```
Red -- error
```

Green -- comment
Blue -- citation missing

Contents

1 Introduction 3
2 Background 8
2.1 Gibbs Random Fields 8
2.2 Lie Groups and the Noether Theorem 12
2.2.1 Motivation 1, the problem 12
2.2.2 Motivation 2, the solution 13
2.3 Lie Groups 16
2.3.1 \quad The Group $\mathbb{G}=\mathbb{T} \times S O(2)$ 21
2.4 Noether's First Theorem 22
2.4.1 Noethers Theorems 23
2.4.2 Noether's First Theorem: A Modern Version 26
2.5 Total Variation 29
2.5.1 The Mean Curvature of Total Variation 30
2.6 Optical Flow 32
2.6.1 Mutual Information 35
2.6.2 Correlation Ratio 35
2.6.3 Cross Correlation 36
2.7 Setup of the camera rig 37
2.8 Image Fusion 37
3 Linearized Priors 40
3.1 The Linear Structure Tensor 40
3.2 Structure Tensor Based Prior 42
3.3 Geometrical Optical Flow Model 43
3.4 Disparity 43
3.5 Localization 47
3.6 The solution algorithm 50
3.7 Results 51
3.8 Uni-Modal Data 51
3.8.1 Structure Tensor Prior 51
3.8.2 Total Variation Prior 51
3.9 Eigenvalue analysis and the stabilization parameter λ_{2} 54
3.10 Multimodal Optical Flow 63
3.10.1 Estimation of the resolution parameter σ 63
3.10.2 Structure Tensor Prior 63
3.10.3 Total Variation Prior 63
4 The Generalized Newton Algorithm 66
4.1 Motivation 66
4.2 The Generalized Newton Algorithm 71
4.2.1 Image De-noising 76
5 Conclusions 83
Bibliography 84

1 Introduction

```
Discussion is getting abstract
```

Discussion is getting abstract
fairly quickly. Maybe start
fairly quickly. Maybe start
with a higher level paragraph,
with a higher level paragraph,
setting the stage in a clear
setting the stage in a clear
fashion, talking about every-
fashion, talking about every-
day / real-world sorts of
day / real-world sorts of
things?

```
things?
```

The main topic of this thesis is concerned about symmetries in the mathematical modeling of computer vision problems. Many objects in nature posses among others the notable characteristic of symmetry regarding their attributes such as their form and color. A symmetry of an object \mathcal{O} is such that if \mathcal{O} undergoes a specific transformation g, then it appears for an observer to be unchanged. Say we have a computer vision problem involving the object \mathcal{O}, modeled with a mathematical model M. It is natural to reflect the symmetry of the object \mathcal{O} within the model M, such that M is invariant in some sense under the transformation g. The goal of this theses is to analyze the structure of the symmetries of a mathematical model M. We will prove that knowledge of the symmetries of M may lead to significant speed ups of any algorithm using M.

Symmetries generally fall into two categories: global and local symmetries. A ball of uniform color for instance does not change its appearance to an observer upon rotation around an arbitrary axis through the center of the ball. This example is one of global symmetry since the ball as a whole is transformed (rotated). We can formally describe the global symmetry of the object \mathcal{O} in the following way: If the surface of the object is described by the functional relationship $\phi_{\mathcal{O}}(\boldsymbol{x})=$ const (e.g. $\phi_{\mathcal{O}}(\boldsymbol{x})=x^{2}+y^{2}+z^{2}=1$ for a ball of unit radius) then our intuition of global symmetry is equal to the statement that $\phi_{\mathcal{O}}(\boldsymbol{x})=$ const is invariant under the global transformation $\boldsymbol{x}^{\prime}=g \circ \boldsymbol{x}$

$$
\begin{equation*}
\phi_{\mathcal{O}}(g \circ \boldsymbol{x})=\phi_{\mathcal{O}}(\boldsymbol{x}) \tag{1.1}
\end{equation*}
$$

Not all objects in nature are symmetric with respect to global transformations. For example in figure 1.1 an image of a leaf is shown. Since the leaf is not symmetric with respect to any global transformation g, its projection onto the image plane Ω is not symmetric with respect any global transformation g^{Ω} on Ω. However if we inspect local regions of the leaf, that is we zoom into those regions at various locations on the leaf, we see that the features of the leaf within the regions do posses symmetries. Figure 1.1b shows a close up of the region highlighted in figure 1.1a through which a vein of the leaf runs. The vein appears to be linear and thus symmetric towards translations along its tangential direction. This symmetry is reflected by the vectors at each position of the vein. They indicate

Figure 1.1: Figure 1.1a shows an image of a leaf. The caf clearly has no global symmetry. Figure 1.1 b shows a close-up of the region around a vein of the leaf, indicated by the box in figure 1.1a. The vectors in figure 1.1 b along the vein indicate local translations which leave the vein invariant.
local translations, which leave the vein invariant. A local transformation as indicated by the vectors in figure 1.1 b may be represented by the vector field $\boldsymbol{\omega}^{\Omega}(\boldsymbol{x})$ such that the local transformation $g^{\Omega}(\boldsymbol{x})=\boldsymbol{x}+\boldsymbol{\omega}^{\Omega}(\boldsymbol{x})$ leaves the image ϕ invariant

$$
\begin{equation*}
\phi\left(x+\omega^{\Omega}(x)\right)=\phi(x) \tag{1.2}
\end{equation*}
$$

In general we cannot assume that $g^{\Omega}(\sqrt{ }$ in eq. 1.2 is unique since ther can always exist a vector field $\omega^{\Omega \prime}(x) \neq \omega^{\Omega}(x)$ which satisfies eq. (1.2). On the other side any transformation g^{Ω} satisfying eq. (1.2) uniquely determines the geometry of ϕ for if we were to draw lines along the tangentiatvectors $\Omega^{\Omega}(\boldsymbol{x})$ by connecting x with $x+\omega^{\Omega}(x)$ we would reconse object \mathcal{O} from $g(x)$.

Statement
feels overly vague.

The process of acquiring information from our physical reality is problematic itself in many ways. For one, the information which we may wish to gather may lay hidden in the data we can acquire from a physical system. On such problem is called stereograhy ([?]), depicted in figure 1.2. The statement of the problem goes as follows: given two images y and I (figures 1.2b and 1.2c) of an object \mathcal{O} (the box in figure 1.2a) how can we infer the 3 -dimensional structure of \mathcal{O} (the width, height and depth of the box)? This problem has already been solved by nature since the hu nan brain capable f reconstructing a 3-dimensional image given the 2-dimensional intagestained by the left and the right eye.

4

You have a large space after
"eq." because Latex thinks
you're ending a sentence. You
need a non-breaking space:
"eq. \sim \ref $\{$ equation-label\}"

```
Strange notation -- one image
is capital, one is lower case.
Also you have two cameras, but
both are identified by the same
subscript c.
```


(a)

Figure 1.2: Figure 1.2a Two cameras are shown re ording a scene from different positions. The scene could could be a rigid scene or a dynamic scene with moving objects. Figure 1.2b shows the image y captured from the camera y_{c} and frgure 1.2c the image I from the camera I_{c}. One possible question is: Now can the pixels of the image I be mapped to those of the imay y ? Such a mapping can be used to deduce the 3-dimensional structure of the box similar to how the human brain constructs a 3 -dimensional image given the 2-dimensional images obtained by the left and the right eye.

Besides the problem of hidden information described above there is another problem in the process of information acquisition. The means we use to acquire the data have technical limitations. For instance the cameps y_{c} and I_{c} in figure 1.22 in general produce images of limited resolutions which madiso be subject to noise.

Both problems in the process of information acquisition may be sub-summed as the problem of inference: Given some possibly corrupted data I of a pitysical system we wish to infer some information stored in the unknown latent variable ϕ. In general Y and ϕ may be discrete variables, continuous functions over some domain Ω or a combination of both. In this thesis we will only handle problems for which Y and ϕ are continuous functions over Ω

$$
\begin{equation*}
Y, \phi: \Omega \rightarrow \mathbb{R}^{n} \tag{1.3}
\end{equation*}
$$

The inference problem then becomes the problem of mapping Y to ϕ

$$
\begin{equation*}
Y(\boldsymbol{x}) \xrightarrow{T_{Y}} \phi(\boldsymbol{x}) \tag{1.4}
\end{equation*}
$$

where T_{Y} denotes a process or an algorithm which is parametrized by the data Y. Since the variable ϕ is unknown we have to for one make assumptions on its geometric properties and furthermor model how it is linked to the data Y.
\qquad
Awkward writing.

These aspects of ϕ are then embedded in the inference process T_{Y}. For now we want to motivate how the geometrical properties of ϕ can be taken into account by T_{Y}. Consider a local transformation g such that the variable ϕ is transformed to the new variable ϕ^{\prime}

$$
\begin{equation*}
\phi^{\prime}(\boldsymbol{x})=\phi(g \circ \boldsymbol{x}) \tag{1.5}
\end{equation*}
$$

We can regard ϕ^{\prime} as being inferred from the data Y via the inference process T_{Y}^{\prime} similar to eq. (1.4). If ϕ is symmetric under g in the sense of eq. (1.2) then this implies that the two inference processes T_{Y} and T_{Y}^{\prime} are equal and thus the inference process T_{Y} is itself symmetric under the action of g. We conclude that knowledge of the set of local transformations $\{g\}$ which satisfy eq. (1.2) allows us to identify those inference processes T_{Y} which are equal to each other upon action of $\{g\}$. This has two consequences. The first is that we can design an inference process T_{Y} which is invariant upon the action of the set $\{g\}$. As a result this guarantees the invariance of ϕ upon the action of $\{g\}$. The second consequence is more subtle. If we split the inference process T_{Y} into n intermediate steps

$$
\begin{equation*}
Y \xrightarrow{T_{Y}} \phi=Y \xrightarrow{T_{Y}^{1}} \phi^{1} \xrightarrow{T_{X}^{2}} \phi^{2} \cdots \xrightarrow{T_{Y}^{n-1}} \phi^{n-1} \xrightarrow{T_{X}^{n}} \phi \tag{1.6}
\end{equation*}
$$

the intermediate steps T_{Y}^{i} and ϕ^{i} need not be invariant under the set $\{g\}$. However for particularly well chosen $g^{\prime} \in\{g\}$ such that

$$
\begin{equation*}
g^{\prime} \circ T_{Y}^{i}=T_{Y}^{i+k} \tag{1.7}
\end{equation*}
$$

we may minimize the number steps in eq. (1.6) und thus obtain the shortest path in the inference problem.

The overall structure of this thesis is as follows: In section 2.1]we introduce the latent variable ϕ as a Gibbs Random Field (GRF). The main property of GRFs is that they are associated with an energy functional $E_{Y}(\phi)$. The inference process T_{Y} is explicitly formulated as the minimization problem

$$
\begin{equation*}
\phi^{\star}=\operatorname{argmin}_{\phi} E_{Y}(\phi) \quad \leftrightarrow \quad Y \xrightarrow{T_{Y}} \phi^{\star} \tag{1.8}
\end{equation*}
$$

In section [2.3] we will introduce the definition of an r-dimensional Lie group \mathbb{G} and its corresponding Lie algebra \mathcal{G}. This facilitates the formally correct definition of the local symmetry in eq. (1.2) in the form of the level-set equation

$$
\begin{equation*}
X \phi=0 \quad \text { if } \quad \phi(g \circ \boldsymbol{x})=\phi(\boldsymbol{x}), \quad g=\exp (t X) \in \mathbb{G}, \quad X \in \mathcal{G} \tag{1.9}
\end{equation*}
$$

Sections 2.1 and 2.3 prepare the stage for the introduction of Emmy Noethers celebrated first theorem in section 2.4. In a nutshell this theorem states that if
an energy functional $E_{Y}(\phi)$ is invariant upon the action of an r-dimensional Lie group \mathbb{G}, then there exists r divergence-free vector fields \boldsymbol{W}_{m}

$$
\begin{equation*}
g \circ E_{Y}(\phi)=E_{Y}(\phi) \quad \forall g \in \mathbb{G} \quad \leftrightarrow \quad \exists \boldsymbol{W}_{m}, \quad \operatorname{div}\left(\boldsymbol{W}_{m}\right)=0 \quad \forall \quad 1 \leq m \leq r \tag{1.10}
\end{equation*}
$$

Since its first publication in 1918, Noether's first theorem has had far reaching implications in our understanding of the fundamental laws of motion in physics as well as the deep connection between the symmetries of a physical system and its conservation laws. For instance the time invariance of the laws of motion in the universe reveals the conservation of energy. In layman words: It does not matter we carry out an experiment now or next week, the results will be the same since the energy of the universe does not vanish! Building on section 2.4 we demonstra in section 3 the construction of a prior energy functional $E^{\text {prior }}(\phi)$ which is intrianter the Lie group $\mathbb{T} \times S O(2)$ which is the group of local tranclations and rptations. In section 3.3 we will the prior developed if section 3 in the context of optical flow [1]. In section 41 e e will introduce a generalization of the Newton approach for solving the inference problem in eq. (1.8) which thes local transformations of the spatifl coordinates x in Ω (see eq. (1.2) into ackount to facilitate the search for the shortest path in the inference problem in ed (1.6).

Chapter?

Not sure it is so important to give details of what is happening in which section. Chapter by chapter is sufficiently detailed at this point.

2 Background

2.1 Gibbs Random Fields

A physical system C is a dynamical composite of elements which interact with each other as well as with the environment the system C is embedded in. The elements are described by a vector of parameters $\phi=\left(\phi_{1}, \ldots, \phi_{n}\right)$. The physical system C relates a specific value ϕ^{\star} of the vector ϕ to a set of observables $Y=$ $\left\{Y_{1}, \ldots, Y_{k}\right\}$

$$
\begin{equation*}
Y=C\left(\phi^{\star}\right) \tag{2.1}
\end{equation*}
$$

In the case that the elements of the system C are continuously distributed over a finite space Ω, the parameter vector ϕ is a function on Ω

$$
\begin{equation*}
\phi(\boldsymbol{x}) \in \mathbb{R}^{n} \quad \boldsymbol{x} \in \Omega \tag{2.2}
\end{equation*}
$$

called a Gibbs-Random-Field (GRF) [2]. The interactions of the elements of the system C with the environment are characterized by an energy functional $E_{Y}^{\text {data }}(\phi)$ called the data term, which cquples the GRF $\phi(\boldsymbol{x})$ to the observables Y. There is another energy form $E^{\text {prior }}\left({ }^{(}, \partial_{j} \phi\right)$) vithin the system C called the prior. $E^{\text {prior }}\left(\phi, \partial_{j} \phi\right)$ describes how the elements of C interact with each other. Together both energy functionals form the total enargy of the system C

$$
\begin{equation*}
E_{Y}(\phi)=E_{Y}^{\text {data }}(\phi)+E^{\text {prior }}\left(\phi, \partial_{j} \phi\right) \tag{2.3}
\end{equation*}
$$

which is related to the probability distribution

$$
\begin{align*}
p(\phi \mid Y) & =p(Y \mid \phi) \cdot p(\phi) \sim \exp \left(-E_{Y}(\phi)\right) \tag{2.4}\\
p(Y \mid \phi) & =\exp \left(-E_{Y}^{\text {data }}(\phi)\right) \tag{2.5}\\
p(\phi) & =\exp \left(-E^{\text {prior }}(\phi)\right) \tag{2.6}
\end{align*}
$$

The value of the probability distribution $p(\phi \mid Y)$ evalyated at the values $\hat{\phi}(\boldsymbol{x})$ describes the probability that the GRF $\phi(\boldsymbol{x})$ assumes the values $\hat{\phi}(\boldsymbol{x})$ at each

```
You never define j.
Also you don't talk about why
delta is needed.
```

point $\boldsymbol{x} \in \Omega$. The set of values $\hat{\phi}(\boldsymbol{x})$ is what is called a configuration of the GRF ϕ.
$E_{Y}(\phi)$ is designed such that it is minimal once the GRF $\phi(\boldsymbol{x})$ fulfills the forward problem in eq. 2.1)

$$
\begin{equation*}
\phi^{\star}=\operatorname{argmin}_{\phi}\left(E_{Y}(\phi)\right) \tag{2.7}
\end{equation*}
$$

The particular value $\phi^{\star}(\boldsymbol{x})$ of the GRF ϕ is the most probable configuration of the distribution $p(\phi \mid Y)$ due to eq. 2.4 and the solution to the inverse problem

$$
\begin{equation*}
\phi^{\star}=C^{-1}(Y) \tag{2.8}
\end{equation*}
$$

An example of a physical system containing a GRF is a camera C recording an object O. The domain $\Omega \subset \mathbb{R}^{2}$ is the focal plane of the camera C and the object O is naturally projected onto the focal plane Ω producing the projection I_{O}. In theory the projection I_{O} is a continuous function in the coordinate frame of the plane O where the particular function value $I_{O}(\boldsymbol{x})$ is the light intensity the object O reflects to the point x on the focal plane Ω. At the heart of the image acquisition process of basically all modern camera systems lies the concept of a CCD collecting the photons of the light at discrete positions $\boldsymbol{x}_{i, j}$ called pixels

$$
\begin{equation*}
I_{i j}^{c} \in \mathbb{R}, \quad \boldsymbol{x}_{i, j} \in \Omega \quad 1<i<n, 1<j<m \tag{2.9}
\end{equation*}
$$

The observables Y are the recorded intensities $I_{i j}^{c}$ at the pixels $\boldsymbol{x}_{i, j}$. In this sense the camera C is a function which maps the continuous projection $I_{O}(\boldsymbol{x})$ to the discretely sampled intensities $I_{i j}^{c}$

$$
\begin{equation*}
I_{i j}^{c}=C_{i j}\left(I_{O}\right) \tag{2.10}
\end{equation*}
$$

The intensity $I_{i j}^{c}$ is basically a function of the number of photons collected by the CCD at the pixel $\boldsymbol{x}_{i, j}$. This number cannot be acquired deterministically, it is rather the result of a stochastic process described as independently identically distributed (iid) noise

$$
\begin{equation*}
\hat{I}_{i j}^{c}=I_{O}\left(\boldsymbol{x}_{i, j}\right)+n \quad n \sim p\left(I_{i j}^{c} \mid I_{O}\left(\boldsymbol{x}_{i, j}\right)\right) \tag{2.11}
\end{equation*}
$$

$p\left(I_{i j}^{c} \mid I_{O}\left(\boldsymbol{x}_{i, j}\right)\right)$ is the likelihood that $I_{i j}^{c}$ assumes the value $\hat{I}_{i j}^{c}$ given the incoming intensity $I_{O}\left(\boldsymbol{x}_{i, j}\right)$ at the pixel $\boldsymbol{x}_{i, j}$. Like in eq. 2.5) it is mapped to the data term energy $E_{I^{c}}\left(I_{O}\right)$.

In order to infer the values of $I_{O}\left(\boldsymbol{x}_{i, j}\right)$ at the pixels $\boldsymbol{x}_{i, j}$ from the noisy data $I_{i j}^{c}$ we need to pose some form of regularity on the values $I_{O}(\boldsymbol{x})$ to counter the pixelwise noise imposed by the CCD in eq. 2.11. Such regularity can be achieved by

Figure 2.1: Figure 2.1a shows an image I^{c} taken of an object O with a thermographic camera. A region of interest is shown where the contrast was enhanced to visualize the noise corruption. Figure 2.1 b shows the result I_{O}^{\star} of the minimization problem eq. (2.14) with the prior in eq. (2.15). The noise is removed but the boundaries of O are over smoothed
correlating the intensities $I_{O}(\boldsymbol{x})$ at all pixels with each other in the prior

$$
\begin{align*}
p\left(I_{O}\right) & =\exp \left(-E^{\text {prior }}\left(I_{O}\right)\right) \tag{2.12}\\
E^{\text {prior }}\left(I_{O}\right) & =\int_{\Omega} \mathcal{E}\left(I_{O}(\boldsymbol{x}), I_{O}(\Omega /\{\boldsymbol{x}\})\right) d x \tag{2.13}
\end{align*}
$$

where the integrand correlates the intensity $I_{O}(\boldsymbol{x})$ at the point $\boldsymbol{x} \in \Omega$ with the intensities at all other points $\Omega /\{\boldsymbol{x}\}$ so that the problem of inferring I_{O} from the data I^{c} becomes the minimization problem

$$
\begin{equation*}
I_{O}^{\star}=\operatorname{argmin}_{I_{O}}\left(E_{I^{c}}\left(I_{O}\right)\right), \quad E_{I^{c}}\left(I_{O}\right)=E_{I^{c}}^{d a t a}\left(I_{O}\right)+E^{\text {prior }}\left(\nabla I_{O}\right) \tag{2.14}
\end{equation*}
$$

However in practice for a $n \times n$ dimensional image I^{c} the minimization in eq. (2.14) achieves a complexity of the order $\mathcal{O}\left(n^{4}\right)$ since every pixel is correlated to $n^{2}-1$ pixels. Even for medium sized images with $n=500$ the computations involed in eq. 2.14 are practically infeasible.

To reduce the complexity we want the integrand \mathcal{E} in eq. 2.13) only to correlate the values $I_{O}(\boldsymbol{x})$ within a neighborhood $U_{x_{i, j}} \subset \Omega$ with each other. One possible and very simple way to implement \mathcal{E} is to have it penalize the L_{2} norm of the

10
other

Figure 2.2: Local transformation of an image ϕ with a level-set S. Figure 2.2a shows an image $\phi(\boldsymbol{x})$ with a line S along which the intensity values are constant. At each point x_{S} the vector ω_{S} is the normal vector on S. Figure 2.2 b shows the result of the local distortion of S under the action of the operator $g_{\delta_{\omega}} \cdot g_{\delta_{\omega}}$ acts on S by adding to ω_{S} a spacial dependent vector $\boldsymbol{\delta}_{\omega}(\boldsymbol{x})$
gradient $\nabla I_{O}(\boldsymbol{x})$

$$
\begin{equation*}
E_{L_{2}}^{\text {prior }}\left(\nabla I_{O}\right)=\int_{\Omega}\left\|\nabla I_{O}(x)\right\|^{2} d x \tag{2.15}
\end{equation*}
$$

where the gradient operation ∇ can be realized by finite differences. While the prior in eq. (2.15) can be implemented in a very efficient manner, it has an important drawback. It isotropically smooths the GRF I_{O} regardless of the underlying geometry of the object O being recorded. In figure 2.1a the image I^{c} of an object O recorded by a thermographic camera is shown. A region of interest with enhanced contrast is shown to visualize the noise corruption due to the image measuring process in eq. (2.11). Figure [2.1b shows the result of the minimization in eq. 2.14 with the L_{2} prior in eq. (2.13). $E_{L_{2}}^{\text {prior }}$ reduces the noise in I_{O} but due to its isotropic nature it over-smooths the boundaries of O. In section 2.2 and following we will introduce a methodology aimed at designing prior energies $E^{\text {prior }}$ which incorporate information about the geometry of the objects recorded in order to avoid the over-smoothing across their boundaries.

2.2 Lie Groups and the Noether Theorem

2.2.1 Motivation 1, the problem

In section 2.1 we had claimed that the problem with the L_{2} prior

$$
\begin{equation*}
E_{L_{2}}(\phi)=\int_{\Omega}\|\nabla \phi\|^{2} \tag{2.16}
\end{equation*}
$$

over-smooths the GRF ϕ over the boundaries of the object recorded by the camera C. In general the minimizers ϕ^{\star} of the energy $E_{L_{2}}$ are the constant functions $\phi=$ const

$$
\begin{equation*}
A_{c}=\left\{\phi_{c}^{\star} \mid \phi_{c}^{\star}=\operatorname{argmin}_{\phi}\left(E_{L_{2}}(\nabla \phi)\right)=c, \quad c \in \mathbb{R}\right\} \tag{2.17}
\end{equation*}
$$

In the context of the minimization problem in eq. (2.14) the minimizer set A_{c} in eq. (2.17) emphasizes that the prior $E_{L_{2}}$ does not allow for the solution I_{O}^{\star} (eq. (2.14)) to have discontinuities. Thus $E_{L_{2}}$ is completely unaware of the geometry in the data I^{c} (figure 2.1a). However $E_{L_{2}}$ has a advantageous property. Consider the set of rotations $S O(2)$ of the coordinate frame Ω

$$
\boldsymbol{x}^{\prime}=\boldsymbol{R}_{\theta} \boldsymbol{x}, \quad \boldsymbol{R}_{\theta}=\left(\begin{array}{cc}
\cos (\theta) & \sin (\theta) \tag{2.18}\\
-\sin (\theta) & \cos (\theta)
\end{array}\right) \in S O(2)
$$

The gradient $\nabla \phi$ transforms under the rotation in eq. (2.18) like a vector, $\nabla^{\prime} \phi=$ $\boldsymbol{R}_{\theta} \nabla \phi$ and the matrix \boldsymbol{R}_{θ} satisfies $\boldsymbol{R}_{\theta}^{T} \boldsymbol{R}_{\theta}=\mathbb{1}$. Thus the L_{2} energy is also invariant towards the rotations in eq. (2.18)

$$
\begin{equation*}
E_{L_{2}}^{\prime}=\int_{\Omega} \nabla^{T} \phi \boldsymbol{R}_{\theta}^{T} \boldsymbol{R}_{\theta} \nabla \phi d^{2} x=\int_{\Omega}\|\nabla \phi\|^{2} d^{2} x \tag{2.19}
\end{equation*}
$$

In general the invariance of the prior energy $E^{p r i o r}(\nabla \phi)$ of a GRF ϕ with respect to the rotations in eq. (2.18) is a favorable feature since the gradient $\nabla \phi$ should not be penalized to a specific orientation. In the context of the minimization problem in eq. (2.14) rotational invariance of the prior $E^{\text {prior }}\left(\nabla I_{O}\right)$ ensures the gradient ∇I_{O}^{\star} is not affected by the orientation of the camera system C.

