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1. Introduction

The main topic of this thesis is concerned about symmetries in the mathematical
modeling of computer vision problems. Many objects in nature posses among
others the notable characteristic of symmetry regarding their attributes such as
their form and color. A symmetry of an object O is such that if O undergoes
a specific transformation g, then it appears for an observer to be unchanged.
Say we have a computer vision problem involving the object O, modeled with a
mathematical modelM . It is natural to reflect the symmetry of the objectOwithin
the model M , such that M is invariant in some sense under the transformation
g. The goal of this theses is to analyze the structure of the symmetries of a
mathematical model M . We will prove that knowledge of the symmetries of M
may lead to significant speed ups of any algorithm using M .

Symmetries generally fall into two categories: global and local symmetries. A ball
of uniform color for instance does not change its appearance to an observer upon
rotation around an arbitrary axis through the center of the ball. This example is
one of global symmetry since the ball as a whole is transformed (rotated). We can
formally describe the global symmetry of the object O in the following way: If
the surface of the object is described by the functional relationship φO(x) = const
(e.g. φO(x) = x2 + y2 + z2 = 1 for a ball of unit radius) then our intuition of
global symmetry is equal to the statement that φO(x) = const is invariant under
the global transformation x′ = g ◦ x

φO(g ◦ x) = φO(x) (1.1)

Not all objects in nature are symmetric with respect to global transformations. For
example in figure 1.11.1 an image of a leaf is shown. Since the leaf is not symmetric
with respect to any global transformation g, its projection onto the image plane
Ω is not symmetric with respect any global transformation gΩ on Ω. However if
we inspect local regions of the leaf, that is we zoom into those regions at various
locations on the leaf, we see that the features of the leaf within the regions do
posses symmetries. Figure 1.1b1.1b shows a close up of the region highlighted in
figure 1.1a1.1a through which a vein of the leaf runs. The vein appears to be linear
and thus symmetric towards translations along its tangential direction. This
symmetry is reflected by the vectors at each position of the vein. They indicate
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(a) (b)

Figure 1.1.: Figure 1.1a1.1a shows an image of a leaf. The leaf clearly has no global symmetry. Fig-
ure 1.1b1.1b shows a close-up of the region around a vein of the leaf, indicated by the
box in figure 1.1a1.1a. The vectors in figure 1.1b1.1b along the vein indicate local translations
which leave the vein invariant.

local translations, which leave the vein invariant. A local transformation as
indicated by the vectors in figure 1.1b1.1b may be represented by the vector field
b(x) such that the local transformation gB(x) = x + b(x) leaves the image φ
invariant

φ
(
x+ b(x)

)
= φ (x) (1.2)

In general we cannot assume that gB(x) in eq. (1.21.2) is unique since there can
always exist a vector field b′(x) 6= b(x) which satisfies eq. (1.21.2). On the other
side any transformation gB satisfying eq. (1.21.2) uniquely determines the geometry
of φ for if we were to draw lines along the tangential vectors b(x) by connecting
xwith x+ b(x) we would reconstruct the object O from gB(x).

Computational modeling in general is concerned about acquiring information
about our physical reality given a set of observations. For instance a typical
computer vision problem is the classification of the contents of a given image
φO. Let P represent the classification problem and MP a mathematical model (a
set of formulas) describing P. If φO is the image of the leaf in figure 1.11.1 then an
algorithm deploying MP should indeed verify that φO is the image of a leaf and
additionally report some information about the leaf like the size, the name of
the plant etc. The geometric invariance of φO towards the transformation g in
eq. (1.21.2) encodes information about the geometry of the leaf. The classification
model MP can be made aware of the geometric invariance (eq. (1.21.2)) and the local
geometric structures of the leaf (e.g the veins) by constructing the mathematical
formulas of MP such that they themselves are invariant under the same spacial
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(a) (b) (c)

Figure 1.2.: Figure 1.2a1.2a: Two cameras are shown recording a scene from different positions. The
scene could could be a rigid scene or a dynamic scene with moving objects. Figure 1.2b1.2b
shows the image y captured from the camera yc and figure 1.2c1.2c the image I from the
camera Ic. One possible question is: How can the pixels of the image I be mapped
to those of the image y? Such a mapping can be used to deduce the 3-dimensional
structure of the box similar to how the human brain constructs a 3-dimensional image
given the 2-dimensional images obtained by the left and the right eye.

transformations g. This invariance of MP under g would make it possible for
MP to identify different regions of the image φO with dominant linear structures
and furthermore identifying these linear structures as belonging to one global
structure, e.g. the vein of the leaf. In general the concept of constructing compu-
tational models integrating known geometric invariances of the data for the aid
of acquiring information in the data is at the core of this thesis.

The process of acquiring information from our physical reality via mathematical
modeling is problematic itself in many ways. For one, the information which we
may wish to gather may lay hidden in the data we can possibly acquire from a
physical system. One such problem is called stereography ([11, 22, 33, 44]), depicted
in figure 1.21.2. The statement of the problem goes as follows: given two images
y and I (figures 1.2b1.2b and 1.2c1.2c) of an object O (the box in figure 1.2a1.2a) how can
we infer the 3-dimensional structure of O (the width, height and depth of the
box)? This problem has already been solved by nature since the human brain is
capable of reconstructing a 3-dimensional image given the 2-dimensional images
obtained by the left and the right eye.

Besides the problem of hidden information described above there is another
problem in the process of information acquisition. The means we use to acquire
the data have technical limitations. For instance the cameras yc and Ic in fig-
ure 1.2a1.2a in general produce images of limited resolutions which may also be
subject to noise.

Both problems in the process of information acquisition may be sub-summed as
the problem of inference : Given some possibly corrupted data Y of a physical
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system we wish to infer some information stored in the unknown latent variable
φ. In general Y and φ may be discrete variables, continuous functions over some
domain Ω or a combination of both. In this thesis we will only handle problems
for which Y and φ are continuous functions over Ω

Y, φ : Ω→ Rn (1.3)

The inference problem then becomes the problem of mapping Y to φ

Y (x) TY−→ φ (x) (1.4)

where TY denotes a process or an algorithm which is parametrized by the data
Y . Since the variable φ is unknown we have to for one make assumptions on
its geometric properties and furthermore model how it is linked to the data Y .
These aspects of φ are then embedded in the inference process TY . For now we
want to motivate how the geometrical properties of φ can be taken into account
by TY . Consider a local transformation g such that the variable φ is transformed
to the new variable φ′

φ′ (x) = φ (g ◦ x) (1.5)

We can regard φ′ as being inferred from the data Y via the inference process
T ′Y similar to eq. (1.41.4). If φ is symmetric under g in the sense of eq. (1.21.2) then
this implies that the two inference processes TY and T ′Y are equal and thus the
inference process TY is itself symmetric under the action of g. We conclude that
knowledge of the set of local transformations {g}which satisfy eq. (1.21.2) allows us
to identify those inference processes TY which are equal to each other upon action
of {g}. This has two consequences. The first is that we can design an inference
process TY which is invariant upon the action of the set {g}. As a result this
guarantees the invariance of φ upon the action of {g}. The second consequence
is more subtle. If we split the inference process TY into n intermediate steps

Y
TY−→ φ = Y

T 1
Y−→ φ1 T 2

Y−→ φ2 · · ·
Tn−1
Y−→ φn−1 TnY−→ φ (1.6)

the intermediate steps T iY and φi need not be invariant under the set {g}. How-
ever for particularly well chosen g′ ∈ {g} such that

g′ ◦ T iY = T i+kY (1.7)

we may minimize the number steps in eq. (1.61.6) und thus obtain the shortest path
in the inference problem.

The overall structure of this thesis is as follows: In section 2.12.1 we introduce the
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latent variable φ as a Gibbs Random Field (GRF). The main property of GRFs is
that they are associated with an energy functional EY (φ). The inference process
TY is explicitly formulated as the minimization problem

φ? = argminφEY (φ) ↔ Y
TY−→ φ? (1.8)

In section 2.32.3 we will introduce the definition of an r-dimensional Lie group G
and its corresponding Lie algebra G. This facilitates the formally correct definition
of the local symmetry in eq. (1.21.2) in the form of the level-set equation

Xφ = 0 if φ (g ◦ x) = φ (x) , g = exp (tX) ∈ G, X ∈ G (1.9)

Sections 2.12.1 and 2.32.3 prepare the stage for the introduction of Emmy Noethers
celebrated first theorem in section 2.42.4. In a nutshell this theorem states that if
an energy functional EY (φ) is invariant upon the action of an r-dimensional Lie
group G, then there exists r divergence-free vector fieldsWm

g ◦EY (φ) = EY (φ) ∀g ∈ G ↔ ∃Wm, div (Wm) = 0 ∀ 1 ≤ m ≤ r
(1.10)

Since its first publication in 1918, Noether’s first theorem has had far reaching
implications in our understanding of the fundamental laws of motion in physics
as well as the deep connection between the symmetries of a physical system and
its conservation laws. For instance the time invariance of the laws of motion
in the universe reveals the conservation of energy. In layman words: It does
not matter if we carry out an experiment now or next week, the results will be
the same since the energy of the universe does not vanish! Building on section
2.42.4 we demonstrate in section 33 the construction of a prior energy functional
Eprior(φ) which is invariant under the Lie group T× SO(2) which is the group
of local translations and rotations. In section 3.33.3 we will use the prior developed
in section 33 in the context of optical flow [55]. In section 44 we will introduce
a generalization of the Newton approach for solving the inference problem in
eq. (1.81.8) which takes local transformations of the spatial coordinates x in Ω (see
eq. (1.21.2)) into account to facilitate the search for the shortest path in the inference
problem in eq. (1.61.6).
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2. Background

2.1. Gibbs Random Fields

A physical system C is a dynamical composite of elements which interact with
each other as well as with the environment the system C is embedded in. The
elements are described by a vector of parameters φ = (φ1, . . . , φn). The physical
system C relates a specific value φ? of the vector φ to a set of observables Y =
{Y1, . . . , Yk}

Y = C (φ?) (2.1)

In the case that the elements of the system C are continuously distributed over a
finite space Ω, the parameter vector φ is a function on Ω

φ(x) ∈ Rn x ∈ Ω (2.2)

called a Gibbs-Random-Field (GRF) [66]. In this thesis we will generally assume
that the GRF φ is infinitely differentiable, φ (x) ∈ C∞ (Ω), unless otherwise
explicitly stated. The interactions of the elements of the system C with the
environment are characterized by an energy functional EdataY (φ) called the data
term, which couples the GRF φ(x) to the observables Y . There is another energy
form Eprior(φ,∇φ) within the system C called the prior. Eprior(φ, ∂jφ) describes
how the elements of C interact with each other. Together both energy functionals
form the total energy of the system C

EY (φ,∇φ) = EdataY (φ) + Eprior(φ,∇φ) (2.3)

which is related to the probability distribution

p (φ,∇φ|Y ) = p (Y |φ) · p(φ,∇φ) ∼ exp (−EY (φ,∇φ)) (2.4)

p (Y |φ) = exp
(
−EdataY (φ)

)
(2.5)

p (φ,∇φ) = exp
(
−Eprior (φ,∇φ)

)
(2.6)
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The value of the probability distribution p(φ,∇φ|Y ) evaluated at the values φ̂(x)
describes the probability that the GRF φ(x) assumes the values φ̂(x) at each point
x ∈ Ω. The set of values φ̂(x) is what is called a configuration of the GRF φ.

EY (φ,∇φ) is designed such that it is minimal once the GRF φ(x) fulfills the
forward problem in eq. (2.12.1)

φ? = argminφ (EY (φ,∇φ)) (2.7)

The particular value φ? (x) of the GRF φ is the most probable configuration of
the distribution p(φ|Y ) due to eq. (2.42.4) and the solution to the inverse problem

φ? = C−1 (Y ) (2.8)

In this thesis we will not be concerned with the probability interpretation of GRF
models via eq. (2.42.4) but rather directly with the formulation of a GRF model via
the energy functional EY (φ,∇φ) in eq. (2.32.3). The focus lies on the prior Eprior

and we will show how it incorporates the geometrical invariance in eq. (1.21.2).

2.1.1. Principle of Least Action

Eq. (2.72.7) is the manifestation of the principle of least action (PLA) [77, 88, 99, 1010, 1111].
The origins of the PLA date back to the year 1740. In that year Pierre-Louis
Maupertuis introduced the action E of a body of mass m as a quantity which is
minimal when the body is at rest [88]. He further went on in 1746 to extend his
principle to systems of non interacting point masses mi which follow trajectories
qi(t) [1212]. In that paper he showed that the action E of the many body system
has the form of a time integral

E(q̇) =
∫ 1

2
∑
i

mi ‖q̇i(t)‖2 dt (2.9)

Maupertuis showed that the trajectories q?i (t) which minimize eq. (2.92.9) are also
the solutions to Newtons equations

mi
..
q
?
i (t) = 0 (2.10)

realizing Newtons first axiom A body of mass m remains in the state of rest or
uniform linear motion unless a force is acted upon it to change its state [1313].

The PLA was extended in 1750 by Leonhard Euler and Joseph Lagrange to
incorporate interactions between the point masses mi. They defined the action
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E(q̇, q) as the time integral over a function L(q̇, q, t), now called the Lagrangian,
and showed that E(q̇, q) is minimal when the trajectories fulfill the equation

δL
δqi(t)

− d

dt

(
δL
q̇i

(t)
)

= 0 (2.11)

The differential equations in eq. (2.112.11) are named in honor of the originators the
Euler-Lagrange equations.

