidden in the data we can possibly acquire from a physical system. On such
problem is called stereography ([? ]), depicted in figure 1.2. The statement of the
problem goes as follows: given two images y and I (figures 1.2b and 1.2c) of an
object O (the box in figure 1.2a) how can we infer the 3-dimensional structure
of O (the width, height and depth of the box)? This problem has already been
solved by nature since the human brain capable of reconstructing a 3-dimensional
image given the 2-dimensional images obtained by the left and the right eye.

4

Figure looks better if centered.

If it's clear, then 
explain why to the 
reader.  Don't make the 
reader guess!, 
particular right at the 
start of the thesis.

Too many vectors, and the 
vectors are too tiny.  
Figure would probably be 
more effective with only a 
few vectors.

No, you also have vectors on 
things other than the vein.

Statement 
feels 
overly 
vague.

You have a large space after 
"eq." because Latex thinks 
you're ending a sentence.  You 
need a non-breaking space:   
"eq.~\ref{equation-label}"



(a) (b) (c)

Figure 1.2: Figure 1.2a: Two cameras are shown recording a scene from different
positions. The scene could could be a rigid scene or a dynamic scene
with moving objects. Figure 1.2b shows the image y captured from
the camera yc and figure 1.2c the image I from the camera Ic. One
possible question is: How can the pixels of the image I be mapped
to those of the image y? Such a mapping can be used to deduce the
3-dimensional structure of the box similar to how the human brain
constructs a 3-dimensional image given the 2-dimensional images
obtained by the left and the right eye.

Besides the problem of hidden information described above there is another
problem in the process of information acquisition. The means we use to acquire
the data have technical limitations. For instance the cameras yc and Ic in figure
1.2a in general produce images of limited resolutions which may also be subject
to noise.

Both problems in the process of information acquisition may be sub-summed as
the problem of inference : Given some possibly corrupted data Y of a physical
system we wish to infer some information stored in the unknown latent variable
φ. In general Y and φ may be discrete variables, continuous functions over some
domain Ω or a combination of both. In this thesis we will only handle problems
for which Y and φ are continuous functions over Ω

Y, φ : Ω→ Rn (1.3)

The inference problem then becomes the problem of mapping Y to φ

Y (x) TY−→ φ (x) (1.4)

where TY denotes a process or an algorithm which is parametrized by the data
Y . Since the variable φ is unknown we have to for one make assumptions on
its geometric properties and furthermore model how it is linked to the data Y .
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These aspects of φ are then embedded in the inference process TY . For now we
want to motivate how the geometrical properties of φ can be taken into account
by TY . Consider a local transformation g such that the variable φ is transformed
to the new variable φ′

φ′ (x) = φ (g ◦ x) (1.5)

We can regard φ′ as being inferred from the data Y via the inference process
T ′Y similar to eq. (1.4). If φ is symmetric under g in the sense of eq. (1.2) then
this implies that the two inference processes TY and T ′Y are equal and thus the
inference process TY is itself symmetric under the action of g. We conclude that
knowledge of the set of local transformations {g}which satisfy eq. (1.2) allows us
to identify those inference processes TY which are equal to each other upon action
of {g}. This has two consequences. The first is that we can design an inference
process TY which is invariant upon the action of the set {g}. As a result this
guarantees the invariance of φ upon the action of {g}. The second consequence
is more subtle. If we split the inference process TY into n intermediate steps

Y
TY−→ φ = Y

T 1
Y−→ φ1 T 2

Y−→ φ2 · · ·
Tn−1
Y−→ φn−1 TnY−→ φ (1.6)

the intermediate steps T iY and φi need not be invariant under the set {g}. How-
ever for particularly well chosen g′ ∈ {g} such that

g′ ◦ T iY = T i+kY (1.7)

we may minimize the number steps in eq. (1.6) und thus obtain the shortest path
in the inference problem.

The overall structure of this thesis is as follows: In section 2.1 we introduce the
latent variable φ as a Gibbs Random Field (GRF). The main property of GRFs is
that they are associated with an energy functional EY (φ). The inference process
TY is explicitly formulated as the minimization problem

φ? = argminφEY (φ) ↔ Y
TY−→ φ? (1.8)

In section 2.3 we will introduce the definition of an r-dimensional Lie group G
and its corresponding Lie algebra G. This facilitates the formally correct definition
of the local symmetry in eq. (1.2) in the form of the level-set equation

Xφ = 0 if φ (g ◦ x) = φ (x) , g = exp (tX) ∈ G, X ∈ G (1.9)

Sections 2.1 and 2.3 prepare the stage for the introduction of Emmy Noethers
celebrated first theorem in section 2.4. In a nutshell this theorem states that if
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an energy functional EY (φ) is invariant upon the action of an r-dimensional Lie
group G, then there exists r divergence-free vector fieldsWm

g ◦EY (φ) = EY (φ) ∀g ∈ G ↔ ∃Wm, div (Wm) = 0 ∀ 1 ≤ m ≤ r
(1.10)

Since its first publication in 1918, Noether’s first theorem has had far reaching
implications in our understanding of the fundamental laws of motion in physics
as well as the deep connection between the symmetries of a physical system and
its conservation laws. For instance the time invariance of the laws of motion
in the universe reveals the conservation of energy. In layman words: It does
not matter we carry out an experiment now or next week, the results will be
the same since the energy of the universe does not vanish! Building on section
2.4 we demonstrate in section 3 the construction of a prior energy functional
Eprior(φ) which is invariant under the Lie group T× SO(2) which is the group
of local translations and rotations. In section 3.3 we will use the prior developed
in section 3 in the context of optical flow [1]. In section 4 we will introduce a
generalization of the Newton approach for solving the inference problem in eq.
(1.8) which takes local transformations of the spatial coordinates x in Ω (see eq.
(1.2)) into account to facilitate the search for the shortest path in the inference
problem in eq. (1.6).
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2 Background

2.1 Gibbs Random Fields

A physical system C is a dynamical composite of elements which interact with
each other as well as with the environment the system C is embedded in. The
elements are described by a vector of parameters φ = (φ1, . . . , φn). The physical
system C relates a specific value φ? of the vector φ to a set of observables Y =
{Y1, . . . , Yk}

Y = C (φ?) (2.1)

In the case that the elements of the system C are continuously distributed over a
finite space Ω, the parameter vector φ is a function on Ω

φ(x) ∈ Rn x ∈ Ω (2.2)

called a Gibbs-Random-Field (GRF) [2]. The interactions of the elements of
the system C with the environment are characterized by an energy functional
EdataY (φ) called the data term, which couples the GRF φ(x) to the observables Y .
There is another energy form Eprior(φ, ∂jφ) within the system C called the prior.
Eprior(φ, ∂jφ) describes how the elements of C interact with each other. Together
both energy functionals form the total energy of the system C

EY (φ) = EdataY (φ) + Eprior(φ, ∂jφ) (2.3)

which is related to the probability distribution

p (φ|Y ) = p (Y |φ) · p(φ) ∼ exp (−EY (φ)) (2.4)

p (Y |φ) = exp
(
−EdataY (φ)

)
(2.5)

p (φ) = exp
(
−Eprior (φ)

)
(2.6)

The value of the probability distribution p(φ|Y ) evaluated at the values φ̂(x)
describes the probability that the GRF φ(x) assumes the values φ̂(x) at each
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point x ∈ Ω. The set of values φ̂(x) is what is called a configuration of the GRF
φ.

EY (φ) is designed such that it is minimal once the GRF φ(x) fulfills the forward
problem in eq. (2.1)

φ? = argminφ (EY (φ)) (2.7)

The particular value φ? (x) of the GRF φ is the most probable configuration of
the distribution p(φ|Y ) due to eq. (2.4) and the solution to the inverse problem

φ? = C−1 (Y ) (2.8)

An example of a physical system containing a GRF is a camera C recording
an object O. The domain Ω ⊂ R2 is the focal plane of the camera C and the
object O is naturally projected onto the focal plane Ω producing the projection
IO. In theory the projection IO is a continuous function in the coordinate frame
of the plane O where the particular function value IO(x) is the light intensity the
object O reflects to the point x on the focal plane Ω. At the heart of the image
acquisition process of basically all modern camera systems lies the concept of a
CCD collecting the photons of the light at discrete positions xi,j called pixels

Icij ∈ R, xi,j ∈ Ω 1 < i < n, 1 < j < m (2.9)

The observables Y are the recorded intensities Icij at the pixels xi,j . In this sense
the camera C is a function which maps the continuous projection IO(x) to the
discretely sampled intensities Icij

Icij = Cij (IO) (2.10)

The intensity Icij is basically a function of the number of photons collected by
the CCD at the pixel xi,j . This number cannot be acquired deterministically, it is
rather the result of a stochastic process described as independently identically
distributed (iid) noise

Îcij = IO (xi,j) + n n ∼ p
(
Icij |IO (xi,j)

)
(2.11)

p(Icij |IO (xi,j)) is the likelihood that Icij assumes the value Îcij given the incoming
intensity IO(xi,j) at the pixel xi,j . Like in eq. (2.5) it is mapped to the data term
energy EIc(IO).

In order to infer the values of IO(xi,j) at the pixels xi,j from the noisy data Icij
we need to pose some form of regularity on the values IO(x) to counter the pixel-
wise noise imposed by the CCD in eq. (2.11). Such regularity can be achieved by
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(a) (b)

Figure 2.1: Figure 2.1a shows an image Ic taken of an object O with a thermo-
graphic camera. A region of interest is shown where the contrast was
enhanced to visualize the noise corruption. Figure 2.1b shows the
result I?O of the minimization problem eq. (2.14) with the prior in
eq. (2.15). The noise is removed but the boundaries of O are over
smoothed

correlating the intensities IO(x) at all pixels with each other in the prior

p (IO) = exp
(
−Eprior (IO)

)
(2.12)

Eprior (IO) =
∫

Ω
E (IO (x) , IO (Ω/ {x})) dx (2.13)

where the integrand correlates the intensity IO(x) at the point x ∈ Ω with the
intensities at all other points Ω/ {x} so that the problem of inferring IO from the
data Ic becomes the minimization problem

I?O = argminIO (EIc (IO)) , EIc (IO) = EdataIc (IO) + Eprior (∇IO) (2.14)

However in practice for a n × n dimensional image Ic the minimization in eq.
(2.14) achieves a complexity of the order O(n4) since every pixel is correlated to
n2 − 1 pixels. Even for medium sized images with n = 500 the computations
involved in eq. (2.14) are practically infeasible.

To reduce the complexity we want the integrand E in eq. (2.13) only to correlate
the values IO(x) within a neighborhood Uxi,j ⊂ Ω with each other. One possible
and very simple way to implement E is to have it penalize the L2 norm of the

10

One word

other



(a) (b)

Figure 2.2: Local transformation of an image φ with a level-set S. Figure 2.2a
shows an image φ (x) with a line S along which the intensity values
are constant. At each point xS the vector ωS is the normal vector on
S. Figure 2.2b shows the result of the local distortion of S under the
action of the operator gδω . gδω acts on S by adding to ωS a spacial
dependent vector δω (x)

gradient∇IO(x)

EpriorL2
(∇IO) =

∫
Ω
‖∇ IO (x)‖2 dx (2.15)

where the gradient operation ∇ can be realized by finite differences. While
the prior in eq. (2.15) can be implemented in a very efficient manner, it has
an important drawback. It isotropically smooths the GRF IO regardless of the
underlying geometry of the object O being recorded. In figure 2.1a the image
Ic of an object O recorded by a thermographic camera is shown. A region of
interest with enhanced contrast is shown to visualize the noise corruption due
to the image measuring process in eq. (2.11). Figure 2.1b shows the result of
the minimization in eq. (2.14) with the L2 prior in eq. (2.13). EpriorL2

reduces the
noise in IO but due to its isotropic nature it over-smooths the boundaries of O. In
section 2.2 and following we will introduce a methodology aimed at designing
prior energies Eprior which incorporate information about the geometry of the
objects recorded in order to avoid the over-smoothing across their boundaries.
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2.2 Lie Groups and the Noether Theorem

2.2.1 Motivation 1, the problem

In section 2.1 we had claimed that the problem with the L2 prior

EL2 (φ) =
∫

Ω
‖∇φ‖2 (2.16)

over-smooths the GRF φ over the boundaries of the object recorded by the camera
C. In general the minimizers φ? of the energy EL2 are the constant functions
φ = const

Ac =
{
φ?c

∣∣∣φ?c = argminφ
(
EL2 (∇φ)

)
= c, c ∈ R

}
(2.17)

In the context of the minimization problem in eq. (2.14) the minimizer set Ac in
eq. (2.17) emphasizes that the prior EL2 does not allow for the solution I?O (eq.
(2.14)) to have discontinuities. Thus EL2 is completely unaware of the geometry
in the data Ic (figure 2.1a). However EL2 has a advantageous property. Consider
the set of rotations SO(2) of the coordinate frame Ω

x′ = Rθx, Rθ =
(

cos (θ) sin (θ)
− sin (θ) cos (θ)

)
∈ SO(2) (2.18)

The gradient∇φ transforms under the rotation in eq. (2.18) like a vector,∇′φ =
Rθ∇φ and the matrixRθ satisfiesRT

θRθ = 1. Thus theL2 energy is also invariant
towards the rotations in eq. (2.18)

E′L2 =
∫

Ω
∇TφRT

θRθ∇φd2x =
∫

Ω
‖∇φ‖2 d2x (2.19)

In general the invariance of the prior energy Eprior(∇φ) of a GRF φ with respect
to the rotations in eq. (2.18) is a favorable feature since the gradient∇φ should
not be penalized to a specific orientation. In the context of the minimization
problem in eq. (2.14) rotational invariance of the prior Eprior (∇IO) ensures the
gradient∇I?O is not affected by the orientation of the camera system C.

Different approaches for anisotropic priors exist, for instance [3] introduced a
quadratic prior

EpriorD (∇φ) =
∫

(∇φ (x))T D (x) (∇φ (x)) d2x (2.20)

The operator D (x) is a local 2 × 2 symmetric valued matrix estimated within
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a local window around each point x. D (x) is precomputed and assumed to
be fixed under variation of φ. Thus it’s eigenvectors function as a guide for
the gradient φ. For instance in eq. (2.14) we can insert eq. (2.20) for Eprior.
ComputingD such that it has only one non-zero eigenvalue λ and an eigenvector
b oriented perpendicular to the weighted gradient of the data Ic

D (x) = λb (x) b (x)T , b (x0) ⊥ 〈∇Ic (x)〉 (x0) (2.21)

〈∇Ic (x)〉 (x0) =
∫
A
w (‖x− x0‖)∇Ic (x) d2x (2.22)

the prior EpriorD penalizes the tangential component of∇IO along b in the mini-
mization in eq. (2.14). Thus the solution I?O can have discontinuities perpendicu-
lar to b. The drawback of EpriorD is that we do not know if b is the true tangential
vector in the unbiased projection of the object O. And since D is fixed EpriorD

can not be invariant under the rotations in eq. (2.18). Thus the minimization in
eq. (2.14) can produce a solution I?O in eq. (2.14) that has discontinuities which
do not reflect the true boundaries of the object O. We conclude that priors p(∇)
with energies EpriorD which are not rotation invariant are a source of error for the
orientation of∇I?O in eq. (2.14). The other source of error of the orientation is the
data term Edata in eq. (2.14).

On the other side a potential anisotropic prior Eprior which is rotation invariant
would lead to a solution I?O in eq. (2.14) for which the orientation of its structures
is only determined by the data term Edata.

In the following we will introduce a methodology which allows us to charac-
terize prior distributions p(∇φ) and their energies Eprior(∇φ) which allow for
discontinuities in their minimizers φ? = argminφE

prior(∇φ) while remaining
invariant to a specified but more general set of spacial transformations GΩ.

2.2.2 Motivation 2, the solution

Another way to state the problem that the prior energy EL2 only allows for
constant minimizers φ? = const (eq. (2.17)) goes as follows. The energy EL2(∇φ)
is invariant upon the transformation φ′(x) = φ(x) + d where d is a constant
over Ω. Thus if φ?0 = c′ is a minimizer of EL2 , c′ ∈ Ac then so is φ′? = c′ + d
since c′ + d ∈ R and by the definition of Ac in eq. (2.17) we have φ′? ∈ Ac. We
would like to think of the operation of addition with constants d as a set Gconst of
operators gd

g· : R→ Gconst, gd = ·+ d, gd ∈ Gconst (2.23)
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With the help of the construction in eq. (2.23) we can restate the invariance of
EL2 in the following way

gd ◦ EL2 (∇φ) = EL2 (∇ (φ+ d)) = EL2 (∇φ) (2.24)

and Ac in eq. (2.17) can be viewed as being spun by one constant function
φφ0 (x) = c and the set Gconst

Ac = {φ? |φ? = gd ◦ φ?0, gd ∈ Gconst } (2.25)

With the constructions in eq. (2.23) and eq. (2.25) the problem statement that the
prior EL2 only allows for constant minimizers is transfered to the statement that
the set Gconst under which EL2 is invariant is too small in some sense.