Different approaches for anisotropic priors exist, for instance [3] introduced a quadratic prior

$$
\begin{equation*}
E_{D}^{p r i o r}(\nabla \phi)=\int(\nabla \phi(\boldsymbol{x}))^{T} D(\boldsymbol{x})(\nabla \phi(\boldsymbol{x})) d^{2} x \tag{2.20}
\end{equation*}
$$

The operator $D(\boldsymbol{x})$ is a local 2×2 symmetric valued matrix estimated within
a local window around each point $\boldsymbol{x} \quad \boldsymbol{D} \boldsymbol{x}$) is precomputed and assumed to be fixed under variation of ϕ. Thus it's elsenvectors function as a guide for the gradient ϕ. For instance in eq. [2.14] we can insert eq. [2.20) for $E^{\text {prior }}$. Computing D such that it has only one non-zero eigenvalue λ and an eigenvector b oriented perpendicular to the weighted gradient of the data I^{c}

$$
\begin{align*}
D(\boldsymbol{x}) & =\lambda \boldsymbol{b}(\boldsymbol{x}) \boldsymbol{b}(\boldsymbol{x})^{T}, \quad \boldsymbol{b}\left(\boldsymbol{x}_{0}\right) \perp\left\langle\nabla I^{c}(\boldsymbol{x})\right\rangle\left(\boldsymbol{x}_{0}\right) \tag{2.21}\\
\left\langle\nabla I^{c}(\boldsymbol{x})\right\rangle\left(\boldsymbol{x}_{0}\right) & =\int_{A} w\left(\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|\right) \nabla I^{c}(\boldsymbol{x}) d^{2} x \tag{2.22}
\end{align*}
$$

the prior $E_{D}^{\text {prior }}$ penalizes the tangential component of ∇I_{O} along \boldsymbol{b} in the minimization in eq. (2.14). Thus the solution I_{O}^{\star} can have discontinuities perpendicular to \boldsymbol{b}. The drawback of $E_{D}^{\text {prior }}$ is that we do not know if \boldsymbol{b} is the true tangential vector in the unbiased projection of the object O. And since D is fixed $E_{D}^{\text {prior }}$ can not be invariant under the rotations in eq. (2.18). Thus the minimization in eq. (2.14) can produce a solution I_{O}^{\star} in eq. (2.14) that has discontinuities which do not reflect the true boundaries of the object O. We conclude that priors $p(\nabla)$ with energies $E_{D}^{\text {prior }}$ which are not rotation invariant are a source of error for the orientation of ∇I_{O}^{\star} in eq. (2.14). The other source of error of the orientation is the data term $E^{\text {data }}$ in eq. (2.14).

On the other side a potential anisotropic prior $E^{\text {prior }}$ which is rotation invariant would lead to a solution I_{O}^{\star} in eq. (2.14) for which the orientation of its structures is only determined by the data term $E^{\text {data }}$.

In the following we will introduce a methodology which allows us to characterize prior distributions $p(\nabla \phi)$ and their energies $E^{p r i o r}(\nabla \phi)$ which allow for discontinuities in their minimizers $\phi^{\star}=\operatorname{argmin}_{\phi} E^{\text {prior }}(\nabla \phi)$ while remaining invariant to a specified but more general set of spacial transformations \mathbb{G}_{Ω}.

2.2.2 Motivation 2, the solution

Which problem? Remind the reader. Give equation or page reference.

Another way to stat the problem that the prior energy $E_{L_{2}}$ only allows for constant minimizers ϕ^{\star} (eq. (2.17)) goes as follows. The energy $E_{L_{2}}(\nabla \phi)$ is invariant upon the transformation $\phi^{\prime}(\boldsymbol{x})=\phi(\boldsymbol{x})+d$ where d is a constant over Ω. Thus if $\phi_{0}^{\star}=c^{\prime}$ is a minimizer of $E_{L_{2}}, c^{\prime} \in A_{c}$ then so is $\phi^{\prime *}=c^{\prime}+d$ since $c^{\prime}+d \in \mathbb{R}$ and by the definition of A_{c} in eq. (2.17) we have $\phi^{\prime *} \in A_{c}$. We would like to think of the operation of addition with constants d as a set $\mathbb{G}_{\text {const }}$ of operators g_{d}

$$
\begin{equation*}
g .: \mathbb{R} \rightarrow \mathbb{G}_{\text {const }}, \quad g_{d}=\cdot+d, \quad g_{d} \in \mathbb{G}_{\text {const }} \tag{2.23}
\end{equation*}
$$

With the help of the construction in eq. (2.23) we can restate the invariance of $E_{L_{2}}$ in the following way

$$
\begin{equation*}
g_{d} \circ E_{L_{2}}(\nabla \phi)=E_{L_{2}}(\nabla(\phi+d))=E_{L_{2}}(\nabla \phi) \tag{2.24}
\end{equation*}
$$

and A_{c} in eq. (2.17) can be viewed as being spun by one constant function $\phi_{0}^{\phi}(\boldsymbol{x})=c$ and the set $\mathbb{G}_{\text {const }}$

$$
\begin{equation*}
A_{c}=\left\{\phi^{\star} \mid \phi^{\star}=g_{d} \circ \phi_{0}^{\star}, \quad g_{d} \in \mathbb{G}_{\text {const }}\right\} \tag{2.25}
\end{equation*}
$$

With the constructions in eq. (2.23) and eq. (2.25) the problem statement that the prior $E_{L_{2}}$ only allows for constant minimizers is transfered to the statement that the set $\mathbb{G}_{\text {const }}$ under which $E_{L_{2}}$ is invariant is too small in some sense.

A more flexible prior $p(\nabla \phi)$ with prior energy $E^{\text {prior }}$ should be invariant to a more general set of transformations \mathbb{G}^{ϕ}. At the same time $p(\nabla \phi)$ and $E^{\text {prior }}$ should also be invariant to a spacial et of transformations \mathbb{G}^{Ω} in order for it not to impede the orientation of the gradient $\nabla \phi$ as motivated in section 2.2.1. Hence $p(\nabla \phi)$ is assumed to be invariant to the set $\mathbb{G}=\mathbb{G}^{\phi} \times \mathbb{G}^{\Omega}$ with the actions

$$
\begin{array}{rr}
g_{\omega^{\phi}} \circ \phi(\boldsymbol{x})=\phi(\boldsymbol{x})+\omega^{\phi}(\boldsymbol{x}), & g_{\omega^{\phi}} \in \mathbb{G}^{\phi} \\
g_{\omega^{\Omega}} \circ \boldsymbol{x}=\boldsymbol{x}+\boldsymbol{\omega}^{\Omega}(\boldsymbol{x}), & g_{\omega^{\Omega}} \in \mathbb{G}^{\Omega} \tag{2.27}
\end{array}
$$

The transformations in eq. (2.26) and eq. (2.27) formally capture all the possible transformations the prior $p(\nabla \phi)$ with energy $E^{\text {prior }}$ is invariant to. In this sense \mathbb{G} is maximal and $p(\nabla \phi)$ is conditioned on \mathbb{G} but not on any particular operator $g \in \mathbb{G}$

$$
\begin{equation*}
p(\nabla \phi)=p(\nabla \phi \mid \mathbb{G}) \tag{2.28}
\end{equation*}
$$

We say that $p(\nabla \phi)$ is conditionally invariant to the set \mathbb{G}. For instance the prior $p_{L_{2}}$ with its energy $E_{L_{2}}$ is conditionally invariant to the set $\mathbb{G}=\mathbb{G} \times S O(2)$, the set of addition of the variable ϕ with constants and the set of rotations in Ω (see eq. (2.18)).

Similar to the definition of A_{c} in eq. (2.25) we can describe the maximizers of $p(\nabla \phi)$ as being related to each other by the elements of \mathbb{G}

$$
\begin{equation*}
A=\left\{\phi^{\star} \mid \phi^{\star}=g \circ \phi_{0}^{\star} \quad g \in \mathbb{G}\right\} \tag{2.29}
\end{equation*}
$$

The set \mathbb{G}_{Ω} contains operators which are purely geometric. The idea is to show that A may be split into sub sets $A_{\Omega}\left(\phi_{c}^{\star}\right)$ whose elements are related to each other

```
In general you have very few citations present
in this and in the previous chapters. Unless
all of this work is original to you, you really
need to be citing mor frequently.
```

by the elements $g_{\omega^{\Omega}} \in \mathbb{G}_{\Omega}$

$$
\begin{align*}
A_{\Omega}\left(\phi_{c}^{\star}\right) & =\left\{\phi^{\star} \mid \phi^{\star}(\boldsymbol{x})=\phi_{c}^{\star}\left(g_{\omega^{\Omega}} \circ \boldsymbol{x}\right), \quad g_{\omega^{\Omega}} \in \mathbb{G}_{\Omega}\right\} \tag{2.30}\\
A & =\left\{A_{\Omega}\left(\phi_{c}^{\star}\right) \mid \phi_{c}^{\star}=g_{\omega^{\phi}} \circ \phi_{0}^{\star}, \quad g_{\omega^{\phi}} \in \mathbb{G}_{i}\right\} \tag{2.31}
\end{align*}
$$

This is significant for the following reason: knowledge of the geometric set of transformations \mathbb{G}_{Ω} under which $p(\nabla \phi)$ is conditionally invariant allows for a reduction of the set of maximizers A to a set $A_{\text {red }}$ such that the elements $\phi_{c}^{\star} \in A_{\text {red }}$ are not related to each other by \mathbb{G}_{Ω}

$$
\begin{gather*}
A_{\text {red }}=\left\{\phi_{c}^{\star} \mid \phi_{c}^{\star}=g_{\omega^{\phi}} \circ \phi_{0}^{\star}, \quad g_{\omega^{\phi}} \in \mathbb{G}_{i}\right\} \tag{2.32}\\
\phi_{d}^{\star}(\boldsymbol{x}) \neq \phi_{c}^{\star}\left(g_{\omega^{\Omega}} \boldsymbol{x}\right) \quad \forall g_{\omega^{\Omega}} \in \mathbb{G}_{\Omega}, \phi_{c, d}^{\star} \in A_{\text {red }} \tag{2.33}
\end{gather*}
$$

We may also turn the argument around: we could specify the geometric set of transformations \mathbb{G}_{Ω} and design a prior $p(\nabla \phi)$ which is conditionally invariant under \mathbb{G}_{Ω}, thus having a reduced maximizer set $A_{\text {red }}$. To give hint of how the prior $p(\nabla \phi)$ could be designed we need the definition of a level-set. A level-set of an image ϕ_{0}^{\star} is a sub set $S_{c} \subset \Omega$ defined by

$$
\begin{equation*}
S_{c}=\left\{\boldsymbol{x} \mid \phi_{0}^{\star}(\boldsymbol{x})=c\right\} \tag{2.34}
\end{equation*}
$$

The action of an element $g \in \mathbb{G}_{\Omega} \times \mathbb{G}_{i}$ on an image $\phi(\boldsymbol{x})$ may be written as

$$
\begin{equation*}
g \circ \phi(\boldsymbol{x})=g_{\omega^{\phi} \phi} \phi\left(g_{\omega^{\Omega}} \circ \boldsymbol{x}\right) \tag{2.35}
\end{equation*}
$$

where we have split g into its components $g_{\omega^{\phi}} \in \mathbb{G}_{i}$ and $g_{\omega^{2}} \in \mathbb{G}_{\Omega}$. By the definition of the action of $g_{\omega^{\Omega}}$ in eq. (2.27) we see that $g_{\omega^{\Omega}}$ is a geometrical transformation that deforms the level-sets S_{c} (see figure 2.2). We are free to define $g_{\omega^{\phi}}$ so that it is orthogonal to $g_{\omega^{\Omega}}$ in the sense that the level-sets S_{c} are invariant under $g_{\omega^{\phi}}$

$$
\begin{equation*}
S_{c^{\prime}}=g_{\omega^{\phi}} \circ S_{c}=S_{c} \tag{2.36}
\end{equation*}
$$

since a transformation of S_{c} is purely geometrical. Now the level-set S_{c} may alternatively be defined with the help of the vector-field $\omega_{\delta}(x)$ which (see figure 2.2 is the set of vectors tangent to S_{c}

$$
\begin{equation*}
S_{c}=\left\{\boldsymbol{x} \mid \boldsymbol{\omega}_{\delta}(\boldsymbol{x}) \cdot \nabla \phi_{0}^{\star}(\boldsymbol{x})=0\right\} \tag{2.37}
\end{equation*}
$$

In figure 2.2 b we show an example of a level-set S which is distorted by the operator $g_{\omega_{\delta}} \in \mathbb{G}_{\Omega}$. The resulting level-set S^{\prime} has the vector-field $\boldsymbol{\omega}_{\delta}^{\prime}(\boldsymbol{x})=$ $\omega_{\delta}(\boldsymbol{x})+\boldsymbol{\delta}(\boldsymbol{x})$ as tangent vectors.

$$
\begin{equation*}
S_{c}^{\prime}=\left\{\boldsymbol{x} \mid\left(\boldsymbol{\omega}_{\delta}(\boldsymbol{x})+t \boldsymbol{\delta}(\boldsymbol{x})\right) \cdot \nabla \phi_{0}^{\star}(\boldsymbol{x})=0\right\} \tag{2.38}
\end{equation*}
$$

```
Other people have called it
this? Then a citation is
needed.
```

However it also possible to represent S_{c}^{\prime} with the help of a deformation of the gradient operator ∇ itself

$$
\begin{equation*}
S_{c}^{\prime}=\left\{\boldsymbol{x}^{\prime} \mid \boldsymbol{\omega}_{\delta}\left(\boldsymbol{x}^{\prime}\right) \cdot \nabla_{t \boldsymbol{\delta}} \phi_{0}^{\star}\left(\boldsymbol{x}^{\prime}\right)=0\right\} \tag{2.39}
\end{equation*}
$$

The operator $\nabla_{t \delta}$ loosely speaking encodes a rever al of the action of $g_{\omega \Omega}$ on x so that S_{c}^{\prime} can be represented with the same tangential vector-field as S_{c} but in the new frame $\boldsymbol{x}^{\prime}=g_{\omega_{\delta}} \circ \boldsymbol{x}$. The operator $\nabla_{t \delta}$ is called a pull-back of the gradient ∇. With the help of the pull-backs $\nabla_{t \delta}$ it is possible to translate the notion of conditional invariance with respect to \mathbb{G}_{Ω} to the requirement that $p\left(\nabla_{t \delta} \phi\right)$ must be constant with respect to variations of the vector-field $\boldsymbol{\delta}(\boldsymbol{x})$

$$
\begin{equation*}
\left.\frac{d}{d t} p\left(\nabla_{t \delta} \phi\right)\right|_{t=0}=0 \tag{2.40}
\end{equation*}
$$

Given a specific form of the operators in \mathbb{G}_{Ω}, eq. (2.40) poses constraints on the form of the differential operators in the prior $p\left(\nabla_{t \delta} \phi\right)$. Eq. (2.40) also ensures that $p\left(\nabla_{t \delta} \phi\right)$ is indifferent to a large class of level-sets $\{S\}$, which are generated by \mathbb{G}_{Ω} acting on S (see eq. (2.39p).

2.3 Lie Groups

In this section the set of operators \mathbb{G} is taken to act on a vector space \mathcal{M}. The set \mathbb{G} is called a group if there exists an operation \cdot so that \mathbb{G} contains

- the neutral element $e \in \mathbb{G}: e \cdot g=g$ for all $g \in \mathbb{G}$

The group \mathbb{G} is called a Lie group [4, 5, , 6] if the group operation

$$
\mathbb{G} \times \mathbb{G} \longmapsto \mathbb{G}:(x, y) \rightarrow x \cdot y^{-1}
$$

is mooth br both x and y. The group operation '.' can also be used to define the left action l_{g} on \mathbb{G}

$$
\begin{equation*}
l_{g}: \mathbb{G} \rightarrow \mathbb{G} \quad l_{g}(h)=g \cdot h \quad g, h \in \mathbb{G} \tag{2.41}
\end{equation*}
$$

l_{g} is a smooth isomorphism in \mathbb{G}. The elements of \mathbb{G} may themselves be smooth mappings defined on an r-dimensional space \mathcal{A}

$$
\begin{equation*}
g: \mathcal{A} \rightarrow \mathbb{G}, \quad\left(a_{1}, \ldots, a_{r}\right) \rightarrow g_{a_{1}, \ldots, a_{r}} \tag{2.42}
\end{equation*}
$$

In this case we say \mathbb{G} is an r-dimensional Lie group. A classical example of a Lie group is the group of invertible n-dimensional Matrices $G L(\mathbb{R}, n)$ over the vector space $\mathcal{M}=\mathbb{R}^{n}$. The dimension of $G L(\mathbb{R}, n)$ is n^{2} and the group operation ' \because ' is the matrix multiplication. In section 2.2 .1 we argument that the set \mathbb{G} acts in a two-fold manner on the spacial ceortitrates $x \in$ in eq. (??) and Pr the function values $\phi(\boldsymbol{x})$ them selve in eq. (??). Th spa and $\infty \infty$ are both vector spaces, that is the additoneration and multiplication with a factor $\lambda \in \mathbb{R}$ are defined in both spaces. It is thus natural to combine both Ω and $\mathcal{C}^{\infty}(\Omega)$ to one single vector space $\mathcal{M}=\Omega \times \mathcal{C}^{\infty}(\Omega)$. However since the functions $\phi(\boldsymbol{x})$ are unknown and we would also like to place constraints on their derivatives ϕ_{K} (K is a multi-index), we combine Ω together with the Jet space $J^{k}\left(\mathcal{C}^{\infty}(\Omega)\right)$ [5], $\mathcal{M}=\Omega \times J^{k}\left(\mathcal{C}^{\infty}(\Omega)\right)$. $J^{k}\left(\mathcal{C}^{\infty}(\Omega)\right)$ is the set of smooth differentiable functions with compact support in Ω and their derivatives up to order k. The points $\boldsymbol{z} \in \mathcal{M}$ are vectors of the independent variables \boldsymbol{x}, the dependent variable $\phi(\boldsymbol{x})$ and its derivatives $\phi_{, K}$

$$
\begin{equation*}
\boldsymbol{z}=\left(\boldsymbol{x}, \phi(\boldsymbol{x}), \phi_{, K}(\boldsymbol{x})\right) \tag{2.43}
\end{equation*}
$$

For this work we will focus only on first order derivatives, $k=1$ so that the vectors z have the form

$$
\begin{equation*}
\boldsymbol{z}=(\boldsymbol{x}, \phi(\boldsymbol{x}), \nabla \phi(\boldsymbol{x})) \tag{2.44}
\end{equation*}
$$

The action of \mathbb{G} on \mathcal{M} is straightforward

$$
\begin{array}{ll}
\tilde{\boldsymbol{z}}=(\tilde{\boldsymbol{x}}, \tilde{\phi}(\tilde{\boldsymbol{x}}), \tilde{\nabla} \tilde{\phi}(\tilde{\boldsymbol{x}})) & \\
\tilde{\boldsymbol{x}}=g_{a_{1} \ldots a_{r}} \circ \boldsymbol{x} & \text { Tilde on x, not } \\
\tilde{\phi}=g_{a_{1} \ldots a_{r}} \circ \phi & \text { tilde on x_\mu } \tag{2.47}\\
\tilde{\nabla}=J^{-1} \nabla, \quad J_{\mu \nu}=\frac{d x_{\mu}}{d x_{\nu}} &
\end{array}
$$

Since the elements $g_{a_{1} \ldots a_{r}}$ are continuous in the parameters a_{i} we are free define to a smooth path γ in the parameter space \mathcal{A}

$$
\begin{align*}
& \gamma: t \rightarrow\left(a_{1}(t) \ldots a_{r}(t)\right) \tag{2.49}\\
& g_{\gamma(0)}=e \tag{2.50}
\end{align*}
$$

The derivative of $g_{\gamma(t)}$ with respect to t at $t=0$ is an element of the tangential space of \mathbb{G} at the neutral element $e \in \mathbb{G}, T_{e} \mathbb{G}$

$$
\begin{equation*}
\left.\frac{d}{d t} g_{\gamma(t)}\right|_{t=0}=X_{e} \in T_{e} \mathbb{G} \tag{2.51}
\end{equation*}
$$

The subscript on the vector X_{e} denotes that it belongs to $T_{e} \mathbb{G}$. The coordinates of X_{e} relative to the space \mathcal{M} can be computed when we look at the derivative of the induced action of $g_{\gamma(t)}$ on the space of smooth functions with support on \mathcal{M}, $\mathcal{F}(\mathcal{M})$. The action of X on $\mathcal{F}(\mathcal{M})$ can be computed by evaluating $F \in \mathcal{F}(\mathcal{M})$ on the tranformed vector $\tilde{\boldsymbol{z}}=g_{\gamma(t)} \circ \boldsymbol{z}$ and the taking the derivative with respect to t at the neutral element e

$$
\begin{equation*}
X_{e} F(\boldsymbol{z})=\left.\frac{d}{d t} F(\tilde{\boldsymbol{z}})\right|_{t=0}=\sum_{i=1}^{r}\left(\omega_{\mu}^{i} \partial_{\mu} F(\boldsymbol{z})+\omega_{i}^{\phi} \frac{d}{d \phi} F(\boldsymbol{z})+D \phi_{i}^{\nu} \frac{d}{d \partial_{\nu} \phi} F(\boldsymbol{z})\right) \alpha_{i} \tag{2.52}
\end{equation*}
$$

where we have

$$
\begin{array}{rlrl}
\omega_{\mu}^{i}(\boldsymbol{x}) & =\left.\frac{d \tilde{x}_{\mu}}{d a_{i}}\right|_{t=0} \quad \omega_{i}^{\phi}(\boldsymbol{x}, \phi)=\left.\frac{d \tilde{\phi}}{d a_{i}}\right|_{t=0} \quad \alpha_{i}=\left.\frac{d a_{i}}{d t}\right|_{t=0} \\
D \phi_{i}^{\nu} & =\frac{d \omega_{i}^{\phi}}{d x_{\nu}}-\sum_{\mu} \frac{d \omega_{\nu}^{i}}{d x_{\mu}} \partial_{\mu} \phi & \text { Cite } \tag{2.54}
\end{array}
$$

The function $D \phi_{i}^{\nu}$ is called the prolonged action of $g_{\gamma(t)}$ on the gradient operator ∇ (refer to appendix for derivation). Notice that while ω_{μ}^{i} and ω_{i}^{ϕ} are functions defined on \mathcal{M}, the coefficients α_{i} are independent of \mathcal{M}. They are the components of the vector X_{e} with respect to the r basis operators

$$
\begin{equation*}
X_{e, i}=X_{e}^{\Omega, i}+\omega_{i}^{\phi} \frac{d}{d \phi}+D \phi_{i}^{\nu} \frac{d}{d \partial_{\nu} \phi}, \quad X_{e}^{\Omega, i}=\omega_{\mu}^{i} \partial_{\mu} \tag{2.55}
\end{equation*}
$$

so that X_{e} has the operator form

$$
\begin{equation*}
X_{e}=\sum_{i} \alpha_{i} X_{e, i} \tag{2.56}
\end{equation*}
$$

An important point about X_{e} is that it is an operator valued function over Ω since the coefficients ω^{i} and ω^{ϕ} in eq. 2.53) are functions over Ω. We will refer to X_{e} as a vector at the unit element e, to ω^{i} as a vector valued function (VVF) and to ω^{Ω} as a scalar valued function (SVF). The vector X_{e} only exists in the tangential space at $e \in \mathbb{G}, X_{e} \in T_{e} \mathbb{G}$. However it is possible to construct a vector Y_{h} at a location $h \in \mathbb{G}$ by relating it to X_{e} with a map $l_{h^{\star}}$ called the push-forward

$$
\begin{equation*}
Y_{h} F(\boldsymbol{z})=\left(l_{h^{\star}} X_{e}\right) F(\boldsymbol{z})=\left.\frac{d}{d t} F\left(l_{h}\left(g_{\gamma(t)}\right) \circ \boldsymbol{z}\right)\right|_{t=0} \tag{2.57}
\end{equation*}
$$

The vector X_{e} operates on the function F in eq. 2.52 as a differential operator at the point $e \circ \boldsymbol{z}=\boldsymbol{z}$. The effect of $l_{h^{\star}}$ is that it transports the vector X_{e} to the vector Y_{h} which operates on F at the point $l_{h}(e) \circ \boldsymbol{z}=h \circ \boldsymbol{z}$. As Y_{h} is a smooth
function with respect to h which is defined everywhere in \mathbb{G} it is called a vector field. The set of vector fields is the union of all the tangential spaces over \mathbb{G}

$$
\begin{equation*}
T \mathbb{G}=\bigcup_{h \in \mathbb{G}} T_{h} \mathbb{G} \tag{2.58}
\end{equation*}
$$

It is important to keep in mind that the coordinates of the vector field Y_{h} are the operators $h \in \mathbb{G}$ and not the points $\boldsymbol{z} \in \mathcal{M}$. Similar to X_{e} in eq. (2.56) the vector Y_{h} has a coordinate representation with respect to the tangential space $T_{h} \mathbb{G}$

$$
\begin{align*}
Y_{h} F(\boldsymbol{z}) & =\sum_{i} \alpha_{i}^{\prime} Y_{h, i} \tag{2.59}\\
Y_{h, i} & =\omega_{\mu}^{\prime i} \partial_{\mu}+\omega_{i}^{\prime \phi} \frac{d}{d \phi}+D^{\prime} \phi_{i}^{\nu} \frac{d}{d \partial_{\nu} \phi} \tag{2.60}
\end{align*}
$$

There exists a unique sub set $\mathcal{G} \subset T \mathbb{G}$ called the Lie algebra. It defined as the set of all vector fields $X_{h} \in T \mathbb{G}$ which are invariant under the left action l_{g} for any $g \in \mathbb{G}$

$$
\begin{equation*}
l_{g^{\star}} X_{h}=X_{g \cdot h}=\sum_{i} \alpha_{i} X_{g \cdot h}^{i} \quad \forall g \in \mathbb{G}, X_{h} \in \mathcal{G} \tag{2.61}
\end{equation*}
$$

From eq. 2.61) we see that a consequence of left invariance is that the coordinate vector α is constant under the transformation l_{g}. This is what is referred to as the parallel transport of $\boldsymbol{\alpha}$ along the transformation l_{g}. The Lie algebra \mathcal{G} has the property that it is closed under the antisymmetric commutator $[\cdot, \cdot]$

$$
\begin{equation*}
\left[Y_{h}, X_{h}\right]=Z_{h} \in \mathcal{G} \quad \forall X_{h}, Y_{h} \in \mathcal{G} \tag{2.62}
\end{equation*}
$$

Eq. (2.62) also implies that the commutator $\left[Y_{h}, X_{h}\right]$ is also left invariant [4]. The commutator in eq. (2.62) has a geometric meaning. Suppose Y_{e} is the vector in the tangent space $T_{e} g_{t}^{Y}$ of the one parameter group g_{t}^{Y} in the sense of eq. 2.51. It is easy to show that the rate of change of the vector field $X_{g_{t}^{Y}}$ at the unit element e is equal to the commutator between X_{e} and Y_{e}

$$
\begin{equation*}
\left.\frac{d}{d t} X_{g_{t}^{Y}}\right|_{t=0}=\left[Y_{e}, X_{e}\right] \tag{2.63}
\end{equation*}
$$

Since $\left[Y_{h}, X_{h}\right]$ is left invariant, eq. (2.63) may be translated to any point $g \in \mathbb{G}$

$$
\begin{equation*}
\left.h \circ \frac{d}{d t} X_{g_{t}^{Y}}\right|_{t=0}=\left.\frac{d}{d t} X_{h \cdot g_{t}^{Y}}\right|_{t=0}=\left[Y_{h}, X_{h}\right] \tag{2.64}
\end{equation*}
$$

Essentially eq. (2.64) tells us that once we can tell how the vector field X_{g} changes along any path g_{t}^{Y} which goes through unity, $\left.g_{t}^{Y}\right|_{t=0}=e$, we can compute its rate

```
Set the context -- refer back to a
figure, equation, or section for which
you are providing clarification.
```

of change along any other path in \mathbb{G}.