In the context of Gibbs random field theory and the minimization problem in
eq. (2.72.7) the energy E(φ,∇φ) can be written in terms of an integral over the
Lagrangian E(φ(x),∇φ(x))

E(φ,∇φ) =
∫

Ω
E(φ(x),∇φ(x))dnx (2.12)

The Euler-Lagrange equations in eq. (2.112.11) then generalize to the GRF field
equations

δE
δφ(x) −

∑
µ

d

dxµ

(
δE

∂µφ(x)

)
= 0 (2.13)

The Euler-Lagrange GRF equations in eq. (2.132.13) are the central equation in many
physical theories which can be modeled in the context of Gibbs random fields.
For instance in classical electrodynamics [1414, 1515] the GRF of the theory is the
vector A(x, t) which generates the electric field E(x, t) and the magnetic field
B(x, t). The Euler-Lagrange equations of the density E(A(x, t),∇A(x, t)) are
the celebrated Maxwell-Equations [1616], which are dynamical equations relating
E(x, t) andB(x, t). Through the Maxwell equations James Clerk Maxwell was
able to predict the electromagnetic waves, the existence of which was proved by
the physicist Heinrich Hertz [1717].

2.1.2. Image De-Noising

An example of a physical system containing a GRF is a camera C recording
an object O. The domain Ω ⊂ R2 is the focal plane of the camera C and the
object O is naturally projected onto the focal plane Ω producing the projection
IO. In theory the projection IO is a continuous function in the coordinate frame
of the plane O where the particular function value IO(x) is the light intensity the
object O reflects to the point x on the focal plane Ω. At the heart of the image
acquisition process of basically all modern camera systems lies the concept of a
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(a) (b)

Figure 2.1.: Figure 2.1a2.1a shows an image Ic taken of an object O with a thermographic camera. A
region of interest is shown where the contrast was enhanced to visualize the noise
corruption. Figure 2.1b2.1b shows the result I?O of the minimization problem eq. (2.192.19)
with the prior in eq. (2.202.20). The noise is removed but the boundaries of O are over
smoothed

CCD collecting the photons of the light at discrete positions xi,j called pixels

Icij = Ic(xi,j) ∈ R, xi,j ∈ Ω 1 < i < n, 1 < j < m (2.14)

The observables Y are the recorded intensities Icij at the pixels xi,j . In this sense
the camera C is a function which maps the continuous projection IO(x) to the
discretely sampled intensities Icij

Icij = Cij (IO) (2.15)

The intensity Icij is basically a function of the number of photons collected by
the CCD at the pixel xi,j . This number cannot be acquired deterministically, it is
rather the result of a stochastic process described as independently identically
distributed (iid) noise

Îcij = IO (xi,j) + n n ∼ p
(
Icij |IO (xi,j)

)
(2.16)

p(Icij |IO (xi,j)) is the likelihood that Icij assumes the value Îcij given the incoming
intensity IO(xi,j) at the pixel xi,j . Like in eq. (2.52.5) it is mapped to the data term
energy EIc(IO).

In order to infer the values of IO(xi,j) at the pixels xi,j from the noisy data Icij
we need to pose some form of regularity on the values IO(x) to counter the pixel-
wise noise imposed by the CCD in eq. (2.162.16). Such regularity can be achieved by
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correlating the intensities IO(x) at all pixels with each other in the prior

p (IO) = exp
(
−Eprior (IO)

)
(2.17)

Eprior (IO) =
∫

Ω
E (IO (x) , IO (Ω/ {x})) dx (2.18)

where the integrand correlates the intensity IO(x) at the point x ∈ Ω with the
intensities at all other points Ω/ {x} so that the problem of inferring IO from the
data Ic becomes the minimization problem

I?O = argminIO (EIc (IO)) , EIc (IO) = EdataIc (IO) + Eprior (∇IO) (2.19)

However in practice for a n × n dimensional image Ic the minimization in
eq. (2.192.19) achieves a complexity of the order O(n4) since every pixel is corre-
lated to n2 − 1 other pixels. Even for medium sized images with n = 500 the
computations involved in eq. (2.192.19) are practically infeasible.

To reduce the complexity we want the integrand E in eq. (2.182.18) only to correlate
the values IO(x) within a neighborhood Uxi,j ⊂ Ω with each other. One possible
and very simple way to implement E is to have it penalize the L2 norm of the
gradient∇IO(x)

EpriorL2
(∇IO) =

∫
Ω
‖∇ IO (x)‖2 dx (2.20)

where the gradient operation ∇ can be realized by finite differences. While
the prior in eq. (2.202.20) can be implemented in a very efficient manner, it has
an important drawback. It isotropically smooths the GRF IO regardless of the
underlying geometry of the object O being recorded. In figure 2.1a2.1a the image
Ic of an object O recorded by a thermographic camera is shown. A region of
interest with enhanced contrast is shown to visualize the noise corruption due
to the image measuring process in eq. (2.162.16). Figure 2.1b2.1b shows the result of
the minimization in eq. (2.192.19) with the L2 prior in eq. (2.182.18). EpriorL2

reduces the
noise in IO but due to its isotropic nature it over-smooths the boundaries of O. In
section 2.22.2 and following we will introduce a methodology aimed at designing
prior energies Eprior which incorporate information about the geometry of the
objects recorded in order to avoid the over-smoothing across their boundaries.
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(a) (b)

Figure 2.2.: Local transformation of an image φ with a level-set S. Figure 2.2a2.2a shows an image
φ (x) with a line S along which the intensity values are constant. At each point xS the
vector ωS is the normal vector on S. Figure 2.2b2.2b shows the result of the local distortion
of S under the action of the operator gδω . gδω acts on S by adding to ωS a spacial
dependent vector δω (x)

2.2. Lie Groups and the Noether Theorem

2.2.1. Motivation 1, the problem

In section 2.12.1 we had claimed that the problem with the L2 prior

EL2 (φ) =
∫

Ω
‖∇φ‖2 (2.21)

over-smooths the GRF φ over the boundaries of the object recorded by the camera
C. In general the minimizers φ? of the energy EL2 are the constant functions
φ = const

Ac =
{
φ?c

∣∣∣φ?c = argminφ
(
EL2 (∇φ)

)
= c, c ∈ R

}
(2.22)

In the context of the minimization problem in eq. (2.192.19) the minimizer set Ac
in eq. (2.222.22) emphasizes that the prior EL2 does not allow for the solution I?O
(eq. (2.192.19)) to have discontinuities. Thus EL2 is completely unaware of the
geometry in the data Ic (figure 2.1a2.1a). However EL2 has a advantageous property.
Consider the set of rotations SO(2) of the coordinate frame Ω

x′ = Rθx, Rθ =
(

cos (θ) sin (θ)
− sin (θ) cos (θ)

)
∈ SO(2) (2.23)

13



The gradient ∇φ transforms under the rotation in eq. (2.232.23) like a vector, ∇′φ =
Rθ∇φ and the matrix Rθ satisfies RT

θ Rθ = 1. Thus theL2 energy is also invariant
towards the rotations in eq. (2.232.23)

E′L2 =
∫

Ω
∇TφRT

θ Rθ∇φd2x =
∫

Ω
‖∇φ‖2 d2x (2.24)

In general the invariance of the prior energy Eprior(∇φ) of a GRF φ with respect
to the rotations in eq. (2.232.23) is a favorable feature since the gradient∇φ should
not be penalized to a specific orientation. In the context of the minimization
problem in eq. (2.192.19) rotational invariance of the prior Eprior (∇IO) ensures the
gradient∇I?O is not affected by the orientation of the camera system C.

Several methods have been introduced which allow for the construction of
anisotropic priors. These methods include TV-Regularization [1818, 1919] which will
be introduced in section 2.52.5 , anisotropic difusion guided by directional operators
like the structure tensor [2020, 2121, 2222] and level set methods of the Mumford-Shah
type [2323, 2424, 2525]. Among the earliest attempts for anisotropic regularization was
the work of Nagel et. al. [2626]. They introduced a quadratic prior

EpriorD (∇φ) =
∫

(∇φ (x))T D (x) (∇φ (x)) d2x (2.25)

The operator D (x) is a local 2× 2 symmetric valued matrix estimated within a
local window around each point x. D (x) is precomputed and assumed to be
fixed under variation of φ. Thus it’s eigenvectors function as a guide for the
gradient φ. For instance in eq. (2.192.19) we can insert eq. (2.252.25) forEprior. Computing
D such that it has only one non-zero eigenvalue λ and an eigenvector b oriented
perpendicular to the weighted gradient of the data Ic

D (x) = λb (x) b (x)T , b (x0) ⊥ 〈∇Ic (x)〉 (x0) (2.26)

〈∇Ic (x)〉 (x0) =
∫
A
w (‖x− x0‖)∇Ic (x) d2x (2.27)

the prior EpriorD penalizes the tangential component of∇IO along b in the mini-
mization in eq. (2.192.19). Thus the solution I?O can have discontinuities perpendicu-
lar to b. The drawback of EpriorD is that we do not know if b is the true tangential
vector in the unbiased projection of the object O. And since D is fixed EpriorD

can not be invariant under the rotations in eq. (2.232.23). Thus the minimization in
eq. (2.192.19) can produce a solution I?O in eq. (2.192.19) that has discontinuities which do
not reflect the true boundaries of the object O. We conclude that prior energies
EpriorD which are not rotation invariant are a source of error for the orientation of
∇I?O in eq. (2.192.19).
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On the other side a potential anisotropic prior Eprior which is rotation invariant
would lead to a solution I?O in eq. (2.192.19) for which the orientation of its structures
is only determined by the data term Edata.

In the following we will introduce a methodology which allows us to characterize
prior energies Eprior(∇φ) which allow for discontinuities in their minimizers
φ? = argminφE

prior(∇φ) while remaining invariant to a specified but more
general set of spacial transformations GΩ.

2.2.2. Motivation 2, the solution

Another way to state the problem that the prior energy EL2 only allows for
constant minimizers φ? = const (eq. (2.222.22)) goes as follows. The energy EL2(∇φ)
is invariant upon the transformation φ′(x) = φ(x) + d where d is a constant
over Ω. Thus if φ?0 = c′ is a minimizer of EL2 , c′ ∈ Ac then so is φ′? = c′ + d
since c′ + d ∈ R and by the definition of Ac in eq. (2.222.22) we have φ′? ∈ Ac. We
would like to think of the operation of addition with constants d as a set Gconst of
operators gd

g· : R→ Gconst, gd = ·+ d, gd ∈ Gconst (2.28)

With the help of the construction in eq. (2.282.28) we can restate the invariance of
EL2 in the following way

gd ◦ EL2 (∇φ) = EL2 (∇ (φ+ d)) = EL2 (∇φ) (2.29)

and Ac in eq. (2.222.22) can be viewed as being spun by one constant function
φφ0 (x) = c and the set Gconst

Ac = {φ? |φ? = gd ◦ φ?0, gd ∈ Gconst } (2.30)

With the constructions in eq. (2.282.28) and eq. (2.302.30) the problem statement that the
prior EL2 only allows for constant minimizers is transfered to the statement that
the set Gconst under which EL2 is invariant is too small in some sense.

A more flexible prior energy Eprior should be invariant to a more general set
of transformations Gφ. At the same time Eprior should also be invariant to a
spacial set of transformations GΩ in order for it not to impede the orientation
of the gradient ∇φ as motivated in section 2.2.12.2.1. Hence Eprior is assumed to be
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invariant to the set G = Gφ × GΩ with the actions

gωφ ◦ φ(x) = φ (x) + ωφ (x) , gωφ ∈ Gφ (2.31)

gωΩ ◦ x = x+ ωΩ (x) , gωΩ ∈ GΩ (2.32)

The transformations in eq. (2.312.31) and eq. (2.322.32) formally capture all the possible
transformations the prior energy Eprior is invariant to. In this sense G is maximal
and Eprior is invariant upon the action the entire set G

g ◦ Eprior = Eprior, ∀g ∈ G (2.33)

For instance the prior energyEL2 is conditionally invariant to the set G = Gconst×
SO(2), the set of addition of the variable φ with constants (eq. (2.282.28)) and the set
of rotations in Ω (see eq. (2.232.23)).

Similar to the definition of Ac in eq. (2.302.30) we can describe the minimizers of
Eprior as being related to each other by the elements of G

A = {φ? |φ? = g ◦ φ?0 g ∈ G} (2.34)

The set GΩ contains operators which are purely geometric. The idea is to show
that A may be split into sub sets AΩ (φ?c) whose elements are related to each other
by the elements gωΩ ∈ GΩ

AΩ (φ?c) =
{
φ?
∣∣∣φ? (x) = φ?c (gωΩ ◦ x) , gωΩ ∈ GΩ

}
(2.35)

A =
{
AΩ (φ?c)

∣∣∣φ?c = gωφ ◦ φ?0, gωφ ∈ Gφ
}

(2.36)

This is significant for the following reason: knowledge of the geometric set of
transformations GΩ under which Eprior is invariant allows for a reduction of the
set of maximizers A to a set Ared such that the elements φ?c ∈ Ared are not related
to each other by GΩ

Ared =
{
φ?c

∣∣∣φ?c = gωφ ◦ φ?0, gωφ ∈ Gφ
}

(2.37)

φ?d (x) 6= φ?c (gωΩ ◦ x) ∀gωΩ ∈ GΩ, φ?c,d ∈ Ared (2.38)

We may also turn the argument around: we could specify the geometric set
of transformations GΩ and design a prior Eprior (∇φ) which is conditionally
invariant under GΩ, thus having a reduced maximizer set Ared. To give a hint of
how the prior Eprior (∇φ) could be designed we need the definition of a level-set.
A level-set of an image φ?0 is a sub set Sc ⊂ Ω defined by

Sc = {x |φ?0 (x) = c} (2.39)
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By the definition of the action of gωΩ in eq. (2.322.32) we see that gωΩ is a geometrical
transformation that deforms the level-sets Sc (see figure 2.22.2). We are free to
define gωφ so that it is orthogonal to gωΩ in the sense that the level-sets Sc are
invariant under gωφ

Sc′ = gωφ ◦ Sc = Sc (2.40)

since a transformation of Sc is purely geometrical. Now the level-set Sc may alter-
natively be defined with the help of the vector-field ωδ (x) which (see figure 2.22.2)
is the set of vectors tangent to Sc

Sc = {x |ωδ (x) · ∇φ?0 (x) = 0} (2.41)

In figure 2.2b2.2b we show an example of a level-set S which is distorted by the
operator gωδ ∈ GΩ. The resulting level-set S′ has the vector-field ω′δ (x) =
ωδ (x) + δ (x) as tangent vectors.