A more flexible prior p(∇φ) with prior energy Eprior should be invariant to a
more general set of transformations Gφ. At the same time p(∇φ) and Eprior

should also be invariant to a spacial set of transformations GΩ in order for it not
to impede the orientation of the gradient∇φ as motivated in section 2.2.1. Hence
p(∇φ) is assumed to be invariant to the set G = Gφ × GΩ with the actions

gωφ ◦ φ(x) = φ (x) + ωφ (x) , gωφ ∈ Gφ (2.26)

gωΩ ◦ x = x+ ωΩ (x) , gωΩ ∈ GΩ (2.27)

The transformations in eq. (2.26) and eq. (2.27) formally capture all the possible
transformations the prior p(∇φ) with energy Eprior is invariant to. In this sense
G is maximal and p(∇φ) is conditioned on G but not on any particular operator
g ∈ G

p(∇φ) = p(∇φ|G) (2.28)

We say that p(∇φ) is conditionally invariant to the set G. For instance the prior
pL2 with its energy EL2 is conditionally invariant to the set G = G× SO(2), the
set of addition of the variable φ with constants and the set of rotations in Ω (see
eq. (2.18)).

Similar to the definition of Ac in eq. (2.25) we can describe the maximizers of
p (∇φ) as being related to each other by the elements of G

A = {φ? |φ? = g ◦ φ?0 g ∈ G} (2.29)

The set GΩ contains operators which are purely geometric. The idea is to show
that A may be split into sub sets AΩ (φ?c) whose elements are related to each other
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by the elements gωΩ ∈ GΩ

AΩ (φ?c) = {φ? |φ? (x) = φ?c (gωΩ ◦ x) , gωΩ ∈ GΩ } (2.30)
A = {AΩ (φ?c) |φ?c = gωφ ◦ φ?0, gωφ ∈ Gi } (2.31)

This is significant for the following reason: knowledge of the geometric set of
transformations GΩ under which p (∇φ) is conditionally invariant allows for a
reduction of the set of maximizersA to a setAred such that the elements φ?c ∈ Ared
are not related to each other by GΩ

Ared = {φ?c |φ?c = gωφ ◦ φ?0, gωφ ∈ Gi } (2.32)
φ?d (x) 6= φ?c (gωΩx) ∀gωΩ ∈ GΩ, φ

?
c,d ∈ Ared (2.33)

We may also turn the argument around: we could specify the geometric set of
transformations GΩ and design a prior p (∇φ) which is conditionally invariant
under GΩ, thus having a reduced maximizer set Ared. To give hint of how the
prior p (∇φ) could be designed we need the definition of a level-set. A level-set
of an image φ?0 is a sub set Sc ⊂ Ω defined by

Sc = {x |φ?0 (x) = c} (2.34)

The action of an element g ∈ GΩ × Gi on an image φ (x) may be written as

g ◦ φ (x) = gωφφ (gωΩ ◦ x) (2.35)

where we have split g into its components gωφ ∈ Gi and gωΩ ∈ GΩ. By the
definition of the action of gωΩ in eq. (2.27) we see that gωΩ is a geometrical
transformation that deforms the level-sets Sc (see figure 2.2). We are free to
define gωφ so that it is orthogonal to gωΩ in the sense that the level-sets Sc are
invariant under gωφ

Sc′ = gωφ ◦ Sc = Sc (2.36)

since a transformation of Sc is purely geometrical. Now the level-set Sc may
alternatively be defined with the help of the vector-field ωδ (x) which (see figure
2.2) is the set of vectors tangent to Sc

Sc = {x |ωδ (x) · ∇φ?0 (x) = 0} (2.37)

In figure 2.2b we show an example of a level-set S which is distorted by the
operator gωδ ∈ GΩ. The resulting level-set S′ has the vector-field ω′δ (x) =
ωδ (x) + δ (x) as tangent vectors.

S′c = {x |(ωδ (x) + tδ (x)) · ∇φ?0 (x) = 0} (2.38)
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However it also possible to represent S′c with the help of a deformation of the
gradient operator∇ itself

S′c =
{
x′
∣∣ωδ (x′) · ∇tδφ?0 (x′) = 0

}
(2.39)

The operator∇tδ loosely speaking encodes a reversal of the action of gωΩ on x so
that S′c can be represented with the same tangential vector-field as Sc but in the
new frame x′ = gωδ ◦ x. The operator ∇tδ is called a pull-back of the gradient
∇. With the help of the pull-backs ∇tδ it is possible to translate the notion of
conditional invariance with respect to GΩ to the requirement that p (∇tδφ) must
be constant with respect to variations of the vector-field δ (x)

d

dt
p (∇tδφ)

∣∣∣∣
t=0

= 0 (2.40)

Given a specific form of the operators in GΩ, eq. (2.40) poses constraints on the
form of the differential operators in the prior p (∇tδφ). Eq. (2.40) also ensures
that p (∇tδφ) is indifferent to a large class of level-sets {S}, which are generated
by GΩ acting on S (see eq. (2.39)).

2.3 Lie Groups

In this section the set of operators G is taken to act on a vector spaceM. The set
G is called a group if there exists an operation · so that G contains

• the neutral element e ∈ G: e · g = g for all g ∈ G

• the inverse g−1 ∈ G if g ∈ G

The group G is called a Lie group [4, 5, 6] if the group operation

G× G 7−→ G : (x, y)→ x · y−1

is smooth in both x and y. The group operation ’·’ can also be used to define the
left action lg on G

lg : G→ G lg (h) = g · h g, h ∈ G (2.41)

lg is a smooth isomorphism in G. The elements of G may themselves be smooth
mappings defined on an r-dimensional space A

g : A → G, (a1, . . . , ar)→ ga1,...,ar (2.42)

16

Other people have called it 
this?  Then a citation is 
needed.

You should probably be 
defining the inverse.

Does this need defining or be 
made more precise?



In this case we say G is an r-dimensional Lie group. A classical example of a
Lie group is the group of invertible n-dimensional Matrices GL (R, n) over the
vector spaceM = Rn. The dimension of GL (R, n) is n2 and the group operation
’·’ is the matrix multiplication. In section 2.2.1 we argument that the set G acts
in a two-fold manner on the functions φ (x) ∈ C∞ (Ω), namely by acting on the
spacial coordinates x ∈ Ω in eq. (??) and on the function values φ (x) them
selves in eq. (??). The spaces Ω and C∞ (Ω) are both vector spaces, that is the
addition operation ’+’ and multiplication with a factor λ ∈ R are defined in both
spaces. It is thus natural to combine both Ω and C∞ (Ω) to one single vector
spaceM = Ω×C∞ (Ω). However since the functions φ (x) are unknown and we
would also like to place constraints on their derivatives φ,K (K is a multi-index),
we combine Ω together with the Jet space Jk (C∞ (Ω)) [5],M = Ω× Jk (C∞ (Ω)).
Jk (C∞ (Ω)) is the set of smooth differentiable functions with compact support
in Ω and their derivatives up to order k. The points z ∈ M are vectors of the
independent variables x, the dependent variable φ (x) and its derivatives φ,K

z = (x, φ (x) , φ,K (x)) (2.43)

For this work we will focus only on first order derivatives, k = 1 so that the
vectors z have the form

z = (x, φ (x) ,∇φ (x)) (2.44)

The action of G onM is straightforward

z̃ =
(
x̃, φ̃ (x̃) , ∇̃φ̃ (x̃)

)
(2.45)

x̃ = ga1...ar ◦ x (2.46)

φ̃ = ga1...ar ◦ φ (2.47)

∇̃ = J−1∇, Jµν = dx̃µ
dxν

(2.48)

Since the elements ga1...ar are continuous in the parameters ai we are free define
to a smooth path γ in the parameter space A

γ :t→
(
a1 (t) . . . ar (t)

)
(2.49)

gγ(0) = e (2.50)

The derivative of gγ(t) with respect to t at t = 0 is an element of the tangential
space of G at the neutral element e ∈ G, TeG

d

dt
gγ(t)

∣∣∣∣
t=0

= Xe ∈ TeG (2.51)
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The subscript on the vector Xe denotes that it belongs to TeG. The coordinates of
Xe relative to the spaceM can be computed when we look at the derivative of
the induced action of gγ(t) on the space of smooth functions with support onM,
F (M). The action of X on F (M) can be computed by evaluating F ∈ F (M)
on the tranformed vector z̃ = gγ(t) ◦ z and the taking the derivative with respect
to t at the neutral element e

XeF (z) = d

dt
F (z̃)

∣∣∣∣
t=0

=
r∑
i=1

(
ωiµ∂µF (z)+ωφi

d

dφ
F (z)+Dφνi

d

d∂νφ
F (z)

)
αi (2.52)

where we have

ωiµ (x) = dx̃µ
dai

∣∣∣∣
t=0

ωφi (x, φ) = dφ̃

dai

∣∣∣∣∣
t=0

αi = dai
dt

∣∣∣∣
t=0

(2.53)

Dφνi = dωφi
dxν
−
∑
µ

dωiν
dxµ

∂µφ (2.54)

The function Dφνi is called the prolonged action of gγ(t) on the gradient operator
∇ (refer to appendix for derivation). Notice that while ωiµ and ωφi are functions
defined onM, the coefficientsαi are independent ofM. They are the components
of the vector Xe with respect to the r basis operators

Xe,i = XΩ,i
e + ωφi

d

dφ
+Dφνi

d

d∂νφ
, XΩ,i

e = ωiµ∂µ (2.55)

so that Xe has the operator form

Xe =
∑
i

αiXe,i (2.56)

An important point about Xe is that it is an operator valued function over Ω
since the coefficients ωi and ωφ in eq. (2.53) are functions over Ω. We will refer
to Xe as a vector at the unit element e, to ωi as a vector valued function (VVF)
and to ωΩ as a scalar valued function (SVF). The vector Xe only exists in the
tangential space at e ∈ G, Xe ∈ TeG. However it is possible to construct a vector
Yh at a location h ∈ G by relating it to Xe with a map lh? called the push-forward

YhF (z) = (lh?Xe)F (z) = d

dt
F
(
lh
(
gγ(t)

)
◦ z
)∣∣∣∣
t=0

(2.57)

The vector Xe operates on the function F in eq. (2.52) as a differential operator
at the point e ◦ z = z. The effect of lh? is that it transports the vector Xe to the
vector Yh which operates on F at the point lh (e) ◦ z = h ◦ z. As Yh is a smooth
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function with respect to h which is defined everywhere in G it is called a vector
field. The set of vector fields is the union of all the tangential spaces over G

TG =
⋃
h∈G

ThG (2.58)

It is important to keep in mind that the coordinates of the vector field Yh are the
operators h ∈ G and not the points z ∈M. Similar to Xe in eq. (2.56) the vector
Yh has a coordinate representation with respect to the tangential space ThG

YhF (z) =
∑
i

α′iYh,i (2.59)

Yh,i = ω′iµ∂µ + ω′φi
d

dφ
+D′φνi

d

d∂νφ
(2.60)

There exists a unique sub set G ⊂ TG called the Lie algebra. It defined as the set
of all vector fields Xh ∈ TG which are invariant under the left action lg for any
g ∈ G

lg?Xh = Xg·h =
∑
i

αiX
i
g·h ∀g ∈ G, Xh ∈ G (2.61)

From eq. (2.61) we see that a consequence of left invariance is that the coordinate
vector α is constant under the transformation lg. This is what is referred to as
the parallel transport of α along the transformation lg. The Lie algebra G has the
property that it is closed under the antisymmetric commutator [·, ·]

[Yh, Xh] = Zh ∈ G ∀Xh, Yh ∈ G (2.62)

Eq. (2.62) also implies that the commutator [Yh, Xh] is also left invariant [4]. The
commutator in eq. (2.62) has a geometric meaning. Suppose Ye is the vector in
the tangent space TegYt of the one parameter group gYt in the sense of eq. (2.51). It
is easy to show that the rate of change of the vector field XgYt

at the unit element
e is equal to the commutator between Xe and Ye

d

dt
XgYt

∣∣∣∣
t=0

= [Ye, Xe] (2.63)

Since [Yh, Xh] is left invariant, eq. (2.63) may be translated to any point g ∈ G

h ◦ d

dt
XgYt

∣∣∣∣
t=0

= d

dt
Xh·gYt

∣∣∣∣
t=0

= [Yh, Xh] (2.64)

Essentially eq. (2.64) tells us that once we can tell how the vector fieldXg changes
along any path gYt which goes through unity, gYt |t=0 = e, we can compute its rate
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of change along any other path in G.

A note on the evolution of functions on one parameter subgroups of G

We want to clarify the main problem with the actual computation of the one
parameter sub groups gYt ⊂ G and the central meaning of the unit element e ∈ G
for the solution of that problem. The one parameter sub groups gYt ∈ G with
Yh ∈ G define for any function F on the jet spaceM an evolution

F (z (t)) , z (t) = gYt ◦ z0 (2.65)

The vector z0 = (x0, φ0(x0),∇0φ0) is an arbitrary chosen point inM. The eq.
(2.65) maps the path gYt which lives in G to a path in the epigraph of F (the
combination ofM and F to (M, F (M))). The problem with eq. (2.65) is that
due to the interdependency of x, φ(x) and ∇φ(x) it is generally not possible to
write the path F (z (t)) in an analytical closed form. It is possible however to
calculate in closed form the derivative of F (gYt ◦ zn) at time t = 0 if we are given
an estimate zn

d

dt
F
(
gYt ◦ zn

)∣∣∣∣
t=0

= Ye (F (zn)) (2.66)

We remember that the vector Ye is an operator valued function on the current
estimate zn

Ye = yµ (zn) ∂µ + yφ (zn) δ

δφ
(2.67)

and that by left invariance Yh is computed by evaluating the coefficient functions
of Ye at the point h ◦ zn.

Yh = yµ (h ◦ zn) ∂µ + yφ (h ◦ zn) δ

δφ
(2.68)

It is in this sense that the unit element emust always be understood as equivalent
to the current estimate zn, e ◦ zn = zn. We can use eq. (2.66) to construct a
piecewise linear approximation to the path z(t) and thus for the path F (z(t))

zn+1 = zn + τYe (zn) (2.69)

The estimates zn from eq. (2.69) can be viewed as discrete samples from the path
z(t) at the discrete time steps tn

zn = z (tn) (2.70)
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From eq. (2.67) we can see that it is the functional form of the coefficients yΩ(z)
and yφ(z) that determine the paths z(t) and F (z(t)) entirely via the process in
eq. (2.69).