A note on the evolution of functions on one parameter subgroups of \mathbb{G}

We want to clarify the main problem with the actual computation of the one parameter sub groups $g_{t}^{Y} \subset \mathbb{G}$ and the central meaning of the unit element $e \in \mathbb{G}$ for the solution of that problem. The one parameter sub groups $g_{t}^{Y} \in \mathbb{G}$ with $Y_{h} \in \mathcal{G}$ define for any function F on the jet space \mathcal{M} an evolution

$$
\begin{equation*}
F(\boldsymbol{z}(t)), \quad \boldsymbol{z}(t)=g_{t}^{Y} \circ \boldsymbol{z}_{0} \tag{2.65}
\end{equation*}
$$

The vector $z_{0}=\left(x_{0}, \phi_{0}\left(\boldsymbol{x}_{0}\right), \nabla_{0} \phi_{0}\right)$ is an arbitrary chosen point in \mathcal{M}. The eq. (2.65) maps the path g_{t}^{Y} which lives in \mathbb{G} to a path in the epigraph of F (the combination of \mathcal{M} and F to $(\mathcal{M}, F(\mathcal{M}))$). The problem with eq. (2.65) is that due to the interdependency of $\boldsymbol{x}, \phi(\boldsymbol{x})$ and $\nabla \phi(\boldsymbol{x})$ it is generally not possible to write the path $F(\boldsymbol{z}(t))$ in an analytical closed form. It is possible however to calculate in closed form the derivative of $F\left(g_{t}^{Y} \circ \boldsymbol{z}_{n}\right)$ at time $t=0$ if we are given an estimate \boldsymbol{z}_{n}

$$
\begin{equation*}
\left.\frac{d}{d t} F\left(g_{t}^{Y} \circ \boldsymbol{z}_{n}\right)\right|_{t=0}=Y_{e}\left(F\left(\boldsymbol{z}_{n}\right)\right) \tag{2.66}
\end{equation*}
$$

We remember that the vector Y_{e} is an operator valued function on the current estimate \boldsymbol{z}_{n}

$$
\begin{equation*}
Y_{e}=y^{\mu}\left(\boldsymbol{z}_{n}\right) \partial_{\mu}+y^{\phi}\left(\boldsymbol{z}_{n}\right) \frac{\delta}{\delta \phi} \tag{2.67}
\end{equation*}
$$

and that by left invariance Y_{h} is computed by evaluating the coefficient functions of Y_{e} at the point $h \circ \boldsymbol{z}_{n}$.

$$
\begin{equation*}
Y_{h}=y^{\mu}\left(h \circ \boldsymbol{z}_{n}\right) \partial_{\mu}+y^{\phi}\left(h \circ \boldsymbol{z}_{n}\right) \frac{\delta}{\delta \phi} \tag{2.68}
\end{equation*}
$$

It is in this sense that the unit element e must always be understood as equivalent to the current estimate $\boldsymbol{z}_{n}, e \circ \boldsymbol{z}_{n}=\boldsymbol{z}_{n}$. We can use eq. (2.66) to construct a piecewise linear approximation to the path $\boldsymbol{z}(t)$ and thus for the path $F(\boldsymbol{z}(t))$

$$
\begin{equation*}
\boldsymbol{z}_{n+1}=\boldsymbol{z}_{n}+\tau Y_{e}\left(\boldsymbol{z}_{n}\right) \tag{2.69}
\end{equation*}
$$

The estimates z_{n} from eq. (2.69) can be viewed as discrete samples from the path $\boldsymbol{z}(t)$ at the discrete time steps t_{n}

$$
\begin{equation*}
\boldsymbol{z}_{n}=\boldsymbol{z}\left(t_{n}\right) \tag{2.70}
\end{equation*}
$$

From eq. 2.67) we can see that it is the functional form of the coefficients $\boldsymbol{y}^{\Omega}(z)$ and $y^{\phi}(\boldsymbol{z})$ that determine the paths $\boldsymbol{z}(t)$ and $F(\boldsymbol{z}(t))$ entirely via the process in eq. (2.69).

2.3.1 The Group $\mathbb{G}=\mathbb{T} \times S O(2)$

The group $\mathbb{G}=\mathbb{T} \times S O(2)$ is the group of translations and rotations in the plane \mathbb{R}^{2}. Its algebra is the algebra $\mathcal{G}=\mathfrak{t} \times \mathfrak{s o}(2)$ which has the basis $\left\{X_{e}^{\Omega, x}, X_{e}^{\Omega, y}, X_{e}^{\Omega, \theta}\right\}$. The subset $\mathfrak{t}=\left\{X_{e}^{\Omega, x}, X_{e}^{\Omega, y}\right\}$ is the set generators of infinitesimal translations

$$
\begin{equation*}
X_{e}^{\Omega, x}=\partial_{x}, \quad X_{e}^{\Omega, y}=\partial_{y} \tag{2.71}
\end{equation*}
$$

\mathfrak{t} is a commutative basis since $\left[\partial_{x}, \partial_{y}\right]=0$. The basis for $\mathfrak{s o}(2)$ is the single operator $X_{e}^{\Omega, \theta}$ which is the generator of infinitesimal rotations. With respect to the Cartesian coordinate frame ∂_{θ} it has the following representation

$$
\begin{equation*}
X_{e}^{\Omega, \theta}=-y \partial_{x}+x \partial_{y} \tag{2.72}
\end{equation*}
$$

From eq. 2.72) we can see that ∂_{θ} does not commute with \mathfrak{t} and the commutators for the basis $\left\{X_{e}^{\Omega, x}, X_{e}^{\Omega, y}, X_{e}^{\Omega, \theta}\right\}$ are easily computed

$$
\begin{equation*}
\left[X_{e}^{\Omega, \theta}, X_{e}^{\Omega, x}\right]=-X_{e}^{\Omega, y} \quad\left[X_{e}^{\Omega, \theta}, X_{e}^{\Omega, y}\right]=X_{e}^{\Omega, x} \quad\left[X_{e}^{\Omega, x}, X_{e}^{\Omega, y}\right]=0 \tag{2.73}
\end{equation*}
$$

We note that the group $S O(2)$ generates the unit circle S^{1} by rotating the point $\boldsymbol{x}_{0}=(x, y)$

$$
\boldsymbol{x}(\theta)=g_{\theta} \circ \boldsymbol{x}_{0}=R_{\theta} \boldsymbol{x}_{0}, \quad R_{\theta}=\left(\begin{array}{cc}
\cos (\theta) & \sin (\theta) \tag{2.74}\\
-\sin (\theta) & \cos (\theta)
\end{array}\right)
$$

The meaning of the first two commutators in eq. 2.73 is that the gradient operator ∇ is rotated by 90° counter clockwise under the action of $X_{e}^{\Omega, \theta}$

$$
\left.\nabla_{\boldsymbol{x}(\theta)}\right|_{\theta}=\left[X_{e}^{\Omega, \theta}, \nabla\right]=\boldsymbol{M}_{\theta} \cdot \nabla, \quad \boldsymbol{M}_{\theta}=\left(\begin{array}{cc}
0 & 1 \tag{2.75}\\
-1 & 0
\end{array}\right)
$$

The matrix M_{θ} is one of the Pauli matrices [7]. The Pauli matrices are the basis for the Lorentz group of special relativity which is an important symmetry for many quantum field theories for instance quantum electrodynamics [7, 8, 9].

```
Feels a bit irrelevant. You
give three citations for QED,
which is really not related to
the thesis, but no citations
for many other concepts.
```


2.4 Noether's First Theorem

In section 2.2.1 argued that in order for a prior $p(\nabla \phi)$ needs to be conditionally invariant to a large group of transformations \mathbb{G} in order forit's ninimizers

$$
\begin{equation*}
A=\left\{\phi^{\star} \mid \phi^{\star}=\operatorname{argmin}_{\phi}\left(-E^{\text {prior }}(\nabla \phi)\right)\right\} \tag{2.76}
\end{equation*}
$$

to be non trivial, that is $\phi^{\star} \neq$ const. Conditional invariance was linked to the requirement that the minimizer set A in eq. 2.76) be generated by the group \mathbb{G}

$$
\begin{equation*}
A=\left\{\phi^{\star} \mid \phi^{\star}=g_{\omega} \circ \phi_{0}^{\star} \quad g_{\omega} \in \mathbb{G}\right\} \tag{2.77}
\end{equation*}
$$

In eq. 2.31) we explained that a transformation $g_{\omega} \in \mathbb{G}$ may partition the set A into subsets A_{Ω} whose elements are related to each other through geometrical transformations $g_{\omega^{\Omega}}$ on the coordinate frame Ω. We motivated the introduction of deformations to the gradient operator ∇ such that the level-sets S^{\prime} in eq. (2.39) have the same functional form in the transformed coordinates $\boldsymbol{x}^{\prime}=g_{\omega^{\Omega}} \circ \boldsymbol{x}$ as in the original coordinates (see eq. 2.37). With the help of the machinery introduced in section 2.3 we can express a level-set S_{X} of ϕ in terms of a left invariant vector field X_{h} operating on ϕ at the identity $e \in \mathbb{G}$

$$
\begin{equation*}
S_{X}=\left\{\boldsymbol{x} \mid X_{e}^{\Omega} \phi(\boldsymbol{x})=0\right\} \tag{2.78}
\end{equation*}
$$

The operator X_{e}^{Ω} is the spacial components of the vector X_{e} (see eq. 2.55). Under the action of $g_{\omega_{\delta}} \in \mathbb{G}$ the level-set S_{X} transforms the following way

$$
\begin{equation*}
S_{X}^{\prime}=g_{\omega_{\delta}} \circ S_{X}=\left\{\boldsymbol{x} \mid X_{g_{\omega_{\delta}}}^{\Omega} \phi(\boldsymbol{x})=0\right\} \tag{2.79}
\end{equation*}
$$

The requirement of conditional invariance of the prior $p(\nabla \phi)$ can be implemented by requiring that $p(\nabla \phi)$ be invariant with respect to transformations of the levelsets S_{X} like in eq. 2.79 . Such a requirement effectively imposes constraint on the form of the differential operators in $p(\nabla \phi)$ namely that they be expressed in terms of a basis of the Lie algebra \mathcal{G}, the left-invariant vector fields X_{h}^{i}. It is these elements of the Lie algebra \mathcal{G} which we will use as differential operators in the prior $p(\nabla \phi)$. Conditional invariance is then expressed by the equation

$$
\begin{equation*}
p\left(X_{g_{\gamma(t)}}^{\Omega, 1} \phi^{\star}, \ldots, X_{g_{\gamma(t)}}^{\Omega, r} \phi^{\star}\right)=\text { const, } \quad \text { with respect to } t \tag{2.80}
\end{equation*}
$$

Since the basis X_{e}^{i} are the left invariant vector fields X_{h}^{i} evaluated at the identity e the eq. 2.80) would hold for a push-forwarded basis $X_{h g_{\gamma(t)}}^{i}$ for any $h \in \mathbb{G}$ since $h \circ \phi^{\star} \in$ if if $\phi^{\star} \in A$. This is why eq. 2.80 only needs to hold for small regions
$U_{e} \subset \mathbb{G}$ around the identity

$$
\begin{equation*}
\left.\frac{d}{d t} p\left(X_{g_{\gamma(t)}}^{\Omega, 1} \phi^{\star}, \ldots, X_{g_{\gamma(t)}}^{\Omega, r} \phi^{\star}\right)\right|_{t=0}=V_{e} p\left(X_{e}^{\Omega, 1} \phi^{\star}, \ldots, X_{e}^{\Omega, r} \phi^{\star}\right)=0 \tag{2.81}
\end{equation*}
$$

where the vector V_{e} has a representation with respect to the basis X_{e}^{i}

$$
\begin{equation*}
V_{e}=\sum_{i=1}^{r} \alpha_{i} \cdot X_{e}^{i} \tag{2.82}
\end{equation*}
$$

D/e.eq. (2.81) would gaaranty he independence of the solution space A with respect to the one parameter sub group $g_{\gamma(t)}$ where $g_{\gamma(t)}$ is related to a vector field $V=\sum_{i} \alpha_{i} X_{e}^{i}$ in the sense that V is the tangential vector of $g_{\gamma(t)}$ at the identity (see eq. (2.51)). However for eq. (2.81) to hold for all one parameter sub groups and thus for all $g \in \mathbb{G}$, it has to hold for all coefficient vectors $\alpha=\left(\alpha_{1}, \ldots, \alpha_{r}\right)^{T}$.

2.4.1 Noethers Theorems

In her original paper [10, 11] Emmy Noether handles the question: Given a model of a physical system, encoded in an action

$$
\begin{equation*}
E=\int_{\Omega}\left(\mathcal{E}\left(\boldsymbol{x},\left\{\phi_{\rho}\right\},\left\{\nabla_{K} \phi_{\rho}\right\}\right)\right) d^{n} x \tag{2.83}
\end{equation*}
$$

which depends on ρ fields $\phi_{1} \ldots \phi_{\rho}$ and their derivatives to order K, and knowledge of a set of smooth transformations \mathbb{G} under which the action E is invariant

$$
\begin{equation*}
E^{\prime}=g_{\gamma} \circ E=E \quad \forall g_{\gamma} \in \mathbb{G} \tag{2.84}
\end{equation*}
$$

what are the special properties hidden in the model that invoke the symmetry?
To answer this question she deals with two cases:

- Finite dimensional Lie groups \mathbb{G}, which we introduced in section 2.3. For now it is sufficient to think of \mathbb{G} as the set of smooth functions g_{γ} defined on an r dimensional space, $\gamma=\left(\alpha_{1}, \ldots, \alpha_{r}\right)$.
- Infinite dimensional Lie groups \mathbb{G}_{∞}, which are generalizations of the finite dimensional groups in the sense that the r parameters $\alpha_{1}, \ldots, \alpha_{r}$ are functions over the Cartesian coordinate frame Ω. We will not handle this case.

In the case of the finite dimensional group Emmy Noether took g_{ω} to be the smooth infinitesimal transformation, encoding both variations of the fields and of the coordinates

$$
\begin{equation*}
\phi_{\rho}^{\prime}(\boldsymbol{x})=\phi_{\rho}(\boldsymbol{x})+\sum_{m=1}^{r} \alpha_{m} \omega_{m}^{\phi_{\rho}}(\boldsymbol{x}) \quad \boldsymbol{x}^{\prime}=\boldsymbol{x}+\sum_{m=1}^{r} \alpha_{m} \boldsymbol{\omega}_{m}^{\Omega}(\boldsymbol{x}) \tag{2.85}
\end{equation*}
$$

The functions $\omega_{m}^{\phi_{p}}$ and ω_{m}^{Ω} can be seen as a basis for ω^{ϕ} and ω^{Ω} i eeqs. ?? and ??. She proved that if the action E is invariant under g_{ω} eq. [2.84), then there existor vectors \boldsymbol{W}_{m} such the integral relationship

$$
\begin{align*}
E-E^{\prime} & =\int_{\Omega} \sum_{m=1}^{r} \alpha_{m}\left[\sum_{\rho} \bar{\omega}_{m}^{\phi_{\rho}}[\mathcal{E}]_{\rho}+\operatorname{div}\left(\boldsymbol{W}_{m}\right)\right]=0 \tag{2.86}\\
\bar{\omega}_{m}^{\phi_{\rho}} & =\left(\omega_{m}^{\phi_{\rho}}-\omega_{m}^{\mu \Omega} \partial_{\mu} \phi_{\rho}\right), \quad[\mathcal{E}]_{\rho}=\frac{\delta \mathcal{E}}{\delta \phi_{\rho}}-\frac{d}{d x^{\mu}}\left(\frac{\delta \mathcal{E}}{\delta \phi_{\rho, \mu}}\right) \tag{2.87}
\end{align*}
$$

where $[\mathcal{E}]_{\rho}$ are the Euler-Lagrange differentials of the fields ϕ_{ρ} and the divergences $\operatorname{div}\left(\boldsymbol{W}_{m}\right)$ appear by carefully collecting all terms which occur as a result of the integral product rule

$$
\begin{equation*}
\int f \cdot \partial_{\mu} g d^{n} x=\int \partial_{\mu}(f \cdot g) d^{n} x-\int \partial_{\mu} f \cdot g d^{n} x \tag{2.88}
\end{equation*}
$$

when computing the symbolic form of $[\mathcal{E}]_{\rho}$. The main result is the argument that since the $\alpha_{m}, \omega_{m}^{\phi_{p}}$ and the ω_{m}^{μ} are assumed to linearly independent, the r equations

$$
\begin{equation*}
\sum_{\rho} \bar{\omega}_{m}^{\phi_{\rho}}[\mathcal{E}]_{\rho}+\operatorname{div}\left(\boldsymbol{W}_{m}\right)=0 \quad m=1, \ldots, r \tag{2.89}
\end{equation*}
$$

relate r of the ρ Euler-Lagrange equations $[\mathcal{E}]_{\rho}$ so that the physical system only has $\rho-r$ independent Euler-Lagrange equations $[\mathcal{E}]_{\rho}$ and thus only $\rho-r$ independent fields ϕ_{ρ}. In the case $\rho \leq r$ the system of equations in eq. (2.89) is overdetermined, eq. (2.86) can only hold if all the divergences and all the Euler-Lagrange equations vanish

$$
\begin{equation*}
[\mathcal{E}]_{\rho}\left(\phi_{1}^{\star}, \ldots, \phi_{\rho}^{\star}\right)=0, \quad \operatorname{div}\left(\boldsymbol{W}_{m}\right)\left(\phi_{1}^{\star}, \ldots, \phi_{\rho}^{\star}\right)=0, \quad \rho \leq r \tag{2.90}
\end{equation*}
$$

Eq. (2.90) implies that only at the minima of the fields, ϕ_{ρ}^{\star} the r vectors \boldsymbol{W}_{m} are conserved.

```
Context -- why is this
Kepler's Two Body Problem
relevant / important here?
```

Kepler's two body problem is the problem of calculating the problem of estimatCite ... ing the trajectory of a body of mass m_{e} (the earth) which is moving within the vicinity of another body with mass m_{s} (the sun). According to Newton there exists a gravitational force between the masses coming from the energy $V(r)$ of the gravitational field surrounding the mass m_{s} at the origin in \mathbb{R}^{3}

$$
\begin{equation*}
V\left(\mathbf{r}_{e}(t)\right)=-\frac{m_{e} \cdot m_{s}}{r} \quad r=\left\|\mathbf{r}_{\mathbf{e}}-\mathbf{r}_{\mathrm{s}}\right\| \tag{2.91}
\end{equation*}
$$

The kinetic energy of the mass m_{e} is $\frac{1}{2} m_{e} \dot{r}^{2}$ so that the Lagrangian of the path $\mathbf{r}_{e}(t)$ is

$$
\begin{equation*}
L\left(\mathbf{r}_{e}(t)\right)=\frac{1}{2} m_{e} \dot{r}_{e}^{2}+\frac{1}{2} m_{e} \dot{r}_{s}^{2}-V\left(\mathbf{r}_{e}(t)\right) \tag{2.92}
\end{equation*}
$$

The Euler-Lagrange equations are easily computed

$$
\begin{equation*}
\ddot{r}_{e}+\frac{m_{s}+m_{e}}{r^{2}}=0 \tag{2.93}
\end{equation*}
$$

The parameter t is the time parameter of the two body system. The Kepler Lagrangian in eq. (2.92) exhibits a symmetry under four different one parameter Lie group actions, namely the action of time shift and rotations around the three spacial axis (the group $S O(3) \times \mathbb{R}$)

$$
\begin{align*}
t^{\prime} & =t+\delta t \tag{2.94}\\
\mathbf{r}^{\prime} & =\mathbf{r}+\partial_{\theta_{i}} \mathbf{r}^{\prime} \delta \theta_{i} \quad i=x, y \text { or } z \tag{2.95}
\end{align*}
$$

where θ_{i} are rotation around the $x-y$ - or z-axis. From Noether's theorem there exist four corresponding conserved quantities:

$$
\begin{align*}
W_{t} & =\mathcal{H}=\frac{1}{2} m_{e} \dot{r}^{2}+V\left(\mathbf{r}_{e}(t)\right) \quad \text { time shift } \tag{2.96}\\
W_{x} & =z \dot{y}-y \dot{z} \tag{2.97}\\
W_{y} & \text { Rotation around } x \text {-axis } \tag{2.98}\\
W_{z} & =x \dot{x}-x \dot{z} \tag{2.99}
\end{align*} \quad \text { Rotation around y-axis } \quad \text { Rotation around } z \text {-axis }
$$

The conserved quantity \mathcal{H} in eq. 2.96] is the Hamiltonian Energy of the two body system. It constant time and thus manifests that the total energy of the two body system does not dissipate away since there are no external forces interacting with the two masses m_{e} and m_{s}, that is the two body system is a closed system. The vector $\boldsymbol{W}=\left(W_{x}, W_{y}, W_{z}\right)$ (Eqs. eq. (2.97) to eq. (2.99) is the total angular
momentum the masses m_{e} and m_{s} have as they rotate around each other. The solutions to the Euler-Lagrange equations in eq. (2.93) are elliptic curves in the surface $S_{\boldsymbol{W}}$ orthogonal to \boldsymbol{W}. The constancy of \boldsymbol{W} with respect to the special orthogonal group $S O(3)$ comes the fact that $S_{\boldsymbol{W}}$ is actually a flat Euclidean plane embedded in a 3 -dimensional Euclidean space.

2.4.2 Noether's First Theorem: A Modern Version

In this section we explicitly derive Noether's first theorem for models with one field ϕ and its first derivatives $X_{e}^{\Omega, i} \phi$ using the Lie algebra introduced in section 2.3. We consider the negative log energy

$$
\begin{align*}
E & =-\ln p\left(\phi, X_{e}^{1} \phi, \ldots, X_{e}^{q} \phi\right)=\int_{\Omega} \mathcal{E}\left(\phi,\left\{X_{e}^{\Omega, i} \phi\right\}\right) \mathcal{N} d^{2} x \tag{2.100}\\
& =\int_{\Omega} \mathcal{E}^{\text {data }}(\phi) \mathcal{N} d^{2} x+\int_{\Omega} \mathcal{E}^{\text {prior }}\left(\left\{X_{e}^{\Omega, i} \phi\right\}\right) \mathcal{N} d^{2} x \tag{2.101}
\end{align*}
$$

The explanation of the constant \mathcal{N} will shortly follow. We apply a one parameter group $g_{\gamma(t)}$ to $E^{\text {prior }}$ and according to eq. (2.51) we can compute the vector V_{e} in the tangent space of $g_{\gamma(t)}$ at $t=0$.

$$
\begin{align*}
\left.\frac{d}{d t} g_{\gamma_{t}} \circ E\right|_{t=0} & =\int_{\Omega}\left(\sum_{i=1}^{q} P_{i}\left[V_{e}^{\Omega}, X_{e}^{i, \Omega}\right] \phi+v^{\phi}[\mathcal{E}]\right) \mathcal{N} d^{2} x \tag{2.102}\\
P_{i} & =\frac{\delta \mathcal{E}}{\delta X_{e}^{i, \Omega} \phi}, \quad[\mathcal{E}]=\frac{\delta \mathcal{E}}{\delta \phi}-\sum_{i} \frac{d}{d x^{\mu}}\left(w_{i}^{\mu} \frac{\delta \mathcal{E}}{\delta\left(X_{e}^{i, \Omega} \phi\right)}\right) \tag{2.103}
\end{align*}
$$

The differentials $[\mathcal{E}]$ are called the Euler-Lagrange differentials [11, 5] and the vector \boldsymbol{P} is called the canonical momentum. Eq. (2.102) is the most general form of variation. It contains two components, namely one component proportional to intensity variations of the field ϕ, v^{ϕ} and one component proportional to variations of the coordinate frame Ω encoded in V_{e}^{Ω}. The integral volume $d^{2} x$ also transforms under the action of g_{t}^{V}

$$
\begin{equation*}
\left.\frac{d}{d t}\left(g_{t}^{V} \circ d^{2} x\right)\right|_{t=0}=\frac{d v^{\mu}}{d x^{\mu}} d^{2} x \tag{2.104}
\end{equation*}
$$

However we are only interested in the Euler-Lagrange differentials $[\mathcal{E}]$ and the canonical momentum vector \boldsymbol{P} since only they depend on the particular Lagrangian \mathcal{E}. Thus the normalization factor \mathcal{N} in the integral in eq. 2.100) is chosen such that the volume element $\mathcal{N} d^{2} x$ is invariant under the transformation
$g_{\gamma(t)}$

$$
\begin{equation*}
\left.\frac{d}{d t}\left(g_{t}^{V} \circ \mathcal{N} d^{2} x\right)\right|_{t=0}=\left(\mathcal{N} \frac{d v^{\mu}}{d x^{\mu}}+\left.\frac{d \mathcal{N}}{d t}\right|_{t=0}\right) d^{2} x=0 \tag{2.105}
\end{equation*}
$$

In the following we will drop the normalization \mathcal{N} and assume $d r$ to inveriant under any transformation g_{t}^{V}. Since V_{e} is an element of the Lie algebra \mathcal{G} we can expand it in terms of the r basis elements X_{e}^{i}

$$
\begin{equation*}
V_{e}=\sum_{i=1}^{r} \alpha_{i} X_{e}^{i} \tag{2.106}
\end{equation*}
$$

Under the expansion in eq. (2.106) the eq. (2.102) becomes

$$
\begin{equation*}
\left.\frac{d}{d t} g_{\gamma_{t}} \circ E\right|_{t=0}=\sum_{m=1}^{r} \alpha_{m} \int_{\Omega}\left(\sum_{i=1}^{q} P_{i}\left[X_{e}^{m, \Omega}, X_{e}^{i, \Omega}\right] \phi+\omega_{m}^{\phi}[\mathcal{E}]\right) d^{2} x \tag{2.107}
\end{equation*}
$$

We can transform eq. (2.107) in to the original version in eq. (2.86) by introducing the vector valued functions (VVF) \boldsymbol{W}_{m}

$$
\begin{equation*}
W_{m}^{\mu}=\omega_{m}^{\mu} \mathcal{E}+\sum_{i} \omega_{i}^{\mu}\left(\omega_{m}^{\phi}-X_{e}^{m}(\phi)\right) P_{i} \tag{2.108}
\end{equation*}
$$

Computing the divergence of the VVFs \boldsymbol{W}_{m} we can prove the following relation

$$
\begin{equation*}
\operatorname{div}\left(\boldsymbol{W}_{m}\right)-X_{e}^{\Omega, m}(\phi)[\mathcal{E}]=\sum_{i}\left[X_{e}^{\Omega, m}, X_{e}^{\Omega, i}\right](\phi) \cdot P_{i} \tag{2.109}
\end{equation*}
$$

and substitute the commutator in eq. 2.107) with the left hand side of eq. 2.109

$$
\begin{align*}
\left.\frac{d}{d t} g_{\gamma_{t}} \circ E^{\text {prior }}\right|_{t=0} & =\int_{\Omega} \sum_{m} \alpha_{m}\left(\operatorname{div}\left(\boldsymbol{W}_{m}\right)+\tilde{\omega}_{m}^{\phi}[\mathcal{E}]\right) d^{2} x \tag{2.110}\\
\tilde{\omega}_{m}^{\phi} & =\omega_{m}^{\phi}-X_{e}^{m, \Omega}(\phi) \tag{2.111}
\end{align*}
$$

If the energy E is assumed to be invariant with respect to any one parameter group $g_{t}^{V} \subset \mathbb{G}$

$$
\begin{equation*}
\left.\frac{d}{d t} g_{\gamma_{t}} \circ E\right|_{t=0}=0 \tag{2.112}
\end{equation*}
$$

then by the argumentation in section 2.4.1 the divergences of the vectors \boldsymbol{W}_{m} in eq. (2.108) and the Euler-Lagrange differentials must vanish

$$
\begin{equation*}
[\mathcal{E}]\left(\phi^{\star}\right)=0, \quad \operatorname{div} \boldsymbol{W}_{m}=0 \quad \forall 1 \leq m \leq r \tag{2.113}
\end{equation*}
$$

and by eq. 2.109 the equations in eq. 2.113 imply

$$
\begin{equation*}
\sum_{i}\left[X_{e}^{\Omega, i}, X_{e}^{\Omega, m}\right]\left(\phi^{\star}\right) \cdot P_{i}=0 \tag{2.114}
\end{equation*}
$$

There are three cases to consider such that eq. 2.114) can hold:

- Case a: The Lie algebra \mathcal{G} is commutative, $\left[X_{e}^{\Omega, i}, X_{e}^{\Omega, m}\right]=0$ for all $1 \leq$ $i, m \leq r$
- Case b: $P_{i}=0$ for all $1 \leq i \leq r$
- Case c: If we have $\left[X_{e}^{\Omega, i}, X_{e}^{\Omega, m}\right] \neq 0$ for some i and m the functional derivative \boldsymbol{P} if non-vanishing must be orthogonal to the vector \mathbf{M}_{m}, which is a vector for fixed m defined as $\left(\mathbf{M}_{m}\right)_{i}=\left[X_{e}^{\Omega, i}, X_{e}^{\Omega, m}\right](\phi)$ over Ω
We call cases a and b trivial symmetries and case c a non-trivial symmetry.