S′c = {x |(ωδ (x) + tδ (x)) · ∇φ?0 (x) = 0} (2.42)

However it also possible to represent S′c with the help of a deformation of the
gradient operator∇ itself

S′c =
{
x′
∣∣ωδ (x′) · ∇tδφ?0 (x′) = 0

}
(2.43)

The operator ∇tδ loosely speaking encodes a reversal of the action of gωΩ on x
so that S′c can be represented with the same tangential vector-field as Sc but in
the new frame x′ = gωδ ◦ x. The operator ∇tδ is called a push forward of the
gradient ∇. With the help of the push forward ∇tδ it is possible to translate
the notion of invariance with respect to GΩ to the requirement that Eprior (∇tδφ)
must be constant with respect to variations of the vector-field δ (x)

d

dt
Eprior (∇tδφ)

∣∣∣∣
t=0

= 0 (2.44)

Given a specific form of the operators in GΩ, eq. (2.442.44) poses constraints on
the form of the differential operators in the prior Eprior (∇tδφ). Eq. (2.442.44) also
ensures that Eprior (∇tδφ) is indifferent to a large class of level-sets {S}, which
are generated by GΩ acting on S (see eq. (2.432.43)).
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2.3. Lie Groups

We will now give a more formal description of the transformation group G =
Gφ×GΩ represented by the transformations in eq. (2.312.31) and eq. (2.322.32). Following
this section we will make the invariance property of Eprior in eq. (2.442.44) formally
more explicit in section 2.42.4. In this section the set of operators G is taken to act
on a vector spaceM. The set G is called a group if there exists an operation ’·’ so
that G contains

• the neutral element e ∈ G: e · g = g for all g ∈ G

• the inverse g−1 ∈ G if g ∈ G

The group G is called a Lie group [2727, 2828, 2929] if the group operation

G× G 7−→ G : (x, y)→ x · y−1

is smooth in both x and y. The group operation ’·’ can also be used to define the
left action lg on G

lg : G→ G lg (h) = g · h g, h ∈ G (2.45)

lg is a smooth isomorphism in G. The elements of G may themselves be smooth
mappings defined on an r-dimensional space A

g : A → G, (a1, . . . , ar)→ ga1,...,ar (2.46)

In this case we say G is an r-dimensional Lie group. A classical example of a Lie
group is the group of invertible n-dimensional Matrices GL (R, n) over the vector
spaceM = Rn [3030]. The dimension of GL (R, n) is n2 and the group operation ’·’
is the matrix multiplication.

In section 2.2.22.2.2 we argument that the set G acts in a two-fold manner on the
functions φ (x) ∈ C∞ (Ω), namely by acting on the spacial coordinates x ∈ Ω
in eq. (2.322.32) and on the function values φ them selves in eq. (2.312.31). The spaces
Ω and C∞ (Ω) are both vector spaces, that is the addition operation ’+’ and
multiplication with a factor λ ∈ R are defined in both spaces. It is thus natural
to combine both Ω and C∞ (Ω) to one single vector space M = Ω × C∞ (Ω).
However since the functions φ (x) are unknown and we would also like to place
constraints on their derivatives φ,K (K is a multi-index, e.g. K = [xxx, yy]), we
combine Ω together with the Jet space Jk (C∞ (Ω)) [2828],M = Ω × Jk (C∞ (Ω)).
Jk (C∞ (Ω)) is the set of smooth differentiable functions and their derivatives
up to order k with compact support in Ω. The points z ∈ M are vectors of the
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independent variables x, the dependent variable φ (x) and its derivatives φ,K

z = (x, φ (x) , φ,K (x)) (2.47)

For this work we will focus only on first order derivatives, k = 1 so that the
vectors z have the form

z = (x, φ (x) ,∇φ (x)) (2.48)

The action of G onM is straightforward

z̃ =
(
x̃, φ̃ (x̃) , ∇̃φ̃ (x̃)

)
(2.49)

x̃ = ga1...ar ◦ x (2.50)

φ̃ = ga1...ar ◦ φ (2.51)

∇̃ = J−T∇, Jµν = dx̃µ
dxν

(2.52)

Since the elements ga1...ar are continuous in the parameters ai we are free define
to a smooth path γ in the parameter space A

γ :t→
(
a1 (t) . . . ar (t)

)
(2.53)

gγ(0) = e (2.54)

The derivative of gγ(t) with respect to t at t = 0 is an element of the tangential
space of G at the neutral element e ∈ G, TeG

d

dt
gγ(t)

∣∣∣∣
t=0

= Xe ∈ TeG (2.55)

The subscript on the vector Xe denotes that it belongs to TeG. The coordinates of
Xe relative to the spaceM can be computed when we look at the derivative of
the induced action of gγ(t) on the space of smooth functions with support onM,
F (M). The action of Xe on F (M) can be computed by evaluating F ∈ F (M)
on the tranformed vector z̃ = gγ(t) ◦ z and the taking the derivative with respect
to t at the neutral element e

XeF (z) = d

dt
F (z̃)

∣∣∣∣
t=0

=
r∑
i=1

(
ωµi ∂µF (z)+ωφi

d

dφ
F (z)+Dφνi

d

d∂νφ
F (z)

)
αi (2.56)
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where we have

ωµi (x) = dx̃µ
dai

∣∣∣∣
t=0

ωφi (x, φ) = dφ̃

dai

∣∣∣∣∣
t=0

αi = dai
dt

∣∣∣∣
t=0

(2.57)

Dφνi = dωφi
dxν
−
∑
µ

dωνi
dxµ

∂µφ (2.58)

The function Dφνi is called the prolonged action of gγ(t) on the gradient operator
∇ [2828, 3131] (see appendix A.1A.1 for the derivation). Notice that while ωµi and ωφi are
functions defined onM, the coefficients αi are independent ofM. They are the
components of the vector Xe with respect to the r basis operators

Xe,i = XΩ
e,i + ωφi

d

dφ
+Dφνi

d

d∂νφ
, XΩ

e,i = ωµi ∂µ (2.59)

so that Xe has the operator form

Xe =
∑
i

αiXe,i (2.60)

An important point about Xe is that it is an operator valued function over Ω
since the coefficients ωµi and ωφi in eq. (2.572.57) are functions over Ω. We will refer
to Xe as a vector at the unit element e, to ωµi as a vector valued function (VVF)
and to ωΩ

i as a scalar valued function (SVF). The vector Xe only exists in the
tangential space at e ∈ G, Xe ∈ TeG. However it is possible to construct a vector
Yh at a location h ∈ G by relating it to Xe with a map lh? called the push-forward

YhF (z) = (lh?Xe)F (z) = d

dt
F
(
lh
(
gγ(t)

)
◦ z
)∣∣∣∣
t=0

(2.61)

The vector Xe operates on the function F in eq. (2.562.56) as a differential operator
at the point e ◦ z = z. The effect of lh? is that it transports the vector Xe to the
vector Yh which operates on F at the point lh (e) ◦ z = h ◦ z. As Yh is a smooth
function with respect to h which is defined everywhere in G it is called a vector
field over G. This means the coordinates of the vector field Yh are the operators
h ∈ G and not the points z ∈ M. The set of vector fields is the union of all the
tangential spaces over G

TG =
⋃
h∈G

ThG (2.62)
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Similar to Xe in eq. (2.602.60) the vector Yh has a coordinate representation with
respect to the tangential space ThG

YhF (z) =
∑
i

α′iYh,i (2.63)

Yh,i = ω′µi ∂µ + ω′φi
d

dφ
+D′φνi

d

d∂νφ
(2.64)

There exists a unique sub set G ⊂ TG called the Lie algebra. It defined as the set
of all vector fields Xh ∈ TG which are invariant under the left action lg for any
g ∈ G

lg?Xh = Xg·h =
∑
i

αiX
i
g·h ∀g ∈ G, Xh ∈ G (2.65)

From eq. (2.652.65) we see that a consequence of left invariance is that the coordinate
vector α is constant under the transformation lg. This is what is referred to as
the parallel transport of α along the transformation lg. The Lie algebra G has the
property that it is closed under the antisymmetric commutator [·, ·]

[Yh, Xh] = Zh ∈ G ∀Xh, Yh ∈ G (2.66)

Eq. (2.662.66) also implies that the commutator [Yh, Xh] is also left invariant [2727]. If
we consider the basis of the Lie algebra G, the r vector fields X1

h, · · · , Xr
h then the

closed-ness of the commutator [·, ·] implied by eq. (2.662.66) translates to the fact that
the commutator [·, ·] of two basis elements Xi

h and Xj
h is a linear combination of

the basis X1
h, · · · , Xr

h itself

[
Xi
h, X

j
h

]
=

r∑
l=1

C li,jX
l
h (2.67)

The constants C li,j are called the structure constants of the Lie algebra G. The
commutator in eq. (2.662.66) has a geometric meaning. Suppose Ye is the vector in
the tangent space Te of the one parameter group gYt in the sense of eq. (2.552.55). It
is easy to show (see appendix A.2A.2) that the rate of change of the vector field XgYt
at the unit element e is equal to the commutator between Xe and Ye

d

dt
XgYt

∣∣∣∣
t=0

= [Ye, Xe] (2.68)

Since [Yh, Xh] is left invariant, eq. (2.682.68) may be translated to any point g ∈ G

h ◦ d

dt
XgYt

∣∣∣∣
t=0

= d

dt
Xh·gYt

∣∣∣∣
t=0

= [Yh, Xh] (2.69)
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Essentially eq. (2.692.69) tells us that once we can tell how the vector fieldXg changes
along any path gYt which goes through unity, gYt |t=0 = e, we can compute its rate
of change along any other path in G.

2.3.1. The Group G = T× SO(2)

The group G = T× SO(2) is the group of translations and rotations in the plane
R2. Its algebra is the algebra G = t×so(2) which has the basis {XΩ,x

e , XΩ,y
e , XΩ,θ

e }.
The subset t = {XΩ,x

e , XΩ,y
e } is the set generators of infinitesimal translations

XΩ,x
e = ∂x, XΩ,y

e = ∂y (2.70)

t is a commutative basis since [∂x, ∂y] = 0. The basis for so(2) is the single
operator XΩ,θ

e which is the generator of infinitesimal rotations. With respect to
the Cartesian coordinate frame ∂θ it has the following representation

XΩ,θ
e = −y∂x + x∂y (2.71)

From eq. (2.712.71) we can see that ∂θ does not commute with t and the commutators
for the basis

{
XΩ,x
e , XΩ,y

e , XΩ,θ
e

}
are easily computed

[
XΩ,θ
e , XΩ,x

e

]
= −XΩ,y

e

[
XΩ,θ
e , XΩ,y

e

]
= XΩ,x

e

[
XΩ,x
e , XΩ,y

e

]
= 0 (2.72)

We note that the group SO(2) generates the unit circle S1 by rotating the point
x0 = (x, y)

x (θ) = gθ ◦ x0 = Rθx0, Rθ =
(

cos (θ) sin (θ)
−sin (θ) cos (θ)

)
(2.73)

The meaning of the first two commutators in eq. (2.722.72) is that the gradient
operator ∇ is rotated by 90◦ counter clockwise under the action of XΩ,θ

e

d

dθ
∇x(θ)

∣∣∣∣
θ=0

=
[
XΩ,θ
e ,∇

]
= Mθ · ∇, Mθ =

(
0 1
−1 0

)
(2.74)

The matrix Mθ is one of the Pauli matrices [3232]. The Pauli matrices are the basis
for the Lorentz group of special relativity which is an important symmetry for
many quantum field theories for instance quantum electrodynamics [3232, 99, 3333].
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2.4. Noether’s First Theorem

Embedding Geometrical Constraints into Prior Energies

In section 2.2.12.2.1 argued that in order for a prior Eprior(∇φ) needs to be invariant
to a large group of transformations G in order for it’s minimizers

A =
{
φ?
∣∣∣φ? = argminφ

(
−Eprior (∇φ)

)}
(2.75)

to be non trivial, that is φ? 6= const. Invariance of Eprior was linked to the
requirement that the minimizer set A in eq. (2.752.75) be generated by the group G

A = {φ? |φ? = gω ◦ φ?0 gω ∈ G} (2.76)