2.3.1 The Group G = T× SO(2)

The group G = T× SO(2) is the group of translations and rotations in the plane
R2. Its algebra is the algebra G = t×so(2) which has the basis {XΩ,x

e , XΩ,y
e , XΩ,θ

e }.
The subset t = {XΩ,x

e , XΩ,y
e } is the set generators of infinitesimal translations

XΩ,x
e = ∂x, XΩ,y

e = ∂y (2.71)

t is a commutative basis since [∂x, ∂y] = 0. The basis for so(2) is the single
operator XΩ,θ

e which is the generator of infinitesimal rotations. With respect to
the Cartesian coordinate frame ∂θ it has the following representation

XΩ,θ
e = −y∂x + x∂y (2.72)

From eq. (2.72) we can see that ∂θ does not commute with t and the commutators
for the basis

{
XΩ,x
e , XΩ,y

e , XΩ,θ
e

}
are easily computed

[
XΩ,θ
e , XΩ,x

e

]
= −XΩ,y

e

[
XΩ,θ
e , XΩ,y

e

]
= XΩ,x

e

[
XΩ,x
e , XΩ,y

e

]
= 0 (2.73)

We note that the group SO(2) generates the unit circle S1 by rotating the point
x0 = (x, y)

x (θ) = gθ ◦ x0 = Rθx0, Rθ =
(

cos (θ) sin (θ)
−sin (θ) cos (θ)

)
(2.74)

The meaning of the first two commutators in eq. (2.73) is that the gradient
operator∇ is rotated by 90◦ counter clockwise under the action of XΩ,θ

e

∇x(θ)

∣∣∣
θ

=
[
XΩ,θ
e ,∇

]
= Mθ · ∇, Mθ =

(
0 1
−1 0

)
(2.75)

The matrixMθ is one of the Pauli matrices [7]. The Pauli matrices are the basis
for the Lorentz group of special relativity which is an important symmetry for
many quantum field theories for instance quantum electrodynamics [7, 8, 9].
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2.4 Noether’s First Theorem

In section 2.2.1 argued that in order for a prior p(∇φ) needs to be conditionally
invariant to a large group of transformations G in order for it’s minimizers

A =
{
φ?
∣∣∣φ? = argminφ

(
−Eprior (∇φ)

)}
(2.76)

to be non trivial, that is φ? 6= const. Conditional invariance was linked to the
requirement that the minimizer set A in eq. (2.76) be generated by the group G

A = {φ? |φ? = gω ◦ φ?0 gω ∈ G} (2.77)

In eq. (2.31) we explained that a transformation gω ∈ G may partition the set A
into subsets AΩ whose elements are related to each other through geometrical
transformations gωΩ on the coordinate frame Ω. We motivated the introduction
of deformations to the gradient operator∇ such that the level-sets S′ in eq. (2.39)
have the same functional form in the transformed coordinates x′ = gωΩ ◦ x
as in the original coordinates (see eq. (2.37)). With the help of the machinery
introduced in section 2.3 we can express a level-set SX of φ in terms of a left
invariant vector field Xh operating on φ at the identity e ∈ G

SX =
{
x
∣∣∣XΩ

e φ (x) = 0
}

(2.78)

The operator XΩ
e is the spacial components of the vector Xe (see eq. (2.55)).

Under the action of gωδ ∈ G the level-set SX transforms the following way

S′X = gωδ ◦ SX =
{
x
∣∣∣XΩ

gωδ
φ (x) = 0

}
(2.79)

The requirement of conditional invariance of the prior p(∇φ) can be implemented
by requiring that p(∇φ) be invariant with respect to transformations of the level-
sets SX like in eq. (2.79). Such a requirement effectively imposes constraint on
the form of the differential operators in p(∇φ) namely that they be expressed in
terms of a basis of the Lie algebra G, the left-invariant vector fields Xi

h. It is these
elements of the Lie algebra G which we will use as differential operators in the
prior p (∇φ). Conditional invariance is then expressed by the equation

p
(
XΩ,1
gγ(t)

φ?, . . . , XΩ,r
gγ(t)

φ?
)

= const, with respect to t (2.80)

Since the basis Xi
e are the left invariant vector fields Xi

h evaluated at the identity
e the eq. (2.80) would hold for a push-forwarded basis Xi

hgγ(t)
for any h ∈ G since

h ◦ φ? ∈ A if if φ? ∈ A. This is why eq. (2.80) only needs to hold for small regions
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Ue ⊂ G around the identity

d

dt
p
(
XΩ,1
gγ(t)

φ?, . . . , XΩ,r
gγ(t)

φ?
)∣∣∣∣
t=0

= Vep
(
XΩ,1
e φ?, . . . , XΩ,r

e φ?
)

= 0 (2.81)

where the vector Ve has a representation with respect to the basis Xi
e

Ve =
r∑
i=1

αi ·Xi
e (2.82)

The eq. (2.81) would guaranty the independence of the solution space A with
respect to the one parameter sub group gγ(t) where gγ(t) is related to a vector field
V =

∑
i αiX

i
e in the sense that V is the tangential vector of gγ(t) at the identity

(see eq. (2.51)). However for eq. (2.81) to hold for all one parameter sub groups
and thus for all g ∈ G, it has to hold for all coefficient vectors α = (α1, . . . , αr)T .

2.4.1 Noethers Theorems

In her original paper [10, 11] Emmy Noether handles the question: Given a
model of a physical system, encoded in an action

E =
∫

Ω
(E (x, {φρ} , {∇Kφρ})) dnx (2.83)

which depends on ρ fields φ1 . . . φρ and their derivatives to order K, and knowl-
edge of a set of smooth transformations G under which the action E is invariant

E′ = gγ ◦ E = E ∀gγ ∈ G (2.84)

what are the special properties hidden in the model that invoke the symmetry?

To answer this question she deals with two cases:

• Finite dimensional Lie groups G, which we introduced in section 2.3. For
now it is sufficient to think of G as the set of smooth functions gγ defined
on an r dimensional space, γ = (α1, . . . , αr).

• Infinite dimensional Lie groups G∞, which are generalizations of the fi-
nite dimensional groups in the sense that the r parameters α1, . . . , αr are
functions over the Cartesian coordinate frame Ω. We will not handle this
case.
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In the case of the finite dimensional group Emmy Noether took gω to be the
smooth infinitesimal transformation, encoding both variations of the fields and
of the coordinates

φ′ρ (x) = φρ (x) +
r∑

m=1
αmω

φρ
m (x) x′ = x+

r∑
m=1

αmω
Ω
m(x) (2.85)

The functions ωφρm and ωΩ
m can be seen as a basis for ωφ and ωΩ in eqs. ?? and ??.

She proved that if the action E is invariant under gω eq. (2.84), then there exists r
vectorsWm such the integral relationship

E − E′ =
∫

Ω

r∑
m=1

αm

[∑
ρ

ω̄φρm [E ]ρ + div (Wm)
]

= 0 (2.86)

ω̄φρm =
(
ωφρm − ωµΩ

m ∂µφρ
)
, [E ]ρ = δE

δφρ
− d

dxµ

(
δE
δφρ,µ

)
(2.87)

where [E ]ρ are the Euler-Lagrange differentials of the fields φρ and the diver-
gences div (Wm) appear by carefully collecting all terms which occur as a result
of the integral product rule∫

f · ∂µgdnx =
∫
∂µ (f · g) dnx−

∫
∂µf · gdnx (2.88)

when computing the symbolic form of [E ]ρ. The main result is the argument
that since the αm, ωφρm and the ωµm are assumed to linearly independent, the r
equations∑

ρ

ω̄φρm [E ]ρ + div (Wm) = 0 m = 1, . . . , r (2.89)

relate r of the ρ Euler-Lagrange equations [E ]ρ so that the physical system only
has ρ − r independent Euler-Lagrange equations [E ]ρ and thus only ρ − r in-
dependent fields φρ. In the case ρ ≤ r the system of equations in eq. (2.89)
is overdetermined, eq. (2.86) can only hold if all the divergences and all the
Euler-Lagrange equations vanish

[E ]ρ
(
φ?1, . . . , φ

?
ρ

)
= 0, div (Wm)

(
φ?1, . . . , φ

?
ρ

)
= 0, ρ ≤ r (2.90)

Eq. (2.90) implies that only at the minima of the fields, φ?ρ the r vectorsWm are
conserved.
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Kepler’s Two Body Problem

Kepler’s two body problem is the problem of calculating the problem of estimat-
ing the trajectory of a body of mass me (the earth) which is moving within the
vicinity of another body with mass ms (the sun). According to Newton there
exists a gravitational force between the masses coming from the energy V (r) of
the gravitational field surrounding the mass ms at the origin in R3

V (re (t)) = −me ·ms

r
r = ‖re − rs‖ (2.91)

The kinetic energy of the mass me is 1
2meṙ

2 so that the Lagrangian of the path
re (t) is

L (re (t)) = 1
2meṙ

2
e + 1

2meṙ
2
s − V (re (t)) (2.92)

The Euler-Lagrange equations are easily computed

r̈e + ms +me

r2 = 0 (2.93)

The parameter t is the time parameter of the two body system. The Kepler
Lagrangian in eq. (2.92) exhibits a symmetry under four different one parameter
Lie group actions, namely the action of time shift and rotations around the three
spacial axis (the group SO (3)× R)

t′ = t+ δt (2.94)
r′ = r + ∂θir

′δθi i = x, y or z (2.95)

where θi are rotation around the x-,y- or z-axis. From Noether’s theorem there
exist four corresponding conserved quantities:

Wt = H = 1
2meṙ

2 + V (re (t)) time shift (2.96)

Wx = zẏ − yż Rotation around x-axis (2.97)
Wy = zẋ− xż Rotation around y-axis (2.98)
Wz = xẏ − yẋ Rotation around z-axis (2.99)

The conserved quantityH in eq. (2.96) is the Hamiltonian Energy of the two body
system. It constant time and thus manifests that the total energy of the two body
system does not dissipate away since there are no external forces interacting
with the two masses me and ms, that is the two body system is a closed system.
The vector W = (Wx,Wy,Wz) (Eqs. eq. (2.97) to eq. (2.99)) is the total angular
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momentum the masses me and ms have as they rotate around each other. The
solutions to the Euler-Lagrange equations in eq. (2.93) are elliptic curves in the
surface SW orthogonal to W . The constancy of W with respect to the special
orthogonal group SO (3) comes the fact that SW is actually a flat Euclidean plane
embedded in a 3-dimensional Euclidean space.

2.4.2 Noether’s First Theorem: A Modern Version

In this section we explicitly derive Noether’s first theorem for models with one
field φ and its first derivatives XΩ,i

e φ using the Lie algebra introduced in section
2.3. We consider the negative log energy

E = −lnp
(
φ,X1

eφ, . . . ,X
q
eφ
)

=
∫
Ω

E
(
φ,
{
XΩ,i
e φ

})
Nd2x (2.100)

=
∫
Ω

Edata (φ)Nd2x+
∫
Ω

Eprior
({
XΩ,i
e φ

})
Nd2x (2.101)

The explanation of the constant N will shortly follow. We apply a one parameter
group gγ(t) to Eprior and according to eq. (2.51) we can compute the vector Ve in
the tangent space of gγ(t) at t = 0.

d

dt
gγt ◦ E

∣∣∣∣
t=0

=
∫

Ω

( q∑
i=1

Pi
[
V Ω
e , X

i,Ω
e

]
φ+ vφ [E ]

)
Nd2x (2.102)

Pi = δE
δXi,Ω

e φ
, [E ] = δE

δφ
−
∑
i

d

dxµ

wµi δE
δ
(
Xi,Ω
e φ

)
 (2.103)

The differentials [E ] are called the Euler-Lagrange differentials [11, 5] and the
vector P is called the canonical momentum. Eq. (2.102) is the most general form
of variation. It contains two components, namely one component proportional
to intensity variations of the field φ, vφ and one component proportional to
variations of the coordinate frame Ω encoded in V Ω

e . The integral volume d2x
also transforms under the action of gVt

d

dt

(
gVt ◦ d2x

)
|t=0 = dvµ

dxµ
d2x (2.104)

However we are only interested in the Euler-Lagrange differentials [E ] and
the canonical momentum vector P since only they depend on the particular
Lagrangian E . Thus the normalization factor N in the integral in eq. (2.100) is
chosen such that the volume elementNd2x is invariant under the transformation
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gγ(t)

d

dt

(
gVt ◦ Nd2x

)∣∣∣∣
t=0

=
(
N dvµ

dxµ
+ dN

dt

∣∣∣∣
t=0

)
d2x = 0 (2.105)

In the following we will drop the normalization N and assume d2x to invariant
under any transformation gVt . Since Ve is an element of the Lie algebra G we can
expand it in terms of the r basis elements Xi

e

Ve =
r∑
i=1

αiX
i
e (2.106)

Under the expansion in eq. (2.106) the eq. (2.102) becomes

d

dt
gγt ◦ E

∣∣∣∣
t=0

=
r∑

m=1
αm

∫
Ω

( q∑
i=1

Pi
[
Xm,Ω
e , Xi,Ω

e

]
φ+ ωφm [E ]

)
d2x (2.107)

We can transform eq. (2.107) in to the original version in eq. (2.86) by introducing
the vector valued functions (VVF)Wm

Wµ
m = ωµmE +

∑
i

ωµi

(
ωφm −Xm

e (φ)
)
Pi (2.108)

Computing the divergence of the VVFsWm we can prove the following relation

div (Wm)−XΩ,m
e (φ) [E ] =

∑
i

[
XΩ,m
e , XΩ,i

e

]
(φ) · Pi (2.109)

and substitute the commutator in eq. (2.107) with the left hand side of eq. (2.109)

d

dt
gγt ◦ Eprior

∣∣∣∣
t=0

=
∫

Ω

∑
m

αm
(

div (Wm) + ω̃φm[E ]
)
d2x (2.110)

ω̃φm = ωφm −Xm,Ω
e (φ) (2.111)

If the energy E is assumed to be invariant with respect to any one parameter
group gVt ⊂ G

d

dt
gγt ◦ E

∣∣∣∣
t=0

= 0 (2.112)

then by the argumentation in section 2.4.1 the divergences of the vectorsWm in
eq. (2.108) and the Euler-Lagrange differentials must vanish

[E ] (φ?) = 0, divWm = 0 ∀1 ≤ m ≤ r (2.113)
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and by eq. (2.109) the equations in eq. (2.113) imply∑
i

[
XΩ,i
e , XΩ,m

e

]
(φ?) · Pi = 0 (2.114)

There are three cases to consider such that eq. (2.114) can hold:

• Case a: The Lie algebra G is commutative, [XΩ,i
e , XΩ,m

e ] = 0 for all 1 ≤
i,m ≤ r

• Case b: Pi = 0 for all 1 ≤ i ≤ r

• Case c: If we have [XΩ,i
e , XΩ,m

e ] 6= 0 for some i and m the functional
derivative P if non-vanishing must be orthogonal to the vector Mm, which
is a vector for fixed m defined as (Mm)i =

[
XΩ,i
e , XΩ,m

e

]
(φ) over Ω

We call cases a and b trivial symmetries and case c a non-trivial symmetry.

Pure Spacial Symmetries

A stronger constraint then the invariance of the energyE with respect to arbitrary
one dimensional sub groups gVt as in eq. (2.112) is the case of invariance with
respect to pure spacial one dimensional sub groups gV

Ω
t

d

dt

(
gV

Ω
t ◦ E

)∣∣∣∣
t=0

= 0 (2.115)

The Lie algebra element V Ω
e corresponding to gV

Ω
t does not contain any variations

to the field φ thus we can obtain an expression for eq. (2.115) simply by setting
vφ = 0 and ωφi = 0 in eqs. (2.102) and (2.107)

d

dt

(
gV

Ω
t ◦ E

)∣∣∣∣
t=0

=
∫

Ω

r∑
m=1

αm

(∑
i

[
XΩ,m
e , XΩ,i

e

]
(φ) · Pi

)
= 0 (2.116)

It follows that if eq. (2.116) holds for any one parameter sub group gV
Ω

t ⊂ G (any
coefficient vector α) then∑

i

[
XΩ,i
e , XΩ,m

e

]
(φ) · Pi = 0 (2.117)

must hold for any field configuration φ. Eq. (2.117) is specifically a constraint on
the prior energy Eprior since the data term Edata does not contain any derivatives
XΩ,i
e φ and thus the canonical momentum P only depends on the prior energy

density Eprior. In chapter 3 we will introduce a priorEprior which is conditionally
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invariant to the group GΩ = T× SO(2) which is the group of local translations
and rotations. Its algebra G = t× so(2) is 3-dimensional and although it is not a
commutative algebra we will show that eq. (2.117) still holds for any field φ.