Pl re Spacial Symmetries

A stronger constrain then the invariance of the energy E with respect to arbitrary one dimensional sub groups g_{t}^{V} as in eq. 2.112 is the case of invariance with respect to pure spacial ne dimensional sub groups $g_{t}^{V^{\Omega}}$

$$
\begin{equation*}
\left.\frac{d}{d t}\left(g_{t}^{V^{\Omega}} \circ E\right)\right|_{t=0}=0 \tag{2.115}
\end{equation*}
$$

The Lie algebra element V_{e}^{Ω} corresponding to $g_{t}^{V^{\Omega}}$ does not contain any variations to the field ϕ thus we can obtain an expression for eq. 2.115) simply by setting $v^{\phi}=0$ and $\omega_{i}^{\phi}=0$ in eqs. 2.102 and 2.107)

$$
\begin{equation*}
\left.\frac{d}{d t}\left(g_{t}^{V^{\Omega}} \circ E\right)\right|_{t=0}=\int_{\Omega} \sum_{m=1}^{r} \alpha_{m}\left(\sum_{i}\left[X_{e}^{\Omega, m}, X_{e}^{\Omega, i}\right](\phi) \cdot P_{i}\right)=0 \tag{2.116}
\end{equation*}
$$

It follows that if eq. 2.116, holds for any one parameter sub group $g_{t}^{V^{\Omega}} \subset \mathbb{G}$ (any coefficient vector $\boldsymbol{\alpha}$) then

$$
\begin{equation*}
\sum_{i}\left[X_{e}^{\Omega, i}, X_{e}^{\Omega, m}\right](\phi) \cdot P_{i}=0 \tag{2.117}
\end{equation*}
$$

must hold for any field configuration ϕ. Eq. 2.117) is specifically a constraint on the prior energy $E^{\text {prior }}$ since the data term $E^{d a t a}$ does not contain any derivatives $X_{e}^{\Omega, i} \phi$ and thus the canonical momentum \boldsymbol{P} only depends on the prior energy

invariant to the group $\mathbb{G}_{\Omega}=\mathbb{T} \times S O(2)$ which is the group of local translations and rotations. Its algebra $\mathcal{G}=\mathfrak{t} \times \mathfrak{s o}(2)$ is 3-dimensional and although it is not a commutative algebra we will show that eq. (2.117) still holds for any field ϕ.

2.5 Total Variation

In this section we will introduce a widely spread method for anisotropic regularization of the GRF ϕ called Total Variation (TV) [12, 13, 14, 15, 16]. In the context of shock-filtering ([12, 17, 18]) it was shown that the functional

$$
\begin{equation*}
E_{L_{1}}(\phi)=\int|\nabla \phi| d x \tag{2.118}
\end{equation*}
$$

has the appealing property that it does not penalize large discontin (ities $\mathrm{H}_{\mathrm{V}} \mathbf{v}$ ever its functional derivative with respect to ϕ is ill conditioned in the case $\nabla \phi \approx 0$. To alleviate the case, [12] chose the approximative prior

$$
\begin{equation*}
E_{L_{1} \text { approx }}(\phi)=\int \sqrt{|\nabla \phi|^{2}+\epsilon} d x \tag{2.119}
\end{equation*}
$$

which is well behaved for $\epsilon>0$. They were able to achieve good results with relatively sharp preserved discontinuities with data ϕ^{0} having low SNRs. Never You can't make the less in the limit $\epsilon \rightarrow 0$ the Euler-Lagrange equations become more and more any claim computationally instable. A theoretically more well conditioned form of TV is needed which we will outline, following ([16). To do this we need to explore the function-space the minimizers (f Eq. eq. (2).118) might belong to. Smooth functions $\phi_{s m a}$ are functions for which $\bar{\nabla} \phi$ exists everywhere, thus they may be minimizers o Eq. eq. (2).118). But functions $\phi_{\text {discont }}$ containing discontinuities do not have finite L_{1} rorm of their gradients, $E_{L_{1}}\left(\phi_{\text {discont }}\right)=\infty$ since the gradient $\nabla \phi_{\text {discont }}$ does not exist at the discontinuities A generalizatio of Eq. eq. 22.118) is possible if one assumes $\nabla \phi$ to be a distribution, more preciselyadon measure in the space $\mathcal{M}(\Omega)$. If there exists a radon measure $\mu \in \mathcal{M}(\Omega)$, such that for every $\boldsymbol{p} \in \mathcal{C}_{0}(\Omega)$ with compact domain, the following equality holds
Cite

$$
\begin{equation*}
\int_{\Omega} \phi \cdot \operatorname{Div} \boldsymbol{p} d x=-\int \boldsymbol{p}^{T} d \boldsymbol{\mu}<\infty \tag{2.120}
\end{equation*}
$$

Cite then $\boldsymbol{\mu}$ is called the weak derivative of ϕ and we can identify $\nabla \phi=\boldsymbol{\mu}$. It is then possible to define the function-space of bounded variation

Cite

$$
\begin{equation*}
B V=\left\{\phi \in L_{1}(\Omega) \mid \nabla \phi \in \mathcal{M}(\Omega)\right\} \tag{2.121}
\end{equation*}
$$

Now it is possible to define a norm on $B V$. By virtue of the Hölder relation there exists a scalar C for which we can determine the upper bound of Eq. eq. (2.120)

$$
\begin{equation*}
\int_{\Omega} \phi \cdot \operatorname{Div} \boldsymbol{p} d x \leq C\|\phi\|_{\infty} \tag{2.122}
\end{equation*}
$$

The scalar C is the norm of the radon measure $\nabla \phi$ and is called the total variation of ϕ

$$
\begin{equation*}
T V(\phi)=\sup \left\{\int_{\Omega} \phi \cdot \operatorname{Div} \boldsymbol{p} d^{2} x \mid \quad\|\boldsymbol{p}\|_{\infty} \leq 1\right\} \tag{2.123}
\end{equation*}
$$

As was discussed in [16] the functions ϕ are geometrically piecewise smooth, meaning there exists a partitioning $\left\{\Omega_{k}\right\}$ of Ω such that $(\nabla \phi)_{\Omega_{k}}$ are L_{1} integrable. If $d l_{m k}$ is a line segment in the intersection $\Omega_{m} \cap \Omega_{k}$ then $T V(\phi)$ can be written in the form

$$
\begin{align*}
T V(\phi) & =\sum_{k}\left\|\nabla \phi_{\Omega_{k}}\right\|_{L_{1}}+\sum_{k<m} L_{l m} \tag{2.124}\\
L_{l m} & =\int_{\Omega_{k} \cap \Omega_{m}}\left|\phi_{k}-\phi_{m}\right| d l_{k m} \tag{2.125}
\end{align*}
$$

where ϕ_{k} the value of ϕ on the portion of $\partial \Omega_{k}$ which is interfacing with Ω_{m} and vice versa for ϕ_{m}. The first term in eq. (2.124) penalizes the smooth parts of ϕ (the gradients $(\nabla \phi)_{\Omega_{k}}$) while the second term penalizes the length of the section $\Omega_{m} \cap \Omega_{k}$ while maintaining the values $\phi_{k, m}$ and thus the jump $\left|\phi_{k}-\phi_{m}\right|$. It essentially penalizes the curvature of the line interfacing with both Ω_{k} and Ω_{m}. We will make this point clear in the following section.

2.5.1 The Mean Curvature of Total Variation

The line integral of the TV prior connecting two regions Ω_{l} and Ω_{m} in eq. (2.125) can be rewritten essentially as a measure for the length of the level-set $S_{l m}$ interfacing Ω_{l} and Ω_{m}

$$
\begin{equation*}
L_{l m}=\left|\phi_{k}-\phi_{m}\right|\|S\|_{l m}, \quad\|S\|_{l m}=\int_{0}^{T}\left\|\frac{d}{d t}(\boldsymbol{x}(t))\right\| d t \tag{2.126}
\end{equation*}
$$

The path $\boldsymbol{x}(t)$ can be considered as being generated by a one parameter Lie group $g_{t}^{V^{\Omega}}$ acting on the point x_{0}

$$
\begin{equation*}
\boldsymbol{x}(t)=g_{t}^{V^{\Omega}} \circ \boldsymbol{x}_{0} \tag{2.127}
\end{equation*}
$$

So that the length $\|S\|_{l m}$ is controlled by the Lie algebra element $V_{e}^{\Omega}=v(\boldsymbol{x})^{\mu} \partial_{\mu}$

$$
\begin{equation*}
\|S\|_{l m}=\int_{0}^{T}\|\boldsymbol{v}(\boldsymbol{x}(t))\| d t \tag{2.128}
\end{equation*}
$$

If the boundaries at $t=0$ and $t=T$ of the level-set $S_{l m}$ are fixed, for instance by a data term $E^{\text {data }}$, then the minimum of the energy $L_{l m}$ is reached when $\boldsymbol{x}(t)$ is a straight line between $\boldsymbol{x}(0)$ and $\boldsymbol{x}(T)$. A characterization of a straight level-set $S_{l m}$ is that its curvature κ. ...connect to divP and invariance under so2

In this section we will discuss the geometrical properties of the TV norm in eq. (2.123). The sub-gradient of eq. (2.123) is equal to the set

$$
\begin{equation*}
\partial T V(\phi)=\left\{-\operatorname{Div} \sigma \mid \quad \sigma \cdot \nu=0 \text { on } \partial \Omega, \sigma=\frac{\nabla \phi}{|\nabla \phi|} \text { if }|\nabla \phi| \neq 0\right\} \tag{2.129}
\end{equation*}
$$

This set defines the set of lines $L(v)=T V(\phi)+\langle\operatorname{Div} \sigma \mid v-\phi\rangle$ tangential to $T V$ at a point $\phi \in B V$. We define a one parameter Lie group $\gamma(t)$, such that its vector-field X fulfills the condition

$$
\begin{equation*}
X \cdot \phi\left(\Gamma^{X}\left(x_{0}, t\right)\right)=0 \tag{2.130}
\end{equation*}
$$

then its integral curves $\Gamma^{X}(t)=(x(t), y(t))$ are the level sets of ϕ. The level sets Γ^{X} have a curvature κ and the standard formula for κ is

$$
\begin{equation*}
\kappa=\frac{1}{\left\|\dot{\Gamma}^{X}\right\|_{L_{1}}^{3}}(\dot{x} \cdot \ddot{y}-\dot{y} \cdot \ddot{x}) \tag{2.131}
\end{equation*}
$$

If the vector field X is expressed by the coordinate vector $\xi\left(\boldsymbol{x}_{0}\right)$ then it can be shown κ is a function of the Laplacian relative to the coordinate vector $\xi\left(x_{0}\right)$.

$$
\begin{equation*}
\kappa\left(\mathbf{x}_{0}\right)=\frac{\Delta_{\xi \xi} \phi\left(\mathbf{x}_{0}\right)}{\left|\nabla \phi\left(\mathbf{x}_{0}\right)\right|} \tag{2.132}
\end{equation*}
$$

This form can easily be transformed into a divergence quantity

$$
\begin{equation*}
\kappa=\operatorname{Div}\left(\frac{\nabla \phi}{|\nabla \phi|}\right) \tag{2.133}
\end{equation*}
$$

This shows us that the sub-gradient in Eq.: eq. (2) 129) is equal to the curvature of the level-sets $\Gamma^{X}(t)$


```
Big change of topic -- you need to
wrap up somehow at the end of section
2.5, and set a motivating context at
the start of 2.6
```

The TV norm penalizes the curvature of the level-sets of an image. As κ is an invariant of the Lie group $S E$ (2), the group of rotations and translations, $T V$ is also an invariant of that group.

2.6 Optical Flow

Multiple citations needed!
A prime example of an inverse problem in computer vision is optical flow. Optical Flow labels the task of densely measuring the motion between two or more frames captured by a camera, or the dense registration of two or more cameras on a pixel-by-pixel basis. Optical flow is a crucial step in many areas of computer For instance optical flow estimation is a part of video compressior (citation!!) used to detect areas of the video in which the rate brightness change is small. For example during the recording of a rigid scene optical flow can be used to determine when the camera motion stalls. During such periods the frames of the video can be stored ian nemory efficient manner. In recent years structure from stereography and structure from motion (video from a single camera) have gained popularity as a means to capture 3D models for filtrrygductions and also due to the availability of low cost 3D printing (citation!!). nn both the stereography and the structure from motion pipelines optical flow is used for the triangulation of the dense point cloud, prior to generation of the final 3D mesh. In the case of a dual-modal setup both cameras may be of different types. For instance in medical imaging multi-modal dense image registration is used to fuse image information from CT and MR modalities of the human brain [19] and of the human spine [20].
Optical flow models belong to the category of inverse problem ([?]).
In optical flow modeling the task at hand is to estimate the disparity between two images y and I recorded by two cameras y_{c} and I_{c} (see figure 2.3). Each image is a map between the coordinate space $\Omega \subset \mathbb{R}^{2}$ and the real numbers \mathbb{R}. Thus $y(\boldsymbol{x})$ is the intensity recorded by the camera y_{c} at the pixel location $\boldsymbol{x} \in \Omega$ while $I\left(\boldsymbol{x}^{\prime}\right)$ is the intensity recorded by I_{c} at the location $\boldsymbol{x}^{\prime} \in \Omega$. In figure 2.3 a we have depicted a multi-modal setup in which the two cameras y_{c} and I_{c} are recording images (figures 2.3 C and 2.3 d) from different angles. In this context the optical flow field is the unknown variable \boldsymbol{d} which maps the location \boldsymbol{x}^{\prime} in the image I to the location x in the image y

$$
\begin{equation*}
\boldsymbol{x}=\boldsymbol{x}^{\prime}+\boldsymbol{d}\left(\boldsymbol{x}^{\prime}\right) \tag{2.135}
\end{equation*}
$$

The optical field \boldsymbol{d} is shown in figure 2.3 b as a set of vectors at every pixel $\boldsymbol{x}^{\prime} \in \Omega$, whose magnitude and orientation reflect the motion of the pixel \boldsymbol{x}^{\prime}. In an optical

```
Vague -- optical flow in (b)
```

is between what and what?

(b)

(d)

Figure 2.3: Figure 2.3a. Ty o cameras are shown recording a scene from different sitions. The scene could could be a rigid scene or a dynamic scene with moving objects. Figure 2.3c shows the image y captured from the camera y_{c} and figure 2.3d the image I from the camera I_{c}. Figure 2.3b shows the optical flow \boldsymbol{d}. The vectors in figure 2.3b indicate which pixels \boldsymbol{x}^{\prime} in I and x in y are mapped to each other.
flow model the the latent variable X is the vector \boldsymbol{d} and the data Y are the images y and I. The model is then described by the probability

$$
\begin{equation*}
p(\boldsymbol{d} \mid y, I)=p(y, I \mid \boldsymbol{d}) \cdot p(\boldsymbol{d}) \tag{2.136}
\end{equation*}
$$

In the following we will give a short survey on the current types optical flow likelihoods $p(y, I \mid \boldsymbol{d})$ and current state of the art priors $p(\boldsymbol{d})$. We will then introduce Lie algebras and the Noether Theorem which will play a vital role the definition of our geometrical prior.

Among the earliest methods for optical flow estimation are the methods described in the seminal papers of Horn and Schunck [21] and Lukas and Kanade [22]. In [21] the following model for computing the flow between two frames of a video was proposed

$$
\begin{align*}
E_{y, I}(\boldsymbol{d}) & =E_{y, I}^{\text {data }}(\boldsymbol{d})+\lambda E^{\text {prior }}(\boldsymbol{d}) \tag{2.137}\\
E_{y, I}^{\text {data }}(\boldsymbol{d}) & =\int_{\Omega}\left(y(\boldsymbol{x})-I_{d}(\boldsymbol{x})\right)^{2} d x \quad I_{\boldsymbol{d}}(\boldsymbol{x})=I(\boldsymbol{x}+\boldsymbol{d}(\boldsymbol{x})) \tag{2.138}\\
E^{\text {prior }}(\boldsymbol{d}) & =\lambda \int_{\Omega} \sum_{i}\left\|\nabla d_{i}\right\|^{2} d x \tag{2.139}
\end{align*}
$$

In eq. 2.139 the frame I is warped back to the frame y by the field $d(x)$. The second integral in eq. 2.139 imposes an isotropic smoothness constraint on the flow field \boldsymbol{d}. The likelihood in eq. (2.139) makes the assumption that the

(a)

(b)

Figure 2.4: figure 2.4a sho ss an image from a visual spectrum camera (VSC). The obipecorded is a carbon-fiber reinforced polymer (CFRP). Figure 2.4 b shows an image of the same CFRP recorded with a thermographic camera (TC). The TC is sensitive in the infra-red domain, thus higher intensities in figure 2.4 b correspond to warmer objects (the CFRP) and lower intensities to colder objects (the background). As in figure 2.3 the optical centers of the VSC and the TC are physically separated so the problem that is being addressed is that of finding the optical flow field $\boldsymbol{d}(\boldsymbol{x})$ (see eq. (2.135)) which maps every pixel in the TC image to the corresponding pixel in the VSC image
brightness of the scene recorded by the camera is constant from frame to frame. This is a very strong constraint, which is rarely met in real world multi-modal setups. Figure 2.4 shows two images recorded from a visual spectrum camera (VSC, figure 2.4a) and a thermographic camera (TC, figure 2.4b). The recorded object, here a carbon-fiber reinforced polymer (CFRP) has physically different absorption and emission properties in the visual spectrum domain recorded by the VSC then in the infra-red domain recorded by the TC. Thus the intensities in figure 2.4a follow a completely different distribution then those in figure 2.4a. We need a model that can bring both images onto a common intensity space.

Furthermore the isotropic smoothness term in eq. (2.139) does not allow for discontinuities in d. Several methods have been introduced whicheme the assumption of isotropic flow [23, 1]. These methods inclu ee (citation!!) TVRegularization, anisotropic difusion guided by directional operators IIke the structure tensor and level set methods of the Mumford-Shah type [24]. We will introduce a methodology for the geometrical characterization of anisotropic priors in section 2.2 following a review of the TV-Regularization prior in section

```
Vague. Say where ... In
the following three
subsections we will ...
```


2.5

We will now discuss three statistical similarity measures (citation!!) for optical flow which avoid the assumption of brightness constancy. For this we will take the two images y and I to be random variables with the marginal distributions $p(y)$ and $p(I)$. Then the mean and the variance are defined as

$$
\begin{align*}
\mathbb{E}(X) & =\int X \cdot p(X) \tag{2.140}\\
\operatorname{Var}(X) & =\mathbb{E}\left((X-\mathbb{E}(X))^{2}\right) \tag{2.141}
\end{align*}
$$

2.6.1 Mutual Information

Mutual Information (MI) is a popular similarity measure used mainly in medical imaging where images from different modalities including MR, CT and PET are registered against each other. For images y and I from two different modalities capturing the same scene, MI is defined with the joint distribution $p(y, I)$ by

$$
\begin{equation*}
M I(y, I)=\int p(y, I) \ln \frac{p(y, I)}{p(y) \cdot p(I)} d y d I \tag{2.142}
\end{equation*}
$$

MI measures how strong the images y and I statistically depend on each other. In the case that y and I are statistically independent, $p(y, I)=p(y) \cdot p(I)$, then by eq. (2.142) MI is zero. On the other side, MI is maximal when y completely determined by I or vice versa. In the context of optical flow MI is used to measure the similarity between y and I_{d}

$$
\begin{equation*}
E_{y, I}^{d a t a}(\boldsymbol{d})=-M I\left(y, I_{d}\right) \tag{2.143}
\end{equation*}
$$

However, as [25] puts it, MI does not explain the kind of dependency between images y and I, its maxima are statistically but not visually meaningful, since it disregards any spacial information, which is essential for optical flow. Thus optical flow likelihoods based on MI usually tend to have many local minima rendering MI too unconstrained for optical flow.

2.6.2 Correlation Ratio

To alleviate the problems with MI, [25] argument that a better similarity measure would be one that measures the functional relation between the images y and I. The base key ingredient for their proposal is that the pixel values $I(\boldsymbol{x})$ and $y(\boldsymbol{x})$ are assumed to be the realizations of random variables, which by abuse
of notation we denote by \hat{I} and \hat{y}. Then the normalized joint histogram of the images I and y can be interpreted as the joint probability distribution $p(\hat{y}, \hat{I})$, and the conditional distribution

$$
\begin{equation*}
p(\hat{y} \mid \hat{I}=I)=\frac{p(\hat{y}, \hat{I}=I)}{p(\hat{I}=I)} \tag{2.144}
\end{equation*}
$$

encodes the spacial functional relationship between y and I. They introduced the Correlation Ratio (CR)

$$
\begin{equation*}
\eta(I \mid y)=\frac{\operatorname{Var}\left(\phi^{\star}(y)\right)}{\operatorname{Var}(I)} \quad E_{y, I}^{d a t a}(\boldsymbol{d})=-\eta\left(I_{\boldsymbol{d}} \mid y\right) \tag{2.145}
\end{equation*}
$$

The optimal function ϕ^{\star} was shown to be the expectation value of \hat{I}, conditioned on a realization of \hat{y}

$$
\begin{equation*}
\phi^{\star}(y)=\mathbb{E}(\hat{I} \mid \hat{y}=y)=\int \operatorname{Ip}(I \mid y) d I \tag{2.146}
\end{equation*}
$$

The function $\phi(\hat{y})$ maps any realization of \hat{y} to an expectation value of \hat{I}. As \hat{y} is a random variable, $\phi(\hat{y})$ is also at random. Its variance measures how well I is functionally explained by a realization of \hat{y}. The measure in eq. 2.145 is bounded between 0 and 1,0 indicating that y and I are independent, 1 indicating a functional relationship $I=\phi^{\star}(y)$. The function ϕ^{\star} although not necessarily continuous, is measurable in the L_{2}-sense. Thus CR is a much stronger constraint then MI and has fewer, but more meaningful minima [25].

2.6.3 Cross Correlation

Cross Correlatich (citation!!)s the strongest constrained similarity measure. It is basically an additionai constraint to CR, namely that the functional relationship in eq. 2.145 must be linear. Then η reduces to

$$
\eta(I \mid y)=\frac{\operatorname{Cov}(y, I)}{\operatorname{Var}(I) \cdot \operatorname{Var}(y)} \quad I=\lambda \cdot y
$$

As we will see in section 3.4 a measure similar to eq. 2.147 will be computed based on the assumption that both y and I are Gaussian. The Gaussian assumption is valid when both cameras y and I produce Gaussian noise and the joint histogram is predominantly linear. Linearity in the joint histogram occurs when the recorded scene contains materials with uniform luminosity in the frequency bands of the cameras y and I.

Figure 2.5: Figure 2.5a Dhe thick grid depicts the CCD of the low resolution therntographic camera. The finer grid a virtual super-resolved version of the pixels in the TC. Figure 2.5 b shows the point spread function $W_{\sigma}(x, y)$ of the gray pixel in figure 2.5a, taken from Hardie et al. [26]. It shows that each pixel in the TC image has a non uniform response over its surface to incoming photons.

2.7 Setup of the camera rig

The data acquisition apparatus consists of a visible spectrum camera (VSC) mounted on top of a thermography camera (TC). The resolution of the VSC is 1226×1028 pixels while that of the TC is 640×512 pixels, both cameras with a focal length of 25 mm . We used a sinusoidal excitation source with a frequency of 0.1 Hz , which corresponds to a penetration depth of approximately 1.3 mm in the CFRP.