In eq. (2.362.36) we explained that a transformation gω ∈ G may partition the set A
into subsets AΩ whose elements are related to each other through geometrical
transformations gωΩ on the coordinate frame Ω. We motivated the introduction
of deformations to the gradient operator∇ such that the level-sets S′ in eq. (2.432.43)
have the same functional form in the transformed coordinates x′ = gωΩ ◦ x
as in the original coordinates (see eq. (2.412.41)). With the help of the machinery
introduced in section 2.32.3 we can express a level-set SV of φ? ∈ A in terms of a
left invariant vector field Vh operating on φ? at the identity e ∈ G

SV =
{
x
∣∣∣V Ω
e φ

? (x) = 0
}

V Ω
e =

∑
i

αiX
Ω,i
e XΩ,i

e ∈XΩ
e (2.77)

for a particular sub algebra XΩ
e ⊂ G. Through eq. (2.772.77) the vector field Vh

defines the particular geometry of SV . For instance if the set of differential
operators {XΩ,i

e } are the Cartesian operators {∂x, ∂y} then the corresponding
level-sets Slinv are the straight lines with tangential vector v

Slinv =
{
x
∣∣∣vT · ∇φ? (x) ,x ∈ Ω

}
= 0 (2.78)

The tangential vector v is a constant function in Ω so that the level-set Slinv ⊂ Ω
is a line oriented in the direction v which is invariant upon the transformation
x → x + τv. Different priors Eprior(∇φ) may be constructed for which the
minimizers φ? ∈ A have linear level-sets Slinv of all orientations v. For instance
in section 2.52.5 we will introduce the total variation prior EpriorTV and in section
33 the structure tensor based prior EpriorST . Both priors penalize level-sets with
non-zero curvature so that their minimizers φ? only contain linear level-sets Slinv .
However the orientation vector v is not constrained.
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A generalization to priors Eprior(XΩ
e φ) whose minimizers φ? have level-sets

SV of the generic form in eq. (2.772.77) is possible if the sub algebra XΩ
e ⊂ G is a

commutative algebra. In [3434, 2929] it was shown that only for pair-wise commuting
differential operators XΩ,1

e , XΩ,2
e ∈XΩ

e ,
[
XΩ,1
e , XΩ,2

e

]
= 0 may there exist images

φ? which have level-sets SV of the form in eq. (2.772.77). Furthermore for the com-
muting operators XΩ,1

e , XΩ,2
e ∈XΩ

e there exist pairs of functions ε1(x) and ε2(x)
which obey the conditions

XΩ,1
e ε1 (x) = 1, XΩ,1

e ε2 (x) = 0
XΩ,2
e ε1 (x) = 0, XΩ,2

e ε2 (x) = 1 (2.79)

The function ε(x) = (ε1(x), ε2(x)) represents a coordinate transformation from
the Cartesian frame Ω to the curvi-linear frame Ωε with the coordinates (ε1, ε2)

ε(x) : Ω→ Ωε (2.80)

Within the coordinate frame Ωε the commutating operators XΩ,1
e , XΩ,2

e ∈ XΩ
e

take on the form X
Ω,1/2
e = ∂ε1/2 and the level-sets S in eq. (2.772.77) are represented

by the inverse transformation x(ε)

Sεα =
{
x(ε)

∣∣∣∣∣∑
i

αi∂εiφ(ε1, ε2) = 0
}

(2.81)

By comparison of Sεα in eq. (2.812.81) with Slinv in eq. (2.782.78) we can see that Sεα is a
line in the domain Ωε with orientation α.

The availability of the transform ε(x) and its inverse is guaranteed if the dif-
ferential operators XΩ,1

e , XΩ,2
e ∈ G commute. Conversely if a transform ε̃(x) is

available for which the Cauchy-Riemann equations

∂xε̃1 = −∂y ε̃2, ∂xε̃2 = ∂y ε̃1 (2.82)

then differential operators X̃Ω,1
e , X̃Ω,2

e ∈XΩ
e can be computed and for which the

level-sets S ε̃α are linear in the domain Ωε̃. Hence the specification of a transform
ε(x) which obeys eq. (2.822.82) is sufficient to construct a prior Eprior(XΩ

e φ) for
which the minimizers φ? have level-sets Sεα which are linear in the domain Ωε

and we will call the domain Ωε the linear domain of Eprior(XΩ
e φ).

Now we have shown that a prior Eprior(XΩ
e φ) may be constructed using the

operators of a commutative sub algebra XΩ
e ⊂ G. However in eq. (2.762.76) we

explained that the minimizer set A can be described as being spun up by the
entire group G. Thus the minimizer set A itself is by definition invariant under
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the action of G

h ◦ A = A ∀h ∈ G (2.83)

Eq. (2.832.83) is equivalent to the restriction that the prior energy Eprior itself must
be invariant under the action of G

Eprior
(
XΩ
gγ(t)

φ
)

= const, with respect to t (2.84)

for any one-parameter sub group gγ(t) ∈ G. Eq. (2.842.84) poses a constraint on how
the prior Eprior is constructed. For instance the energy Eprior(∇) =

∫
(∂xφ)2d2x

is not invariant under the rotation group SO(2), and does not obey eq. (2.842.84) if G
contains SO(2) as a subgroup. Hence its minimizers φ? have level-sets oriented
only in x-direction rendering it useless for anisotropic regularization.

The following section is devoted to the consequences of eq. (2.842.84) for models

E
(
φ,XΩ

e φ
)

= Edata (φ) + Eprior
(
XΩ
e φ
)

(2.85)

For which the prior Eprior obeys the invariance relation in eq. (2.842.84) for a general
Lie group G.

2.4.1. Noethers Theorems

In her original paper [3535, 3636] Emmy Noether handles the question: Given a
model of a physical system, encoded in an action

E =
∫

Ω
(E (x, {φρ} , {∇Kφρ})) dnx (2.86)

which depends on ρ fields φ1 . . . φρ and their derivatives to order K, and knowl-
edge of a set of smooth transformations G under which the action E is invariant

E′ = gγ ◦ E = E ∀gγ ∈ G (2.87)

what are the special properties hidden in the model that invoke the symmetry?

To answer this question she deals with two cases:

• Finite dimensional Lie groups G, which we introduced in section 2.32.3. For
now it is sufficient to think of G as the set of smooth functions gγ defined
on an r dimensional space, γ = (α1, . . . , αr).

25



• Infinite dimensional Lie groups G∞, which are generalizations of the fi-
nite dimensional groups in the sense that the r parameters α1, . . . , αr are
functions over the Cartesian coordinate frame Ω. We will not handle this
case.

In the case of the finite dimensional group Emmy Noether took gω to be the
smooth infinitesimal transformation, encoding both variations of the fields and
of the coordinates

φ′ρ (x) = φρ (x) +
r∑

m=1
αmω

φρ
m (x) x′ = x+

r∑
m=1

αmω
Ω
m(x) (2.88)

The functions ωφρm and ωΩ
m can be seen as a basis for ωφ and ωΩ in eqs. ?? and ??.

She proved that if the action E is invariant under gω eq. (2.872.87), then there exists r
vectorsWm such the integral relationship

E − E′ =
∫

Ω

r∑
m=1

αm

[∑
ρ

ω̄φρm [E ]ρ + div (Wm)
]

= 0 (2.89)

ω̄φρm =
(
ωφρm − ωµΩ

m ∂µφρ
)
, [E ]ρ = δE

δφρ
− d

dxµ

(
δE
δφρ,µ

)
(2.90)

where [E ]ρ are the Euler-Lagrange differentials of the fields φρ and the diver-
gences div (Wm) appear by carefully collecting all terms which occur as a result
of the integral product rule∫

f · ∂µgdnx =
∫
∂µ (f · g) dnx−

∫
∂µf · gdnx (2.91)

when computing the symbolic form of [E ]ρ. The main result is the argument
that since the αm, ωφρm and the ωµm are assumed to linearly independent, the r
equations∑

ρ

ω̄φρm [E ]ρ + div (Wm) = 0 m = 1, . . . , r (2.92)

relate r of the ρ Euler-Lagrange equations [E ]ρ so that the physical system only
has ρ − r independent Euler-Lagrange equations [E ]ρ and thus only ρ − r in-
dependent fields φρ. In the case ρ ≤ r the system of equations in eq. (2.922.92)
is overdetermined, eq. (2.892.89) can only hold if all the divergences and all the
Euler-Lagrange equations vanish

[E ]ρ
(
φ?1, . . . , φ

?
ρ

)
= 0, div (Wm)

(
φ?1, . . . , φ

?
ρ

)
= 0, ρ ≤ r (2.93)
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Eq. (2.932.93) implies that only at the minima of the fields, φ?ρ the r vectorsWm are
conserved.

Kepler’s Two Body Problem

Kepler’s two body problem is the problem of calculating the problem of estimat-
ing the trajectory of a body of mass me (the earth) which is moving within the
vicinity of another body with mass ms (the sun). According to Newton there
exists a gravitational force between the masses coming from the energy V (r) of
the gravitational field surrounding the mass ms at the origin in R3

V (re (t)) = −me ·ms

r
r = ‖re − rs‖ (2.94)

The kinetic energy of the mass me is 1
2meṙ

2 so that the Lagrangian of the path
re (t) is

L (re (t)) = 1
2meṙ

2
e + 1

2meṙ
2
s − V (re (t)) (2.95)

The Euler-Lagrange equations are easily computed

r̈e + ms +me

r2 = 0 (2.96)

The parameter t is the time parameter of the two body system. The Kepler
Lagrangian in eq. (2.952.95) exhibits a symmetry under four different one parameter
Lie group actions, namely the action of time shift and rotations around the three
spacial axis (the group SO (3)× R)

t′ = t+ δt (2.97)
r′ = r + ∂θir

′δθi i = x, y or z (2.98)

where θi are rotation around the x-,y- or z-axis. From Noether’s theorem there
exist four corresponding conserved quantities:

Wt = H = 1
2meṙ

2 + V (re (t)) time shift (2.99)

Wx = zẏ − yż Rotation around x-axis (2.100)
Wy = zẋ− xż Rotation around y-axis (2.101)
Wz = xẏ − yẋ Rotation around z-axis (2.102)
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The conserved quantityH in eq. (2.992.99) is the Hamiltonian Energy of the two body
system. It constant time and thus manifests that the total energy of the two body
system does not dissipate away since there are no external forces interacting
with the two masses me and ms, that is the two body system is a closed system.
The vectorW = (Wx,Wy,Wz) (Eqs. eq. (2.1002.100) to eq. (2.1022.102)) is the total angular
momentum the masses me and ms have as they rotate around each other. The
solutions to the Euler-Lagrange equations in eq. (2.962.96) are elliptic curves in the
surface SW orthogonal to W . The constancy of W with respect to the special
orthogonal group SO (3) comes the fact that SW is actually a flat Euclidean plane
embedded in a 3-dimensional Euclidean space.

2.4.2. Noether’s First Theorem: A Modern Version

In this section we explicitly derive Noether’s first theorem for models with one
field φ and its first derivativesXΩ

e φ using the Lie algebra introduced in section
2.32.3. We consider the total energy

E =
∫
Ω

E
(
φ,XΩ

e φ
)
N (x)d2x =

∫
Ω

Edata (φ)N (x)d2x+
∫
Ω

Eprior
(
XΩ
e φ
)
N (x)d2x

(2.103)

The explanation of the constant N (x) will shortly follow. We apply a one param-
eter group gγ(t) to Eprior and according to eq. (2.552.55) we can compute the vector
Ve in the tangent space of gγ(t) at t = 0.

d

dt
gγt ◦ E

∣∣∣∣
t=0

=
∫

Ω

( q∑
i=1

Pi
[
V Ω
e , X

i,Ω
e

]
φ+ vφ [E ]

)
N (x)d2x (2.104)

Pi = δE
δXi,Ω

e φ
, [E ] = δE

δφ
−
∑
i

d

dxµ
(wµi Pi) (2.105)

For the derivation of eq. (2.1042.104) see eq. (A.47A.47) in appendix A.3A.3. Eq. (2.1042.104) will
play an important role in section 44 which is why we will discuss it in detail. The
differentials [E ] are called the Euler-Lagrange differentials [3636, 2828] and the vector
P is called the canonical momentum [3737]. Eq. (2.1042.104) is the most general form
of variation. It contains two components, namely one component proportional
to intensity variations of the field φ, vφ and one component proportional to
variations of the coordinate frame Ω encoded in V Ω

e = vµ∂µ. Just as in eq. (2.922.92)
the variations vφ and vµ are taken to be independent from each other. This means
that the Lie group G splits into two independent sub groups Gφ and GΩ and
we can write G as the composition G = Gφ × GΩ. The integral volume d2x also
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transforms under the action of gVt

d

dt

(
gVt ◦ d2x

)
|t=0 = dvµ

dxµ
d2x (2.106)

However we are only interested in the Euler-Lagrange differentials [E ] and the
canonical momentum vector P since only they depend on the particular La-
grangian E . Thus the normalization factor N (x) in the integral in eq. (2.1032.103) is
chosen such that the volume element N (x)d2x is invariant under the transfor-
mation gγ(t)

d

dt

(
gVt ◦ N (x)d2x

)∣∣∣∣
t=0

=
(
N (x)dv

µ

dxµ
+ dN (x)

dt

∣∣∣∣
t=0

)
d2x = 0 (2.107)

In the following we will drop the normalization N (x) and assume d2x to invari-
ant under any transformation gVt . Since Ve is an element of the Lie algebra G we
can expand it in terms of the r basis elements Xi

e

Ve =
r∑
i=1

αiX
i
e (2.108)