2.5 Total Variation

In this section we will introduce a widely spread method for anisotropic regular-
ization of the GRF φ called Total Variation (TV) [12, 13, 14, 15, 16]. In the context
of shock-filtering ([12, 17, 18]) it was shown that the functional

EL1 (φ) =
∫
|∇φ|dx (2.118)

has the appealing property that it does not penalize large discontinuities How-
ever its functional derivative with respect to φ is ill conditioned in the case
∇φ ≈ 0. To alleviate the case, [12] chose the approximative prior

EL1approx (φ) =
∫ √
|∇φ|2 + εdx (2.119)

which is well behaved for ε > 0. They were able to achieve good results with
relatively sharp preserved discontinuities with data φ0 having low SNRs. Never
the less in the limit ε→ 0 the Euler-Lagrange equations become more and more
computationally instable. A theoretically more well conditioned form of TV is
needed which we will outline, following ([16]). To do this we need to explore
the function-space the minimizers of Eq. eq. (2.118) might belong to. Smooth
functions φsmooth are functions for which∇φ exists everywhere, thus they may be
minimizers of Eq. eq. (2.118). But functions φdiscont containing discontinuities do
not have finite L1 norm of their gradients, EL1 (φdiscont) =∞ since the gradient
∇φdiscont does not exist at the discontinuities A generalization of Eq. eq. (2.118) is
possible if one assumes ∇φ to be a distribution, more precisely a radon measure
in the spaceM (Ω). If there exists a radon measure µ ∈ M (Ω), such that for
every p ∈ C0 (Ω) with compact domain, the following equality holds∫

Ω
φ ·Divpdx = −

∫
pTdµ <∞ (2.120)

then µ is called the weak derivative of φ and we can identify∇φ = µ. It is then
possible to define the function-space of bounded variation

BV = {φ ∈ L1 (Ω) |∇φ ∈M (Ω)} (2.121)
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Now it is possible to define a norm on BV . By virtue of the Hölder relation there
exists a scalar C for which we can determine the upper bound of Eq. eq. (2.120)∫

Ω
φ ·Divpdx ≤ C‖φ‖∞ (2.122)

The scalar C is the norm of the radon measure∇φ and is called the total variation
of φ

TV (φ) = sup
{∫

Ω
φ ·Divpd2x | ‖p‖∞ ≤ 1

}
(2.123)

As was discussed in [16] the functions φ are geometrically piecewise smooth,
meaning there exists a partitioning {Ωk} of Ω such that (∇φ)Ωk are L1 integrable.
If dlmk is a line segment in the intersection Ωm ∩ Ωk then TV (φ) can be written
in the form

TV (φ) =
∑
k

‖∇φΩk‖L1
+
∑
k<m

Llm (2.124)

Llm =
∫

Ωk∩Ωm
|φk − φm| dlkm (2.125)

where φk the value of φ on the portion of ∂Ωk which is interfacing with Ωm and
vice versa for φm. The first term in eq. (2.124) penalizes the smooth parts of φ
(the gradients (∇φ)Ωk ) while the second term penalizes the length of the section
Ωm ∩ Ωk while maintaining the values φk,m and thus the jump |φk − φm|. It
essentially penalizes the curvature of the line interfacing with both Ωk and Ωm.
We will make this point clear in the following section.

2.5.1 The Mean Curvature of Total Variation

The line integral of the TV prior connecting two regions Ωl and Ωm in eq. (2.125)
can be rewritten essentially as a measure for the length of the level-set Slm
interfacing Ωl and Ωm

Llm = |φk − φm| ‖S‖lm , ‖S‖lm =
∫ T

0

∥∥∥∥ ddt (x(t))
∥∥∥∥ dt (2.126)

The path x(t) can be considered as being generated by a one parameter Lie group
gV

Ω
t acting on the point x0

x(t) = gV
Ω

t ◦ x0 (2.127)
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So that the length ‖S‖lm is controlled by the Lie algebra element V Ω
e = v(x)µ∂µ

‖S‖lm =
∫ T

0
‖v (x(t))‖ dt (2.128)

If the boundaries at t = 0 and t = T of the level-set Slm are fixed, for instance by
a data term Edata, then the minimum of the energy Llm is reached when x(t) is
a straight line between x(0) and x(T ). A characterization of a straight level-set
Slm is that its curvature κ. ...connect to divP and invariance under so2

In this section we will discuss the geometrical properties of the TV norm in eq.
(2.123). The sub-gradient of eq. (2.123) is equal to the set

∂TV (φ) =
{
−Divσ

∣∣∣∣ σ · ν = 0 on ∂Ω, σ = ∇ φ

|∇φ|
if |∇φ| 6= 0

}
(2.129)

This set defines the set of lines L (v) = TV (φ) + 〈Divσ|v − φ〉 tangential to TV
at a point φ ∈ BV . We define a one parameter Lie group γ (t), such that its
vector-field X fulfills the condition

X · φ
(
ΓX (x0, t)

)
= 0 (2.130)

then its integral curves ΓX (t) = (x (t) , y (t)) are the level sets of φ. The level sets
ΓX have a curvature κ and the standard formula for κ is

κ = 1∥∥∥Γ̇X∥∥∥3

L1

(ẋ · ÿ − ẏ · ẍ) (2.131)

If the vector field X is expressed by the coordinate vector ξ (x0) then it can be
shown κ is a function of the Laplacian relative to the coordinate vector ξ (x0).

κ (x0) = ∆ξξφ (x0)
|∇φ (x0) | (2.132)

This form can easily be transformed into a divergence quantity

κ = Div
( ∇ φ

|∇φ|

)
(2.133)

This shows us that the sub-gradient in Eq.: eq. (2.129) is equal to the curvature of
the level-sets ΓX (t)

κ = −∂TV (φ) (2.134)

The eq. eq. (2.134) exposes the capital geometrical property of the TV norm:

31



The TV norm penalizes the curvature of the level-sets of an image. As κ is an
invariant of the Lie group SE (2), the group of rotations and translations, TV is
also an invariant of that group.

2.6 Optical Flow

A prime example of an inverse problem in computer vision is optical flow.
Optical Flow labels the task of densely measuring the motion between two or
more frames captured by a camera, or the dense registration of two or more
cameras on a pixel-by-pixel basis. Optical flow is a crucial step in many areas
of computer vision. For instance optical flow estimation is a part of video
compression (citation!!) used to detect areas of the video in which the rate
brightness change is small. For example during the recording of a rigid scene
optical flow can be used to determine when the camera motion stalls. During
such periods the frames of the video can be stored in an memory efficient manner.
In recent years structure from stereography and structure from motion (video
from a single camera) have gained popularity as a means to capture 3D models
for film productions and also due to the availability of low cost 3D printing
(citation!!). In both the stereography and the structure from motion pipelines
optical flow is used for the triangulation of the dense point cloud, prior to
generation of the final 3D mesh. In the case of a dual-modal setup both cameras
may be of different types. For instance in medical imaging multi-modal dense
image registration is used to fuse image information from CT and MR modalities
of the human brain [19] and of the human spine [20].

Optical flow models belong to the category of inverse problems ([? ]).

In optical flow modeling the task at hand is to estimate the disparity between
two images y and I recorded by two cameras yc and Ic (see figure 2.3). Each
image is a map between the coordinate space Ω ⊂ R2 and the real numbers R.
Thus y (x) is the intensity recorded by the camera yc at the pixel location x ∈ Ω
while I (x′) is the intensity recorded by Ic at the location x′ ∈ Ω. In figure 2.3a
we have depicted a multi-modal setup in which the two cameras yc and Ic are
recording images (figures 2.3c and 2.3d) from different angles. In this context the
optical flow field is the unknown variable d which maps the location x′ in the
image I to the location x in the image y

x = x′ + d
(
x′
)

(2.135)

The optical field d is shown in figure 2.3b as a set of vectors at every pixel x′ ∈ Ω,
whose magnitude and orientation reflect the motion of the pixel x′. In an optical
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(a) (b) (c) (d)

Figure 2.3: Figure 2.3a: Two cameras are shown recording a scene from different
positions. The scene could could be a rigid scene or a dynamic scene
with moving objects. Figure 2.3c shows the image y captured from the
camera yc and figure 2.3d the image I from the camera Ic. Figure 2.3b
shows the optical flow d. The vectors in figure 2.3b indicate which
pixels x′ in I and x in y are mapped to each other.

flow model the the latent variableX is the vector d and the data Y are the images
y and I . The model is then described by the probability

p (d|y, I) = p (y, I|d) · p (d) (2.136)

In the following we will give a short survey on the current types optical flow like-
lihoods p (y, I|d) and current state of the art priors p (d). We will then introduce
Lie algebras and the Noether Theorem which will play a vital role the definition
of our geometrical prior.

Among the earliest methods for optical flow estimation are the methods de-
scribed in the seminal papers of Horn and Schunck [21] and Lukas and Kanade
[22]. In [21] the following model for computing the flow between two frames of
a video was proposed

Ey,I (d) = Edatay,I (d) + λEprior (d) (2.137)

Edatay,I (d) =
∫

Ω

(
y (x)− Id

(
x
))2

dx Id
(
x
)

= I
(
x+ d(x)

)
(2.138)

Eprior (d) = λ

∫
Ω

∑
i

‖∇di‖2 dx (2.139)

In eq. (2.139) the frame I is warped back to the frame y by the field d(x). The
second integral in eq. (2.139) imposes an isotropic smoothness constraint on
the flow field d. The likelihood in eq. (2.139) makes the assumption that the
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(a) (b)

Figure 2.4: figure 2.4a shows an image from a visual spectrum camera (VSC). The
object recorded is a carbon-fiber reinforced polymer (CFRP). Figure
2.4b shows an image of the same CFRP recorded with a thermographic
camera (TC). The TC is sensitive in the infra-red domain, thus higher
intensities in figure 2.4b correspond to warmer objects (the CFRP) and
lower intensities to colder objects (the background). As in figure 2.3
the optical centers of the VSC and the TC are physically separated so
the problem that is being addressed is that of finding the optical flow
field d(x) (see eq. (2.135)) which maps every pixel in the TC image to
the corresponding pixel in the VSC image

brightness of the scene recorded by the camera is constant from frame to frame.
This is a very strong constraint, which is rarely met in real world multi-modal
setups. Figure 2.4 shows two images recorded from a visual spectrum camera
(VSC, figure 2.4a) and a thermographic camera (TC, figure 2.4b). The recorded
object, here a carbon-fiber reinforced polymer (CFRP) has physically different
absorption and emission properties in the visual spectrum domain recorded by
the VSC then in the infra-red domain recorded by the TC. Thus the intensities in
figure 2.4a follow a completely different distribution then those in figure 2.4a .
We need a model that can bring both images onto a common intensity space.

Furthermore the isotropic smoothness term in eq. (2.139) does not allow for
discontinuities in d. Several methods have been introduced which remove the
assumption of isotropic flow [23, 1]. These methods include (citation!!) TV-
Regularization, anisotropic difusion guided by directional operators like the
structure tensor and level set methods of the Mumford-Shah type [24]. We will
introduce a methodology for the geometrical characterization of anisotropic
priors in section 2.2 following a review of the TV-Regularization prior in section
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2.5.

We will now discuss three statistical similarity measures (citation!!) for optical
flow which avoid the assumption of brightness constancy. For this we will take
the two images y and I to be random variables with the marginal distributions
p (y) and p (I). Then the mean and the variance are defined as

E (X) =
∫
X · p (X) (2.140)

Var (X) = E
(
(X − E (X))2

)
(2.141)

2.6.1 Mutual Information

Mutual Information (MI) is a popular similarity measure used mainly in medical
imaging where images from different modalities including MR, CT and PET are
registered against each other. For images y and I from two different modalities
capturing the same scene, MI is defined with the joint distribution p (y, I) by

MI (y, I) =
∫
p (y, I) ln

p (y, I)
p (y) · p (I)dydI (2.142)

MI measures how strong the images y and I statistically depend on each other.
In the case that y and I are statistically independent, p (y, I) = p (y) · p (I), then
by eq. (2.142) MI is zero. On the other side, MI is maximal when y completely
determined by I or vice versa. In the context of optical flow MI is used to measure
the similarity between y and Id

Edatay,I (d) = −MI (y, Id) (2.143)

However, as [25] puts it, MI does not explain the kind of dependency between
images y and I , its maxima are statistically but not visually meaningful, since
it disregards any spacial information, which is essential for optical flow. Thus
optical flow likelihoods based on MI usually tend to have many local minima
rendering MI too unconstrained for optical flow.

2.6.2 Correlation Ratio

To alleviate the problems with MI, [25] argument that a better similarity measure
would be one that measures the functional relation between the images y and
I . The base key ingredient for their proposal is that the pixel values I (x) and
y (x) are assumed to be the realizations of random variables, which by abuse
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of notation we denote by Î and ŷ. Then the normalized joint histogram of the
images I and y can be interpreted as the joint probability distribution p

(
ŷ, Î

)
,

and the conditional distribution

p
(
ŷ| Î = I

)
=
p
(
ŷ, Î = I

)
p
(
Î = I

) (2.144)

encodes the spacial functional relationship between y and I . They introduced
the Correlation Ratio (CR)

η (I|y) = Var (φ? (y))
Var (I) Edatay,I (d) = −η (Id|y) (2.145)

The optimal function φ? was shown to be the expectation value of Î , conditioned
on a realization of ŷ

φ? (y) = E
(
Î
∣∣∣ ŷ = y

)
=
∫
Ip (I| y) dI (2.146)

The function φ(ŷ) maps any realization of ŷ to an expectation value of Î . As ŷ
is a random variable, φ(ŷ) is also at random. Its variance measures how well
I is functionally explained by a realization of ŷ. The measure in eq. (2.145) is
bounded between 0 and 1, 0 indicating that y and I are independent, 1 indicating
a functional relationship I = φ? (y). The function φ? although not necessarily
continuous, is measurable in the L2-sense. Thus CR is a much stronger constraint
then MI and has fewer, but more meaningful minima [25].

2.6.3 Cross Correlation

Cross Correlation (citation!!) is the strongest constrained similarity measure. It is
basically an additional constraint to CR, namely that the functional relationship
in eq. 2.145 must be linear. Then η reduces to

η (I|y) = Cov (y, I)
Var (I) · Var (y) I = λ · y (2.147)

As we will see in section 3.4 a measure similar to eq. (2.147) will be computed
based on the assumption that both y and I are Gaussian. The Gaussian assump-
tion is valid when both cameras y and I produce Gaussian noise and the joint
histogram is predominantly linear. Linearity in the joint histogram occurs when
the recorded scene contains materials with uniform luminosity in the frequency
bands of the cameras y and I .
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(a) (b)

Figure 2.5: Figure 2.5a The thick grid depicts the CCD of the low resolution
thermographic camera. The finer grid a virtual super-resolved version
of the pixels in the TC. Figure 2.5b shows the point spread function
Wσ (x, y) of the gray pixel in figure 2.5a, taken from Hardie et al. [26].
It shows that each pixel in the TC image has a non uniform response
over its surface to incoming photons.

2.7 Setup of the camera rig

The data acquisition apparatus consists of a visible spectrum camera (VSC)
mounted on top of a thermography camera (TC). The resolution of the VSC is
1226× 1028 pixels while that of the TC is 640× 512 pixels, both cameras with a
focal length of 25 mm. We used a sinusoidal excitation source with a frequency
of 0.1 Hz, which corresponds to a penetration depth of approximately 1.3 mm in
the CFRP.

2.8 Image Fusion

Our camera setup not only consists of two cameras with differing spectral re-
sponses, the TC and the VSC also differ in spatial resolution. However the
likelihoods given introduced above have in common that they do not directly
model the difference in resolution. In figure 2.5a a model of the CCD of the low
resolution TC is shown overlaid with a higher resolution grid representing the
VSC. The gray region in figure 2.5a symbolizes one pixel of the TC and it can
be seen that each pixel of the TC covers a group of pixels of the VSC. Since the
TC pixel has a finite surface, we need to specify how this pixel absorbs photons
landing at different points in its area in order to relate the covered pixels of the
VSC to it. The response of each individual pixel in the TC is called the point
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spread function (PSF), Wσ (x, y), the vector (x, y) being the location on the sur-
face of the TC pixel with respect to the VSC coordinate frame. Figure 2.5b is
the result of a theoretical model of a FLIR imager similar our TC. The model,
obtained by Hardie et al. [26], combines absorption properties of the CCD pixel
with physical properties of the camera lens. We can see that each TC pixel has
a non uniform response to incoming photons. Using this information we can
model a super-resolved version S of the TC image y with the help of the PSF Wσ,
by stating that y is the result of the convolution of S with Wσ

y = Wσs+ n n ∼ N (0|Cn) (2.148)

The problem of estimating S is that there is an infinite amount of high resolution
TC images S? which relate to y via eq. (2.148) since the high spacial frequency
components of S are filtered out by Wσ. In [27] Hardie suggested use of a high
resolution imager Ic whose camera center is co-aligned (hence the subscript c)
with the TC image y and correlated with S. The rationale behind their approach
is to combine the desired features such as sharp edges and corners of Ic with
the intensity spectrum of y into the super-resolved image S, while avoiding
limitations such as the noise model of y. The limitation of their model is that
the centers of the modalities y and Ic need to be co-linear. While this is the case
in remote sensing applications, the model needs to be extended to the general
case of two separated modalities. We will first outline the original model, and in
chapter 3.3 we will introduce a new model for optical flow based on [27].