2.8 Image Fusion

Our camera setup not only consists of two cameras with differing spectral responses, the TC and the VSC also differ in spatial resolution. However the likelihoods given introduced above have in common that they do not directly model the difference in resolution. In figure 2.5a a model of the CCD of the low resolution TC is shown overlaid with a higher resolution grid representing the VSC. The gray region in figure 2.5a symbolizes one pixel of the TC and it can be seen that each pixel of the TC covers a group of pixels of the VSC. Since the TC pixel has a finite surface, we need to specify how this pixel absorbs photons landing at different points in its area in order to relate the covered pixels of the VSC to it. The response of each individual pixel in the TC is called the point
spread function (PSF), $W_{\sigma}(x, y)$, the vector (x, y) being the location on the surface of the TC pixel with respect to the VSC coordinate frame. Figure $2.5 b$ is the result of a theoretical model of a FLIR imager similar our TC. The model, obtained by Hardie et al. [26], combines absorption properties of the CCD pixel with physical properties of the camera lens. We can see that each TC pixel has a non uniform response to incoming photons. Using this information we can model a super-resolved version S of the TC image y with the help of the PSF W_{σ}, by stating that y is the result of the convolution of S with W_{σ}

$$
\begin{equation*}
y=W_{\sigma} s+n \quad n \sim \mathcal{N}\left(0 \mid C_{n}\right) \tag{2.148}
\end{equation*}
$$

The problem of estimating S is that there is an infinite amount of high resolution TC images S^{\star} which relate to y via eq. (2.148) since the high spacial)frequency components of S are filtered out by W_{σ}. In [27] Hardie suggested use of a high resolution imager I_{c} whose camera center is co-aligned (hence the subscript c) with the TC image y and correlated with S. The rationale behind their approach is to combine the desired features such as sharp edges and corners of I_{c} with the intensity spectrum of y into the super-resolved image S, while avoiding limitations such as the noise model of y. The limitation of their model is that the centers of the modalities y and I_{c} need to be co-linear. While this is the case in remote sensing applications, the model needs to be extended to the general case of two separated modalities. We will first outline the original model, and in chapter 3.3 we will introduce a new model for optical flow based on [27].

The key ingredient in the model of [27] is that the intensities of S and I_{c} are assumed to be samples drawn from the joint Gaussian $p\left(S, I_{c}\right)$. As I_{c} is already fixed as input data we can derive a conditional distribution for S via the Bayesian rule

$$
\begin{align*}
p\left(S \mid I_{c}\right) & =\frac{p\left(S, I_{c}\right)}{p\left(I_{c}\right)} \sim \mathcal{N}\left(\mu_{s \mid I_{c}} \mid C_{s \mid I_{c}}\right) \tag{2.149}\\
C_{s \mid I_{c}} & =C_{s, s}-C_{s, I_{c}}^{2} \cdot C_{I_{c}, I_{c}}^{-1} \tag{2.150}\\
\mu_{s \mid I_{c}}(\mathbf{x}) & =\mu_{s}+C_{s, I_{c}} \cdot C_{I_{c}, I_{c}}^{-1}\left(I_{c}(\boldsymbol{x})-\mu_{I_{c}}\right) \tag{2.151}
\end{align*}
$$

where the variances are computed globally

$$
\begin{equation*}
C_{u, v}=\int_{\Omega}\left(u(\boldsymbol{x})-\mu_{u}\right) \cdot\left(v(\boldsymbol{x})-\mu_{v}\right) d x \tag{2.152}
\end{equation*}
$$

We see that the mean of S conditioned on $I_{c}, \mu_{s \mid I_{c}}$ is linear in the values of I_{c}, thus in this model the intensities of S are assumed to be globally linearly related to the intensities of I_{c}. We combine eq. (2.149) with the Gaussian likelihood in eq.
(2.148) to the posterior

$$
\begin{equation*}
p\left(S \mid y, I_{c}\right) \sim p(y \mid S) \cdot p\left(S \mid I_{c}\right)=\exp (-E(S)) \tag{2.153}
\end{equation*}
$$

with the associated energy

$$
\begin{equation*}
E(S)=\frac{1}{2} \int_{\Omega}\left(y(\boldsymbol{x})-W_{\sigma} S(\boldsymbol{x})\right)^{2} \cdot C_{n}^{-1} d x+\frac{1}{2} \int_{\Omega}\left(S(\boldsymbol{x})-\mu_{s \mid I_{c}}(\boldsymbol{x})\right)^{2} \cdot C_{s \mid I_{c}}^{-1} d x \tag{2.154}
\end{equation*}
$$

The minimization of eq. (2.154) and thus maximization of (2.153) with respect to S gives the analytical solution [27]

$$
\begin{equation*}
\hat{s}=\mu_{s \mid I_{c}}+C_{s \mid I_{c}} \cdot W_{\sigma}^{T}\left(W_{\sigma} \cdot C_{s \mid I_{c}} \cdot W_{\sigma}^{T}+C_{n}\right)^{-1}\left(y-W_{\sigma} \mu_{s \mid I_{c}}\right) \tag{2.155}
\end{equation*}
$$

Eq. 2.155) is intractable to compute due to the dense operator W_{σ} and the matrix-inverse operation. In [28] a computationally tractable approximation was introduced

$$
\begin{align*}
\hat{s} & =\mu_{s \mid I_{c}}+C_{\tilde{\tilde{S} \mid \tilde{I}_{c}}} \cdot\left(C_{\tilde{s} \mid \tilde{I}_{c}}+C_{n}\right)^{-1}\left(y-\tilde{\mu}_{s \mid I_{c}}\right) \tag{2.156}\\
\tilde{I}_{c} & =W_{\sigma} I_{c} \quad \tilde{s}=W_{\sigma} s \approx y \tag{2.157}
\end{align*}
$$

The key issue is that this method requires both modalities, I_{c} and y, to be coregistered. Since we are dealing with an optical flow problem y and thus S is shifted by a disparity d from I_{c}. This disparity has to be taken in to account by our model chapter 3.3. The second issue is that the assumption that S and I_{c} are globally joint Gaussian is not supported by our data. However by computing $E_{s \mid I_{c}}$ in local sub-domains of the space Ω we can show that S and I_{c} are locally oint Gaussian. This will also be shown in chapter 3.3.

```
Out of context -- the reader has no idea what
model you're talking about. Maybe a higher level
overview of what is now clear, and what the next
steps need to be, but not referring to some model
in some specific future section?
```


3 Linearized Priors

We shall now proceed to introduce a prior based on the considerations made inchapter 2.2. Ve will concentrate on the translation group \mathbb{T} for which the Lie afgelorat is characterized by the set of vectors v which are constant within a sub domain $A \subset \Omega$. The basis operators X_{e}^{i} are the Cartesian differential operators $\left\{\partial_{x}, \partial_{y}\right\}$, and the spacial component V_{e}^{Ω} of a vector $V_{e} \in T_{e} \mathbb{T}$ has the representation

$$
\begin{equation*}
V_{e}^{\Omega}=v_{x}(\boldsymbol{x}) \partial_{x}+\left.v_{y}(\boldsymbol{x}) \partial_{y} \in \mathfrak{t} \quad \boldsymbol{v}(\boldsymbol{x})\right|_{A}=\mathrm{const} \tag{3.1}
\end{equation*}
$$

Consider an image $\phi(\boldsymbol{x})$. Under a one parameter transformation $g_{\gamma(t)} \in \mathbb{T}$ the vector V_{e} is invariant since

$$
\begin{equation*}
\left.\frac{d}{d t} V_{g_{\gamma(t)}} \phi\right|_{t=0}=\omega_{x}\left[V_{e}, \partial_{x}\right] \phi+\omega_{y}\left[V_{e}, \partial_{y}\right] \phi \tag{3.2}
\end{equation*}
$$

and the basis $\left\{\partial_{x}, \partial_{y}\right\}$ is commutative. The level-sets S_{X} corresponding to the vector X_{e}^{Ω} are are defined by

$$
\begin{equation*}
S_{X}=\left\{\boldsymbol{x} \mid \boldsymbol{v}^{T} \cdot \nabla \phi(\boldsymbol{x})=0\right\} \tag{3.3}
\end{equation*}
$$

We would like to characterize the dominant strength and the orientation of $\nabla \phi$ within the sub domain $A \subset \Omega$. In [29] it was suggested that the tangential vector \boldsymbol{v} of the level sets S_{X} can be computed by minimizing the energy

$$
\begin{align*}
J(\boldsymbol{v}) & =\frac{1}{2} \int_{A} w(\|\boldsymbol{x}\|) \boldsymbol{v}^{T} \cdot\left(\nabla \phi(\boldsymbol{x}) \nabla^{T} \phi(\boldsymbol{x})\right) \boldsymbol{v}=\frac{1}{2} \boldsymbol{v}^{T} S \boldsymbol{v} \tag{3.4}\\
S & =\int_{A} w(\|\boldsymbol{x}\|)\left(\nabla \phi(\boldsymbol{x}) \nabla^{T} \phi(\boldsymbol{x})\right) d^{2} x \tag{3.5}
\end{align*}
$$

The matrix S is called the structure tensor. Since S is a symmetric matrix there exists an orthogonal decomposition

$$
S=V^{T} D V \quad D=\left(\begin{array}{cc}
\lambda_{1} & 0 \tag{3.6}\\
0 & \lambda_{2}
\end{array}\right) \quad V=\left(\boldsymbol{V}_{1}, \boldsymbol{V}_{2}\right)
$$

The eigenvalues give of the squared strength of the gradient in the basis defined by the columns of V. They characterize the structure in A in the following way

- $\lambda_{1}>\lambda_{2}$: Strong linear level set with tangential vector $\boldsymbol{v}=\boldsymbol{V}_{2}$
- $\lambda_{1} \approx \lambda_{2} \approx 0$: No strong gradient, image is approximately constant
- $\lambda_{1} \approx \lambda_{2} \gg 0$: No linear level sets, level sets have strong curvature

We want to study the variation of the structure tensor S under the $S O(2)$ at the unit element e. Let S_{θ} be the structure tensor where the local coordinate frame A is rotated by the $S O(2)$ (see eq. (2.74))

$$
\begin{equation*}
S_{\theta}=\int_{A} w(\|\boldsymbol{x}(\theta)\|)\left(\nabla_{\boldsymbol{x}(\theta)} \phi(\boldsymbol{x}(\theta)) \nabla_{\boldsymbol{x}(\theta)}^{T} \phi(\boldsymbol{x}(\theta))\right) d^{2} x_{\theta} \tag{3.7}
\end{equation*}
$$

The $S O(2)$ only rotates the domain A and does not deform it otherwise, thus the integral measure $d^{2} x_{\theta}$ is independent of $\theta, d^{2} x_{\theta}=d^{2} x$. Since the weighting function w only depends on the norm $\|\boldsymbol{x}(\theta)\|$ which is preserved by the $S O(2)$, it is also invariant. The only component which changes is the gradient $\nabla_{\boldsymbol{x}(\theta)}$. Using eq. 2.75 and the product rule we can compute the derivate of S_{θ} at $\theta=0$

$$
\begin{align*}
\left.\frac{d}{d \theta} S_{\theta}\right|_{\theta=0} & =\int_{A} w(\|\boldsymbol{x}\|)\left(\boldsymbol{M}_{\theta} \nabla \phi \nabla^{T} \phi+\nabla \phi \nabla^{T} \phi \boldsymbol{M}_{\theta}^{T}\right) d^{2} x \tag{3.8}\\
& =\boldsymbol{M}_{\theta} \cdot S-S \cdot \boldsymbol{M}_{\theta}=\left[\boldsymbol{M}_{\theta}, S\right] \tag{3.9}
\end{align*}
$$

In eq. (3.9) we used $\boldsymbol{M}_{\theta}^{T}=-\boldsymbol{M}_{\theta}$. We can get some information on the magnitude of the rate of change $\left.\frac{d}{d \theta} S_{\theta}\right|_{\theta=0}$ by multiplying the commutator in eq. 3.9 with the eigenvectors $\boldsymbol{v}_{1,2}$. It is easy to show that both projection have the same norm

$$
\begin{equation*}
\left\|\tilde{\boldsymbol{v}}_{1,2}\right\|=\left|\lambda_{1}-\lambda_{2}\right|, \quad \tilde{\boldsymbol{v}}_{1,2}=\left[\boldsymbol{M}_{\theta}, S\right] \boldsymbol{v}_{1,2} \tag{3.10}
\end{equation*}
$$

With the help of eq. (3.10) we can reformulate our characterization of the eigenvalues $\lambda_{1,2}$ in the following way

- $\lambda_{1}>\lambda_{2}$: Structure tensor S has strong change under $S O(2)$
- $\lambda_{1} \approx \lambda_{2}$: Structure tensor S is largely invariant under the $S O(2)$ and

3.2 Structure Tensor Based Prior

Since the vector field V_{e}^{Ω} is translation invariant the structure tensor S is also translation invariant. Under the rotation group $S O(2)$ the structure tensor is not invariant. Nonetheless it has an important transformation property: the transformed structure tensor S^{\prime} may be written in terms of the old matrix S and the rotation matrix $R_{\theta} \in S O$ (2)

$$
\begin{equation*}
S^{\prime}=R_{\theta}^{T} S R_{\theta} \tag{3.12}
\end{equation*}
$$

We would like to construct a prior $p(\nabla \phi)$ which is conditionally invariant conditionally invariant to the combined group $\mathbb{G}=\mathbb{T} \times S O(2)$. Since the eigenvalues λ_{i} of the structure tensor S are positive definite we propose as an energy prior for ϕ the integral over the determinant of S

$$
\begin{align*}
E_{S T}^{\text {prior }} & =\int_{\Omega} \mathcal{E}_{S T}(S) d^{2} x \tag{3.13}\\
\mathcal{E}_{S T}(S) & =\frac{\lambda}{2} \operatorname{det}(S) \tag{3.14}
\end{align*}
$$

We want to show that $E_{S T}^{\text {prior }}$ is invariant under the $S O(2)$. We insert S_{θ} from eq. (3.7) into the determinant in eq. 3.14) and evaluate the derivative of $E_{S T}^{\text {prior }}$ with respect to θ

$$
\begin{equation*}
\left.\frac{d}{d \theta} E_{S T}^{\text {prior }}\left(S_{\theta}\right)\right|_{\theta=0}=\int_{\Omega} \operatorname{Tr}\left(\boldsymbol{P}^{S T} \cdot\left[\boldsymbol{M}_{\theta}, S\right]\right) d^{2} x, \quad P_{i j}^{S T}=\frac{\delta \mathcal{E}_{S T}}{\delta S_{i j}} \tag{3.15}
\end{equation*}
$$

The matrix $\boldsymbol{P}^{S T}$ is the canonical momentum with respect to the structure tensor S, thus $\boldsymbol{P}^{S T}$ it has the same transformation properties under the $S O(2)$ as S. The trace in eq. 3.15) can be further transformed

$$
\begin{equation*}
\operatorname{Tr}\left(\boldsymbol{P}^{S T} \cdot\left[\boldsymbol{M}_{\theta}, S\right]\right)=\operatorname{Tr}\left(\boldsymbol{P}^{S T} \cdot \boldsymbol{M}_{\theta} \cdot S\right) \tag{3.16}
\end{equation*}
$$

The matrix under the trace on the right hand side of eq. (3.16) is a product of a symmetric and an anti-symmetric matrix, and thus itself anti-symmetric. Since traces over anti-symmetric matrices vanish, it follows that the prior $E_{S T}^{\text {prior }}$ is

Figure 3.1: Figure 3.1a shows a synthetic high resolution image $I^{s y n}$. In figure 3.1 b we show a low resolution image $y^{s y n}$. $y^{s y n}$ is computed by convolution of $I^{s y n}$ with Gaussian G_{σ} with standard deviation $\sigma=5$ and translated by 10 pixels relative to $I^{s y n}$. Figure 3.1 d shows the flow \boldsymbol{d} computed with the model in eq. $(2.139$, which does not incorporate

Between what and what? knowledge of the scale difference between $y^{s y n}$ and $I^{s y n}$ and figure 3. (c) show the warped image $I_{d}^{\text {syn }}$

The caption needs to make clear what the purpose is of the figure. What am I meant to
invariant under the $S O(2)$ interpret / observe in this figure? What is significant in (c)?

$$
\begin{equation*}
\left.\frac{d}{d \theta} E_{S T}^{p r i o r}\left(S_{\theta}\right)\right|_{\theta=0}=\int_{\Omega} \operatorname{Tr}\left(\boldsymbol{P}^{S T} \cdot\left[\boldsymbol{M}_{\theta}, S\right]\right) d^{2} x=0 \tag{3.17}
\end{equation*}
$$

We note that the symmetry expressed by eq. (3.17) is a non-trivial symmetry, since only the trace as a whole vanishes.

3.3 Geometrical Optical Flow Model

describe opt flow, registration In this chapter we will introduce our new model optical flow based on the image fusion algorithm from Hardie et al. [27]. We will address the two issues outlined in section 2.8. namely that the images y and I (Figures 2.4a and 2.4b) are not co-aligned and not joint Gaussian.

3.4 Disparity

The main objective of thi chapter to introduce a model which is capable of estimating the optical flow $\boldsymbol{d}(\boldsymbol{x})$ mapping the low resolution TC image y (figure 2.4b) to the high resolution VSC image I (figure 2.4a). There basically three problems with the data y and I :
a: The images y and I have different intensity distributions, since the TC and the VSC are sensitive to different spectra.
b: The images y and I have different resolutions.
c: The image I contains textural information which is not contained in y
As is explained in the background (se section 2) the optical flow \boldsymbol{d} can only be estimated with a likelihood $p(y, I \mid \boldsymbol{d})$ which measures how similar the images y and I are given d. However a likelihood that measures the similarity of the intensities of y and I like the one in eq. (2.139) would fail since the intensities cannot be compared due to probleda. Need different font style to make clear what these letters represent.
The difference in resolution in proble b of uses an ambiguity of the optical field \boldsymbol{d} since the features in the lower resolved image y are blurred and it is not clear which pixel in I relates to which pixel in y. To demonstrate the issue we have created test data $y^{s y n}$ and $I^{s y n}$ in figure 3.1. $I^{s y n}$ in figure 3.1a shows a sharp linear boundary and $y^{s y n}$ (figure 3.1b) is a convolution of $I^{s y n}$ with a Gaussian G_{σ} of standard deviation $\sigma=5$ which is translated by 10 pixels. We used the model of Horn et. al

$$
\begin{equation*}
E\left(\boldsymbol{d}^{s y n}\right)=\frac{1}{2} \int_{\Omega}\left(y^{s y n}(\boldsymbol{x})-I_{d^{s y n}}^{s y n}(\boldsymbol{x})\right)^{2} d x+\frac{\lambda}{2} \sum_{i} \int_{\Omega}\left\|\nabla d_{i}^{s y n}(\boldsymbol{x})\right\|^{2} d x \tag{3.18}
\end{equation*}
$$

(see eq. 2.139) to compute the optical flow $\boldsymbol{d}^{\text {syn }}$ mapping $I^{\text {syn }}$ to $y^{\text {syn }}$ (see figure 3.1d). Figure 3.1d shows the image $I_{d^{s y n}}^{s y n}(\boldsymbol{x})=I^{s y n}\left(\boldsymbol{x}+\boldsymbol{d}^{s y n}(\boldsymbol{x})\right)$. We can see that the optical flow \boldsymbol{d} corrupts the sharp boundary of $I^{s y n}$ in order to match it to the varying gray levels of the blurred boundary in $y^{s y n}$ (figure 3.1b).

In order to solve probl and b we need a method to transform I to an image S which has the same intensity distribution as y but the same resolution as I. A putative likelihood $p(y, S \mid \boldsymbol{d})$ can measure how similar the images y and S are given d.

If I contains a feature not existent in y or vice versa, the optical flow \boldsymbol{d} is ambiguous and the ambiguity may only be resolved upon removal of the contradicting feature.

In section 2.8 a method was introduced which produces a super-resolved image S given co-aligned data y and I_{c}.

44
Short, choppy paragraphs.
Needs reorganizing?

The model is defined by the posterior distribution for S (see eq. (2.149))

$$
\begin{align*}
p\left(S \mid y, I_{c}\right) & =p(y \mid S) \cdot p\left(S \mid I_{c}\right) \tag{3.19}\\
-\ln (p(y \mid S)) & =\frac{1}{2} \int_{\Omega}\left(y(\boldsymbol{x})-W_{\sigma} S(\boldsymbol{x})\right)^{2} \cdot C_{n}^{-1} d x \tag{3.20}\\
-\ln \left(p\left(S \mid I_{c}\right)\right) & =\frac{1}{2} \int_{\Omega}\left(S(\boldsymbol{x})-\mu_{s \mid I_{c}}(\boldsymbol{x})\right)^{2} \cdot C_{s \mid I_{c}}^{-1} d x \tag{3.21}
\end{align*}
$$

with the conditional variance and mean

$$
\begin{align*}
C_{S \mid I_{c}} & =C_{S, S}-C_{S, I_{c}}^{2} \cdot C_{I_{c}, I_{c}}^{-1} \tag{3.22}\\
\mu_{S \mid I_{c}} & =\mu_{S}+C_{S, I_{c}} \cdot C_{I_{c}, I_{c}}^{-1}\left(I-\mu_{I}\right) \tag{3.23}
\end{align*}
$$

In the conditional prior $p\left(S \mid I_{c}\right)$ in eq. (3.21) pixels in S and in I_{c} have a one-on-one relationship, so that it is natural to map pixels in I to S rather than to y directly. We model the disparity between the images S and I by setting the co-aligned VSC image I_{c} to be the result of the original VSC I, warped by an unknown optical flow field $\boldsymbol{d}(\boldsymbol{x})$,

$$
\begin{equation*}
I_{c}(\boldsymbol{x})=I(\mathbf{x}+\mathbf{d}(\mathbf{x}))=I_{\mathbf{d}}(\mathbf{x}) \tag{3.24}
\end{equation*}
$$

Substituting eq. (3.24) into eq. (3.19) and following, we obtain the posterior

$$
\begin{equation*}
p(S \mid y, I, \mathbf{d})=p\left(S \mid y, I_{\mathbf{d}}\right) \tag{3.25}
\end{equation*}
$$

with the energy

$$
\begin{equation*}
E_{\text {post }}(S, \boldsymbol{d})=\frac{1}{2} \int_{\Omega}\left(y(\boldsymbol{x})-W_{\sigma} S(\boldsymbol{x})\right)^{2} \cdot C_{n}^{-1} d x+\frac{1}{2} \int_{\Omega}\left(S(\boldsymbol{x})-\mu_{s \mid I_{d}}(\boldsymbol{x})\right)^{2} \cdot C_{s \mid I_{d}}^{-1} d x \tag{3.26}
\end{equation*}
$$

While keeping \boldsymbol{d} fixed we minimize $E_{\text {post }}(S, \boldsymbol{d})$ with respect to S and obtain similar to eq. (2.156) a closed form solution for S

$$
\begin{equation*}
\hat{S}=\mu_{s \mid I_{d}}+C_{\tilde{s} \mid \tilde{I}_{d}} \cdot\left(C_{\tilde{S} \mid \tilde{I}_{d}}+C_{n}\right)^{-1}\left(y-\tilde{\mu}_{s \mid I_{d}}\right) \tag{3.27}
\end{equation*}
$$

Figure 3.2: Figure 3.2a shows a synthetic high resolution image $I^{s y n}$. In figure 3.2 b we show a low resolution image $y^{s y n}$. $y^{s y n}$ is computed by convolution of $I^{s y n}$ with Gaussian G_{σ} with standard deviation $\sigma=5$ and translated by 10 pixels relative to $I^{s y n}$. Figure 3.2d shows the flow d computed with the model in eq. (3.31), which incorporates knowledge of the scale difference between $y^{s y n}$ and $I^{s y n}$ and figure 3.2 c show the warped image $I_{d}^{s y n}$

We insert the simplified closed form expression for \hat{S} from eq. 3.27 into $E_{\text {post }}$ and obtain an energy measuring the similarity between y and $\tilde{I}_{d}=W_{\sigma} I_{d}$

$$
\begin{align*}
& E_{\text {data }}(\boldsymbol{d})=E_{\text {post }}(\hat{S}, \boldsymbol{d}) \tag{3.28}\\
& =\frac{1}{2} \int_{\Omega}\left(y(\boldsymbol{x})-f \cdot \tilde{I}_{d}(\boldsymbol{x})\right)^{2} \cdot C_{s \mid \tilde{I}_{d}}\left(C_{s \mid \tilde{I}_{d}}+\lambda C_{n}\right)^{-2} \tag{3.29}\\
& f=C_{y, \tilde{I}_{d}} C_{\tilde{I}_{d}, \tilde{I}_{d}}^{-1} \tag{3.30}
\end{align*}
$$

The data term $E_{\text {data }}$ defines a likelihood for \boldsymbol{d}

$$
\begin{equation*}
p(y, I \mid \boldsymbol{d})=\exp \left(-E_{d a t a}(\boldsymbol{d})\right) \tag{3.31}
\end{equation*}
$$

We remember that the problems with the data y and I are that the (a) have different intensity distributions and (b) lifferent resolutions. The likelihood in eq. (3.31) solves the probleras a and belggantly in one approach by introducing the latent variable S. The low resolution component of $S, W_{\sigma} S$ is coupled through the likelihood $p(y \mid S)$ in eq. 3.20) to the TC image y. The prior $p(S \mid I)$ in eq. (3.21) couples S to the high resolution image I. As a result I_{d} in $E_{d a t a}$ in eq. (3.35) is filtered by the PSF W_{σ} to match the scale of y. Furthermore the factor f transforms the intensity range of the filtered image \tilde{I}_{d} to a range similar to that of y so that $E_{d a t a}$ is a measure for the similarity between y and $f \cdot \tilde{I}_{d}$.