Under the expansion in eq. (2.1082.108) the eq. (2.1042.104) becomes

d

dt
gγt ◦ E

∣∣∣∣
t=0

=
r∑

m=1
αm

∫
Ω

(
B̃mφ+ ωφm [E ]

)
d2x (2.109)

where the operator B̃m is the scalar product

B̃m =
q∑
i=1

Pi
[
Xm,Ω
e , Xi,Ω

e

]
(2.110)

The operator B̃m in eq. (2.1102.110) will play an important role in section 44 where we
propose an extension to the principle of least action. In appendix A.3A.3 we show
how eq. (2.1092.109) can be transformed in to the original version in eq. (2.892.89)

d

dt
gγt ◦ E

∣∣∣∣
t=0

=
∫

Ω

∑
m

αm
(

div (Wm) + ω̃φm[E ]
)
d2x (2.111)

ω̃φm = ωφm −Xm,Ω
e (φ) (2.112)

with the vector valued functions (VVF)Wm

Wµ
m = ωµmE +

∑
i

ωµi

(
ωφm −Xm

e (φ)
)
Pi (2.113)
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Thereby we prove the following relation

div (Wm)−XΩ
e,m (φ) [E ] = B̃mφ (2.114)

If the energy E is assumed to be invariant with respect to any one parameter
group gVt ⊂ G

d

dt
gγt ◦ E

∣∣∣∣
t=0

= 0 (2.115)

then by the argumentation in section 2.4.12.4.1 the divergences of the vectorsWm in
eq. (2.1132.113) and the Euler-Lagrange differentials must vanish

[E ] (φ?) = 0, divWm = 0 ∀1 ≤ m ≤ r (2.116)

and by eq. (2.1142.114) the equations in eq. (2.1162.116) imply

B̃mφ
? = 0 (2.117)

2.4.3. Pure Spacial Symmetries

Since we assumed the invariance of the energy E under the group G = Gφ × GΩ

in eq. (2.1152.115) as well as the independence of the sub groups Gφ and GΩ it follows
that E must also be invariant with respect to pure spacial one dimensional sub
groups gV

Ω
t ⊂ GΩ

d

dt

(
gV

Ω
t ◦ E

)∣∣∣∣
t=0

= 0 (2.118)

The Lie algebra element V Ω
e corresponding to gV

Ω
t does not contain any variations

to the field φ thus we can obtain an expression for eq. (2.1182.118) simply by setting
vφ = 0 and ωφi = 0 in eqs. (2.1042.104) and (2.1092.109)

d

dt

(
gV

Ω
t ◦ E

)∣∣∣∣
t=0

=
∫

Ω

r∑
m=1

αmB̃mφd
2x = 0 (2.119)

It follows that if eq. (2.1192.119) holds for any one parameter sub group gV
Ω

t ⊂ G (any
coefficient vector α) then

B̃mφ = 0 (2.120)
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must hold for any field configuration φ. Eq. (2.1202.120) is specifically a constraint on
the prior energy Eprior since the data term Edata does not contain any derivatives
XΩ,i
e φ and thus the canonical momentum P (eq. (2.1052.105)) only depends on the

prior energy density Eprior. There are three cases to consider such that eq. (2.1202.120)
can hold:

• Case a: The Lie algebra G is commutative, [XΩ
e,i, X

Ω
e,m] = 0 for all 1 ≤ i,m ≤

r

• Case b: Pi = 0 for all 1 ≤ i ≤ r

• Case c: If we have [XΩ
e,i, X

Ω
e,m] 6= 0 for some i and m the canonical momen-

tum P if non-vanishing must be orthogonal to the vector Mm, which is a
vector for fixed m defined as (Mm)i =

[
XΩ
e,i, X

Ω
e,m

]
(φ) over Ω

We call cases a and b trivial symmetries and case c a non-trivial symmetry. In
chapter 33 we will introduce a prior Eprior which is conditionally invariant to the
group GΩ = T × SO(2) which is the group of local translations and rotations.
Its algebra G = t× so(2) is 3-dimensional and although it is not a commutative
algebra we will show that eq. (2.1202.120) still holds for any field φ.

2.5. Total Variation

In this section we will introduce a widely used method for anisotropic regular-
ization of the GRF φ called Total Variation (TV) [1818, 1919, 3838, 3939, 4040]. In the context
of shock-filtering [1818, 4141, 4242] it was shown that the functional

EL1 (φ) =
∫
|∇φ|dx (2.121)

has the appealing property that it does not penalize large discontinuities. How-
ever its functional derivative with respect to φ is ill conditioned in the case
∇φ ≈ 0. To alleviate the case, [1818] chose the approximative prior

EL1approx (φ) =
∫ √
|∇φ|2 + εdx (2.122)

which is well behaved for ε > 0. They were able to achieve good results with
relatively sharp preserved discontinuities with data φ0 having low SNRs. Nev-
ertheless in the limit ε → 0 the Euler-Lagrange equations become more and
more computationally instable. A theoretically more well conditioned form of
TV is needed which we will outline, following [4040, 4343]. To do this we need to
explore the function-space the minimizers of eq. (2.1212.121) might belong to. Smooth
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functions φsmooth are functions for which∇φ exists everywhere, thus they may
be minimizers of eq. (2.1212.121). But functions φdiscont containing discontinuities do
not have finite L1 norm of their gradients, EL1 (φdiscont) =∞ since the gradient
∇φdiscont does not exist at the discontinuities. A generalization of eq. (2.1212.121) is
possible if one assumes ∇φ to be a distribution, more precisely a Radon measure
[4040, 4343] in the spaceM (Ω). If there exists a Radon measure µ ∈ M (Ω), such
that for every p ∈ C0 (Ω) with compact domain, the following equality holds∫

Ω
φ ·Divpdx = −

∫
pTdµ <∞ (2.123)

then µ is called the weak derivative of φ and we can identify∇φ = µ. It is then
possible to define the function-space of bounded variation

BV = {φ ∈ L1 (Ω) |∇φ ∈M (Ω)} (2.124)

Now it is possible to define a norm onBV . By virtue of the Hölder inequality [4444]
there exists a scalar C for which we can determine the upper bound of eq. (2.1232.123)

∫
Ω
φ ·Divpdx ≤ C‖φ‖∞ (2.125)

The scalarC is the norm of the Radon measure∇φ and is called the total variation
of φ

TV (φ) = sup
{∫

Ω
φ ·Divpd2x | ‖p‖∞ ≤ 1

}
(2.126)

As was discussed in [4040] the functions φ are geometrically piecewise smooth,
meaning there exists a partitioning {Ωk} of Ω such that (∇φ)Ωk are L1 integrable.
If dlmk is a line segment in the intersection Ωm ∩ Ωk then TV (φ) can be written
in the form

TV (φ) =
∑
k

‖∇φΩk‖L1
+
∑
k<m

Llm (2.127)

Llm =
∫

Ωl∩Ωm
|φl − φm| dllm (2.128)

where φl is the value of φ on the portion of ∂Ωl which is interfacing with Ωm

and vice versa for φm. The first term in eq. (2.1272.127) penalizes the smooth parts of
φ (the gradients (∇φ)Ωk ). Similar to eq. (2.292.29) ‖∇φΩk‖L1

is invariant to shifts of
φΩk by constants c′k∥∥∇ (φΩk + c′k

)∥∥
L1

= ‖∇φΩk‖L1
(2.129)
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Thus due to eq. (2.1292.129) we can view the smooth functions φΩk as being centered
around constants ck

φΩk (x) = ck + φ̃Ωk (x) (2.130)

where the ck are determined by the data φd. For instance if we combined the TV
functional with a data term Edata =

∑
k

∫
Ωk(φd − φΩk)2dx

E (φ,∇φ) =
∑
k

∫
Ωk

(φd − φΩk)2dx+ λTV (φ) (2.131)

then in [2323, 2525] it was shown that the ck can be computed to be the mean of
the data φd within the area Ωk, ck =

∫
Ωk φdd

2x given that the deviations φ̃Ωk are
penalized by the first term in eq. (2.1272.127).

The second term in eq. (2.1272.127) penalizes the length of the section Ωm ∩ Ωk while
maintaining the values φk,m and thus the jump |φk − φm|. It essentially penalizes
the curvature of the line interfacing with both Ωk and Ωm. We will make this
point clear in the following section. For now we remark that if we set φΩk = ck
in the data term in eq. (2.1312.131) then we obtain

Ẽ (φ,∇φ) =
∑
k

∫
Ωk

(φd − ck)2dx+ λTV (φ) (2.132)

which is of course only an approximation to eq. (2.1312.131). The data term in
eq. (2.1322.132) is a measure for the variance of φd in Ωk. The two terms in eq. (2.1272.127)
together with the data term

∑
k

∫
Ωk(φd − ck)2dx in eq. (2.1322.132) balance the size of

the partitions Ωk since the boundaries of small partitions Ωk have high curvature
and thus high TV values, but low variances. On the other side large partitions Ωk

have boundaries of low curvature and thus low TV values, but high variances.
The parameter λ in eqs. (2.1312.131) and (2.1322.132) marks the trade-off between the TV
term and the data term in eqs. (2.1312.131) and (2.1322.132) and thus it determines the size
of the partitions Ωk.

2.5.1. The Mean Curvature of Total Variation

In eq. (2.1272.127) we had argued that the TV measure can be split into a smooth
part ‖∇φΩk‖L1

measuring the deviation of the smooth functions φΩk from the
constants ck. We had claimed that the second term in eq. (2.1272.127), the boundary
term Llm measures the curvature of the boundary between Ωl and Ωl. The line
integral in Llm in eq. (2.1282.128) can be rewritten essentially as a measure for the
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length of the level-set Slm interfacing Ωl and Ωm

Llm = |φk − φm| ‖S‖lm , ‖S‖lm =
∫ T

0

∥∥∥∥ ddt (x(t))
∥∥∥∥ dt (2.133)

The path x(t) can be considered as being generated by a one parameter Lie group
gV

Ω
t acting on the point x0 which is on the interfacing boundary between Ωl and

Ωm

x(t) = gV
Ω

t ◦ x0, x0 ∈ Ωl ∩ Ωm (2.134)

so that the length ‖S‖lm is controlled by the Lie algebra element V Ω
e = v(x)µ∂µ

‖S‖lm = s (T ) , s (t) =
∫ t

0

∥∥v (x(t′)
)∥∥ dt′ (2.135)

The function s (t) in eq. (2.1352.135) is called the arc length of the curve x (t). By virtue
of the definition of the arc length s(t) in eq. (2.1352.135) we can express derivatives
with respect to s by

d

ds
= 1
‖v‖

d

dt
(2.136)

The curvature of xlm(t), κ(xlm(t)) is obtained by re-parameterizing x(t) in terms
of its arc length s, x(t)→ x(t(s)) and taking the second derivative of x(s) using
eq. (2.1362.136)

κ (x0) =
∥∥∥∥∥ d2

ds2x (s)
∥∥∥∥∥
s=0

(2.137)

= 1
‖v‖3

(
vx ·

dvy
dt
− vy ·

dvx
dt

)∣∣∣∣∣
t=0

(2.138)

In [4040] it is shown that the expression for the curvature κ(x0) at the point x0 in
eq. (2.1382.138) is equivalent to the mean curvature [4545, 4646, 4747]

κ = Div
( ∇ φ

|∇φ|

)
(2.139)

which is the functional derivative of the TV norm in eq. (2.1212.121) with respect to φ

κ = −∂TV (φ) (2.140)

For a thorough derivation of the mean curvature κ in terms of weak derivatives
in BV spaces see [4343]. The Euler-Lagrange equations of any energy function
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E =
∫
Ed2x including the TV functional in eq. (2.1212.121) as a prior

[E ] (x) = δE
δφ

(x) + λκ (x) = 0 (2.141)

pose a bound on the value of the curvature κ(x). Thus the TV functional penalizes
the curvature κ of the Slm interfacing Ωl and Ωm. As κ is an invariant of the Lie
group SE (2), the group of rotations and translations, TV is also an invariant of
that group.

2.6. Optical Flow

In section 2.12.1 we had introduced the notion of an inverse problem, namely that
given some data Y and a model C we would like to find the GRF φ which
is mapped to the data Y by the model C, see eq. (2.82.8). A prime example of
an inverse problem in computer vision is optical flow [4848, 4949, 55, 5050, 5151, 5252, 3838].
Optical Flow labels the task of densely measuring the motion between two or
more frames captured by a camera, or the dense registration of two or more
cameras on a pixel-by-pixel basis. Optical flow is a crucial step in many areas
of computer vision. For instance optical flow estimation is a part of video
compression [5353, 5454] used to detect areas of the video in which the rate brightness
change is small. For example during the recording of a rigid scene optical
flow can be used to determine when the camera motion stalls. During such
periods the frames of the video can be stored in a memory efficient manner.
In recent years structure from stereography and structure from motion (video
from a single camera) have gained popularity as a means to capture 3D models
for film productions and also due to the availability of low cost 3D printing
[4949, 5555, 5656, 5757, 5858, 5959, 6060, 44]. In both the stereography and the structure from
motion pipelines optical flow is used for the triangulation of the dense point
cloud, prior to generation of the final 3D mesh. In the case of a dual-modal
setup both cameras may be of different types. For instance in medical imaging
multi-modal dense image registration is used to fuse image information from CT
and MR modalities of the human brain [6161] and of the human spine [6262].