The key ingredient in the model of [27] is that the intensities of S and Ic are
assumed to be samples drawn from the joint Gaussian p (S, Ic). As Ic is already
fixed as input data we can derive a conditional distribution for S via the Bayesian
rule

p (S|Ic) =p (S, Ic)
p (Ic)

∼ N
(
µs|Ic |Cs|Ic

)
(2.149)

Cs|Ic = Cs,s − C2
s,Ic · C

−1
Ic,Ic

(2.150)

µs|Ic (x) = µs + Cs,Ic · C−1
Ic,Ic

(Ic (x)− µIc) (2.151)

where the variances are computed globally

Cu,v =
∫

Ω

(
u (x)− µu

)
·
(
v (x)− µv

)
dx (2.152)

We see that the mean of S conditioned on Ic, µs|Ic is linear in the values of Ic,
thus in this model the intensities of S are assumed to be globally linearly related
to the intensities of Ic. We combine eq. (2.149) with the Gaussian likelihood in eq.
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(2.148) to the posterior

p (S|y, Ic) ∼ p (y|S) · p (S|Ic) = exp
(
−E (S)

)
(2.153)

with the associated energy

E (S) = 1
2

∫
Ω

(
y (x)−WσS (x)

)2
·C−1
n dx+1

2

∫
Ω

(
S (x)−µs|Ic (x)

)2
·C−1
s|Icdx (2.154)

The minimization of eq. (2.154) and thus maximization of (2.153) with respect to
S gives the analytical solution [27]

ŝ = µs|Ic + Cs|Ic ·W
T
σ

(
Wσ · Cs|Ic ·W

T
σ + Cn

)−1 (
y −Wσµs|Ic

)
(2.155)

Eq. (2.155) is intractable to compute due to the dense operator Wσ and the
matrix-inverse operation. In [28] a computationally tractable approximation was
introduced

ŝ = µs|Ic + Cs̃|Ĩc ·
(
Cs̃|Ĩc + Cn

)−1 (
y − µ̃s|Ic

)
(2.156)

Ĩc = WσIc s̃ = Wσs ≈ y (2.157)

The key issue is that this method requires both modalities, Ic and y, to be co-
registered. Since we are dealing with an optical flow problem y and thus S is
shifted by a disparity d (x) from Ic. This disparity has to be taken in to account
by our model in chapter 3.3. The second issue is that the assumption that S
and Ic are globally joint Gaussian is not supported by our data. However by
computing Cs|Ic in local sub-domains of the space Ω we can show that S and Ic
are locally joint Gaussian. This will also be shown in chapter 3.3.
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3 Linearized Priors

3.1 The Linear Structure Tensor

We shall now proceed to introduce a prior based on the considerations made
in chapter 2.2. We will concentrate on the translation group T for which the
Lie algebra t is characterized by the set of vectors v which are constant within
a sub domain A ⊂ Ω. The basis operators Xi

e are the Cartesian differential
operators {∂x, ∂y}, and the spacial component V Ω

e of a vector Ve ∈ TeT has the
representation

V Ω
e = vx (x) ∂x + vy (x) ∂y ∈ t v (x)|A = const (3.1)

Consider an image φ (x). Under a one parameter transformation gγ(t) ∈ T the
vector Ve is invariant since

d

dt
Vgγ(t)φ

∣∣∣∣
t=0

= ωx [Ve, ∂x]φ+ ωy [Ve, ∂y]φ (3.2)

and the basis {∂x, ∂y} is commutative. The level-sets SX corresponding to the
vector XΩ

e are are defined by

SX =
{
x
∣∣∣vT · ∇φ (x) = 0

}
(3.3)

We would like to characterize the dominant strength and the orientation of∇φ
within the sub domain A ⊂ Ω. In [29] it was suggested that the tangential vector
v of the level sets SX can be computed by minimizing the energy

J (v) = 1
2

∫
A
w (‖x‖)vT ·

(
∇φ (x)∇Tφ (x)

)
v = 1

2v
TSv (3.4)

S =
∫
A
w (‖x‖)

(
∇φ (x)∇Tφ (x)

)
d2x (3.5)
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The matrix S is called the structure tensor. Since S is a symmetric matrix there
exists an orthogonal decomposition

S = V TDV D =
(
λ1 0
0 λ2

)
V = (V1,V2) (3.6)

The eigenvalues give of the squared strength of the gradient in the basis defined
by the columns of V . They characterize the structure in A in the following way

• λ1 > λ2: Strong linear level set with tangential vector v = V2

• λ1 ≈ λ2 ≈ 0: No strong gradient, image is approximately constant

• λ1 ≈ λ2 � 0: No linear level sets, level sets have strong curvature

We want to study the variation of the structure tensor S under the SO(2) at the
unit element e. Let Sθ be the structure tensor where the local coordinate frame A
is rotated by the SO(2) (see eq. (2.74))

Sθ =
∫
A
w (‖x (θ)‖)

(
∇x(θ)φ (x (θ))∇Tx(θ)φ (x (θ))

)
d2xθ (3.7)

The SO(2) only rotates the domain A and does not deform it otherwise, thus
the integral measure d2xθ is independent of θ, d2xθ = d2x. Since the weighting
function w only depends on the norm ‖x (θ)‖which is preserved by the SO(2),
it is also invariant. The only component which changes is the gradient ∇x(θ).
Using eq. (2.75) and the product rule we can compute the derivate of Sθ at θ = 0

d

dθ
Sθ

∣∣∣∣
θ=0

=
∫
A
w (‖x‖)

(
Mθ∇φ∇Tφ+∇φ∇TφMT

θ

)
d2x (3.8)

= Mθ · S − S ·Mθ = [Mθ, S] (3.9)

In eq. (3.9) we usedMT
θ = −Mθ. We can get some information on the magnitude

of the rate of change d
dθSθ

∣∣∣
θ=0

by multiplying the commutator in eq. (3.9) with
the eigenvectors v1,2. It is easy to show that both projection have the same norm

‖ṽ1,2‖ = |λ1 − λ2|, ṽ1,2 = [Mθ, S]v1,2 (3.10)

With the help of eq. (3.10) we can reformulate our characterization of the eigen-
values λ1,2 in the following way

• λ1 > λ2: Structure tensor S has strong change under SO(2)

• λ1 ≈ λ2: Structure tensor S is largely invariant under the SO(2) and
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approximately diagonal

S ≈ λ1, λ ≈ λ1 ≈ λ2 (3.11)

3.2 Structure Tensor Based Prior

Since the vector field V Ω
e is translation invariant the structure tensor S is also

translation invariant. Under the rotation group SO (2) the structure tensor is
not invariant. Nonetheless it has an important transformation property: the
transformed structure tensor S′ may be written in terms of the old matrix S and
the rotation matrix Rθ ∈ SO (2)

S′ = RTθ SRθ (3.12)

We would like to construct a prior p(∇φ) which is conditionally invariant condi-
tionally invariant to the combined group G = T× SO(2). Since the eigenvalues
λi of the structure tensor S are positive definite we propose as an energy prior
for φ the integral over the determinant of S

EpriorST =
∫

Ω
EST (S) d2x (3.13)

EST (S) = λ

2 det (S) (3.14)

We want to show that EpriorST is invariant under the SO(2). We insert Sθ from eq.
(3.7) into the determinant in eq. (3.14) and evaluate the derivative of EpriorST with
respect to θ

d

dθ
EpriorST (Sθ)

∣∣∣∣
θ=0

=
∫

Ω
Tr
(
P ST · [Mθ, S]

)
d2x, PSTij = δEST

δSij
(3.15)

The matrix P ST is the canonical momentum with respect to the structure tensor
S, thus P ST it has the same transformation properties under the SO(2) as S. The
trace in eq. (3.15) can be further transformed

Tr
(
P ST · [Mθ, S]

)
= Tr

(
P ST ·Mθ · S

)
(3.16)

The matrix under the trace on the right hand side of eq. (3.16) is a product of a
symmetric and an anti-symmetric matrix, and thus itself anti-symmetric. Since
traces over anti-symmetric matrices vanish, it follows that the prior EpriorST is
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(a) (b) (c) (d)

Figure 3.1: Figure 3.1a shows a synthetic high resolution image Isyn. In figure
3.1b we show a low resolution image ysyn. ysyn is computed by
convolution of Isyn with Gaussian Gσ with standard deviation σ = 5
and translated by 10 pixels relative to Isyn. Figure 3.1d shows the flow
d computed with the model in eq. (2.139), which does not incorporate
knowledge of the scale difference between ysyn and Isyn and figure
3.1c show the warped image Isynd

invariant under the SO(2)

d

dθ
EpriorST (Sθ)

∣∣∣∣
θ=0

=
∫

Ω
Tr
(
P ST · [Mθ, S]

)
d2x = 0 (3.17)

We note that the symmetry expressed by eq. (3.17) is a non-trivial symmetry,
since only the trace as a whole vanishes.

3.3 Geometrical Optical Flow Model

describe opt flow, registration In this chapter we will introduce our new model
optical flow based on the image fusion algorithm from Hardie et al. [27]. We will
address the two issues outlined in section 2.8, namely that the images y and I
(Figures 2.4a and 2.4b) are not co-aligned and not joint Gaussian.

3.4 Disparity

The main objective of this chapter is to introduce a model which is capable of
estimating the optical flow d(x) mapping the low resolution TC image y (figure
2.4b ) to the high resolution VSC image I (figure 2.4a ). There basically three
problems with the data y and I :
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a: The images y and I have different intensity distributions, since the TC and
the VSC are sensitive to different spectra.

b: The images y and I have different resolutions.

c: The image I contains textural information which is not contained in y

As is explained in the background (see section 2) the optical flow d can only be
estimated with a likelihood p (y, I|d) which measures how similar the images
y and I are given d. However a likelihood that measures the similarity of the
intensities of y and I like the one in eq. (2.139) would fail since the intensities
cannot be compared due to problem a.

The difference in resolution in problem b causes an ambiguity of the optical field
d since the features in the lower resolved image y are blurred and it is not clear
which pixel in I relates to which pixel in y. To demonstrate the issue we have
created test data ysyn and Isyn in figure 3.1. Isyn in figure 3.1a shows a sharp
linear boundary and ysyn (figure 3.1b) is a convolution of Isyn with a Gaussian
Gσ of standard deviation σ = 5 which is translated by 10 pixels. We used the
model of Horn et. al

E (dsyn) = 1
2

∫
Ω

(
ysyn (x)− Isyndsyn (x)

)2
dx+ λ

2
∑
i

∫
Ω
‖∇dsyni (x)‖2 dx (3.18)

(see eq. (2.139)) to compute the optical flow dsyn mapping Isyn to ysyn (see figure
3.1d). Figure 3.1c shows the image Isyndsyn (x) = Isyn

(
x + dsyn (x)

)
. We can see

that the optical flow d corrupts the sharp boundary of Isyn in order to match it
to the varying gray levels of the blurred boundary in ysyn (figure 3.1b).

In order to solve problem a and b we need a method to transform I to an image
S which has the same intensity distribution as y but the same resolution as I . A
putative likelihood p (y, S|d) can measure how similar the images y and S are
given d.

If I contains a feature not existent in y or vice versa, the optical flow d is ambigu-
ous and the ambiguity may only be resolved upon removal of the contradicting
feature.

In section 2.8 a method was introduced which produces a super-resolved image
S given co-aligned data y and Ic.
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The model is defined by the posterior distribution for S (see eq. (2.149))

p (S|y, Ic) = p (y|S) · p (S|Ic) (3.19)

− ln (p (y|S)) = 1
2

∫
Ω

(
y (x)−WσS (x)

)2
· C−1

n dx (3.20)

− ln (p (S|Ic)) = 1
2

∫
Ω

(
S (x)− µs|Ic (x)

)2
· C−1

s|Icdx (3.21)

with the conditional variance and mean

CS|Ic = CS,S − C2
S,Ic · C

−1
Ic,Ic

(3.22)

µS|Ic = µS + CS,Ic · C−1
Ic,Ic

(I − µI) (3.23)

In the conditional prior p (S|Ic) in eq. (3.21) pixels in S and in Ic have a one-
on-one relationship, so that it is natural to map pixels in I to S rather than to
y directly. We model the disparity between the images S and I by setting the
co-aligned VSC image Ic to be the result of the original VSC I , warped by an
unknown optical flow field d(x),

Ic (x) = I (x + d (x)) = Id (x) (3.24)

Substituting eq. (3.24) into eq. (3.19) and following, we obtain the posterior

p (S|y, I,d) = p (S|y, Id) (3.25)

with the energy

Epost (S,d) = 1
2

∫
Ω

(
y (x)−WσS (x)

)2
·C−1

n dx+ 1
2

∫
Ω

(
S (x)−µs|Id

(x)
)2
·C−1

s|Id
dx

(3.26)

While keeping d fixed we minimize Epost (S,d) with respect to S and obtain
similar to eq. (2.156) a closed form solution for S

Ŝ = µs|Id
+ Cs̃|Ĩd

·
(
Cs̃|Ĩd

+ Cn
)−1 (

y − µ̃s|Id

)
(3.27)
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(a) (b) (c) (d)

Figure 3.2: Figure 3.2a shows a synthetic high resolution image Isyn. In figure
3.2b we show a low resolution image ysyn. ysyn is computed by
convolution of Isyn with Gaussian Gσ with standard deviation σ = 5
and translated by 10 pixels relative to Isyn. Figure 3.2d shows the
flow d computed with the model in eq. (3.31), which incorporates
knowledge of the scale difference between ysyn and Isyn and figure
3.2c show the warped image Isynd

We insert the simplified closed form expression for Ŝ from eq. (3.27) into Epost
and obtain an energy measuring the similarity between y and Ĩd = WσId

Edata (d) = Epost
(
Ŝ,d

)
(3.28)

= 1
2

∫
Ω

(
y (x)− f · Ĩd (x)

)2
· Cs|Ĩd

(
Cs|Ĩd

+ λCn
)−2

(3.29)

f = Cy,Ĩd
C−1
Ĩd,Ĩd

(3.30)

The data term Edata defines a likelihood for d

p (y, I|d) = exp (−Edata (d)) (3.31)

We remember that the problems with the data y and I are that they (a) have
different intensity distributions and (b) different resolutions. The likelihood in eq.
(3.31) solves the problems a and b elegantly in one approach by introducing the
latent variable S. The low resolution component of S, WσS is coupled through
the likelihood p (y|S) in eq. (3.20) to the TC image y. The prior p (S|I) in eq.
(3.21) couples S to the high resolution image I . As a result Id in Edata in eq.
(3.35) is filtered by the PSF Wσ to match the scale of y. Furthermore the factor f
transforms the intensity range of the filtered image Ĩd to a range similar to that
of y so that Edata is a measure for the similarity between y and f · Ĩd.

To demonstrate that our likelihood Edata in eq. (3.31) respects the difference in
scale between y and I we have estimated the flow with Edata as the similarity
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(a)

Figure 3.3: Joint Histogram of the TC image figure 2.4b and the VSC image figure
2.4a . We observe that there is no linear relationship between the TC
and the VSC

measure for the data ysyn and Isyn in figure 3.1. The standard deviation σ in
Edata was set to σ = 5 and the factor f is automatically computed as f ≈ 1
since the intensity distributions of ysyn and Isyn are aproximately the same. The
image Isynd is convolved with Wσ. The resulting image Ĩsyn has the same scale as
ysyn. The resulting optical flow dsyn is shown in figure 3.2d. Notice the blurred
boundary dsyn around the linear feature in Isyn (figure 3.2a). This is the result of
Edata in eq. (3.31) measuring the difference between ysyn and the blurred image
Ĩsynd = WσI

syn
d . In eq. (3.2c) we see Isynd . The linear boundary has been warped

by dsyn without being corrupted like in figure 3.1c.

3.5 Localization

The assumption that the intensities of the images y and I are globally linear
related is a very strong constraint that can hold in most cases only unimodal data.
In the case of the VSC and TC data in figure 2.4 the assumption of linearity fails.
In figure 3.3 the global joint histogram of the VSC and the TC image is shown.
We can see that the distribution in the joint histogram lacks a linear relationship
between the TC and the VSC. However in figure 3.4 we have evaluated the
histogram within local region of interests. The histograms in figures 3.4c and 3.4f
show that within the ROI’s the assumption of linearity between the intensities of
the TC and the VSC is well supported. Therefore we propose a local version of
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VSC image TC image Histogram

(a) (b) (c)

(d) (e) (f)

Figure 3.4: Different ROI’s and their joint histograms. A grid is shown in the
VSC and the TC image to emphasize the disparity between them. The
gridsize is 10 pixels. In each histogram there are two maxima since
the majority of pixels with high intensity in the VSC ROI correspond
to pixels of low intensity in the TC ROI and vice versa. Since two
maxima are sufficient for a linear relationship the assumption of local
joint Gaussianity of the VSC and the TC image is valid.