To demonstrate that our likelihood $E_{\text {data }}$ in eq. 3.31) respects the difference in scale between y and I we have estimated the flow with $E_{d a t a}$ as the similarity

(a)

Figure 3.3: Joint Histogram of the TC imge figure 2.4b and the VSC imare figtre 2.4a. We observe that there is no linear relationship between the TC and the VSC
measure for the data $y^{s y n}$ and $I^{s y n}$ in figure 3.1. The standard deviation σ in $E_{\text {data }}$ was set to $\sigma=5$ and the factor f is automatically computed as $f \approx 1$ since the intensity distributions of $y^{s y n}$ and $I^{s y n}$ are aproximately the same. The image $I_{d}^{\text {syn }}$ is convolved with W_{σ}. The resulting image $\tilde{I}^{s y n}$ has the same scale as $y^{s y n}$. The resulting optical flow $\boldsymbol{d}^{\text {syn }}$ is shown in figure 3.2d. Notice the blurred boundary $\boldsymbol{d}^{s y n}$ around the linear feature in $I^{s y n}$ (figure 3.2a). This is the result of $E_{\text {data }}$ in eq. (3.31) measuring the difference between $y^{s y n}$ and the blurred image $\tilde{I}_{d}^{\text {syn }}=W_{\sigma} I_{d}^{\text {syn }}$. In eq. (3.2c) we see $I_{d}^{\text {syn }}$. The linear boundary has been warped by $\boldsymbol{d}^{s y n}$ without being corrupted like in figure 3.1c.

3.5 Localization

The assumption that the intensities of the images y and I are globally linearly related is a very strong constraint that can hold in most cases only unimodal data. In the case of the VSC and TC data in figure 2.4 the assumption of linearity fails. In figure 3.3 the global joint histogram of the VSC and the TC image is shown. We can see that the distribution in the joint histogram lacks a linear relationship between the TC and the VSC. However in figure 3.4 we have evaluated the histogram within local resion of inteests. The histograms in figures 3.4 C and 3.4 f show that within the RO the assumption of linearity between the intensities of the TC and the VSC is well supported. Therefore we propose a local version of

Figure 3.4: Different ROI's and their joint histograms. A grid is shown in the VSC and the TC image to emphasize the disparity between them. The gridsize is 10 pixels. In each histogram there are two maxima since the majority of pixels with high intensity in the VSC ROI correspond to pixels of low intensity in the TC ROI and vice versa. Since two maxima are sufficient for a linear relationship the assumption of local joint Gaussianity of the VSC and the TC image is valid.

Need a more comprehensive test to make such a claim.

Figure 3.5: Median conditional variance $\hat{C}_{s \mid I}^{\sigma, a}$ for the likelihood window size (see eq. (3.33)) $a=5$ (figure 3.5a), $a=23$ (figure 3.5b) and $a=33$ (figure 3.5 c . We can see that for small values of $a C_{s \mid I}^{\sigma, a}$ has a minimum at $\sigma<2$, and for larger values of a the profile changes so that the minimum of $\hat{C}_{s \mid I}^{\sigma, a}$ is at $\sigma \geq 10$
the variance in eq. 2.152)

$$
\begin{equation*}
C_{u, v}\left(\boldsymbol{x}_{0}\right)=\int_{\Omega} \omega\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)\left(u(\boldsymbol{x})-\mathbb{E}\left(u, \boldsymbol{x}_{0}\right)\right) \cdot\left(v(\boldsymbol{x})-\mathbb{E}\left(v, \boldsymbol{x}_{0}\right)\right) \tag{3.32}
\end{equation*}
$$

where ω is a window function which we take to be constant within a subset $W \subset \Omega$

$$
\omega(\boldsymbol{x})=\left\{\begin{array}{cc}
\frac{1}{|W|-1} & 0 \leq x, y \leq a \tag{3.33}\\
0 & \text { else }
\end{array}\right.
$$

Then $C_{s \mid I}^{\sigma, a}(\boldsymbol{x})$ becomes a local meassure that meassures how linear the intensities of y and I are within the sub domain W. The problem that arises is how large to set the window size a. If it is set too small the signal to noise ratio will be too small so that not enough information of the features in the TC and the VSC image are captured to robustly register them. On the other hand if a is set too large we eventually loose the local linearity between the TC and the VSC image. In figure 3.5 we have plotted the median conditional variance

$$
\begin{equation*}
\hat{C}_{s \mid I}^{\sigma, a}=\operatorname{median}\left(C_{s \mid I}^{\sigma, a}(\boldsymbol{x})\right) \tag{3.34}
\end{equation*}
$$

as a function of σ for three fixed values of the window size a. In figure 3.5 a $(a=5) \hat{C}_{s \mid I}^{\sigma, a}$ has a minimum for $\sigma<2$, and in figure $3.5 c(a=33)$ it is minimal for $\sigma \geq 10$. The profile of $\hat{C}_{s \mid I}^{\sigma, a}$ changes from monotonic increasing to monotonic decreasing for small to large values of a. Since we know the value for the scale parameter $\sigma, \sigma^{\star}=2$ from the ccd lesolutions of the cameras, the idea find the optimal value a^{\star} such that $\hat{C}_{s \mid I}^{\sigma, a}$ is minimal at $\sigma=\sigma^{\star}$. For $a=23$ this is the case as we see in figure 3.5 b . Thus for the data in figure $2.4 a^{\star}=23$ is the optimal value so that $\hat{C}_{s \mid I}^{\sigma, a^{\star}}$ has physically meaningful minimum $\sigma^{\star}=2$. The local data term $E_{\text {data }}$ now has the form

$$
\begin{align*}
E_{\text {data }}(\boldsymbol{d}) & =\frac{1}{2} \int_{\Omega}\left(y(\boldsymbol{x})-f(\boldsymbol{x}) \cdot \tilde{I}_{d}(\boldsymbol{x})\right)^{2} \cdot C_{s \mid \tilde{I}_{d}}^{\sigma^{\star}, \tilde{I}^{\star}}(\boldsymbol{x})\left(C_{s \mid \tilde{I}_{d}}^{\sigma^{\star}, \tilde{I}^{\star}}(\boldsymbol{x})+\lambda C_{n}\right)^{-2} \\
f(\boldsymbol{x}) & =C_{y, \tilde{I}_{d}}(\boldsymbol{x}) C_{\tilde{I}_{d}, \tilde{I}_{d}}^{-1}(\boldsymbol{x}) \tag{3.35}
\end{align*}
$$

and together with our prior from chapter 3 the energy for the complete optical flow model is

$$
\begin{equation*}
E(\boldsymbol{d})=E_{d a t a}(\boldsymbol{d})+\frac{\lambda}{2}\left(\sum_{i} \operatorname{Det}\left(S\left(d_{i}\right)\right)\right) \tag{3.37}
\end{equation*}
$$

The matrix $S\left(d_{i}\right)$ is the structure tensor (see eq. (3.4)) acting on each component of the optical flow \boldsymbol{d}. In this model we are making the assumption that the motion boundaries are locally linear. This assumption is velid for object boundaries with small curvature but as we will see n chapter ?? this assumption fails at junction points in the optical flow field, since those वre where objects are partially occluding each other and moving in opposite directions.

3.6 The solution algorithm

To minimze 3.37 and obtain the optimum flow field \hat{d} we deploy a simpl newton scheme wittrested linearization of 3.37 . The linearized model is solved by a conjugate gradients algorithm with bleck Jacobi preconditioning. The problem with this approach is that the regularizer is quartic in the flow field components and thus the linearization becomes numeric instable for the initial steps of the algorithm.

```
Algorithm 1 Optical Flow with Structure Tensor prior
    Initialize \(\boldsymbol{d}_{0}=0\)
    Set \(\boldsymbol{r}_{0}=\frac{\delta E(d)}{\delta d}\left(d_{0}\right)\)
    scale \(s=s_{\text {Max }}\)
    while \(s>1\) do
        downsample \(y_{s}=G_{s} \star y_{0}, I_{s}=G_{s} \star I_{0}\)
        while \(\|\boldsymbol{r}\|>\epsilon\) or \(k<N\) do
            set \(\boldsymbol{d}_{k+1}=\boldsymbol{d}_{k}+\alpha \boldsymbol{\delta}\)
            expand \(E\left(\boldsymbol{d}_{k+1}\right)=E\left(\boldsymbol{d}_{k}\right)+\alpha \boldsymbol{b}_{k}^{T} \boldsymbol{\delta}+\frac{\alpha^{2}}{2} \boldsymbol{\delta}^{T} Q_{k} \boldsymbol{\delta}\)
            solve \(Q_{k} \boldsymbol{\delta}=\boldsymbol{b}_{k}\) for \(\delta\) with conjugate gradients and suitable precondi-
    tioning
            compute \(\boldsymbol{d}_{k+1}=\boldsymbol{d}_{k}+\alpha \boldsymbol{\delta}, k \rightarrow k+1\)
        end while
        upsample \(d_{N}\), set \(d_{0}=d_{N}, k=0\)
        \(s=s-1\)
    end while
```

The problem arises in step 9 of the iterative algorithm. The second functional derivative Q_{k} of the energy model 3.37 consists of one part comming from the likelihood and one part coming from the prior, $Q_{k}=Q_{k}^{\text {data }}+\lambda Q_{k}^{\text {reg }}$. The matrix $Q_{k}^{\text {reg }}$ is the second derivative of the prior in 3.37 with respect to d. At small k its eigenvalues are small due to the initial guess $\boldsymbol{d}_{0}=0$. The matrix $Q_{k}^{\text {data }}$ is the second derivative of the likelihood in eq. 3.37). In regions where there is
no motion the eigen values of $Q_{k}^{\text {data }}$ are also small. This makes the linearized solution in step 9 numerically instable. Our solution to this problem is to extend 3.37 to include an L_{2} prior on the flow field \boldsymbol{d} but with a small lagrange multiplier λ_{2}

$$
\begin{equation*}
E(\boldsymbol{d})=\int\left(y-\hat{s}_{I, \boldsymbol{d}}\right)^{2} \cdot C_{s \mid I_{d}}+\frac{\lambda}{2}\left(\sum_{i}\left(\operatorname{Det}\left(S\left(d_{i}\right)\right)+\lambda_{2}\left\|\nabla d_{i}\right\|\right)\right) \tag{3.38}
\end{equation*}
$$

With the L_{2} prior in 3.38 the linearized solution in step 9 becomes numerically stable.

3.7 Results

```
Stopped reading here, since
there appeared to be a lot
missing from this put onwards.
```


3.8 Uni-Modal Data

We will now discuss the results of our optical flow method on the middleburry data set for which there exists ground truth (GT). As the GT is the true flow field for the data we use it to asses the quality of the computed optical flow. To do this we define the Endpoint error (EPE) and the angular error (AE) as

$$
\begin{array}{r}
e_{E P E}=\left\|\boldsymbol{v}-\boldsymbol{v}_{g t}\right\| \\
e_{A E}=\cos \left(\varangle\left(\boldsymbol{v}, \boldsymbol{v}_{g t}\right)\right) \in\{-1,1\} \tag{3.40}
\end{array}
$$

The EPE $e_{E P E}$ meassures how well the computed optical flow v fits the true optical flow $\boldsymbol{v}_{g t}$. In cases where \boldsymbol{v} does not match $\boldsymbol{v}_{g t}$ well, we would still like to check how both vectors are aligned. This alignment is depicted by the AE values ranging between -1 , for minimal alignment (worst case), and 1 for maximal alignment (best case).
\#Need to work on this chapter

3.8.1 Structure Tensor Prior

3.8.2 Total Variation Prior

In figure 3.6 the rubber whale sequence of the middleburry data set is shown, and in figure 3.6b the corresponding ground truth $\boldsymbol{v}_{g t}$. In figure 3.6 d the computed flow-field v is shown for a filter size of 11 , while in figure 3.6c the resulting flow

Figure	Filtersize	Median, Min, Max EPE	Median, Min, Max AE
figure 3.8a	7	$2.36,0.01,7.24$	$0.42,-1.00,1.00$
	9	$1.32,0.00,6.02$	$0.87,-1.00,1.00$
	11	$1.15,0.00,6.45$	$0.91,-1.00,1.00$
figure 3.8f	7	$0.84,0.01,13.35$	$0.87,-1.00,1.00$
	9	$0.46,0.01,8.23$	$0.97,-1.00,1.00$
figure 3.9a	11	$0.40,0.00,8.25$	$0.98,-1.00,1.00$
	7	$0.47,0.01,5.22$	$0.97,-0.96,1.00$
	9	$0.28,0.00,3.71$	$0.99,-1.00,1.00$
	71	$0.25,0.00,2.50$	$0.99,-1.00,1.00$
	11	$0.44,0.00,2.73$	$0.98,-1.00,1.00$
		$0.34,0.00,2.65$	$0.99,-1.00,1.00$
		$0.30,0.00,3.12$	$0.99,-1.00,1.00$

Table 3.1: EPE and AE analysis
EPE and AE values for different region of interests and filter sizes (Figures 3.8a to 3.9f). The second column shows the median, minimum and maximum EPE per roi. The third column shows the median, minimum and maximum AE per roi. The table shows that the EPE gets better with increasing filtersize. Despite this the values for roi's with non-linear geometry (figure 3.8) generally have higher EPE values than the roi's with linear or constant geometry (figure 3.9)
for the TV model is shown. Figures 3.8 and 3.9 show different region of interrests (roi) for which the EPE and AE are shown on a pixel basis for the structure tensor model and Figures 3.10 and 3.11 show the same for the TV model. We can observe from the comparison between figures 3.6 d and 3.6 c that the TV model produces smoother results which are closer to the ground truth (figure 3.6b). In tables 3.1 and 3.4 the median values for the EPE and AE in various region of interrests are listed. Indeed we can obeserve that the EPE for the TV is approximately half the value of that of the structure tensor model. We chose the median as opposed to the mean EPE as it is robust outlier values of the EPE at single pixel locations and thus gives a better assessment of the quality of the flow within the roi.

Table 3.1 shows also how the EPE and the AE vary with increasing filtersize: The EPE decreases while the AE increases. In figure 3.9 the roi's have mostly a constant motion field or a motion field with linear boundary, thus according to table 3.1 they have lower EPE values then the roi's in figure 3.8 . The roi with the largest discrepancy from the group of linear motions is figure 3.8a which depicts a rotating wheel. Since the wheel is largely free of texture, the motion field (figure 3.8d) is penalized by the structure tensor prior in such a way that it aquires spurious linear motion boundaries. This is the reason for its high

Figure	Median, Min, Max EPE	Median, Min, Max AE
figure 3.10 a	$1.38,0.00,5.83$	$0.92,-1.00,1.00$
figure 3.10 f	$0.20,0.00,3.34$	$1.00,-1.00,1.00$
figure 3.11 a	$0.04,0.00,2.08$	$1.00,-1.00,1.00$
figure 3.11 f	$0.09,0.00,2.06$	$1.00,-1.00,1.00$

Table 3.2: EPE and AE analysis
EPE and AE values for different region of interests for the TV model (Figures 3.10a to 3.11f). The first column shows the median, minimum and maximum EPE per roi. The second column shows the median, minimum and maximum AE per roi. Compared to table 3.1 the median EPE is lower for nearly all roi's, while the median AE do not differ that much

Figure	Filtersize	Median, Min, Max EPE	Median, Min, Max AE
figure 3.12 a	7	$0.73,0.00,6.80$	$0.99,-1.00,1.00$
	9	$0.60,0.00,7.29$	$0.99,-1.00,1.00$
	11	$0.96,0.01,15.60$	$0.98,-1.00,1.00$
figure 3.12 f	7	$0.36,0.00,7.00$	$1.00,0.00,1.00$
	9	$0.27,0.00,6.79$	$1.00,0.00,1.00$
	11	$0.41,0.01,6.55$	$1.00,0.00,1.00$

Table 3.3: EPE and AE analysis
EPE and AE values for different region of interests and filter sizes (Figures ?? to ??). Since the motion boundaries in figure 3.7 are all curvilinear there is no correlation between the filtersize and the EPE.

EPE value. The roi in figure 3.8 f shows another case of a motion field violating the assumption of linear motion boundaries. In the ground truth roi in figure 3.8j there are two junction points where three objects are occluding and moving against each other. This type of motion is penalized by the structure tensor prior so that the flow at these points is oversmoothed. The TV model (ref!) like the structure tensor model penalizes non linear motion boundaries. figure 3.10 d shows the result of the TV model for the wheel roi. Just like in the structure tensor model, the flow on the circumference of the wheel is heavily penalized resulting in high EPE values and wrong AE values (see table 3.4). figure 3.10 i shows the resulting flow of the TV model at the two junctions in figure 3.10 f Similar to our proposed prior the flow is oversmoothed at the junctions resulting in high EPE values (see table 3.4).

On the otherside both models are faithful to roi's with constant motion or linear motion boundaries (see figures 3.9 and 3.11). In figure 3.9 d we see that the structure tensor model inflicts more of the texture from the underlying data (figure 3.9a) on the estimated flow then the TV model (see figure 3.11d for the

Figure	Median, Min, Max EPE	Median, Min, Max AE
figure 3.13 a	$0.44,0.00,6.12$	$1.00,-1.00,1.00$
figure 3.13 f	$0.12,0.01,7.38$	$1.00,0.00,1.00$

Table 3.4: EPE and AE analysis
EPE and AE values for different region of interests for the TV model (Figures ?? to ??). The first column shows the median, minimum and maximum EPE per roi. The second column shows the median, minimum and maximum AE per roi. Compared to table 3.1 the median EPE is lower for nearly all roi's, while the median AE do not differ that much
result of the TV model) thus leading to a slightly higher EPE value (table 3.1). Figure 3.9 i shows an example of an roi with a linear motion boundary for the structure tensor model. Comparing it to the corresponding result for the TV model figure 3.9i, we see that the structure tensor model produces sharper lineat motion boundaries.

In figure 3.7 another sequence of the middleburry data set is shown. In this sequence the camera is rotating around a hydrangea. As the ground truth shows there are no linear motion boundaries, thus only the constant motion of the background is correctly detected (upto some artifacts in the upper left corner in figure 3.7 d), see the EPE and AE values in figure 3.12 and table 3.3 .

3.9 Eigenvalue analysis and the stabilization parameter λ_{2}

In chapter 3.3 we stated that the L_{2} term in eq. 3.38) is needed to support the numerical stability of the model. We will back this statement now. Figures 3.14 , 3.15 and 3.16 show the largest eigenvalue of $Q_{r e g}^{i}, \sigma_{Q}^{i}$ at each iteration on the coarsest scale of the pyramid for different values of λ_{2}. They all show that σ_{Q}^{N} rises to a maximum after which it decreases and converges. The initial value of σ_{Q}^{i} is of the order of λ_{2} indicating that in the initial steps the L_{2} term in eq. 3.38) governs the regularization. As the number of iterations increases the structure tensor determinant gets more weight, until the point where its influence over weighs that of the L_{2} term As can be seen this point comes after fewer iterations the smaller λ_{2} is set. On the other side Figures $3.18,3.19$ and 3.20 show the vector \boldsymbol{b}, that is the Euler-Lagrange equation vector for different values of λ_{2}. Comparing the magnitude of \boldsymbol{b} in Figures $3.18,3.19$ and 3.20 we see that for $\lambda_{2}=10^{-9} b$ is several orders of magnitude larger then the other cases, which

Figure 3.6: Rubberwhale Sequence
Figure 3.6a shows one frame of the sequence. figure 3.6d shows the estimated optical flow, figure 3.6c the result of the TV model and figure 3.6b shows the provided ground truth

Figure 3.7: Hydrangea Sequence
Figure 3.7 a shows one frame of the sequence. figure 3.7 d shows the estimated optical flow, figure 3.7 c the result of the TV model and figure 3.7 b shows the provided ground truth

Figure 3.8: Error Analysis ST model: This figure shows two examples of motion field with nonlinear boundaries. In figure 3.8c we see that along the circumference of the wheel the EPE has the largest values and in figure 3.8 h the is largest the junction point where three objects ar moving against each other.

Figure 3.9: Error Analysis ST: This figure shows two examples of motion fields with linear boundaries. In figures 3.9 d and 3.9 i we can see that the resulting flow with texture inflicted from the data. Nevertheless the EPE values are nearly homogenous and small (see figures 3.9C and 3.9h)

Figure 3.10: Error Analysis TV model: This figure shows two examples of motion field with nonlinear boundaries. In figure 3.10 c we see that along the circumference of the wheel the EPE has the largest values and in figure 3.10h the is largest the junction point where three objects ar moving against each other.

Figure 3.11: Error Analysis TV: This figure shows two examples of motion fields with linear boundaries. In figures 3.11 d and 3.11 i we can see that the resulting flow with texture inflicted from the data. Nevertheless the EPE values are nearly homogenous and small (see figures 3.11c and 3.11h

Figure 3.12: Error Analysis:
Second Column: Endpoint Error, Third Column: Angular Error.

Figure 3.13: Error Analysis:
Second Column: Endpoint Error, Third Column: Angular Error.

Figure 3.14: $\lambda_{2}=10^{-3}$

Figure 3.15: $\lambda_{2}=10^{-6}$

Figure 3.16: $\lambda_{2}=10^{-9}$
Figure 3.17: Analysis of the largest eigenvalue σ_{Q}^{i} of $Q^{\text {reg }}$

b

Figure 3.18: $\lambda_{2}=10^{-3}$

Figure 3.20: $\lambda_{2}=10^{-9}$
Figure 3.21: Analysis of the Euler-Lagrange vector \boldsymbol{b}

Figure 3.22: Analysis of the Euler-Lagrange vector δ eq. (??)

Figure 3.23: 3.23a. Dependence of $C_{\tilde{s} \mid \tilde{I}}$ on the scaling parameter σ. 3.23b Joint Histogram $p(y, I)$ of the TC and smoothed VSC image pair y and \tilde{I} at the optimum $\sigma^{\star}=4$, the scale at which y and \tilde{I} are maximally linear.
leads to longer convergence rates or numerically instable solution. This means we have a tradeoff between

- $\lambda_{2} \sim 10^{-3}$: Faster convergence but less influence of structure tensor (need $i>40$ iterations for ST to act)
- $\lambda_{2} \sim 10^{-9}$: slower convergence but more influence of structure tensor (need only $i>1$ iterations for ST to act)
We choose $\lambda_{2}=10^{-6}$ since in this case \boldsymbol{b} is of the same order of magnitude as for $\lambda_{2}=10^{-3}$ but as we see in figure 3.15 the structure tensor only needs 4 iterations untils its eigenvalues overweigh the eigenvalues of the L_{2} term. We also choose $N=10$ for the number of iterations per pyramid scale, since according to figure ?? the update vector $\boldsymbol{\delta}$ gets unstable after 15 iterations.

3.10 Multimodal Optical Flow

3.10.1 Estimation of the resolution parameter σ

3.10.2 Structure Tensor Prior

3.10.3 Total Variation Prior

Our optical flow model eq. (??) is based on the assumption that the modalities to be registered have a linear relationship in their intensity spectrum. This is not
the case for TC images and VSC images of arbitrary objects. However in the case of bare CFRPs the linearity assumption holds. CFRPs are black bodies when in thermal equilibrium at $30 \operatorname{deg} C$ since the emmisivity of carbon is approximately 0.98 (see [?]). It is in this case that in the amplitude image in figure ??b the CFRP has a uniform amplitude. In the visual spectrum domain (figure ??d) the CFRP is not a perfect black body due to the reflective nature of the epoxy coating, however the epoxy coating is uniformly distributed so that the reflections do not cause image gradients, which are not correlated to geometric features. Since the TC and the VSC have different resolutions we must take the difference in resolution into account. This difference in resolution is encoded in the scale parameter σ of our local likelihood model in eq. (2.148). The local conditional variance $C_{\tilde{\delta} \mid \tilde{I}}(\boldsymbol{x})$ in eq. (??) is a meassure for the similarity of the TC image y, and thus s and the VSC image I with a local subdomain $W \subset \Omega$. The local conditional variance $C_{\tilde{s} \mid \tilde{I}}(\boldsymbol{x})$ has two parameters we need to estimate: the scale parameter σ from the likelihood in eq. (2.148) and the window size a of the window function ω. Since $C_{\tilde{s} \mid \tilde{I}}(\boldsymbol{x})$ is varies spacially we compute its median value $\hat{C}_{s \mid \tilde{I}}$. In figure ?? we have plotted for various window sizes a the median conditional variance $\hat{C}_{s \mid \tilde{I}}$ over the filter size σ. We can see that for window sizes $a \leq 23 \hat{C}_{s \mid \tilde{I}}$ has minima at $\sigma \approx 0$ while for larger window sizes $a \geq 31$ it tends to be minimal at filtersizes $\sigma>6$. Figure ?? show their optimum σ^{\star} plotted over the window size a. We see that window sizes $a<21$ and $A>31$ lead to unrealistic scale differences $\sigma^{\star} \approx 0$ and $\sigma^{\star} \geq 6$, since the actual difference in scale must be $\sigma \approx 2$ judged by the resolutions of the VSC and the TC. This value is produced only at $a=23$ and $a=27$ and we choose $a=23$ since $C_{\tilde{\tilde{s} \mid \tilde{I}}}(\boldsymbol{x})$ is smaller compared to the case $a=27$.

In figure ?? we show the resulting optical flow for different region of interests (roi). Figures 3.24a and 3.24f show the resulting optical flow d which match the corresponding VSC image I and TC image y in the table. Fow each roi we computed the joint histogram $p(y, I)$ (Figures 3.24 b and 3.24 g). In figure 3.24 b $p(y, I)$ has two isolated maxima which is sufficient for for a linear relationship between y and I. In figure 3.24 g the linearity is obstructed to a minor degree since the TC image in figure 3.24 j has a slight structural difference in the lower left corner compared to figure 3.24 h

Figure 3.24: Multimodal Optical Flow: The resulting flow \boldsymbol{d}, VSC image I, the warped VSC I_{d}, the TC image y as well as the joint histogram $p(y, I)$ are shown for different region of interests. We can observe that the boundaries of the flow are blurred. This comes from the window function ω in the local likelihood. The joint likelihood $p(y, I)$ was evaluated only for the roi's. It has at most two maxima, which suffices to constitute a linear relationship between y and I. A grid is overlaid on the roi's for I, I_{d} and y with 10 pixels per element to visually asses the quality of the flow. We can see the larger features are correctly matched, while smaller features are matched in a suboptimal fashion

4 The Generalized Newton Algorithm

4.1 Motivation

In this section we want to motivate a new type of algorithm for the minimization of the energy Vague. What considerations are you referring to?

$$
\begin{equation*}
E(\phi, \nabla \phi)=E^{\text {dato }}(\phi)+\lambda E^{\text {prior }}(\nabla \phi)=\int_{\Omega} \mathcal{E}_{t o t}(\phi(\boldsymbol{x}), \nabla \phi(\boldsymbol{x})) d^{2} x \tag{4.1}
\end{equation*}
$$

based on the considerations in section 2.2. Traditional algorithms for the minimization of the energy functional in eq. (4.1) are based around the concept that a variation of ϕ around the minimum of E lad ty a set of vanishing differentials $\left[\mathcal{E}_{t o t}\right]$ called the Euler-Lagrange differentials

$$
\begin{align*}
\left.\frac{d E\left(\phi^{\prime}\right)}{d t}\right|_{t=0} & =\int_{\Omega}\left[\mathcal{E}_{t o t}\right]\left(\phi^{\star}(\boldsymbol{x}), \nabla \phi^{\star}(\boldsymbol{x})\right) v^{\phi}(\boldsymbol{x}) d^{2} x=0 \tag{4.2}\\
\phi^{\prime} & =\phi^{\star}+\tau v^{\phi} \tag{4.3}
\end{align*}
$$

We can derive the same result if we take ϕ^{\prime} to be the result of the action of a one parameter Lie group $g_{\gamma_{t}}$ acting only on ϕ^{\star} and not on Ω

$$
\begin{array}{rlrl}
\left.\frac{d E\left(\phi^{\prime}\right)}{d t}\right|_{t=0} & =\int_{\Omega} V_{e}^{\phi}\left(\mathcal{E}_{t o t}\right) d^{2} x=0, & \phi^{\prime}=g_{\gamma_{t}} \circ \phi^{\star} \\
V_{e}^{\phi} & =v^{\phi} \frac{d}{d \phi}+\frac{d v^{\phi}}{d x_{\nu}} \frac{d}{d \partial_{\nu} \phi} & & \text { Missing } \tag{4.5}\\
\text { parentheses }
\end{array}
$$

The vector V_{e}^{ϕ} is obtained from eqs. 2.55 ad 2.56 s.mply by setting the pacial variations ω_{i}^{μ} in the basis operators X_{e}^{i} to zero, $\omega_{i}^{\psi}=0$ and setting $v^{\phi}=\sum_{i} \alpha_{i} \omega_{i}^{\phi}$. Using integration by parts we show that eq. (4.2) and eq. (4.4) are equal.