In optical flow modeling the task at hand is to estimate the disparity between
two images Y and I recorded by two cameras CY and CI (see figure 2.32.3). Each
image is a map between the coordinate space Ω ⊂ R2 and the real numbers R.
Thus Y (x) is the intensity recorded by the camera CY at the pixel location x ∈ Ω
while I (x′) is the intensity recorded by CI at the location x′ ∈ Ω. In figure 2.3a2.3a
we have depicted a multi-modal setup in which the two cameras CY and CI are
recording images (figures 2.3c2.3c and 2.3d2.3d) from different angles. In this context the
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(a) (b) d (c) Y (d) I

Figure 2.3.: Figure 2.3a2.3a: Two cameras CY and CI are shown recording a scene from different
positions. The scene could could be a rigid scene or a dynamic scene with moving
objects. Figure 2.3c2.3c shows the image Y captured from the camera CY and figure 2.3d2.3d
the image I from the camera CI . Figure 2.3b2.3b shows the optical flow d. The vectors in
figure 2.3b2.3b indicate which pixels x′ in I and x in Y are mapped to each other.

optical flow field is the unknown variable d which maps the location x′ in the
image I to the location x in the image Y

x′ = x+ d (x) (2.142)

The optical field d is shown in figure 2.3b2.3b as a set of vectors at every pixel x′ ∈ Ω,
whose magnitude and orientation reflect the motion of the pixel x′.

The standard methodology [4848, 4949, 6363, 6464] for the estimation of the optical flow
d is to model d as a GRF with a given data term EdataY,I (d). Without further
information of the mapping between Y and I from another source (e.g. sparse
feature mapping with SIFT features [6565]), the data term EdataY,I (d) cannot depend
directly on d but can only be defined as a similarity measure between the image
Y (x) and the warped image Id(x) = I(x+ d(x)) [6363, 6464]

EdataY,I (d) = F (Y, Id), Id (x) = I (x+ d(x)) (2.143)

In general the mapping of Y (x) and Id(x) via d(x) is ill-determined: According
to [5252] the regions A ⊂ Ω of an image φ can be given an intrinsic dimension
[6666, 6767] iD which depends on their content

• iD = 0 if the image patch φA is homogeneous

• iD = 1 if the image patch φA contains an edge

• iD = 2 otherwise (e.g corners and/or textures)

If we consider two image patches YA and IA with equal intrinsic dimension iD
then the number of components of the optical flow d between YA and IA which
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can be uniquely determined by EdataY,I (d) is identical to iD. For instance if YA
and IA both display a corner of an object (iD = 2), the optical flow in A, dA can
be uniquely determined by the similarity measure EdataY,I (d). However for edges
(iD = 1) only one component of the optical flow dA can be determined and for
homogeneous patches dA is completely undefined. Thus globally, that is over
all x ∈ Ω the similarity measure EdataY,I (d) cannot determine d(x) uniquely. For
this reason optical flow models deploy a prior energy Eprior(∇d) which smooths
d(x) such that information of the components of d in regions with iD = 2 is
carried on to neighboring regions with iD 6= 2 such that d(x) is well defined
over all Ω. The total energy

EY,I (d) = EdataY,I (d) + Eprior (∇d) (2.144)

is then a trade-off between the similarity of Y and Id and the smoothness of the
optical flow d(x).

2.6.1. Uni-Modal Optical Flow

Among the earliest methods for optical flow estimation are the methods de-
scribed in the seminal papers of Horn and Schunck [4848] and Lukas and Kanade
[4949]. In [4848] the following model for computing the flow between two frames of
a video was proposed

EY,I (d) = EdataY,I (d) + Eprior (d) (2.145)

EdataY,I (d) =
∫

Ω

(
Y (x)− Id

(
x
))2

dx, Id
(
x
)

= I
(
x+ d(x)

)
(2.146)

Eprior (d) = λ

∫
Ω

∑
i

‖∇di‖2 dx (2.147)

In eq. (2.1462.146) the frame I is warped back to the frame Y by the field d(x). The
prior energy Eprior (d) in eq. (2.1472.147) imposes an isotropic smoothness constraint
on the flow field d. As we discussed in section 2.2.12.2.1 the main limitation of the
L2 prior in eq. (2.1452.145) is that it does not preserve edges in the flow field d(x).
To overcome this limitation [6868] and [6969] used the TV prior in eq. (2.1212.121) as a
smoothing term for each of the components of d

EY,I (d) = EdataY,I (d) + λ

∫
Ω

∑
i

‖∇di‖ dx (2.148)

According to section 2.52.5 the level-sets of each component di(x) are smoothed
while the discontinuities are preserved.
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(a) (b) (c)

(d) (e) (f)

Figure 2.4.: Figures 2.4a2.4a and 2.4d2.4d show 2 local regions of the VSC image and figures 2.4b2.4b and 2.4e2.4e
their counter parts in the TC image. The histograms in figures 2.4c2.4c and 2.4f2.4f exhibit
two maxima. The maxima can be thought to be the support points of a line in the
histogram. Thus locally the TC and the VSC image have linear relationships

2.6.2. Multi-Modal Optical Flow

The next issue with the model in eq. (2.1452.145) is that the likelihood EdataY,I (d) in
eq. (2.1462.146) makes the assumption that the cameras CY and CI are sensitive to the
same physical light spectrum. For instance in figure 2.32.3 the image Y recorded
by the camera CY in figure 2.3c2.3c has the same intensity spectrum as the image I
recorded by the camera CI (figure 2.3d2.3d) and we say that Y and I are equal by
distribution

Y
d≈ I (2.149)

Thus it is possible to find an optical flow field d? such that for each pixel x ∈ Ω
the warped image Id approximates the image Y , Y (x) ≈ Id(x). However there
exists multi-modal setups where the cameras are not sensitive to the same
spectra. ?? shows two images recorded from a visual spectrum camera (VSC,
??, Ivsc) and a thermographic camera (TC, ??, ytc). The recorded object, here a
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carbon-fiber reinforced polymer (CFRP) has physically different absorption and
emission properties in the visual spectrum domain recorded by the VSC then in
the infra-red domain recorded by the TC. Thus the intensities in Ivsc (??) follow a
completely different distribution than those in ytc (??). This is shown in the joint
histogram between Ivsc and ytc in ?? which fails to admit the correspondence

Ivsc
d≈ ytc.

We will now discuss three statistical similarity measures for arbitrary images Y
and I which avoid the assumption of brightness constancy. For this we will take
the two images Y and I to be random variables with the marginal distributions
p (Y ) and p (I). Then the mean and the variance are defined as

E (X) =
∫
X · p (X) (2.150)

Var (X) = E
(
(X − E (X))2

)
(2.151)

The three similarity measures all avoid the brightness constancy assumption
implied by the data term in eq. (2.1462.146) by only taking into account the statistical
features of the images Y and I such as their joint entropy and joint covariance.

Mutual Information

Mutual Information (MI) [7070, 7171, 6363, 7272] is a popular similarity measure used
mainly in medical imaging where images from different modalities including
Magnetic Resonance Imaging (MRI) [7373], Computed Tomography (CT) [7474] and
Positron Emission Tomography (PET) [7575] are registered against each other. For
images Y and I from two different modalities capturing the same scene, MI is
defined with the joint distribution p (Y, I) by

MI (Y, I) =
∫
p
(
Ŷ , Î

)
ln

p
(
Ŷ , Î

)
p
(
Ŷ
)
· p
(
Î
)dŶ dÎ (2.152)

MI measures how strongly the images Y and I statistically depend on each other.
In the case that Y and I are statistically independent, p (Y, I) = p (Y ) · p (I), then
by eq. (2.1522.152) MI is zero. On the other side, MI is maximal when I completely
determinates Y or vice versa. In the context of optical flow MI is used to measure
the similarity between Y and Id

EdataY,I (d) = −MI (Y, Id) (2.153)
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However, as [7676] puts it, MI does not explain the kind of dependency between
images Y and I , its maxima are statistically but not visually meaningful, since
it disregards any spatial information, which is essential for optical flow. Thus
optical flow likelihoods based on MI usually tend to have many local minima
rendering MI too unconstrained for optical flow.

Correlation Ratio

To alleviate the problems with MI, [7676] arguments that a better similarity measure
would be one that measures the functional relation between the images Y and I .
The key ingredient for their proposal is that the pixel values I (x) and Y (x) are
assumed to be the realizations of random variables, which by abuse of notation
we denote by Î and Ŷ . Then the normalized joint histogram of the images I
and Y can be interpreted as the joint probability distribution p

(
Ŷ , Î

)
, and the

conditional distribution

p
(
Ŷ
∣∣∣ Î = I

)
=
p
(
Ŷ , Î = I

)
p
(
Î = I

) (2.154)

encodes the spatial functional relationship between Y and I . They introduced
the Correlation Ratio (CR) [7777, 7171, 6363, 6464]

ηCR (I|Y ) = Var (φ? (Y ))
Var (I) EdataY,I (d) = −η (Id|Y ) (2.155)

The optimal function φ? was shown to be the expectation value of Î , conditioned
on a realization of Ŷ

φ? (Y ) = E
(
Î
∣∣∣ Ŷ = Y

)
=
∫
Ip (I|Y ) dI (2.156)

The function φ(Ŷ ) maps any realization of Ŷ to an expectation value of Î . As Ŷ
is a random variable, φ(Ŷ ) is also at random. Its variance measures how well
I is functionally explained by a realization of Ŷ . The measure in eq. (2.1552.155) is
bounded between 0 and 1, 0 indicating that Y and I are independent, 1 indicating
a functional relationship I = φ? (Y ). The function φ?, although not necessarily
continuous, is measurable in the L2-sense. Thus CR is a much stronger constraint
then MI and has fewer, but more meaningful minima [7676].
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(a) (b) (c) (d)

Figure 2.5.: Figure 2.5a2.5a shows a synthetic high resolution image Isyn. In figure 2.5b2.5b we show a
low resolution image Y syn. Y syn is computed by down sampling Isyn by a factor
σscale = 5, creating ysyn followed by cubic interpolation and translated by 10 pixels
relative to Isyn. An optical flow model which incorporates knowledge of the scale
difference between Y syn and Isyn should produce a flow d̃, such that the warped
image Isyn

d̃
matches the image Y syn up to scale σscale, thereby preserving the features

of Isyn. Figure 2.5c2.5c shows the flow d computed with the model in eq. (2.1452.145). Since
the model in eq. (2.1452.145) does not incorporate knowledge of the scale difference σscale,
the features of the warped image Isynd (figure 2.5d2.5d) are heavily distorted

Cross Correlation

Cross Correlation [7878, 7979, 8080, 6363] is the strongest constrained similarity mea-
sure. It is basically an additional constraint to CR, namely that the functional
relationship in eq. 2.1552.155 must be linear. Then η reduces to

ηCC (I|Y ) = Cov (Y, I)
Var (I) · Var (Y ) Y = f · I + β (2.157)

As we will see in section 3.43.4 a measure similar to eq. (2.1572.157) will be computed
based on the assumption that both Y and I are Gaussian. The Gaussian assump-
tion is valid when both cameras Y and I produce Gaussian noise and the joint
histogram is predominantly linear. Linearity in the joint histogram occurs when
the recorded scene contains materials with uniform luminosity in the frequency
bands of the cameras Y and I .

All three similarity measures have in common that the images Y and I must
have the same spatial resolution in order to compute the measure. For instance in
eq. (2.1532.153) [7070] computed the joint probability p(Y, I) as a normalized histogram
h(Ŷ , Î) created from the samples Ŷ = Y (x) and Î = I(x) drawn from all
locations x ∈ Ω.

The problem that we want to attack is the determination of the optical flow
between a low resolution image y obtained from a low resolution camera Cy and
a high resolution image I from a camera CI . From now on lower case letters
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stand for low resolution and higher case letters for high resolution images. In
an ad-hoc fashion we could first filter and down-sample the image I with a
convolution filter G to obtain an image i with the same spatial resolution of y

i (x) = (G ? I) (x) , x ∈ Ω (2.158)

and evaluate the similarity measures on the image pair y and i. The negative
impact is that we could only estimate an optical flow d with the same low
resolution as the image y. Conversely we could up-sample the image y with
some interpolation scheme to produce a high resolution image Y and evaluate
the similarity measures on the pair Y and I . This situation is shown in figure 2.52.5.
Isyn in figure 2.5a2.5a shows a sharp linear boundary. We down sampled Isyn by
a factor σscale = 5 to create ysyn. ysyn was translated by 10 pixels and the high
resolution image Y syn (figure 2.5b2.5b) was computed by a cubic interpolation of
ysyn again by a factor σscale = 5. The images Y syn and Isyn thus differ in optical
scale, and the scale difference is the parameter σscale. We used the model of [4848]

E (dsyn) = 1
2

∫
Ω

(
Y syn (x)− Isyndsyn (x)

)2
dx+ λ

2
∑
i

∫
Ω
‖∇dsyni (x)‖2 dx (2.159)

(see eq. (2.1452.145)) to compute the optical flow dsyn mapping Isyn to Y syn (see
figure 2.5c2.5c). Figure 2.5d2.5d shows the image Isyndsyn (x) = Isyn

(
x+ dsyn (x)

)
. We can

see that the optical flow d corrupts the sharp boundary of Isyn in order to match
it to the varying gray levels of the blurred boundary in Y syn (figure 2.5b2.5b). The
problem is that the model in eq. (2.1592.159) can account for the difference in size of
the images ysyn and Isyn but it does not take the difference in optical scale σscale

into account. Thus we need a model that can account for the optical scale σscale.