(a) (b) (c)

Figure 3.5: Median conditional variance Ĉσ,as|I for the likelihood window size (see
eq. (3.33)) a = 5 (figure 3.5a), a = 23 (figure 3.5b) and a = 33 (figure
3.5c). We can see that for small values of a Ĉσ,as|I has a minimum
at σ < 2, and for larger values of a the profile changes so that the
minimum of Ĉσ,as|I is at σ ≥ 10
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the variance in eq. (2.152)

Cu,v (x0) =
∫

Ω
ω (x− x0) (u (x)− E (u,x0)) · (v (x)− E (v,x0)) (3.32)

where ω is a window function which we take to be constant within a subset
W ⊂ Ω

ω (x) =
{ 1
|W |−1 0 ≤ x, y ≤ a

0 else
(3.33)

Then Cσ,as|I (x) becomes a local meassure that meassures how linear the intensities
of y and I are within the sub domain W . The problem that arises is how large
to set the window size a. If it is set too small the signal to noise ratio will be
too small so that not enough information of the features in the TC and the VSC
image are captured to robustly register them. On the other hand if a is set too
large we eventually loose the local linearity between the TC and the VSC image.
In figure 3.5 we have plotted the median conditional variance

Ĉσ,as|I = median
(
Cσ,as|I (x)

)
(3.34)

as a function of σ for three fixed values of the window size a. In figure 3.5a
(a = 5) Ĉσ,as|I has a minimum for σ < 2, and in figure 3.5c (a = 33) it is minimal

for σ ≥ 10. The profile of Ĉσ,as|I changes from monotonic increasing to monotonic
decreasing for small to large values of a. Since we know the value for the scale
parameter σ, σ? = 2 from the ccd resolutions of the cameras, the idea find the
optimal value a? such that Ĉσ,a

?

s|I is minimal at σ = σ?. For a = 23 this is the case
as we see in figure 3.5b. Thus for the data in figure 2.4 a? = 23 is the optimal
value so that Ĉσ,a

?

s|I has physically meaningful minimum σ? = 2. The local data
term Edata now has the form

Edata (d) = 1
2

∫
Ω

(
y (x)− f(x) · Ĩd (x)

)2
· Cσ

?,a?

s|Ĩd
(x)

(
Cσ

?,a?

s|Ĩd
(x) + λCn

)−2

(3.35)

f(x) = Cy,Ĩd
(x)C−1

Ĩd,Ĩd
(x) (3.36)

and together with our prior from chapter 3 the energy for the complete optical
flow model is

E (d) = Edata (d) + λ

2

(∑
i

Det (S (di))
)

(3.37)
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The matrix S (di) is the structure tensor (see eq. (3.4)) acting on each component
of the optical flow d. In this model we are making the assumption that the motion
boundaries are locally linear. This assumption is valid for object boundaries
with small curvature but as we will see in chapter ?? this assumption fails at
junction points in the optical flow field, since those are where objects are partially
occluding each other and moving in opposite directions.

3.6 The solution algorithm

To minimize 3.37 and obtain the optimum flow field d̂we deploy a simple newton
scheme with a nested linearization of 3.37. The linearized model is solved by a
conjugate gradients algorithm with block Jacobi preconditioning. The problem
with this approach is that the regularizer is quartic in the flow field components
and thus the linearization becomes numeric instable for the initial steps of the
algorithm.

Algorithm 1 Optical Flow with Structure Tensor prior

Initialize d0 = 0
Set r0 = δE(d)

δd (d0)
scale s = sMax
while s > 1 do

downsample ys = Gs ? y0, Is = Gs ? I0
while ‖r‖ > ε or k < N do

set dk+1 = dk + αδ

expand E (dk+1) = E (dk) + αbTk δ + α2

2 δ
TQkδ

solve Qkδ = bk for δ with conjugate gradients and suitable precondi-
tioning

compute dk+1 = dk + αδ, k → k + 1
end while
upsample dN , set d0 = dN , k = 0
s = s− 1

end while

The problem arises in step 9 of the iterative algorithm. The second functional
derivative Qk of the energy model 3.37 consists of one part comming from the
likelihood and one part coming from the prior, Qk = Qdatak + λQregk . The matrix
Qregk is the second derivative of the prior in 3.37 with respect to d. At small k
its eigenvalues are small due to the initial guess d0 = 0. The matrix Qdatak is
the second derivative of the likelihood in eq. (3.37). In regions where there is
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no motion the eigen values of Qdatak are also small. This makes the linearized
solution in step 9 numerically instable. Our solution to this problem is to extend
3.37 to include an L2 prior on the flow field d but with a small lagrange multiplier
λ2

E (d) =
∫

(y − ŝI,d)2 · Cs|Id
+ λ

2

(∑
i

(Det (S (di)) + λ2 ‖∇di‖)
)

(3.38)

With the L2 prior in 3.38 the linearized solution in step 9 becomes numerically
stable.

3.7 Results

3.8 Uni-Modal Data

We will now discuss the results of our optical flow method on the middleburry
data set for which there exists ground truth (GT). As the GT is the true flow field
for the data we use it to asses the quality of the computed optical flow. To do this
we define the Endpoint error (EPE) and the angular error (AE) as

eEPE = ‖v − vgt‖ (3.39)
eAE = cos (^ (v,vgt)) ∈ {−1, 1} (3.40)

The EPE eEPE meassures how well the computed optical flow v fits the true
optical flow vgt. In cases where v does not match vgt well, we would still like to
check how both vectors are aligned. This alignment is depicted by the AE values
ranging between −1, for minimal alignment (worst case), and 1 for maximal
alignment (best case).

#Need to work on this chapter

3.8.1 Structure Tensor Prior

3.8.2 Total Variation Prior

In figure 3.6 the rubber whale sequence of the middleburry data set is shown, and
in figure 3.6b the corresponding ground truth vgt. In figure 3.6d the computed
flow-field v is shown for a filter size of 11, while in figure 3.6c the resulting flow
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Figure Filtersize Median, Min, Max EPE Median, Min, Max AE

figure 3.8a
7 2.36, 0.01, 7.24 0.42, −1.00, 1.00
9 1.32, 0.00, 6.02 0.87, −1.00, 1.00
11 1.15, 0.00, 6.45 0.91, −1.00, 1.00

figure 3.8f
7 0.84, 0.01, 13.35 0.87, −1.00, 1.00
9 0.46, 0.01, 8.23 0.97, −1.00, 1.00
11 0.40, 0.00, 8.25 0.98, −1.00, 1.00

figure 3.9a
7 0.47, 0.01, 5.22 0.97, −0.96, 1.00
9 0.28, 0.00, 3.71 0.99, −1.00, 1.00
11 0.25, 0.00, 2.50 0.99, −1.00, 1.00

figure 3.9f
7 0.44, 0.00, 2.73 0.98, −1.00, 1.00
9 0.34, 0.00, 2.65 0.99, −1.00, 1.00
11 0.30, 0.00, 3.12 0.99, −1.00, 1.00

Table 3.1: EPE and AE analysis
EPE and AE values for different region of interests and filter sizes (Figures 3.8a to
3.9f). The second column shows the median, minimum and maximum EPE per
roi. The third column shows the median, minimum and maximum AE per roi.
The table shows that the EPE gets better with increasing filtersize. Despite this
the values for roi’s with non-linear geometry (figure 3.8) generally have higher
EPE values than the roi’s with linear or constant geometry (figure 3.9)

for the TV model is shown. Figures 3.8 and 3.9 show different region of interrests
(roi) for which the EPE and AE are shown on a pixel basis for the structure
tensor model and Figures 3.10 and 3.11 show the same for the TV model. We
can observe from the comparison between figures 3.6d and 3.6c that the TV
model produces smoother results which are closer to the ground truth (figure
3.6b). In tables 3.1 and 3.4 the median values for the EPE and AE in various
region of interrests are listed. Indeed we can obeserve that the EPE for the TV
is approximately half the value of that of the structure tensor model. We chose
the median as opposed to the mean EPE as it is robust outlier values of the EPE
at single pixel locations and thus gives a better assessment of the quality of the
flow within the roi.

Table 3.1 shows also how the EPE and the AE vary with increasing filtersize:
The EPE decreases while the AE increases. In figure 3.9 the roi’s have mostly a
constant motion field or a motion field with linear boundary, thus according to
table 3.1 they have lower EPE values then the roi’s in figure 3.8. The roi with
the largest discrepancy from the group of linear motions is figure 3.8a which
depicts a rotating wheel. Since the wheel is largely free of texture, the motion
field (figure 3.8d) is penalized by the structure tensor prior in such a way that
it aquires spurious linear motion boundaries. This is the reason for its high
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Figure Median, Min, Max EPE Median, Min, Max AE
figure 3.10a 1.38, 0.00, 5.83 0.92, −1.00, 1.00
figure 3.10f 0.20, 0.00, 3.34 1.00, −1.00, 1.00
figure 3.11a 0.04, 0.00, 2.08 1.00, −1.00, 1.00
figure 3.11f 0.09, 0.00, 2.06 1.00, −1.00, 1.00

Table 3.2: EPE and AE analysis
EPE and AE values for different region of interests for the TV model (Figures
3.10a to 3.11f). The first column shows the median, minimum and maximum
EPE per roi. The second column shows the median, minimum and maximum
AE per roi. Compared to table 3.1 the median EPE is lower for nearly all roi’s,
while the median AE do not differ that much

Figure Filtersize Median, Min, Max EPE Median, Min, Max AE

figure 3.12a
7 0.73, 0.00, 6.80 0.99, −1.00, 1.00
9 0.60, 0.00, 7.29 0.99, −1.00, 1.00
11 0.96, 0.01, 15.60 0.98, −1.00, 1.00

figure 3.12f
7 0.36, 0.00, 7.00 1.00, 0.00, 1.00
9 0.27, 0.00, 6.79 1.00, 0.00, 1.00
11 0.41, 0.01, 6.55 1.00, 0.00, 1.00

Table 3.3: EPE and AE analysis
EPE and AE values for different region of interests and filter sizes (Figures ??
to ??). Since the motion boundaries in figure 3.7a are all curvilinear there is no
correlation between the filtersize and the EPE.

EPE value. The roi in figure 3.8f shows another case of a motion field violating
the assumption of linear motion boundaries. In the ground truth roi in figure
3.8j there are two junction points where three objects are occluding and moving
against each other. This type of motion is penalized by the structure tensor prior
so that the flow at these points is oversmoothed. The TV model (ref!) like the
structure tensor model penalizes non linear motion boundaries. figure 3.10d
shows the result of the TV model for the wheel roi. Just like in the structure
tensor model, the flow on the circumference of the wheel is heavily penalized
resulting in high EPE values and wrong AE values (see table 3.4). figure 3.10i
shows the resulting flow of the TV model at the two junctions in figure 3.10f.
Similar to our proposed prior the flow is oversmoothed at the junctions resulting
in high EPE values (see table 3.4).

On the otherside both models are faithful to roi’s with constant motion or linear
motion boundaries (see figures 3.9 and 3.11). In figure 3.9d we see that the
structure tensor model inflicts more of the texture from the underlying data
(figure 3.9a) on the estimated flow then the TV model (see figure 3.11d for the
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Figure Median, Min, Max EPE Median, Min, Max AE
figure 3.13a 0.44, 0.00, 6.12 1.00, −1.00, 1.00
figure 3.13f 0.12, 0.01, 7.38 1.00, 0.00, 1.00

Table 3.4: EPE and AE analysis
EPE and AE values for different region of interests for the TV model (Figures ??
to ??). The first column shows the median, minimum and maximum EPE per
roi. The second column shows the median, minimum and maximum AE per
roi. Compared to table 3.1 the median EPE is lower for nearly all roi’s, while the
median AE do not differ that much

result of the TV model) thus leading to a slightly higher EPE value (table 3.1).
Figure 3.9i shows an example of an roi with a linear motion boundary for the
structure tensor model. Comparing it to the corresponding result for the TV
model figure 3.9i, we see that the structure tensor model produces sharper lineat
motion boundaries.

In figure 3.7 another sequence of the middleburry data set is shown. In this
sequence the camera is rotating around a hydrangea. As the ground truth shows
there are no linear motion boundaries, thus only the constant motion of the
background is correctly detected (upto some artifacts in the upper left corner in
figure 3.7d), see the EPE and AE values in figure 3.12 and table 3.3.

3.9 Eigenvalue analysis and the stabilization parameter
λ2

In chapter 3.3 we stated that the L2 term in eq. (3.38) is needed to support the
numerical stability of the model. We will back this statement now. Figures 3.14,
3.15 and 3.16 show the largest eigenvalue of Qireg, σiQ at each iteration on the
coarsest scale of the pyramid for different values of λ2. They all show that σNQ
rises to a maximum after which it decreases and converges. The initial value of
σiQ is of the order of λ2 indicating that in the initial steps the L2 term in eq. (3.38)
governs the regularization. As the number of iterations increases the structure
tensor determinant gets more weight, until the point where its influence over
weighs that of the L2 term As can be seen this point comes after fewer iterations
the smaller λ2 is set. On the other side Figures 3.18, 3.19 and 3.20 show the
vector b, that is the Euler-Lagrange equation vector for different values of λ2.
Comparing the magnitude of b in Figures 3.18, 3.19 and 3.20 we see that for
λ2 = 10−9 b is several orders of magnitude larger then the other cases, which
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(a) (b)

(c) (d)

Figure 3.6: Rubberwhale Sequence
Figure 3.6a shows one frame of the sequence. figure 3.6d shows the estimated
optical flow, figure 3.6c the result of the TV model and figure 3.6b shows the
provided ground truth
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(a) (b)

(c) (d)

Figure 3.7: Hydrangea Sequence
Figure 3.7a shows one frame of the sequence. figure 3.7d shows the estimated
optical flow, figure 3.7c the result of the TV model and figure 3.7b shows the
provided ground truth
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Region of interest EPE AE Resulting Flow Ground Truth vgt

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.8: Error Analysis ST model: This figure shows two examples of motion
field with nonlinear boundaries. In figure 3.8c we see that along
the circumference of the wheel the EPE has the largest values and
in figure 3.8h the is largest the junction point where three objects ar
moving against each other.

Region of interest EPE AE Resulting Flow Ground Truth vgt

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.9: Error Analysis ST: This figure shows two examples of motion fields
with linear boundaries. In figures 3.9d and 3.9i we can see that the
resulting flow with texture inflicted from the data. Nevertheless the
EPE values are nearly homogenous and small (see figures 3.9c and
3.9h)
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Region of interest EPE AE Resulting Flow Ground Truth vgt

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.10: Error Analysis TV model: This figure shows two examples of motion
field with nonlinear boundaries. In figure 3.10c we see that along
the circumference of the wheel the EPE has the largest values and in
figure 3.10h the is largest the junction point where three objects ar
moving against each other.

Region of interest EPE AE Resulting Flow Ground Truth vgt

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.11: Error Analysis TV: This figure shows two examples of motion fields
with linear boundaries. In figures 3.11d and 3.11i we can see that the
resulting flow with texture inflicted from the data. Nevertheless the
EPE values are nearly homogenous and small (see figures 3.11c and
3.11h)
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Region of interest EPE AE Resulting Flow Ground Truth vgt

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.12: Error Analysis:
Second Column: Endpoint Error, Third Column: Angular Error.

Region of interest EPE AE Resulting Flow Ground Truth vgt

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.13: Error Analysis:
Second Column: Endpoint Error, Third Column: Angular Error.
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Figure 3.14: λ2 = 10−3 Figure 3.15: λ2 = 10−6

Figure 3.16: λ2 = 10−9

Figure 3.17: Analysis of the largest eigenvalue σiQ of Qreg
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Figure 3.18: λ2 = 10−3 Figure 3.19: λ2 = 10−6

Figure 3.20: λ2 = 10−9

Figure 3.21: Analysis of the Euler-Lagrange vector b
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Figure 3.22: Analysis of the Euler-Lagrange vector δeq. (??)
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Î

(a)
VSC

T
C

 

 

20 40 60 80

130

140

150

160

170

180
0

200

400

600

800

1000

1200

1400

(b)

Figure 3.23: 3.23a: Dependence of Cs̃|Ĩ on the scaling parameter σ. 3.23b: Joint
Histogram p (y, I) of the TC and smoothed VSC image pair y and
Ĩ at the optimum σ? = 4, the scale at which y and Ĩ are maximally
linear.

leads to longer convergence rates or numerically instable solution. This means
we have a tradeoff between

• λ2 ∼ 10−3: Faster convergence but less influence of structure tensor (need
i > 40 iterations for ST to act)

• λ2 ∼ 10−9: slower convergence but more influence of structure tensor
(need only i > 1 iterations for ST to act)

We choose λ2 = 10−6 since in this case b is of the same order of magnitude as for
λ2 = 10−3 but as we see in figure 3.15 the structure tensor only needs 4 iterations
untils its eigenvalues overweigh the eigenvalues of the L2 term. We also choose
N = 10 for the number of iterations per pyramid scale, since according to figure
?? the update vector δ gets unstable after 15 iterations.