One of the basic algoritims for solving the minimization problem in eq. (4.2) is the method of steepest decent (citation!!!). Byginning with an initial guess ϕ^{0}, the basic idea of steepest descent is to compute a new estimate of the field ϕ by advancing a previous estimate ϕ^{n} along the negative direction of the gradient of

66

Confusing. Where do you show this?

Do a global find and replace and fix everywhere. I have circled this in earlier versions of your thesis, but the incorrect spelling keeps appearing.

Figure 4.1: This figure shows a transformation of the level-set S to S^{\prime} along the vector $\boldsymbol{W}_{m}(\boldsymbol{x})$. The region $\mathcal{A} \subset \Omega$ is the region a section of S traverses as it is shifted along \boldsymbol{W}_{m} to the end position S^{\prime}. If the divergence of \boldsymbol{W}_{m} vanishes, this means that the incoming flux of \boldsymbol{W}_{m} equals the outgoing flux (both indicated by the red arrows), $\left.\boldsymbol{W}_{m}\right|_{S}=\left.\boldsymbol{W}_{m}\right|_{S^{\prime}}$
$E(\phi, \nabla \phi)$ which is provided by the Euler-Lagrange differentials $\left[\mathcal{E}_{t o t}\right]$

$$
\begin{equation*}
\phi^{n+1}=\phi^{n}-\tau^{\phi}\left[\mathcal{E}_{\text {tot }}\right]\left(\phi^{n}, \nabla \phi^{n}\right) \tag{4.6}
\end{equation*}
$$

The scheme is repeated (see algorithm 2) until either the Euler-Lagrange differentials vanish fived number N of iterations is reached.
the eqs. 4.2 and 4.4 w take only the variation of the field ϕ into account. However then ir Chapter 3.3 which led to Noether's theorem is based upon a more general group which also contains possible variations of the coordinate frame (see eq. (??))

$$
\begin{equation*}
\boldsymbol{x}^{\prime}=\boldsymbol{x}+\tau^{\Omega} \boldsymbol{v}(\boldsymbol{x}) \tag{4.7}
\end{equation*}
$$

where τ is a parameter that controls the extent of the deformation of Ω, similar to how τ^{ϕ} controls the deformation of ϕ. In the following we would like to introduce a methodology that enables the use of the entire group \mathbb{G} for the minimization of the total energy E in eq. (4.1]. Our new methodology is centered around the concept of steepest descent for the spacial coordinate frame Ω of the form

$$
\begin{equation*}
\boldsymbol{x}^{n+1}=\boldsymbol{x}^{n}-\tau^{\Omega} \boldsymbol{b}\left(\boldsymbol{x}^{n}\right) \tag{4.8}
\end{equation*}
$$

The exact form of the vector $\boldsymbol{b}(\boldsymbol{x})$ will soon be deduced, now we wish to give an intuitive idea of $\boldsymbol{b}(\boldsymbol{x})$ should look like. In section 2.2.(1)??) ve explained that the role of the prior $E^{\text {prior }}$ is to enforce certain geometric constraints onto the level-sets S_{X} of the minimizers ϕ^{\star}. The geometric constraints are encoded in the Lie algebra \mathcal{G} of the Lie group \mathbb{G} under which $E^{\text {prior }}$ and thus E is invariant. If \mathbb{G}
is a pu spacial Bie group, $v^{\phi}=0$, then eq. 2.110 simplifies to

$$
\begin{equation*}
\left.\frac{d}{d t} g_{\gamma_{t}} \circ E\right|_{t=0}=\int_{\Omega}\left(\sum_{m} \alpha_{m} \operatorname{div}\left(\boldsymbol{W}_{m}\right)-V_{e}^{\Omega}(\phi)\left[\mathcal{E}_{t o t}\right]\right) d^{2} x=0 \tag{4.9}
\end{equation*}
$$

which is independent of the integration region. Since eq. 4.9 must hold for any coefficient vector $\boldsymbol{\alpha}$, by virtue of the expansion $V_{e}^{\Omega}=\sum_{m} \alpha_{m} X_{e}^{m, \Omega}$ the individual divergences must satisfy

$$
\begin{equation*}
\int_{\Omega}\left(\operatorname{div}\left(\boldsymbol{W}_{m}\right)\right) d^{2} x=\int_{\Omega}\left(X_{e}^{m, \Omega}(\phi)\left[\mathcal{E}_{t o t}\right]\right) d^{2} x \tag{4.10}
\end{equation*}
$$

Eq. (4.10) must hold for any integration domain Ω which means that the integrands themselves must be equal

$$
\begin{equation*}
\operatorname{div}\left(\boldsymbol{W}_{m}\right)=X_{e}^{m, \Omega}(\phi)\left[\mathcal{E}_{t o t}\right] \tag{4.11}
\end{equation*}
$$

By Gauss' law the integrated divergence of \boldsymbol{W}_{m} within any subset $\mathcal{A} \subset \Omega$ equals the integral of the flux of \boldsymbol{W}_{m} over the surface $\partial \mathcal{A}$

$$
\begin{equation*}
\int_{\mathcal{A}} \operatorname{div}\left(\boldsymbol{W}_{m}\right) d^{2} x=\int_{\partial \mathcal{A}} \boldsymbol{W}_{m} d \boldsymbol{S} \tag{4.12}
\end{equation*}
$$

thus from eq. 4.11) we have

$$
\begin{equation*}
\int_{\partial \mathcal{A}} \boldsymbol{W}_{m} d \boldsymbol{S}=\int_{\mathcal{A}}\left(X_{e}^{m, \Omega}(\phi)\left[\mathcal{E}_{t o t}\right]\right) d^{2} x \tag{4.13}
\end{equation*}
$$

In figure 4.1 we have depicted the situation where a level-set S is shifted along the vector \boldsymbol{W}_{m} with S^{\prime} is the result of the shift and \mathcal{A} is the region traversed by the shift of a section of S. We denote this transformation by $g_{\boldsymbol{W}}^{m}(t) \in \mathbb{G}^{\boldsymbol{W}}$ where $\mathbb{G}^{\boldsymbol{W}}$ is another group. Whether or not it is a Lie group possibly intersecting with $\mathbb{G}, \mathbb{G}^{W} \cap \mathbb{G} \neq\{\emptyset\}$ is not known by the author. However this irrelevant for the following argument. The boundary $\partial \mathcal{A}$ consists of two lines tangential to \boldsymbol{W}_{m} besides the sections of S and S^{\prime}. Since the flux over the tangential lines vanishes we have

$$
\begin{equation*}
\int_{S} \boldsymbol{W}_{m} d \boldsymbol{S}-\int_{S^{\prime}} \boldsymbol{W}_{m} d \boldsymbol{S}^{\prime}=\int_{\mathcal{A}} X_{e}^{m, \Omega}(\phi)\left[\mathcal{E}_{t o t}\right] d x^{2} \tag{4.14}
\end{equation*}
$$

From Eq. 4.14 we see that the Euler-Lagrange differentials $\left[\mathcal{E}_{t o t}\right]$ and the basis element $X_{m}^{m, \Omega}$ act as a source that drives the transformation $g_{\boldsymbol{W}}^{m}(t)$ in the sense that the S^{\prime} propagates until it traverses a region in which the integrand of the right hand side in eq. 4.14 vanishes. More precisely eq. 4.14 can interpreted as an equation of motion for the normal vector on $S^{\prime}, \boldsymbol{n}_{S^{\prime}}$.

```
I'm not sure the reader will know what you are
trying to do. You're doing detailed mathematical
manipulations, but I don't think you have made it
very clear *why* you are doing three
manipulations.
```

The main question we want to raise in this section is: Does tee eq. (4.14), understood as an equation of motion of the normal vector \boldsymbol{n}_{S} on S under the influence of the Euler-Lagrange differentials $\left[\mathcal{E}_{\text {tot }}\right]$, suffice to explain the evolution of the level-set S ? In other words can we formulate an equation of motion for a tangential vector \boldsymbol{b}_{S} on S which satisfies $\boldsymbol{b}_{S} \perp \boldsymbol{n}_{S}$? The tangent vector \boldsymbol{b}_{S} is taken to be normalized.

Technically speaking, an operator B that would potentially manipulate S along the tangent \boldsymbol{b}_{S} can be formulated in terms of the Cartesian basis $\left\{\partial_{\mu}\right\}$

$$
B=b_{S}^{\mu}(\boldsymbol{x}) \partial_{\mu} \quad \begin{aligned}
& \text { Not obvious which first and second } \\
& \text { questions you are referring to. (4.15) }
\end{aligned}
$$

A naive answer to our second question is: No! To illustrate this we construct a one dimensional potential Lie group g_{t}^{B} for which B is the basis of its algebra

$$
\begin{equation*}
\left.\frac{d}{d t} g_{t}^{B}\right|_{t=0}=B \tag{4.16}
\end{equation*}
$$

The very definition of the level-set S is that along the tangent \boldsymbol{b}_{S} the field variable $\phi(\boldsymbol{x})$ is constant

$$
\begin{equation*}
\left.\frac{d}{d t} g_{t}^{B} \circ \phi\right|_{t=0}=B \phi=b_{S}^{\mu} \partial_{\mu} \phi=0 \tag{4.17}
\end{equation*}
$$

As a result we are led to believe that the energy E in eq. (4.1) is invariant to the transformation g_{t}^{B} since it depends on ϕ which in turn obeys eq. 4.17). Thus by Noether's theorem there must exist a vector valued function $W_{B}(\boldsymbol{x})$ for whoch,
similar to eq similar to eq. (4.10 (5) he identity

$$
\begin{equation*}
\int_{\Omega}\left(\operatorname{div}\left(\boldsymbol{W}_{B}\right)\right) d^{2} x=\int_{\Omega}\left(B(\phi)\left[\mathcal{E}_{t o t}\right]\right) d^{2} x \tag{4.18}
\end{equation*}
$$

must hold. However due to eq. (4.17) the integrand of the right hand side of eq. (4.18) vanishes uniformly on Ω, leading to the conclusion that the divergence of $\boldsymbol{W}_{B}(\boldsymbol{x})$ must vanish uniformly too

$$
\begin{equation*}
\operatorname{div}\left(\boldsymbol{W}_{B}\right)(\boldsymbol{x})=0, \quad \forall \boldsymbol{x} \in \Omega \tag{4.19}
\end{equation*}
$$

The fallacy in the argumentation of our naive answer lies in the last statement in eq. (4.19). We recall the generic form of the divergence vector \boldsymbol{W}_{m} from eq. (2.108)

$$
\begin{equation*}
W_{m}^{\mu}=\omega_{m}^{\mu} \mathcal{E}+\sum_{i} \omega_{i}^{\mu}\left(\omega_{m}^{\phi}-X_{e}^{m, \Omega}(\phi)\right) \frac{\delta \mathcal{E}}{\delta\left(X_{e}^{i} \phi\right)} \tag{4.20}
\end{equation*}
$$

and replace $X^{m, \Omega}$ with B as the generating operator, thereby setting $\omega_{m}^{\phi}=0$ (B is a purel spacial operator)

$$
\begin{equation*}
W_{B}^{\mu}=b_{S}^{\mu} \mathcal{E}-\sum_{i} \omega_{i}^{\mu} \cdot B(\phi) \frac{\delta \mathcal{E}}{\delta\left(X_{e}^{i} \phi\right)} \tag{4.21}
\end{equation*}
$$

Again by virtue of eq. 4.17 \boldsymbol{W}_{B} simplifies even more

$$
\begin{equation*}
W_{B}^{\mu}=b_{S}^{\mu} \mathcal{E} \tag{4.22}
\end{equation*}
$$

To show why $\operatorname{div}\left(\boldsymbol{W}_{B}\right)=0$ cannot hold, we construct an integral over a region \mathcal{A}_{B} which is enclosed by two level-sets S_{1} and S_{2} and two curves T_{1} and T_{2} connecting the level-sets

$$
\begin{align*}
\int_{\mathcal{A}_{B}} \operatorname{div}\left(\boldsymbol{W}_{B}\right) d^{2} x= & \int_{S_{1}} \mathcal{E} \cdot\left(\boldsymbol{b}_{S} \cdot \boldsymbol{n}_{S_{1}}\right) d S_{1}+\int_{S_{2}} \mathcal{E} \cdot\left(\boldsymbol{b}_{S} \cdot \boldsymbol{n}_{S_{2}}\right) d S_{2} \tag{4.23}\\
& +\int_{T_{1}} \mathcal{E} \cdot\left(\boldsymbol{b}_{S} \cdot \boldsymbol{n}_{T_{1}}\right) d T_{1}+\int_{T_{2}} \mathcal{E} \cdot\left(\boldsymbol{b}_{S} \cdot \boldsymbol{n}_{T_{2}}\right) d T_{2} \tag{4.24}
\end{align*}
$$

Since the vector valued function $\boldsymbol{b}_{S}(\boldsymbol{x})$ is the tangent vector on the level-sets S_{1} and S_{2} the line integrals in eq. (4.23) vanish. Furthermore T_{1} and T_{2} have opposite orientation so we can choose the gauge

$$
\begin{equation*}
\left(\left.\boldsymbol{b}_{S}\right|_{T_{1}} \cdot \boldsymbol{n}_{T_{1}}\right)=+1, \quad\left(\left.\boldsymbol{b}_{S}\right|_{T_{2}} \cdot \boldsymbol{n}_{T_{2}}\right)=-1 \tag{4.25}
\end{equation*}
$$

Thus we have for the divergence

$$
\begin{equation*}
\int_{\mathcal{A}_{B}} \operatorname{div}\left(\boldsymbol{W}_{B}\right) d^{2} x=\int_{T_{1}} \mathcal{E}(\phi(\boldsymbol{x}), \nabla \phi(\boldsymbol{x})) d T_{1}-\int_{T_{2}} \mathcal{E}(\phi(\boldsymbol{x}), \nabla \phi(\boldsymbol{x})) d T_{2} \tag{4.26}
\end{equation*}
$$

If $\operatorname{div}\left(\boldsymbol{W}_{B}\right)=0$ was to be true then the two line integrals in eq. (4.26) would have to cancel. However we did not make any assumptions on the length of the curves T_{i} or on the distance between them so eq. 4.26 must hold for any configuration of the T_{i}. Hence we conclude that the energy density $\mathcal{E}(\phi(\boldsymbol{x}), \nabla \phi(\boldsymbol{x}))$ must be a constant function on Ω regardless of the field ϕ. We have derived a clear contradiction. It follows that the energy E cannot be an invariant of the transformation g_{t}^{B} !

So what is the consequence / significance of this statement? You can't just conclude with the mathematical observation; you need to take one step further.

The question that remains is that if g_{t}^{B} does not change the values of $\phi(\boldsymbol{x})$ what does it change? Our answer is: g_{t}^{B} is an operator on the coordinates \boldsymbol{x} themselves

$$
\begin{equation*}
\boldsymbol{x}(t)=g_{t}^{B} \circ \boldsymbol{x}_{0} \tag{4.27}
\end{equation*}
$$

The constraint in eq. 4.17) guaranties that the level-set of $\phi(\boldsymbol{x}(t))$ mo eflong
the flow in eq. 4.27). The image ϕ just appears to be transformed if we view it from an absolute reference frame Ω_{0}

$$
\begin{equation*}
\tilde{\phi}\left(\boldsymbol{x}_{0}\right)=\phi\left(g_{t}^{B} \circ \boldsymbol{x}_{0}\right), \quad \boldsymbol{x}_{0} \Omega_{0} \tag{4.28}
\end{equation*}
$$

However the particular reference frame Ω_{0} is irrelevant as two frames Ω and Ω^{\prime} may always be connected by the flow in eq. (4.27).

4.2 The Generalized Newton Algorithm

Our motivated procedure in eq. (4.8) depends on the assumption that from the r equations $\operatorname{div}\left(\boldsymbol{W}_{m}\right)=0$ the vector \boldsymbol{b} can be constructed from a basis of r vectors \boldsymbol{b}_{m} which are perpendicular to the \boldsymbol{W}_{m}. To demonstrate this we remember how the energy E transforms under an arbitrary sub group $g_{\gamma(t)} \subset \mathbb{G}$ (eq. (2.110))

$$
\begin{align*}
\left.\frac{d}{d t} g_{\gamma_{t}} \circ E\right|_{t=0} & =\int_{\Omega}\left(\sum_{i}\left[V_{e}^{\Omega}, X_{e}^{\Omega, i}\right](\phi) \cdot P_{i}+v^{\phi}\left[\mathcal{E}_{t o t}\right]\right) d^{2} x=0 \tag{4.29}\\
& =\int_{\Omega}\left(\sum_{m} \alpha_{m} \sum_{i}(\boldsymbol{M})_{m i} \cdot P_{i}+v^{\phi}\left[\mathcal{E}_{t o t}\right]\right) d^{2} x=0 \tag{4.30}\\
(\boldsymbol{M})_{m i} & =\left[X_{e}^{\Omega, m}, X_{e}^{\Omega, i}\right](\phi), \quad P_{i}\left(\boldsymbol{X}_{e}^{\Omega} \phi(\boldsymbol{x})\right)=\frac{\delta \mathcal{E}_{\text {prior }}\left(\boldsymbol{X}_{e}^{\Omega} \phi(\boldsymbol{x})\right)}{\delta\left(X_{e}^{\Omega, i} \phi\right)} \tag{4.31}
\end{align*}
$$

As we explained in section 2.4 the variation to the field ϕ, v^{ϕ} not only contains the instantaneous per-pixel variation \tilde{v}^{ϕ} but also the component $V_{e}^{\Omega} \phi$ which comes from the variation of thespacial coordinates \boldsymbol{x}

$$
\begin{equation*}
\phi^{\prime}=\phi+v^{\phi} \quad v^{\phi}(\boldsymbol{x})=\tilde{v}^{\phi}(\boldsymbol{x})+V_{e}^{\Omega} \phi(\boldsymbol{x}) \tag{4.32}
\end{equation*}
$$

Many methods for minimizing the energy E are of the basic Newton type in algorithm 2 which is based around the concept of steepest decent where the? variation v^{ϕ} is chosen such that the field ϕ is advanced in the direction of the negative gradient of E

$$
\begin{equation*}
\phi^{\prime}=\phi-\tau^{\phi} \cdot\left[\mathcal{E}_{t o t}\right] \tag{4.33}
\end{equation*}
$$

The step-size parameter τ^{ϕ} is either chosen to be constant or, in more advanced algorithms adjusted dynamically, for exampleonthe conjugate gradients algorithm ([30]).
"Many methods" requires more than one citation!

71

Pretty much a repeat of what you said earlier. Not sure why you're repeating this here.
in
What is new, our treatment of the minimization problem in eq. (4.30) is that we consider the change of the differential operators X_{e}^{i} themselves under the action of the spacial dperator V_{e}^{Ω} which is encoded in the matrix commutator M. We explained 1 section 4.30 that if we set $v^{\phi}=0$, that is we consider only the variation to the operator X_{e}^{2} in eq. 4.30 then the relation

$$
\begin{equation*}
M \cdot \boldsymbol{P}=0 \quad \text { ? } \tag{4.34}
\end{equation*}
$$

must hold independently from the coefficient vector α, since eq. (4.30) must hold for any $g_{\gamma_{t}} \in \mathbb{G}$. It is this relation that defines the perpendicular vector $\boldsymbol{b}(\boldsymbol{x})$. We will mew show how b is constructed. Since the commutator matrix M in eq. (2.107) is an element of the Lie algebra \mathcal{G} it can be represented in terms of the basis X_{e}^{i}

$$
(\boldsymbol{M})_{m i}=\sum_{l} C_{m i}^{l} X_{e}^{\Omega, l}(\phi)
$$

As the basis elements $X_{e}^{\Omega, l}$ are represented by the Cartesian gradient operator ∇ equation?

the prodpet $\boldsymbol{M} \cdot \boldsymbol{P}$ in eq. (2.107) takes the form

$$
\begin{align*}
\left(\boldsymbol{M} \cdot \boldsymbol{R}_{m}\right. & =\left\|\boldsymbol{b}_{m}\right\| B_{m} \phi(\boldsymbol{x}) \tag{4.37}\\
B_{m} & =\frac{1}{\left\|\boldsymbol{b}_{m}\right\|} b_{m}^{\mu}(\boldsymbol{x}) \partial_{\mu}, \quad b_{m}^{\mu}(\boldsymbol{x})=\sum_{i} P_{i}(\phi(\boldsymbol{x})) C_{m i}^{l} \omega_{l}^{\mu}(\boldsymbol{x})
\end{align*}
$$

Why? For
what reason? Motivation?

We would like to discuss the operator B_{m}. By eq. (4.37) and eq. (4.34) the operator B_{m} must satisfy the level-set equation

$$
\begin{equation*}
B_{m} \phi=b_{m}^{\mu} \partial_{\mu} \phi=0 \tag{4.39}
\end{equation*}
$$

From eq. (4.39) we see that the vector \boldsymbol{b}_{m} is tangential to the level-sets of $\phi(\boldsymbol{x})$. The r operators B_{m} are left invariant vector fields. They are the basis of a Lie algebra \mathcal{G}^{B} and an associated Lie group \mathbb{G}^{B}. For reasons soon to be clear we call the group \mathbb{G}^{B} the bending group and the algebra \mathcal{G}^{B} the bending algebra. The dimension r_{B} of \mathcal{G}^{B} is not necessarily equal to the dimension r of the original algebra \mathcal{G}, since $B_{m} \neq 0$ holds only for the non trivial elements of \mathbb{G}. For instance in the case $\mathbb{G}=\mathbb{T} \times S O(2)$ only the $S O(2)$ group allows for the construction of a bending group $S O^{B}(2)$ since E is trivially invariant under $\mathbb{T}\left(\left.M\right|_{\mathbb{T}}=\left[\partial_{x}, \partial_{y}\right]=0\right)$.

The bending algebra \mathcal{G}^{B} is an algebra of spacial differential operators. Thus we
can use it to define a diffusion equation for the coordinate frame Ω

$$
\begin{equation*}
\boldsymbol{x}(t)=g_{t}^{B} \circ \boldsymbol{x},\left.\quad \frac{d \boldsymbol{x}(t)}{d t}\right|_{t=0}=\sum_{m=1}^{r} \beta_{m} B_{m} \boldsymbol{x}=\boldsymbol{B} \cdot \boldsymbol{x} \tag{4.40}
\end{equation*}
$$

The operator \boldsymbol{B} is a linear combination of the r operators B_{m} from eq. (4.38) and the coefficient vector β is an arbitrary constant vector. The diffusion process in eq. (4.40) is a non-linear process since the coefficient vector $\boldsymbol{b}_{m}(\boldsymbol{x})$ itself (eq. (4.38) is a function of the coordinates $\boldsymbol{x}(t)$. It is guided along those operators B_{m} which do not vanish due to trivial symmetries. To understand the dynamical properties of the diffusion equation in eq. (4.40) we calculate the rate of change of the energy E under the transformation g_{t}^{B}. First we notice that due to the level-set equation in eq. 4.39 the first order derivative of the data term $\mathcal{E}^{\text {data }}$ under the action of g_{t}^{B} vanishes

$$
\begin{equation*}
\left.\frac{d}{d t}\left(g_{t}^{B} \circ \mathcal{E}^{\text {data }}(\boldsymbol{x})\right)\right|_{t=0}=\frac{\delta \mathcal{E}^{\text {data }}}{\delta \phi} \cdot \boldsymbol{B} \phi=0 \tag{4.41}
\end{equation*}
$$

This means the diffusion process in eq. (4.40) is independent from the data term $\mathcal{E}^{\text {data }}$. The action of g_{t}^{B} on the prior $\mathcal{E}^{\text {prior }}$ allows for a geometrical explanation of how the diffusion in eq. 4.40 proceeds. We let g_{t}^{B} act on $\mathcal{E}^{\text {prior }}$ and compute the derivative with respect to t

$$
\begin{equation*}
\left.\frac{d}{d t}\left(g_{t}^{B} \circ \mathcal{E}^{\text {prior }}\right)\right|_{t=0}=\sum_{i} P_{i} \cdot\left[\boldsymbol{B}, X_{e}^{i}\right] \phi \tag{4.42}
\end{equation*}
$$

The commutator $\left[\boldsymbol{B}, X_{e}^{i}\right] \phi$ is the change the gradient $X_{e}^{i} \phi$ undergoes under the diffusion process in eq. (4.40) at time $t=0$. Its projection onto the canonical momentum \boldsymbol{P} is a measure for the curvature of the level-set defined by eq. (4.39).