2.7. Image Fusion

In this section we will introduce the image fusion method of Hardie et. al. [8181]. In
that paper the authors solved the problem of refining the low optical resolution
of an image ytc obtained by a thermographic camera (TC) using the image Ivsc
obtained by a visual spectrum camera (VSC). The result of their method is a
thermographic image Ytc with improved optical resolution (see figure 2.6a2.6a for a
schematical overview). They used this method for the subject of remote sensing
[8383] where the TC and the VSC are built in a co-aligned fashion within the body
of a satellite. In section 3.33.3 the goal is to extend this method to the case where
the TC and the VSC are not co-aligned. In this case the low resolution image ytc
and thus the high resolution Ytc have a natural separation from the VSC image
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(a) (b) Ivsc (c) ytc (d) Ytc

Figure 2.6.: Figure 2.6a2.6a shows a schematic setup of the camera configuration considered by Hardie
et. al. [8181]. The blue line indicates the orthogonal direction to both the TC and the
VSC image planes. The camera centers (indicated by the blue circles) are aligned along
the dashed line. Figure 2.6b2.6b shows the image Ivsc captured by the VSC and figure 2.6c2.6c
the image ytc captured by the TC. The image ytc has a smaller optical resolution then
the image Ivsc. The method in [8181] takes the data ytc and Ivsc to produce a higher
resolution thermographic image Ytc, shown in figure 2.6d2.6d

Ivsc similar to figure 2.32.3. We will show that it is possible to jointly estimate the
image Ytc and the optical flow d(x) between Ytc and Ivsc.

The method of [8181] goes as follows: In figure 2.7a2.7a a model of the CCD of the low
resolution TC is shown overlaid with a higher resolution grid representing the
VSC. The gray region in figure 2.7a2.7a symbolizes one pixel of the TC and it can
be seen that each pixel of the TC covers a group of pixels of the VSC. Since the
TC pixel has a finite surface, we need to specify how this pixel absorbs photons
landing at different points in its area in order to relate the covered pixels of the
VSC to it. The response of each individual pixel in the TC is called the point
spread function (PSF), Wσscale (x, y), the vector (x, y) being the location on the
surface of the TC pixel with respect to the VSC coordinate frame. Figure 2.7b2.7b
is the result of a theoretical model of a FLIR TC [8484]. The model, obtained by
Hardie et al. [8282], combines absorption properties of the CCD pixel with physical
properties of the camera lens. We can see that each TC pixel has a non uniform
response to incoming photons. Using this information we can model a super-
resolved version Ytc of the TC image ytc with the help of the PSF Wσscale , by
stating that ytc is the result of the convolution of Ytc with Wσscale

ytc = WσscaleYtc + n n ∼ N (0|Cn) (2.160)

The problem of estimating Ytc is that there is an infinite amount of high resolution
TC images Y ?

tc which relate to ytc via eq. (2.1602.160) since the high spacial frequency
components of Ytc are filtered out by Wσscale . In [8181] Hardie suggested the
use of a high resolution imager Ivsc whose camera center is co-aligned (see
figure 2.6a2.6a) with the TC image ytc and correlated with Ytc. The rationale behind
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(a) (b)

Figure 2.7.: Figure 2.7a2.7a The thick grid depicts the CCD of the low resolution thermographic camera.
The finer grid a virtual super-resolved version of the pixels in the TC. Figure 2.7b2.7b
shows the point spread function Wσscale (x, y) of the gray pixel in figure 2.7a2.7a, taken
from Hardie et al. [8282]. It shows that each pixel in the TC image has a non uniform
response over its surface to incoming photons.

their approach is to combine the desired features such as sharp edges and corners
of Ivsc with the intensity spectrum of ytc into the super-resolved image Ytc, while
avoiding limitations such as the noise model of ytc.

The key ingredient in the model of [8181] is that the intensities of Ytc and Ivsc are
assumed to be samples drawn from the joint Gaussian p (Ytc, Ivsc). As Ivsc is
already fixed as input data we can derive a conditional distribution for Ytc via
the Bayesian rule [8585]

p (Ytc|Ivsc) =p (Ytc, Ivsc)
p (Ivsc)

∼ N
(
µYtc|Ivsc |CYtc|Ivsc

)
(2.161)

CYtc|Ivsc = CYtc,Ytc − C2
Ytc,Ivsc · C

−1
Ivsc,Ivsc

(2.162)

µYtc|Ivsc (x) = µYtc + CYtc,Ivsc · C−1
Ivsc,Ivsc

(Ivsc (x)− µIvsc) (2.163)

where the variances and means are computed globally

Cu,v =
∫

Ω

(
u (x)− µu

)
·
(
v (x)− µv

)
d2x (2.164)

µu =
∫

Ω
u (x) d2x

We see that the mean of Ytc conditioned on Ivsc, µYtc|Ivsc (eq. (2.1632.163)) is linear
in the values of Ivsc, thus in this model the intensities of Ytc are assumed to be
globally linearly related to the intensities of Ivsc. We combine eq. (2.1612.161) with
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the Gaussian likelihood in eq. (2.1602.160) to the posterior

p (Ytc|ytc, Ivsc) ∼ p (ytc|Ytc) · p (Ytc|Ivsc) = exp
(
−Eytc,Ivsc (Ytc)

)
(2.165)

with the associated energy

Eytc,Ivsc (Ytc) =1
2

∫
Ω

(
ytc (x)−WσscaleYtc (x)

)2
· C−1

n d2x

+1
2

∫
Ω

(
Ytc (x)− µYtc|Ivsc (x)

)2
· C−1

Ytc|Ivscd
2x (2.166)

The minimization of eq. (2.1662.166) and thus maximization of (2.1652.165) with respect to
Ytc gives the analytical solution [8181]

Y ?
tc = µYtc|Ivsc + CYtc|Ivsc ·W

T
σscaleM

−1 ·
(
ytc − 〈µYtc|Ivsc〉σsc

)
(2.167)

〈µYtc|Ivsc〉σsc = WσscaleµYtc|Ivsc

M =
(
Wσscale · CYtc|Ivsc ·W

T
σscale + Cn

)
Eq. (2.1672.167) is computationally expensive due to the dense operator Wσscale and
the matrix-inverse operation. However if Wσscale is approximately Gaussian then
the diagonal entries of the matrix M are larger than the off-diagonal entries. In
[8686] a computationally tractable approximation was introduced

Ŷtc = µYtc|Ivsc + C〈Ytc〉σsc |〈Ivsc〉σsc · M̃
−1
(
ytc − 〈µYtc|Ivsc〉σsc

)
(2.168)

〈Ivsc〉σsc = WσscaleIvsc, 〈Ytc〉σsc = WσscaleYtc ≈ ytc (2.169)

M̃ =
(
C〈Ytc〉σsc |〈Ivsc〉σsc + Cn

)
(2.170)

µ〈Ytc〉σsc |Ivsc (x) = µ〈Ytc〉σsc + C〈Ytc〉σsc ,Ivsc · C
−1
Ivsc,Ivsc

(Ivsc (x)− µIvsc)
(2.171)

where the matrix M̃ is a diagonal matrix and thus easily invertible. The approxi-
mated conditional mean µ〈Ytc〉σsc |Ivsc is a transformation of the intensities of the
VSC image Ivsc to the spectrum of the TC image ytc.

The key issue is that eq. (2.1682.168) requires both modalities, Ivsc and ytc, to be co-
aligned. Since we are dealing with an optical flow problem ytc and thus Ytc is
shifted by a disparity d (x) from Ivsc. This disparity has to be taken in to account
by our model in chapter 3.33.3. The second issue is that the assumption that Ytc
and Ivsc are globally joint Gaussian is not supported by our data. However by
computing CYtc|Ivsc in local sub-domains of the space Ω we can show that Ytc
and Ivsc are locally joint Gaussian. This will also be shown in chapter 3.33.3.
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3. Linearized Priors

3.1. The Linear Structure Tensor

We shall now proceed to introduce a prior based on the considerations made in
chapter 2.22.2. We will concentrate on the translation group T for which the Lie
algebra t is characterized by the set of vectors v which are constant within a
sub domain A ⊂ Ω. The basis operators Xi

e ∈ t are the Cartesian differential
operators {∂x, ∂y}, and the spatial component V Ω

e of a vector Ve ∈ t has the
representation

V Ω
e = vx (x) ∂x + vy (x) ∂y ∈ t v (x)|A = const (3.1)

The translation group t is a commutative algebra so the basis {∂x, ∂y} is commu-
tative and any vector V Ω

e commutes with the {∂x, ∂y}[
V Ω
e , ∂x,y

]
= 0 (3.2)

Thus V Ω
e is translation invariant. Consider an image φ (x). The level-sets SX

corresponding to the vector V Ω
e are are defined by

SX =
{
x
∣∣∣vT · ∇φ (x) = 0

}
(3.3)

We would like to characterize the dominant strength and the orientation of∇φ
within the sub domain A ⊂ Ω. In [8787] it was suggested that the tangential vector
v of the level sets SX can be computed by minimizing the energy

J (v) = 1
2

∫
A
w (‖x‖)vT ·

(
∇φ (x)∇Tφ (x)

)
v = 1

2v
TSv (3.4)

S =
∫
A
w (‖x‖)

(
∇φ (x)∇Tφ (x)

)
d2x = 〈∇φ∇Tφ〉 (3.5)

The weight function w(‖x‖) is normalized and weights the contributions of the
gradient ∇φ(x) at various points x ∈ A. Typically a Gaussian is deployed for
the weight function, w(‖x‖) = Gκ(x−x0) where x0 is the center pixel of A. This
way the gradient∇φ(x0) is the dominant contribution to the integral in eq. (3.53.5).
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The matrix S is called the structure tensor. Since S is a symmetric matrix there
exists an orthogonal decomposition

S = V TDV D =
(
λ1 0
0 λ2

)
V = (V1,V2) (3.6)

The eigenvalues give of the squared strength of the gradient in the basis defined
by the columns of V . They characterize the structure in A in the following way

• λ1 > λ2: Strong linear level set with tangential vector v = V2

• λ1 ≈ λ2 ≈ 0: No strong gradient, image is approximately constant

• λ1 ≈ λ2 � 0: No linear level sets, level sets have strong curvature

We want to study the variation of the structure tensor S under the SO(2) at the
unit element e. Let Sθ be the structure tensor where the local coordinate frame A
is rotated by the SO(2) (see eq. (2.732.73))

Sθ =
∫
A
w (‖x (θ)‖)

(
∇x(θ)φ (x (θ))∇Tx(θ)φ (x (θ))

)
d2xθ (3.7)

The SO(2) only rotates the domain A and does not deform it otherwise, thus
the integral measure d2xθ is independent of θ, d2xθ = d2x. Since the weighting
function w only depends on the norm ‖x (θ)‖which is preserved by the SO(2),
it is also invariant. The only component which changes is the gradient ∇x(θ).
Using eq. (2.742.74) and the product rule we can compute the derivative of Sθ at
θ = 0

d

dθ
Sθ

∣∣∣∣
θ=0

=
∫
A
w (‖x‖)

(
Mθ∇φ∇Tφ+∇φ∇TφMT

θ

)
d2x (3.8)

= Mθ · S − S ·Mθ = [Mθ, S] (3.9)

In eq. (3.93.9) we used MT
θ = −Mθ. We can get some information on the magnitude

of the rate of change d
dθSθ

∣∣∣
θ=0

by multiplying the commutator in eq. (3.93.9) with
the eigenvectors v1,2

ṽ1,2 = [Mθ, S]v1,2 (3.10)

It is easy to show that both projections ṽ1,2 in eq. (3.103.10) have the same norm

‖ṽ1,2‖ = |λ1 − λ2| (3.11)

With the help of eq. (3.113.11) we can reformulate our characterization of the eigen-
values λ1,2 in the following way
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• λ1 > λ2: Structure tensor S has strong change under SO(2)

• λ1 ≈ λ2: Structure tensor S is largely invariant under the SO(2) and
approximately diagonal, S ∼ 12×2 where 12×2 is the unity element of R2

3.2. Structure Tensor Based Prior

Since the vector field V Ω
e in eq. (3.13.1) is translation invariant the structure tensor

S is also translation invariant. Under the rotation group SO (2) the structure
tensor is not invariant. Nonetheless it has an important transformation property:
the transformed structure tensor S′ may be written in terms of the old matrix S
and the rotation matrix Rθ ∈ SO (2)

S′ = RTθ SRθ (3.12)

We would like to construct a prior EpriorST which is invariant under the combined
group GΩ = T × SO(2). Since the eigenvalues λi of the structure tensor S
are positive definite we propose as an energy prior for φ the integral over the
determinant of S

EpriorST =
∫

Ω
EST (S) d2x (3.13)

EST (S) = λ

2 det (S) (3.14)

We want to show that EpriorST is invariant under the SO(2). We insert Sθ from
eq. (3.73.7) into the determinant in eq. (3.143.14) and evaluate the derivative of EpriorST

with respect to θ

d

dθ
EpriorST (Sθ)

∣∣∣∣
θ=0

=
∫

Ω
Tr
(
PST · [Mθ, S]

)
d2x, PSTij = δEST

δSij
(3.15)

The matrix PST is the canonical momentum with respect to the structure tensor
S, thus PST has the same transformation properties under the SO(2) as S. The
trace in eq. (3.153.15) can be further transformed

Tr
(
PST · [Mθ, S]

)
= 2 · Tr

(
PST ·Mθ · S

)
(3.16)

The matrix under the trace on the right hand side of eq. (3.163.16) is a product of a
symmetric and an anti-symmetric matrix, and thus itself anti-symmetric. Since
traces over anti-symmetric matrices vanish, it follows that the prior EpriorST is
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invariant under the SO(2)

d

dθ
EpriorST (Sθ)

∣∣∣∣
θ=0

= 2
∫

Ω
Tr
(
PST ·Mθ · S

)
d2x = 0 (3.17)

We note that the symmetry expressed by eq. (3.173.17) is a non-trivial symmetry,
since only the trace as a whole vanishes.