3.10 Multimodal Optical Flow

3.10.1 Estimation of the resolution parameter σ

3.10.2 Structure Tensor Prior

3.10.3 Total Variation Prior

Our optical flow model eq. (??) is based on the assumption that the modalities to
be registered have a linear relationship in their intensity spectrum. This is not
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the case for TC images and VSC images of arbitrary objects. However in the case
of bare CFRPs the linearity assumption holds. CFRPs are black bodies when in
thermal equilibrium at 30 degC since the emmisivity of carbon is approximately
0.98 (see [? ]). It is in this case that in the amplitude image in figure ??b the
CFRP has a uniform amplitude. In the visual spectrum domain (figure ??d) the
CFRP is not a perfect black body due to the reflective nature of the epoxy coating,
however the epoxy coating is uniformly distributed so that the reflections do
not cause image gradients, which are not correlated to geometric features. Since
the TC and the VSC have different resolutions we must take the difference in
resolution into account. This difference in resolution is encoded in the scale
parameter σ of our local likelihood model in eq. (2.148). The local conditional
variance Cs̃|Ĩ (x) in eq. (??) is a meassure for the similarity of the TC image y, and
thus s and the VSC image I with a local subdomainW ⊂ Ω. The local conditional
variance Cs̃|Ĩ (x) has two parameters we need to estimate: the scale parameter σ
from the likelihood in eq. (2.148) and the window size a of the window function
ω. Since Cs̃|Ĩ (x) is varies spacially we compute its median value Ĉs|Ĩ . In figure ??
we have plotted for various window sizes a the median conditional variance Ĉs|Ĩ
over the filter size σ. We can see that for window sizes a ≤ 23 Ĉs|Ĩ has minima at
σ ≈ 0 while for larger window sizes a ≥ 31 it tends to be minimal at filtersizes
σ > 6. Figure ?? show their optimum σ? plotted over the window size a. We
see that window sizes a < 21 and A > 31 lead to unrealistic scale differences
σ? ≈ 0 and σ? ≥ 6, since the actual difference in scale must be σ ≈ 2 judged by
the resolutions of the VSC and the TC. This value is produced only at a = 23
and a = 27 and we choose a = 23 since Cs̃|Ĩ (x) is smaller compared to the case
a = 27.

In figure ?? we show the resulting optical flow for different region of interests
(roi). Figures 3.24a and 3.24f show the resulting optical flow d which match
the corresponding VSC image I and TC image y in the table. Fow each roi we
computed the joint histogram p (y, I) (Figures 3.24b and 3.24g). In figure 3.24b
p (y, I) has two isolated maxima which is sufficient for for a linear relationship
between y and I . In figure 3.24g the linearity is obstructed to a minor degree
since the TC image in figure 3.24j has a slight structural difference in the lower
left corner compared to figure 3.24h.
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Flow Joint Histogram VSC I warped VSC Id TC y

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.24: Multimodal Optical Flow: The resulting flow d, VSC image I , the
warped VSC Id, the TC image y as well as the joint histogram p (y, I)
are shown for different region of interests. We can observe that the
boundaries of the flow are blurred. This comes from the window
function ω in the local likelihood. The joint likelihood p (y, I) was
evaluated only for the roi’s. It has at most two maxima, which
suffices to constitute a linear relationship between y and I . A grid
is overlaid on the roi’s for I , Id and y with 10 pixels per element
to visually asses the quality of the flow. We can see the larger fea-
tures are correctly matched, while smaller features are matched in a
suboptimal fashion

??
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4 The Generalized Newton Algorithm

4.1 Motivation

In this section we want to motivate a new type of algorithm for the minimization
of the energy

E (φ,∇φ) = Edata (φ) + λEprior (∇φ) =
∫

Ω
Etot (φ (x) ,∇φ (x)) d2x (4.1)

based on the considerations in section 2.2. Traditional algorithms for the mini-
mization of the energy functional in eq. (4.1) are based around the concept that a
variation of φ around the minimum of E lead to a set of vanishing differentials
[Etot] called the Euler-Lagrange differentials

dE (φ′)
dt

∣∣∣∣
t=0

=
∫

Ω
[Etot] (φ? (x) ,∇φ? (x)) vφ (x) d2x = 0 (4.2)

φ′ = φ? + τvφ (4.3)

We can derive the same result if we take φ′ to be the result of the action of a one
parameter Lie group gγt acting only on φ? and not on Ω

dE (φ′)
dt

∣∣∣∣
t=0

=
∫

Ω
V φ
e (Etot) d2x = 0, φ′ = gγt ◦ φ? (4.4)

V φ
e = vφ

d

dφ
+ dvφ

dxν

d

d∂νφ
(4.5)

The vector V φ
e is obtained from eqs. 2.55 and 2.56 simply by setting the spacial

variations ωµi in the basis operators Xi
e to zero, ωµi = 0 and setting vφ =

∑
i αiω

φ
i .

Using integration by parts we show that eq. (4.2) and eq. (4.4) are equal.

One of the basic algorithms for solving the minimization problem in eq. (4.2) is
the method of steepest descent (citation!!!). Beginning with an initial guess φ0,
the basic idea of steepest descent is to compute a new estimate of the field φ by
advancing a previous estimate φn along the negative direction of the gradient of
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Figure 4.1: This figure shows a transformation of the level-set S to S′ along the
vectorWm(x). The regionA ⊂ Ω is the region a section of S traverses
as it is shifted alongWm to the end position S′. If the divergence of
Wm vanishes, this means that the incoming flux of Wm equals the
outgoing flux (both indicated by the red arrows),Wm|S = Wm|S′

E(φ,∇φ) which is provided by the Euler-Lagrange differentials [Etot]

φn+1 = φn − τφ [Etot] (φn,∇φn) (4.6)

The scheme is repeated (see algorithm 2) until either the Euler-Lagrange differ-
entials vanish or a fixed number N of iterations is reached.

In the eqs. 4.2 and 4.4 we take only the variation of the field φ into account.
However the discussion in chapter 2.3 which led to Noether’s theorem is based
upon a more general Lie group G which also contains possible variations of the
coordinate frame (see eq. (??))

x′ = x+ τΩv (x) (4.7)

where τ is a parameter that controls the extent of the deformation of Ω, similar
to how τφ controls the deformation of φ. In the following we would like to
introduce a methodology that enables the use of the entire group G for the
minimization of the total energy E in eq. (4.1). Our new methodology is centered
around the concept of steepest descent for the spacial coordinate frame Ω of the
form

xn+1 = xn − τΩb (xn) (4.8)

The exact form of the vector b(x) will soon be deduced, now we wish to give
an intuitive idea of b(x) should look like. In section 2.2.1 (??) we explained that
the role of the prior Eprior is to enforce certain geometric constraints onto the
level-sets SX of the minimizers φ?. The geometric constraints are encoded in the
Lie algebra G of the Lie group G under which Eprior and thus E is invariant. If G
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is a pure spacial Lie group, vφ = 0, then eq. (2.110) simplifies to

d

dt
gγt ◦ E

∣∣∣∣
t=0

=
∫

Ω

(∑
m

αmdiv (Wm)− V Ω
e (φ) [Etot]

)
d2x = 0 (4.9)

which is independent of the integration region. Since eq. (4.9) must hold for any
coefficient vectorα, by virtue of the expansion V Ω

e =
∑
m αmX

m,Ω
e the individual

divergences must satisfy∫
Ω

(div (Wm)) d2x =
∫

Ω

(
Xm,Ω
e (φ) [Etot]

)
d2x (4.10)

Eq. (4.10) must hold for any integration domain Ω which means that the inte-
grands themselves must be equal

div (Wm) = Xm,Ω
e (φ) [Etot] (4.11)

By Gauss’ law the integrated divergence ofWm within any subset A ⊂ Ω equals
the integral of the flux ofWm over the surface ∂A∫

A
div (Wm) d2x =

∫
∂A
WmdS (4.12)

thus from eq. (4.11) we have∫
∂A
WmdS =

∫
A

(
Xm,Ω
e (φ) [Etot]

)
d2x (4.13)

In figure 4.1 we have depicted the situation where a level-set S is shifted along
the vectorWm with S′ is the result of the shift and A is the region traversed by
the shift of a section of S. We denote this transformation by gmW (t) ∈ GW where
GW is another group. Whether or not it is a Lie group possibly intersecting with
G, GW ∩ G 6= {∅} is not known by the author. However this irrelevant for the
following argument. The boundary ∂A consists of two lines tangential to Wm

besides the sections of S and S′. Since the flux over the tangential lines vanishes
we have∫

S
WmdS −

∫
S′
WmdS

′ =
∫
A
Xm,Ω
e (φ) [Etot] dx2 (4.14)

From Eq. (4.14) we see that the Euler-Lagrange differentials [Etot] and the basis
element Xm,Ω

m act as a source that drives the transformation gmW (t) in the sense
that the S′ propagates until it traverses a region in which the integrand of the
right hand side in eq. (4.14) vanishes. More precisely eq. (4.14) can interpreted
as an equation of motion for the normal vector on S′, nS′ .
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The main question we want to raise in this section is: Does the eq. (4.14),
understood as an equation of motion of the normal vector nS on S under the
influence of the Euler-Lagrange differentials [Etot], suffice to explain the evolution
of the level-set S? In other words can we formulate an equation of motion for
a tangential vector bS on S which satisfies bS ⊥ nS? The tangent vector bS is
taken to be normalized.

Technically speaking, an operator B that would potentially manipulate S along
the tangent bS can be formulated in terms of the Cartesian basis {∂µ}

B = bµS (x) ∂µ (4.15)

A naive answer to our second question is: No! To illustrate this we construct a
one dimensional potential Lie group gBt for which B is the basis of its algebra

d

dt
gBt

∣∣∣∣
t=0

= B (4.16)

The very definition of the level-set S is that along the tangent bS the field variable
φ(x) is constant

d

dt
gBt ◦ φ

∣∣∣∣
t=0

= Bφ = bµS∂µφ = 0 (4.17)

As a result we are led to believe that the energy E in eq. (4.1) is invariant to the
transformation gBt since it depends on φ which in turn obeys eq. (4.17). Thus by
Noether’s theorem there must exist a vector valued functionWB(x) for which
similar to eq. (4.10) the identity∫

Ω
(div (WB)) d2x =

∫
Ω

(B (φ) [Etot]) d2x (4.18)

must hold. However due to eq. (4.17) the integrand of the right hand side of eq.
(4.18) vanishes uniformly on Ω, leading to the conclusion that the divergence of
WB(x) must vanish uniformly too

div (WB) (x) = 0, ∀x ∈ Ω (4.19)

The fallacy in the argumentation of our naive answer lies in the last statement
in eq. (4.19). We recall the generic form of the divergence vector Wm from eq.
(2.108)

Wµ
m = ωµmE +

∑
i

ωµi

(
ωφm −Xm,Ω

e (φ)
) δE
δ (Xi

eφ) (4.20)

69

Not obvious which first and second 
questions you are referring to.



and replace Xm,Ω
e with B as the generating operator, thereby setting ωφm = 0 (B

is a purely spacial operator)

Wµ
B = bµSE −

∑
i

ωµi ·B (φ) δE
δ (Xi

eφ) (4.21)

Again by virtue of eq. (4.17)WB simplifies even more

Wµ
B = bµSE (4.22)

To show why div(WB) = 0 cannot hold, we construct an integral over a region
AB which is enclosed by two level-sets S1 and S2 and two curves T1 and T2
connecting the level-sets∫

AB
div(WB)d2x =

∫
S1
E · (bS · nS1) dS1 +

∫
S2
E · (bS · nS2) dS2 (4.23)

+
∫
T1
E · (bS · nT1) dT1 +

∫
T2
E · (bS · nT2) dT2 (4.24)

Since the vector valued function bS(x) is the tangent vector on the level-sets
S1 and S2 the line integrals in eq. (4.23) vanish. Furthermore T1 and T2 have
opposite orientation so we can choose the gauge

(bS |T1 · nT1) = +1, (bS |T2 · nT2) = −1 (4.25)

Thus we have for the divergence∫
AB

div(WB)d2x =
∫
T1
E (φ(x),∇φ(x)) dT1−

∫
T2
E (φ(x),∇φ(x)) dT2 (4.26)

If div(WB) = 0 was to be true then the two line integrals in eq. (4.26) would
have to cancel. However we did not make any assumptions on the length of the
curves Ti or on the distance between them so eq. (4.26) must hold for any con-
figuration of the Ti. Hence we conclude that the energy density E(φ(x),∇φ(x))
must be a constant function on Ω regardless of the field φ. We have derived a
clear contradiction. It follows that the energy E cannot be an invariant of the
transformation gBt !

The question that remains is that if gBt does not change the values of φ(x) what
does it change? Our answer is: gBt is an operator on the coordinates x themselves

x (t) = gBt ◦ x0 (4.27)

The constraint in eq. (4.17) guaranties that the level-set of φ(x(t)) move along
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the flow in eq. (4.27). The image φ just appears to be transformed if we view it
from an absolute reference frame Ω0

φ̃ (x0) = φ
(
gBt ◦ x0

)
, x0Ω0 (4.28)

However the particular reference frame Ω0 is irrelevant as two frames Ω and Ω′
may always be connected by the flow in eq. (4.27).

4.2 The Generalized Newton Algorithm

Our motivated procedure in eq. (4.8) depends on the assumption that from the r
equations div(Wm) = 0 the vector b can be constructed from a basis of r vectors
bm which are perpendicular to theWm. To demonstrate this we remember how
the energy E transforms under an arbitrary sub group gγ(t) ⊂ G (eq. (2.110))

d

dt
gγt ◦ E

∣∣∣∣
t=0

=
∫

Ω

(∑
i

[
V Ω
e , X

Ω,i
e

]
(φ) · Pi + vφ[Etot]

)
d2x = 0 (4.29)

=
∫

Ω

(∑
m

αm
∑
i

(M)mi · Pi + vφ[Etot]
)
d2x = 0 (4.30)

(M)mi =
[
XΩ,m
e , XΩ,i

e

]
(φ) , Pi

(
XΩ
e φ (x)

)
=
δEprior

(
XΩ
e φ (x)

)
δ
(
XΩ,i
e φ

)
(4.31)

As we explained in section 2.4 the variation to the field φ, vφ not only contains the
instantaneous per-pixel variation ṽφ but also the component V Ω

e φ which comes
from the variation of the spacial coordinates x

φ′ = φ+ vφ vφ (x) = ṽφ (x) + V Ω
e φ (x) (4.32)

Many methods for minimizing the energy E are of the basic Newton type in
algorithm 2 which is based around the concept of steepest decent where the
variation vφ is chosen such that the field φ is advanced in the direction of the
negative gradient of E

φ′ = φ− τφ · [Etot] (4.33)

The step-size parameter τφ is either chosen to be constant or, in more advanced
algorithms adjusted dynamically, for example on the conjugate gradients algo-
rithm ([30]).
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What is new our treatment of the minimization problem in eq. (4.30) is that
we consider the change of the differential operators Xi

e themselves under the
action of the spacial operator V Ω

e which is encoded in the matrix commutatorM .
We explained in section 4.30 that if we set vφ = 0, that is we consider only the
variation to the operators Xi

e in eq. (4.30) then the relation

M · P = 0 (4.34)

must hold independently from the coefficient vector α, since eq. (4.30) must
hold for any gγt ∈ G. It is this relation that defines the perpendicular vector b(x).
We will now show how b is constructed. Since the commutator matrixM in eq.
(2.107) is an element of the Lie algebra G it can be represented in terms of the
basis Xi

e

(M)mi =
∑
l

C lmiX
Ω,l
e (φ) (4.35)

As the basis elements XΩ,l
e are represented by the Cartesian gradient operator∇

XΩ,l
e = ωµl (x) ∂µ (4.36)

the productM · P in eq. (2.107) takes the form

(M · P )m = ‖bm‖Bmφ (x) (4.37)

Bm = 1
‖bm‖

bµm (x) ∂µ, bµm (x) =
∑
i

Pi
(
φ (x)

)
C lmiω

µ
l (x) (4.38)

We would like to discuss the operator Bm. By eq. (4.37) and eq. (4.34) the
operator Bm must satisfy the level-set equation

Bmφ = bµm∂µφ = 0 (4.39)

From eq. (4.39) we see that the vector bm is tangential to the level-sets of φ(x). The
r operators Bm are left invariant vector fields. They are the basis of a Lie algebra
GB and an associated Lie group GB . For reasons soon to be clear we call the group
GB the bending group and the algebra GB the bending algebra. The dimension
rB of GB is not necessarily equal to the dimension r of the original algebra G,
since Bm 6= 0 holds only for the non trivial elements of G. For instance in the case
G = T × SO(2) only the SO(2) group allows for the construction of a bending
group SOB(2) since E is trivially invariant under T (M |T = [∂x, ∂y] = 0).