The bending operator \boldsymbol{B} depends on the vector \boldsymbol{P} in constrast to the EulerLagrange differentials $\left[\mathcal{E}_{t o t}\right]$, which only depend on the divergence $\operatorname{div}(\boldsymbol{P})$. Hence although the divergence may vanish after some iterations of the classical Newton algorithm, the actual vectors \boldsymbol{P} and thus \boldsymbol{B} may be non-vanishing upon the diffusion process in eq. (4.40)

$$
\begin{equation*}
\boldsymbol{b}(\boldsymbol{x}(t)) \neq 0 \quad t \rightarrow \infty \tag{4.43}
\end{equation*}
$$

However the prior $\mathcal{E}^{\text {prior }}$ and thus the energy E converge to zero under the diffusion process. Thus projection of $\left[\boldsymbol{B}, X_{e}^{i}\right] \phi$ onto \boldsymbol{P} vanishes at some point $t=t^{\star}$

$$
\begin{equation*}
\sum_{i} P_{i} \cdot\left[\boldsymbol{B}, X_{e}^{i}\right] \phi=0, \quad t=t^{\star} \tag{4.44}
\end{equation*}
$$

To show why eq. 4.44 holds we need argument that $g_{t}^{B} \circ \mathcal{E}^{\text {prior }}$ is convex with respect to t. For brevity we will assume $\left(X_{e}^{i} \phi(x)\right)$ only depends on the derivative $X_{e}^{i} \phi(\boldsymbol{x})$, the other derivatives $X_{i}^{j \neq i} \phi$ are taken to be fixed. We define $f(\boldsymbol{x}, t)=g_{t}^{B} \circ X_{e}^{i} \phi(\boldsymbol{x})$. The function $f(\boldsymbol{x}, t)$ is neither globally convex in Ω with respect to t nor concave. However we can split the domain Ω into two sub-domains, one domain Ω_{\checkmark} in which f is globally convex and Ω_{\wedge} in which f is globally concave. We may construct a globally convex function $h(\boldsymbol{x}, t)$

$$
h(\boldsymbol{x}, t)=\left\{\begin{array}{cl}
f(\boldsymbol{x}, t) & \boldsymbol{x} \in \Omega \tag{4.45}\\
-f(\boldsymbol{x}, t) & \boldsymbol{x} \in \Omega
\end{array}\right.
$$

and insert $h(\boldsymbol{x}, t)$ into the prior $\mathcal{E}^{\text {prior }}$ and since $\mathcal{E}^{\text {prior }}$ is convex in its arguments the combined function $\mathcal{E}^{\text {prior }}(h(\boldsymbol{x}, t))$ is convex with respect to t. Now $\mathcal{E}^{\text {prior }}$ is also a positive semi-definite functional meaning it is invariant to the reversal of the signs of its arguments, $\mathcal{E}^{\text {prior }}(h(\boldsymbol{x}, t))=\mathcal{E}^{\text {prior }}(-h(\boldsymbol{x}, t))$. Thus we conclude that $\mathcal{E}^{\text {prior }}(f(\boldsymbol{x}, t))$ is also convex with respect to t. The same arguments can be applied to all derivatives X_{e}^{i} for $1 \leq i \leq q$ so the result is that $g_{t}^{B} \circ \mathcal{E}^{\text {prior }}\left(X_{e}^{1} \phi, \ldots, X_{e}^{q} \phi\right)$ is convex with respect to t.
The positive definiteness and convexity of $g_{t}^{B} \circ \mathcal{E}^{\text {prior }}$ with respect to t has the important consequence that $g_{t}^{B} \circ \mathcal{E}^{\text {prior }}$ has a global minimizer $g_{t}^{B \star}$. However the minimizer $g_{t}^{B \star}$ is not unique! Since by construction $\mathcal{E}^{\text {prior }}$ is invariant to the group $\mathbb{G}, \tilde{g}_{t}^{B \star}=g_{t}^{B \star} \circ g_{\Omega}$ is also a minimizer of $\mathcal{E}^{\text {prior }}$ for all $g_{\Omega} \in \mathbb{G}$.
Eq. 4.42 gives us a geometrical explanation of the minimizer $g_{t}^{B \star}$ since for $g_{t}^{B}=g_{t}^{B \star}$ it vanishes

$$
\begin{equation*}
\sum_{i} P_{i} \cdot\left[\boldsymbol{B}, X_{e}^{i}\right] \phi=0 \tag{4.46}
\end{equation*}
$$

As we had explained the commutator in eq. (4.46) has the geometrical meaning of being the change X d under goes during parallel transport along \boldsymbol{B}. The vectors \boldsymbol{B} and \boldsymbol{P} span the tangentral vectorspace in Ω since $\boldsymbol{B} \neq \boldsymbol{P}$ anywhere in Ω. The projection of $\left[\boldsymbol{B}, X_{e}^{i}\right] \phi$ on to \boldsymbol{B} vanish due to the level-set equation in eq. (4.39). If eq. (4.46) holds then the commutator must vanish in Ω

$$
\begin{equation*}
\left[\boldsymbol{B}, X_{e}^{i}\right] \phi=0 \tag{4.47}
\end{equation*}
$$

Eq. (4.47) means that the operator X_{e}^{i} does not change its orientation when parallel transported along \boldsymbol{B}.

However they are not elements of the original Lie algebra B_{m} is a left invariant vector field and thus an element of the Lie algebra \mathcal{G}. This is due to the commutator matrix M being left invariant and the canonical momentum \boldsymbol{P}, which is the

You have a long development here in chapter four, and mathematically quite sophisticated. However I don't see the connection made clear between all of that development and algorithm 2,3,4.

There seems to be a disconnect between the relatively simple algorithms, and the complex mathematical development.

```
Algorithm 2 Basic Newton Method
    Set \(n=0\)
    Set Initial guess \(\phi^{0}\)
    Compute residual \(r^{n}=-\left[\mathcal{E}_{t o t}\right]\left(\phi^{n}\right)\)
    while \(\|r\|>\delta\) and \(n<N\) do
        Compute \(\phi^{n+1}(\boldsymbol{x})=\phi^{n}(\boldsymbol{x})-\tau^{\phi}\left[\mathcal{E}_{\text {tot }}\right]\left(\phi^{n}(\boldsymbol{x})\right)\)
        Recompute \(r^{n+1}=-\left[\mathcal{E}_{\text {tot }}\right]\left(\phi^{n+1}\right)\)
        Set \(n \rightarrow n+1\)
    end while
```

```
Algorithm 3 Diffusion Method
    Set \(n=0\)
    Set Initial guess \(\phi^{0}, x^{0}\)
    while \(n<N\) do
        Compute \(\boldsymbol{x}^{n+1}=\boldsymbol{x}^{n}-\tau^{\Omega} \boldsymbol{b}\left(\boldsymbol{x}^{n}\right)\)
        Compute \(\phi^{n+1}\left(\boldsymbol{x}^{n+1}\right)=\phi^{n}\left(\boldsymbol{x}^{n+1}\right)\)
        Set \(n \rightarrow n+1\)
    end while
```

functional derivative of $\mathcal{E}^{\text {prior }}$ and as such also left invariant. The consequence of the left invariance of B_{m} is that eq. (4.39) holds for any coordinate transformation of an arbitrarily chosen reference frame Ω_{0}.

In algorithm 3 we have sketched an algorithm for the minimization of the energy E in eq. (4.1) which only deploys the diffusion process in eq. (4.40). Since the Spacing / offient vector \boldsymbol{b} is a unit vector, a stopping condition in the sense of algorithm line breaking problem $2(\|\boldsymbol{r}\|<\delta)$ ooes not make sense and instead we chose terminating the algorithm after a fixed amount of steps N. However a sensible stopping condition could be derived from eq. 4.42 , like $\frac{d}{d t}\left(g_{t}^{B} \circ E^{\text {prior }}\right)<\delta$. We combined both algorithms 2 and 3 into the generalized Newton algorithm 4 . As we discussed abocey. (4.44) must characterize the minimum of E in eq. (4.1) just like the Euler-Lagrange equations $[\mathcal{E}]=0$. Thus it is sufficient to implement the same stopping conditions in the algorithm 4 as in the basic Newton method in algorithm 2 .

$$
\begin{equation*}
B_{m} \phi\left(g \circ \boldsymbol{x}_{0}\right)=0 \quad \forall \boldsymbol{x}_{0}, g \quad g \in \mathbb{G}, \quad \boldsymbol{x}_{0} \in \Omega_{0} \tag{4.48}
\end{equation*}
$$

```
Algorithm 4 Generalized Newton Method
    Set \(n=0\)
    Set Initial guess \(\phi^{0}, x^{0}\)
    Compute residual \(r^{n}=-\left[\mathcal{E}_{\text {tot }}\right]\left(\phi^{n}\right)\)
    while \(\|r\|>\delta\) and \(n<N\) do
        Compute \(\boldsymbol{x}^{n+1}=\boldsymbol{x}^{n}-\tau^{\Omega} \boldsymbol{b}\left(\boldsymbol{x}^{n}\right)\)
        Compute \(\phi^{n+1}\left(\boldsymbol{x}^{n+1}\right)=\phi^{n}\left(\boldsymbol{x}^{n+1}\right)-\tau^{\phi}\left[\mathcal{E}_{\text {tot }}\right]\left(\phi^{n}\left(\boldsymbol{x}^{n}\right)\right)\)
        Recompute \(r^{n+1}=-\left[\mathcal{E}_{t o t}\right]\left(\phi^{n+1}\right)\)
        Set \(n \rightarrow n+1\)
    end while
```


Figure 4.2: Figure 4.2a shows a picture ϕ^{c} f a person. ϕ^{c} is taken to be free of noise Figure 4.2 b is a notse ${ }^{2}$ rrupted version of ϕ^{c} in figure 4.2a, $\phi^{d}=\phi^{c}+n$ yhere n is rid Gaussian noise with a standard deviation
$\sigma=100$.

4.2.1 Image De-noising

Inconsistent notation. Earlier in the thesis the "c" indicated camera location, so phi_c would be the camera and phi (no "c") would be the image.

Imagede-noising is the problem of estimating a clean image ϕ^{\star} given a noisy image ϕ^{d}. The image ϕ^{0} is connected to ϕ^{\star} via

$$
\begin{equation*}
\phi^{d} \Rightarrow \phi^{\star}+n \quad n \sim \mathcal{D} \tag{4.49}
\end{equation*}
$$

where \mathcal{D} is some distribution and n is a noise term drawn from $\mathcal{D} . \phi^{\star}$ is estimated from the family of functionals

$$
\begin{equation*}
E(\phi)=\frac{1}{q} \int_{\Omega}\left|\phi-\phi^{d}\right|^{q} d^{2} x+\int_{\Omega} \mathcal{E}^{\text {prior }}\left(\phi(\boldsymbol{x}), \boldsymbol{X}_{e} \phi(\boldsymbol{x})\right) d^{2} x \tag{4.50}
\end{equation*}
$$

76

What does the "d" represent?

The degree q of the data term depends on the type of noise distribution \mathcal{D}. We have simulated a noise corrupted image ϕ^{d} in figure 4.2b in which the distribution \mathcal{D} is the Gaussian $\mathcal{N}(0, \sigma)(\sigma=100)$. We have run both the Newton and our generalized Newton algorithm to minimize the energy in eq. (4.50) for the total variation prior and our new structure tensor based prior.

TV-Prior

The TV based image de-noising model is defined by the energy

$$
\begin{align*}
E(\phi, \nabla \phi) & =\frac{1}{q} \int_{\Omega}\left|\phi-\phi^{d}\right|{ }^{q} d^{2} x+\int_{\Omega} \mathcal{E}^{\text {prior }}(\nabla \phi(\boldsymbol{x})) d^{2} x \tag{4.51}\\
\mathcal{E}^{\text {prior }}(\nabla \phi(\boldsymbol{x})) & =\lambda \sqrt{\nabla^{T} \phi \cdot \nabla \phi} \tag{4.52}
\end{align*}
$$

The prior $\mathcal{E}^{\text {prior }}$ in eq. (4.52) is an invariant of the Lie group $\mathbb{G}=\mathbb{T} \times S O(2)$, the group of translation and rotations. However the associated bending operator $\boldsymbol{B}_{\mathbb{\pi}}$ vanishes for the translation group \mathbb{T} vanishes since

$$
\begin{equation*}
B_{\mathbb{U}}^{x}=P^{\nu}\left[\partial_{\nu}, \partial_{x}\right]=0, \quad B_{\mathbb{U}}^{y}=P^{\nu}\left[\partial_{\nu}, \partial_{y}\right]=0 \tag{4.53}
\end{equation*}
$$

that is \mathbb{T} is a trivial symmetry of $\mathcal{E}^{\text {prior }}$ and $E(\phi, \nabla \phi)$. The bending operator \boldsymbol{B}_{θ} associated with the rotation group $S O(2)$ does not vanish, but computes to

$$
\begin{equation*}
B_{\theta}=b_{\theta}^{\mu} \partial_{\mu}, \quad \boldsymbol{b}_{\theta}=\frac{\nabla^{\perp} \phi}{\sqrt{\nabla^{T} \phi \cdot \nabla \phi}}=\boldsymbol{P}^{\perp} \tag{4.54}
\end{equation*}
$$

We ran algorithm 3 and algorithm 4 with the bending operator in eq. (4.54) and compared it to the original Newton method in algorithm 2 . In figure 4.3a we have plotted the energy $E(\phi, \nabla \phi)$ over the current iteration n for both algorithm 4 and 2 and in figure $4.3 b$ the prior energy $E^{\text {prior }}$. The pure diffusion algorithm (PDA) 3 initially minimizes the prior $E^{\text {prior }}$ and the total energy E faster then the basic Newton algorithm (BNA). At arround $n=40$ iterations the PDA starts to converge to a higher total energy E then the BNA. We relate this finding to the fact that the bending operator \boldsymbol{B}_{θ} does not depend on the data term $\mathcal{E}^{\text {data }}$ and that the PDA does not involve the steepest descent step in eq. (4.6). The prior energy $E^{\text {prior }}$ however converges for both the PDA and the BNA to the same value albeit the PDA converging slower then the BNA. The GNA as a combination of both the PDA and the BNA converges approximately twice as fast as the BNA alone according to figures 4.3 a and 4.3 b

In figure 4.4a the variance $\sigma^{2}=\mathbb{V}(\phi)$ and in figure 4.4b the curvature $\|\boldsymbol{K}\|$ are plotted against the iterations n for the BNA, PDA and GNA. The curvature $\|\boldsymbol{K}\|$

```
This doesn't seem to connect
to or rely upon the long
mathematical development
earlier in this chapter.
```


(a)

(b)

Figure 4.3: Figure 4.3a is a plot of the energy in eq. (4.52) and figure 4.3b a plot of the prior energy $E^{\text {prior }}$ over the current iteration n for algorithm 4 (solid line), algorithm 2 (dashed line) and algorithm 3 (dotted line). We can see that the diffusion process in eq. (4.40) alone (algorithm 3) minimizes the prior energy $E^{\text {prior }}$ and the total energy E We see that the bending operator in the diffusion process in eq. (4.40) causes an acceleration in the decrease of the prior energy $E^{\text {prior }}$ and thus of the

is the mean curvature over the domain Ω. Similar as for the energies E and $E^{\text {prior }}$ the mean curvature is initially minimized by the PDA faster then the BNA and after $n=40$ iterations slower then the BNA. It converges fastest for the GNA. The variance σ^{2} has a similar behavior like the total energy E in that since the PDA is not bounded by the data term $\mathcal{E}^{\text {data }}$ the variance σ^{2} converges to a higher level then the BNA and the GNA. Again since the GNA creates regions of equal intensity, leve-set regions in ϕ via the diffusion in eq. (4.40) and simultaneously matching the level-set regions to each other via the data term in the Euler-Lagrange differential in eq. (4.33) the variance converges the fastest for the GNA.

Figure 4.4: Figure 4.4a shows the variance σ^{2} of the image ϕ and figure 4.4b the curvature vector \boldsymbol{K} for algorithm 3](dotted line), algorithm 2 (dashed line) and algoritm 4 (solid). The curvature $\|\boldsymbol{K}\|$ converges for all three algorithms 3, 2 and 4 to the same value. However the variance σ^{2} for algorithms 4 and 2 converge to a lower value then algorithm 3. The explanation is that while algorithm 3 only creates regions of equal intensity, level-set regions, the algorithms 4 and 2 not only create level-set regions but actually match the intensities of the level-set regions to each other.

Structure Tensor Prior

$$
\begin{align*}
E(\phi, \nabla \phi) & =\frac{1}{q} \int_{\Omega}\left|\phi-\phi^{d}\right|{ }^{q} d^{2} x+\int_{\Omega} \mathcal{E}^{\text {prior }}(\nabla \phi(\boldsymbol{x})) d^{2} x \tag{4.55}\\
\mathcal{E}^{\text {prior }}(\nabla \phi(\boldsymbol{x})) & =\operatorname{det}(S) \tag{4.56}
\end{align*}
$$

In order to apply the GNA in algorithm 4 to the model in eq. (4.56) we need to compute the coefficient vector \boldsymbol{b} of the bending operator \boldsymbol{B}. From $/$ section ?? we know that $\mathcal{E}_{S T}^{\text {prior }}$ is invariant to the group $\mathbb{G}=\mathbb{T} \times S O(2)$. Like the $T V$ priol the translation group \mathbb{T} is a trivial symmetry so that it suffices to compute the bending operator \boldsymbol{B}_{θ} corresponding to the group $S O(2)$. We remember that the structure tensor prior in eq. (4.56) transforms under the $S O(2)$ in the following
way

$$
\begin{equation*}
\left.\frac{d}{d t} E^{\text {prior }}\left(S_{g_{t}}\right)\right|_{t=0}=\int_{\Omega} \operatorname{Tr}\left(S \cdot M_{\theta} \cdot S\right) d^{2} x=0 \tag{4.57}
\end{equation*}
$$

where M_{θ} is the Pauli matrix (the generator of the algebra $\mathfrak{s o}(2)$). We can expand the structure tensor S in terms of its eigenvectors $\boldsymbol{v}_{1,2}$ and the corresponding eigenvalues $\lambda_{1,2}$. The eigenvector \boldsymbol{v}_{1} is parallel to the mean gradient (over the window covered by S) of ϕ

$$
\begin{equation*}
\boldsymbol{v}_{1} \|\langle\nabla \phi\rangle \tag{4.58}
\end{equation*}
$$

and the eigenvalue λ_{1} is the squared magnitude of $\langle\nabla \phi\rangle$. The vector \boldsymbol{v}_{2} is orthogonal to \boldsymbol{v}_{1} and λ_{2} is the squared rate of change of ϕ along the direction of \boldsymbol{v}_{2}. The structure tensor S can the be written as

$$
\begin{equation*}
S=\lambda_{1} \boldsymbol{v}_{1} \boldsymbol{v}_{1}^{T}+\lambda_{2} \boldsymbol{v}_{2} \boldsymbol{v}_{2}^{T} \tag{4.59}
\end{equation*}
$$

The trace in eq. 4.57 then reduces to the equation

$$
\begin{equation*}
\operatorname{Tr}\left(S \cdot M_{\theta} \cdot S\right)=\langle\nabla \phi\rangle^{T} \tilde{\boldsymbol{b}}_{\theta}, \quad \tilde{\boldsymbol{b}}_{\theta}=S \cdot\left(\left\langle\nabla^{\perp} \phi\right\rangle-\frac{\lambda_{2}}{\sqrt{\lambda_{1}}} \boldsymbol{v}_{2}\right) \tag{4.60}
\end{equation*}
$$

The vector $\tilde{\boldsymbol{b}}_{\theta}$ shows in the direction of \boldsymbol{v}_{2} and is thus perpendicular to the mean gradient $\nabla \phi$ and the trace in eq. 4.57) vanishes. We insert $\tilde{\boldsymbol{b}}_{\theta}$ into the definition of the bending operator \boldsymbol{B} in eq. (4.38) and get

$$
\begin{equation*}
B_{\theta}=v_{2}^{\mu} \partial_{\mu} \tag{4.61}
\end{equation*}
$$

In figures 4.5 and 4.6 the energies $E^{\text {prior }, ~} E$ the variance σ^{2} and the $\|\boldsymbol{K}\|$ are plotted over the iterations n for both algorithms 2 and 4 . Like for the TV prior we see that the energies E and $E^{\text {prior }}$ converge for the GNA faster then for the BNA. The variance σ^{2} (figure 4.6) however converges for both algorithms at the same rate albeit to a lower value for the GNA.

Figure 4.5: Figure 4.5a is a plot of the energy in eq. (4.52) and figure 4.5b a plot of the prior energy $E^{\text {prior }}$ over the current iteration n for algorithm 4 (solid line), algorithm 2 (dashed line) and algorithm 3 (dotted line). We can see that the diffusion process in eq. (4.40) alone (algorithm 3) minimizes the prior energy $E^{\text {prior }}$ and the total energy E We see that the hondinty operator in the dilfiusion process in eq. (4.40) causes an acceleration in the decrease of the prior energy E erior and thus of the total energy E

Same comment as earlier -- I'm worried about reaching conclusions based on tests run on a single image. The results are highly anecdotal and may not have any predictive power.

I'm not sure why you would do such limited runs / testing after such extensive mathematical development.

Figure 4.6: Figure 4.6a shows the variance σ^{2} of the image ϕ and figure 4.6b the curvature vector \boldsymbol{K} for algorithm 3 (dotted line), algorithm 2 (dashed line) and algoritm 4 (solid). The curvature $\|\boldsymbol{K}\|$ converges for all three algorithms 3,2 and 4 to the same value. However the variance σ^{2} for algorithms 4 and 2 converge to a lower value then algorithm 3. The explanation is that while algorithm 3 only creates regions of equal intensity, level-set regions, the algorithms 4 and 2 not only create level-set regions but actually match the intensities of the level-set regions to each other.

5 Conclusions

Bibliography

[1] D. Sun, S. Roth, and M. J. Black, "Secrets of optical flow estimation and their principles," in Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on. IEEE, 2010, pp. 2432-2439. 7. 34
[2] Paul Fieguth, Statistical image processing and multidimensional modeling, Springer Science \& Business Media, 2010. 8
[3] Hans-Hellmut Nagel and Wilfried Enkelmann, "An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences," Pattern Analysis and Machine Intelligence, IEEE Transactions on, , no. 5, pp. 565-593, 1986. 12
[4] Alexander A Kirillov, An introduction to Lie groups and Lie algebras, vol. 113, Cambridge University Press Cambridge, 2008. 16, 19
[5] Elizabeth Louise Mansfield, A practical guide to the invariant calculus, vol. 26, Cambridge University Press, 2010. 16, 17, 26
[6] Mario Ferraro and Terry M. Caelli, "Relationship between integral transform invariances and lie group theory," Journal of the Optical Society of America A, vol. 5 no 5, pp. 738-742, 1988. 16
[7] Taichiro Kugo, Eichtheorie, 1997. 21
[8] Michael E. Peskin and Daniel V. Schroeder, An Introduction to Quantum Field Theory (Frontiers in Physics), Perseus Books, 1995. 21
[9] Richard Phillips Feynman, Robert B. Leighton, and Matthew Sands, The Feynman Lectures on Physics, 1963. 21
[10] E. Noether, "Invariante variationsprobleme," Nachrichten Der Koeniglichen Gesellschaft Der Wissenschaften Zu Goettingen, vol. MathematischePhysikalische Klasse, pp. 235-257, 1918. 23
[11] E. Noether, "Invariant variation problems," Transport Theory and Statistical Problem, vol. 1 (3), pp. 183-207, 1971. 23, 26
[12] Leonid I Rudin, Stanley Osher, and Emad Fatemi, "Nonlinear total variation based noise removal algorithms," Physica D: Nonlinear Phenomena, vol. 60, no. 1, pp. 259-268, 1992. 29
[13] A. Chambolle, "An algorithm for total variation minimization and applications," Journal of Mathematical imaging and vision, vol. 20, no. 1-2, pp. 89-97, 2004. 29
[14] A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers, "An improved algorithm for tv-1 1 optical flow," in Statistical and Geometrical Approaches to Visual Motion Analysis, pp. 23-45. Springer, 2009. 29
[15] J. M. Fadili and G. Peyre, "Total variation projection with first order schemes," IEEE Transactions on Image Processing, vol. 20, no. 3, pp. 657669, Mar. 2011. 29
[16] Kristian Bredies and Dirk Lorenz, "Mathematische bildverarbeitung," Vieweg+ Teubner, vol. 4, no. 6, pp. 12, 2011. 29,30
[17] Stanley Osher and Leonid I Rudin, "Feature-oriented image enhancement using shock filters," SIAM Journal on Numerical Analysis, vol. 27, no. 4, pp. 919-940, 1990. 29
[18] Leonid I Rudin, "Images, numerical analysis of singularities and shock filters," 1987. 29
[19] Mahua Bhattacharya and Arpita Das, "Registration of multimodality medical imaging of brain using particle swarm optimization," in Proceedings of the first international conference on intelligent human computer interaction. Springer, 2009, pp. 131-139. 32
[20] Anthoni Yezzi, Lilla Zöllei, and Tina Kapur, "A variational framework for joint segmentation and registration," Proceedings of the IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, p. 44, 2001. 32
[21] B. K.P. Horn and B. G. Schunck, "Determining optical flow," Artificial Intelligence, vol. 17, issues 1-3, pp. 185-203, 1981. 33
[22] B. D. Lucas, T. Kanade, et al., "An iterative image registration technique with an application to stereo vision." in IJCAI, 1981, vol. 81, pp. 674-679. 33
[23] Michael J Black and Paul Anandan, "The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields," Computer vision and image understanding, vol. 63, no. 1, pp. 75-104, 1996. 34
[24] D. Mumford and J. Shah, "Optimal approximation by piecewise smooth functions and associated varia- tional problems," Comm. Pure and Applied Mathematics, vol. 42, pp. 577-685, 1989. 34
[25] Alexis Roche, Grégoire Malandain, Nicholas Ayache, and Xavier Pennec, "Multimodal image registration by maximization of the correlation ratio," 1998. 35, 36
[26] Russell C Hardie, Kenneth J Barnard, John G Bognar, Ernest E Armstrong, and Edward A Watson, "High-resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system," Optical Engineering, vol. 37, no. 1, pp. 247-260, 1998. 37, 38
[27] R. C. Hardie, M. T. Eismann, and G. L. Wilson, "Map estimation for hyperspectral image resolution enhancement using an auxiliary sensor," IEEE Transactions on Image Processing, vol. 13, no. 4, 2004. 38, 39, 43
[28] Y. Zhang, "Spatial resolution enhancement for hyperspectral image based on wavelet baysian fusion," 4th International Congress on Image and Signal Processing, 2011. 39
[29] J. Bigun and G. H. Granlund, "Optimal orientation detection of linear symmetry," Proceedings of the IEEE First International Conference on Computer Vision : London, Great Britain, pp. 433-438, 1987. 40
[30] Jonathan Richard Shewchuk, "An introduction to the conjugate gradient method without the agonizing pain, 1994," URL http://www-2. cs. cmu. edu/jrs/jrspapers. html\# cg, 1994.