The bending algebra GB is an algebra of spacial differential operators. Thus we

72

in

Wrong 
equation?  
There is no M 
in (2.107)

Why?  For 
what reason?  
Motivation?



can use it to define a diffusion equation for the coordinate frame Ω

x (t) = gBt ◦ x,
dx (t)
dt

∣∣∣∣
t=0

=
r∑

m=1
βmBmx = B · x (4.40)

The operator B is a linear combination of the r operators Bm from eq. (4.38)
and the coefficient vector β is an arbitrary constant vector. The diffusion process
in eq. (4.40) is a non-linear process since the coefficient vector bm(x) itself (eq.
(4.38)) is a function of the coordinates x(t). It is guided along those operators
Bm which do not vanish due to trivial symmetries. To understand the dynamical
properties of the diffusion equation in eq. (4.40) we calculate the rate of change
of the energy E under the transformation gBt . First we notice that due to the
level-set equation in eq. (4.39) the first order derivative of the data term Edata
under the action of gBt vanishes

d

dt

(
gBt ◦ Edata (x)

)∣∣∣∣
t=0

= δEdata

δφ
·Bφ = 0 (4.41)

This means the diffusion process in eq. (4.40) is independent from the data term
Edata. The action of gBt on the prior Eprior allows for a geometrical explanation of
how the diffusion in eq. (4.40) proceeds. We let gBt act on Eprior and compute the
derivative with respect to t

d

dt

(
gBt ◦ Eprior

)∣∣∣∣
t=0

=
∑
i

Pi ·
[
B, Xi

e

]
φ (4.42)

The commutator
[
B, Xi

e

]
φ is the change the gradient Xi

eφ undergoes under the
diffusion process in eq. (4.40) at time t = 0. Its projection onto the canonical
momentum P is a measure for the curvature of the level-set defined by eq. (4.39).

The bending operator B depends on the vector P in constrast to the Euler-
Lagrange differentials [Etot], which only depend on the divergence div (P ).
Hence although the divergence may vanish after some iterations of the clas-
sical Newton algorithm, the actual vectors P and thusB may be non-vanishing
upon the diffusion process in eq. (4.40)

b (x (t)) 6= 0 t→∞ (4.43)

However the prior Eprior and thus the energy E converge to zero under the
diffusion process. Thus projection of

[
B, Xi

e

]
φ onto P vanishes at some point

t = t?∑
i

Pi ·
[
B, Xi

e

]
φ = 0, t = t? (4.44)
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To show why eq. (4.44) holds we need to argument that gBt ◦ Eprior is convex
with respect to t. For brevity we will assume Eprior(Xi

eφ(x)) only depends on
the derivative Xi

eφ(x), the other derivatives Xj 6=i
i φ are taken to be fixed. We

define f(x, t) = gBt ◦Xi
eφ(x). The function f(x, t) is neither globally convex in

Ω with respect to t nor concave. However we can split the domain Ω into two
sub-domains, one domain Ω` in which f is globally convex and Ωa in which f
is globally concave. We may construct a globally convex function h(x, t)

h(x, t) =
{
f(x, t) x ∈ Ω`

−f(x, t) x ∈ Ωa
(4.45)

and insert h(x, t) into the prior Eprior and since Eprior is convex in its arguments
the combined function Eprior(h(x, t)) is convex with respect to t. Now Eprior
is also a positive semi-definite functional meaning it is invariant to the rever-
sal of the signs of its arguments, Eprior(h(x, t)) = Eprior(−h(x, t)). Thus we
conclude that Eprior(f(x, t)) is also convex with respect to t. The same argu-
ments can be applied to all derivatives Xi

e for 1 ≤ i ≤ q so the result is that
gBt ◦ Eprior(X1

eφ, . . . ,X
q
eφ) is convex with respect to t.

The positive definiteness and convexity of gBt ◦ Eprior with respect to t has the
important consequence that gBt ◦ Eprior has a global minimizer gB?t . However
the minimizer gB?t is not unique! Since by construction Eprior is invariant to the
group G, g̃B?t = gB?t ◦ gΩ is also a minimizer of Eprior for all gΩ ∈ G.

Eq. (4.42) gives us a geometrical explanation of the minimizer gB?t since for
gBt = gB?t it vanishes∑

i

Pi ·
[
B, Xi

e

]
φ = 0 (4.46)

As we had explained the commutator in eq. (4.46) has the geometrical meaning
of being the change Xi

eφ under goes during parallel transport along B. The
vectorsB and P span the tangential vectorspace in Ω sinceB 6= P anywhere in
Ω. The projection of

[
B, Xi

e

]
φ on toB vanish due to the level-set equation in eq.

(4.39). If eq. (4.46) holds then the commutator must vanish in Ω[
B, Xi

e

]
φ = 0 (4.47)

Eq. (4.47) means that the operator Xi
e does not change its orientation when

parallel transported alongB.

However they are not elements of the original Lie algebra Bm is a left invariant
vector field and thus an element of the Lie algebra G. This is due to the commuta-
tor matrixM being left invariant and the canonical momentum P , which is the
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Algorithm 2 Basic Newton Method

Set n = 0
Set Initial guess φ0

Compute residual rn = − [Etot] (φn)
while ‖r‖ > δ and n < N do

Compute φn+1 (x) = φn (x)− τφ [Etot] (φn (x))
Recompute rn+1 = − [Etot]

(
φn+1)

Set n→ n+ 1
end while

Algorithm 3 Diffusion Method

Set n = 0
Set Initial guess φ0, x0

while n < N do
Compute xn+1 = xn − τΩb (xn)
Compute φn+1 (xn+1) = φn

(
xn+1)

Set n→ n+ 1
end while

functional derivative of Eprior and as such also left invariant. The consequence of
the left invariance ofBm is that eq. (4.39) holds for any coordinate transformation
of an arbitrarily chosen reference frame Ω0.

In algorithm 3 we have sketched an algorithm for the minimization of the energy
E in eq. (4.1) which only deploys the diffusion process in eq. (4.40). Since the
coefficient vector b is a unit vector, a stopping condition in the sense of algorithm
2 (‖r‖ < δ) does not make sense and instead we chose terminating the algorithm
after a fixed amount of steps N . However a sensible stopping condition could be
derived from eq. (4.42), like d

dt(g
B
t ◦Eprior) < δ. We combined both algorithms 2

and 3 into the generalized Newton algorithm 4. As we discussed above eq. (4.44)
must characterize the minimum of E in eq. (4.1) just like the Euler-Lagrange
equations [E ] = 0. Thus it is sufficient to implement the same stopping conditions
in the algorithm 4 as in the basic Newton method in algorithm 2.

Bmφ (g ◦ x0) = 0 ∀x0, g g ∈ G, x0 ∈ Ω0 (4.48)
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Algorithm 4 Generalized Newton Method

Set n = 0
Set Initial guess φ0, x0

Compute residual rn = − [Etot] (φn)
while ‖r‖ > δ and n < N do

Compute xn+1 = xn − τΩb (xn)
Compute φn+1 (xn+1) = φn

(
xn+1)− τφ [Etot] (φn (xn))

Recompute rn+1 = − [Etot]
(
φn+1)

Set n→ n+ 1
end while

(a) (b)

Figure 4.2: Figure 4.2a shows a picture φc of a person. φc is taken to be free of
noise. Figure 4.2b is a noise corrupted version of φc in figure 4.2a,
φd = φc + n where n is iid Gaussian noise with a standard deviation
σ = 100.

4.2.1 Image De-noising

Image de-noising is the problem of estimating a clean image φ? given a noisy
image φd. The image φ0 is connected to φ? via

φd = φ? + n n ∼ D (4.49)

whereD is some distribution and n is a noise term drawn fromD. φ? is estimated
from the family of functionals

E (φ) = 1
q

∫
Ω
|φ− φd|qd2x+

∫
Ω
Eprior (φ (x) ,Xeφ (x)) d2x (4.50)
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The degree q of the data term depends on the type of noise distribution D. We
have simulated a noise corrupted image φd in figure 4.2b in which the distribution
D is the Gaussian N (0, σ) (σ = 100). We have run both the Newton and our
generalized Newton algorithm to minimize the energy in eq. (4.50) for the total
variation prior and our new structure tensor based prior.

TV-Prior

The TV based image de-noising model is defined by the energy

E (φ,∇φ) =1
q

∫
Ω
|φ− φd|qd2x+

∫
Ω
Eprior (∇φ (x)) d2x (4.51)

Eprior (∇φ (x)) =λ
√
∇Tφ · ∇φ (4.52)

The prior Eprior in eq. (4.52) is an invariant of the Lie group G = T× SO(2), the
group of translation and rotations. However the associated bending operatorBT

vanishes for the translation group T vanishes since

Bx
T = P ν [∂ν , ∂x] = 0, By

T = P ν [∂ν , ∂y] = 0 (4.53)

that is T is a trivial symmetry of Eprior and E (φ,∇φ). The bending operatorBθ

associated with the rotation group SO(2) does not vanish, but computes to

Bθ = bµθ∂µ, bθ = ∇⊥φ√
∇Tφ · ∇φ

= P⊥ (4.54)

We ran algorithm 3 and algorithm 4 with the bending operator in eq. (4.54) and
compared it to the original Newton method in algorithm 2. In figure 4.3a we
have plotted the energy E(φ,∇φ) over the current iteration n for both algorithm
4 and 2 and in figure 4.3b the prior energy Eprior. The pure diffusion algorithm
(PDA) 3 initially minimizes the prior Eprior and the total energy E faster then
the basic Newton algorithm (BNA). At arround n = 40 iterations the PDA starts
to converge to a higher total energy E then the BNA. We relate this finding to
the fact that the bending operator Bθ does not depend on the data term Edata
and that the PDA does not involve the steepest descent step in eq. (4.6). The
prior energy Eprior however converges for both the PDA and the BNA to the
same value albeit the PDA converging slower then the BNA. The GNA as a
combination of both the PDA and the BNA converges approximately twice as
fast as the BNA alone according to figures 4.3a and 4.3b.

In figure 4.4a the variance σ2 = V(φ) and in figure 4.4b the curvature ‖K‖ are
plotted against the iterations n for the BNA, PDA and GNA. The curvature ‖K‖
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(a) (b)

Figure 4.3: Figure 4.3a is a plot of the energy in eq. (4.52) and figure 4.3b a plot
of the prior energy Eprior over the current iteration n for algorithm 4
(solid line), algorithm 2 (dashed line) and algorithm 3 (dotted line).
We can see that the diffusion process in eq. (4.40) alone (algorithm 3)
minimizes the prior energy Eprior and the total energy E We see that
the bending operator in the diffusion process in eq. (4.40) causes an
acceleration in the decrease of the prior energy Eprior and thus of the
total energy E

is the mean curvature over the domain Ω. Similar as for the energies E and
Eprior the mean curvature is initially minimized by the PDA faster then the
BNA and after n = 40 iterations slower then the BNA. It converges fastest for
the GNA. The variance σ2 has a similar behavior like the total energy E in that
since the PDA is not bounded by the data term Edata the variance σ2 converges
to a higher level then the BNA and the GNA. Again since the GNA creates
regions of equal intensity, leve-set regions in φ via the diffusion in eq. (4.40) and
simultaneously matching the level-set regions to each other via the data term in
the Euler-Lagrange differential in eq. (4.33) the variance converges the fastest for
the GNA.

78

Axes aren't labelled!

Are these figures based on a single run on a 
single image?  I don't think that you can / 
should conclude anything from that.  You need 
repeated runs over many images!

Need a legend in the figure 
for line styles, not in the 
caption!



(a) (b)

Figure 4.4: Figure 4.4a shows the variance σ2 of the image φ and figure 4.4b the
curvature vectorK for algorithm 3 (dotted line), algorithm 2 (dashed
line) and algoritm 4 (solid). The curvature ‖K‖ converges for all three
algorithms 3, 2 and 4 to the same value. However the variance σ2 for
algorithms 4 and 2 converge to a lower value then algorithm 3. The
explanation is that while algorithm 3 only creates regions of equal
intensity, level-set regions, the algorithms 4 and 2 not only create
level-set regions but actually match the intensities of the level-set
regions to each other.

Structure Tensor Prior

In this section we applied our structure tensor prior from section ?? to the image
de-noising problem

E (φ,∇φ) =1
q

∫
Ω
|φ− φd|qd2x+

∫
Ω
Eprior (∇φ (x)) d2x (4.55)

Eprior (∇φ (x)) =det (S) (4.56)

In order to apply the GNA in algorithm 4 to the model in eq. (4.56) we need
to compute the coefficient vector b of the bending operatorB. From section ??
we know that EpriorST is invariant to the group G = T× SO(2). Like the TV prior
the translation group T is a trivial symmetry so that it suffices to compute the
bending operatorBθ corresponding to the group SO(2). We remember that the
structure tensor prior in eq. (4.56) transforms under the SO(2) in the following
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way

d

dt
Eprior (Sgt)

∣∣∣∣
t=0

=
∫

Ω
Tr (S ·Mθ · S) d2x = 0 (4.57)

where Mθ is the Pauli matrix (the generator of the algebra so(2)). We can expand
the structure tensor S in terms of its eigenvectors v1,2 and the corresponding
eigenvalues λ1,2. The eigenvector v1 is parallel to the mean gradient (over the
window covered by S) of φ

v1 ‖ 〈∇φ〉 (4.58)

and the eigenvalue λ1 is the squared magnitude of 〈∇φ〉. The vector v2 is
orthogonal to v1 and λ2 is the squared rate of change of φ along the direction of
v2. The structure tensor S can the be written as

S = λ1v1v
T
1 + λ2v2v

T
2 (4.59)

The trace in eq. (4.57) then reduces to the equation

Tr (S ·Mθ · S) = 〈∇φ〉T b̃θ, b̃θ = S ·
(
〈∇⊥φ〉 − λ2√

λ1
v2

)
(4.60)

The vector b̃θ shows in the direction of v2 and is thus perpendicular to the mean
gradient ∇φ and the trace in eq. (4.57) vanishes. We insert b̃θ into the definition
of the bending operatorB in eq. (4.38) and get

Bθ = vµ2 ∂µ (4.61)

In figures 4.5 and 4.6 the energies Eprior, E the variance σ2 and the ‖K‖ are
plotted over the iterations n for both algorithms 2 and 4. Like for the TV prior
we see that the energies E and Eprior converge for the GNA faster then for the
BNA. The variance σ2 (figure 4.6) however converges for both algorithms at the
same rate albeit to a lower value for the GNA.
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(a) (b)

Figure 4.5: Figure 4.5a is a plot of the energy in eq. (4.52) and figure 4.5b a plot
of the prior energy Eprior over the current iteration n for algorithm 4
(solid line), algorithm 2 (dashed line) and algorithm 3 (dotted line).
We can see that the diffusion process in eq. (4.40) alone (algorithm 3)
minimizes the prior energy Eprior and the total energy E We see that
the bending operator in the diffusion process in eq. (4.40) causes an
acceleration in the decrease of the prior energy Eprior and thus of the
total energy E
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(a) (b)

Figure 4.6: Figure 4.6a shows the variance σ2 of the image φ and figure 4.6b the
curvature vectorK for algorithm 3 (dotted line), algorithm 2 (dashed
line) and algoritm 4 (solid). The curvature ‖K‖ converges for all three
algorithms 3, 2 and 4 to the same value. However the variance σ2 for
algorithms 4 and 2 converge to a lower value then algorithm 3. The
explanation is that while algorithm 3 only creates regions of equal
intensity, level-set regions, the algorithms 4 and 2 not only create
level-set regions but actually match the intensities of the level-set
regions to each other.
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