3.3. Geometrical Optical Flow Model

In section 2.62.6 we introduced the notion of an optical flow field d(x) which maps
the domain ΩI of an image I(x) recorded by the camera CI to the domain Ωy of
the image Y (x) recorded by the camera CY (see figure 2.32.3). The basic variational
method outlined for obtaining d(x) was: The optical flow d(x) is computed by
minimizing the energy functional EY,I (d) (see eq. (2.1442.144)) which contains a data
term (also called similarity measure in this context) EdataY,I (d) and a prior energy

for the gradient of d, Eprior (∇d). The similarity measure EdataY,I

(
d̂
)

basically
tells us how similar the images Y (x) and Id̂(x) (defined in eq. (2.1432.143)) are given
an estimate d̂ of the optical flow field d.

In the uni-modal case in section 2.6.12.6.1 the similarity measure EdataY,I was defined as
the pixel difference between the Y (x) and Id(x) (see eq. (2.1462.146)). In section 2.6.22.6.2
it was explained that the measure EdataY,I defined in eq. (2.1462.146) is generally insuffi-
cient in the multi-modal case where the cameras CI and CY may be sensitive to
different light spectra. We introduced alternative similarity measures based on
Mutual Information (MI) (eq. (2.1522.152), [7070]), Correlation Ratio (CR) (eq. (2.1552.155),
[7777]) and Cross Correlation (CC) (eq. (2.1572.157), [7171]). The similarity measure based
on MI, CR and CC pose constraints on the similarity Y (x) and Id̂(x) in ascending
order with CC posing the strongest constraint Y (x) = f ·I(x)+β (see eq. (2.1572.157)).
However all three measures assume that the images Y (x) and Id(x) have the
same spacial and optical resolution such in the case of CC an incorrect optical
flow d? is estimated (see figure 2.52.5).

In section 2.72.7 we outlined the method of Hardie et. al. [8181] in which given a
low resolution image y the goal is to estimate an image Y with higher resolution
with the aid of a high resolution image I from an external camera CI . The
virtue of their method is that it integrates the physical relationship between the
CCD of Cy and that of CI . This relationship is embodied by the PSF Wσsc in
eq. (2.1602.160). However in their paper [8181] they assumed Cy and CI to co-aligned
(see figure 2.62.6). In this section we will extend this method to incorporate an
optical flow field mapping ΩI to ΩY (the domain of the unknown high resolution
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(a) Schematic (b) I (c) y

Figure 3.1.: Figure 3.1a3.1a shows the setup of a thermographic camera (TC), Ctc, and a visual spec-
trum camera (VSC), Cvsc, recording an object O. Figure 3.1b3.1b shows the image I which
is recorded by Cvsc and figure 3.1c3.1c the lower resolution image y recorded by Ctc.
The solid line cone of Ctc in figure 3.1a3.1a which is small compared to the cone of Cvsc
indicates the low resolution of the TC compared to that of the VSC. The dotted cone
indicates the high resolution of the image Y , which is jointly estimated together with
the optical flow d (the mapping between I and y) by the model in eq. (3.253.25)

Y ). The result, a model capable of jointly estimating d(x) and Y given y and
I is basically a CC-type similarity measure encoding the difference in optical
resolution between the Cy and the CI camera.

3.4. Multi-Modal Optical Flow with Differing Resolutions

We consider the camera setup in figure 3.1a3.1a with the low resolution thermo-
graphic camera Ctc and the high resolution visual spectrum camera Cvsc. As
opposed to the setup in Hardie et. al. [8181] (figure 2.62.6) the cameras Ctc and Cvsc
are not co-aligned. The goal in this section is to extend the method introduced
in section 2.72.7 to include the unknown optical flow field d(x) representing the
separation of Ctc and Cvsc. In a nutshell we assume the low resolution image y
to be co-aligned with the image Id

Id (x) = I (x+ d(x)) (3.18)

for a given optical flow field d(x). From eq. (2.1672.167) we can compute the super re-
solved image Ŷd(x) which is a function of d. In principle the energy in eq. (2.1662.166)
with the image Ŷd(x) then serves as a similarity measure between y and Id

Edatay,I (d) = Ey,Id

(
Ŷd
)

(3.19)
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Ŷd is an implicit function which does not need to be estimated directly since by
virtue of eq. (2.1672.167) it is easily computed when needed. However since we are
only interested in dwe do not need to explicitly evaluate Ŷd.

Computation of the similarity measure Edatay,I

We will now compute the exact form of Edatay,I (d) in eq. (3.193.19).

In section 2.72.7 the model for computing the super- resolved image Y is given by
the energy E (Y ) (see eq. (2.1662.166))

Ey,I (Y ) =1
2

∫
Ω

(
y (x)−WσscY (x)

)2
· C−1

n d2x (3.20)

+1
2

∫
Ω

(
Y (x)− µY |I (x)

)2
· C−1

Y |Id
2x (3.21)

with the conditional variance and mean

CY |I = Cσ
sc

Y,Y − C
σsc,2
Y,I · C

σsc,−1
I,I (3.22)

µY |I (x) = µY + f · (I (x)− µI) , f = Cσ
sc

Y,I · C
σsc,−1
I,I (3.23)

The first integrand of Ey,I (Y ) in eq. (3.203.20) models the relationship between the
low resolution image y of the cameraCtc and the unknown high resolution image
Y , namely that one pixel in y is mapped to a window of pixels in Y via the PSF
Wσsc (figure 2.7a2.7a). Essentially it couples the low resolution component of Y ,
WσscY to the Ctc image y. On the other side the second integrand of Ey,I (Y )
in eq. (3.213.21) models the relationship between the intensities of Y and I . This
done by transforming the spectrum of I via the factor f (eq. (3.233.23)) to match that
of Y . Since this is done on a pixel-by-pixel basis, eq. (3.213.21) pins down the high
resolution component of Y .

At this point we incorporate the optical flow d(x) which separates the cameras
Ctc and Cvsc by assuming Y to be co-aligned the warped image Id (eq. (3.183.18)).
Thus we substitute I for Id in the integrand in eq. (3.213.21)

E (Y,d) =1
2

∫
Ω

(
y (x)− 〈Y 〉σsc (x)

)2
· C−1

n d2x (3.24)

+1
2

∫
Ω

(
Y (x)− µY |Id

(x)
)2
· C−1

Y |Id
d2x (3.25)

with expressions for CY |Id
and µY |Id

similar to those in eqs. 3.223.22 and 3.233.23.
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(a) (b) (c) (d)

Figure 3.2.: Figure 3.2a3.2a shows a synthetic high resolution image Isyn. In figure 3.2b3.2b we show a
low resolution image ysyn. ysyn is computed by convolution of Isyn with Gaussian
Gσsc with standard deviation σsc = 5 and translated by 10 pixels relative to Isyn.
Figure 3.2d3.2d shows the flow d computed with the model in eq. (??), which incorporates
knowledge of the scale difference between ysyn and Isyn and figure 3.2c3.2c show the
warped image Id

While keeping d fixed we minimize E (Y,d) with respect to Y and obtain a
simplified closed form solution for Y similar to eq. (2.1682.168)

Ŷ = µY |Id
+ Cσ

sc

〈Y 〉σsc |〈Id〉σsc ·
(
Cσ

sc

〈Y 〉σsc |〈Id〉σsc + Cn
)−1 (

y − µ̃Y |Id

)
(3.26)

We insert the closed form expression for Ŷ from eq. (3.263.26) intoE (Y,d) and obtain
an energy measuring the similarity between y and 〈I〉σsc,d = WσscId

Edatay,I (d) = Ey,Id

(
Ŷd
)

= 1
2

∫
Ω

(
y (x)− µY − f · (〈I〉σsc,d (x)− µI)

)2
· Uσsc (3.27)

f = Cσ
sc

y,〈Id〉σscC
σsc,−1
〈Id〉σsc ,〈Id〉σsc , Uσ

sc = Cσ
sc

〈Y 〉σsc |〈Id〉σsc

(
Cσ

sc

〈Y 〉σsc |〈Id〉σsc + Cn
)−2

(3.28)

Edatay,I (d?) in eq. (3.273.27) is minimal when the specific optical flow d? satisfies

y (x) ≈ f · Ĩd? (x) + (µY − f · µI) (3.29)

Comparing eq. (3.293.29) to the CC eq. (2.1572.157) we can see that with β = (µY − f · µI)
eq. (3.293.29) is also a CC-type equation, however it correlates the low resolution
images y and 〈I〉σsc,d.

It is easy to show that

Cσ
sc

〈Y 〉σsc |〈Id〉σsc = Cσ
sc

Y,Y (1− ηCC(Y |Id)) (3.30)

52



This causes Cσ
sc

〈Y 〉σsc |〈Id〉σsc

(
Cσ

sc

〈Y 〉σsc |〈Id〉σsc + Cn
)−2

to additionally prune the opti-

cal flow d(x), such that Edatay,I is a more robust similarity measure then CC.

To demonstrate that our likelihood Edatay,I in eq. (3.273.27) respects the difference in
scale between y and I we have estimated the flow with EdataY,Id

as the similarity
measure for the data ysyn and Isyn in figure 2.52.5. The standard deviation σsc in
Edatay,I was set to σsc = 5 and the factor f is automatically computed as f ≈ 1 since
the intensity distributions of ysyn and Isyn are aproximately the same. The image
Isynd is convolved with Wσsc . The resulting image Ĩsyn has the same scale as
ysyn. The resulting optical flow dsyn is shown in figure 3.2d3.2d. Notice the blurred
boundary dsyn around the linear feature in Isyn (figure 3.2a3.2a). This is the result of
Edatay,I in eq. (3.273.27) measuring the difference between ysyn and the blurred image
Ĩsynd = WσscId. In figure 3.2c3.2c we see Idsyn . The linear boundary has been warped
by dsyn without being corrupted like in figure 2.5d2.5d.

3.5. Localization

The similarity measure Edatay,I in eq. (3.273.27) basically compares the image y with
the transformed image f · 〈I〉σsc,d, where f is defined in eq. (3.283.28). Thus for some
minimizer of Edatay,I (d), d? the image f · 〈I〉σsc,d is assumed to approximate y

y (x) ≈ f · Ĩd? (x) (3.31)

Eq. (3.313.31) manifests the assumption of a global linear relationship between the
intensities of the image y and and those of I , with f being the linear factor. There
are many situations in multi modal optical flow where the linearity relation
expressed by eq. (3.313.31) is not valid. For instance in figure 3.93.9 in section 3.7.53.7.5 the
images Ivsc and ytc of a visual spectrum camera (VSC) and a thermographic cam-
era (TC) recording the same scene is shown for which the assumption of global
linearity between Ivsc and ytc fails, since objects that have similar reflectance
properties in the visual spectrum can have differing properties in the infra-red
spectrum. However if we focus on small regions A ⊂ Ω then a local relation
similar to eq. (3.313.31)

y (x) |A ≈ f · Ĩd? (x) |A (3.32)

might hold provided that the region A is occupied by the same object in both
images which will be the case in section 3.7.53.7.5. Therefore we propose a local
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version of the variance and the mean in eq. (2.1642.164)

Cu,v (x0) =
∫

Ω
ω (x− x0) (u (x)− µu (x0)) · (v (x)− µv (x0)) d2x (3.33)

µu (x0) =
∫

Ω
ω (x− x0)u (x) d2x

where ω is a window function which we take to be constant within a square
window Ux0 ⊂ Ω centered around the point x0 ∈ Ω with the window size a

ω (x) =
{ 1
|Uax0 |−1 x ∈ Uax0 , width

(
Uax0

)
= height

(
Uax0

)
= a

0 else
(3.34)

With this definition the conditional variance CY |Id
and the factor f (eq. (3.283.28))

become functions of the coordinates x ∈ Ω and the parameter a

Cσ
sc,a
〈Y 〉σsc |〈Id〉σsc (x) = Cσ

sc,a
Y,Y (x)− Cσ

sc,a,2
y,〈Id〉σsc (x) · Cσ

sc,a,−1
〈Id〉σsc ,〈Id〉σsc (x) (3.35)

fσ
sc,a (x) = Cσ

sc,a
y,〈Id〉σsc (x) · Cσ

sc,a,−1
〈Id〉σsc ,〈Id〉σsc (x) (3.36)

We substitute Cσ
sc,a
〈Y 〉σsc |〈Id〉σsc and fσ

sc,a in eq. (3.273.27) with the local versions from
eqs. 3.353.35 and 3.363.36 and obtain

Edata,ly,Id
(σsc, a,d) = 1

2

∫
Ω

(
y (x)− 〈fσsc,aId〉σsc (x)

)2
· Uσsc,a (x) d2x

Uσ
sc,a (x) = Cσ

sc,a
〈Y 〉σsc |〈Id〉σsc (x)

(
Cσ

sc,a
〈Y 〉σsc |〈Id〉σsc (x) + Cn

)−2
(3.37)

Notice that the PSF Wσsc is now convolved with the product fσ
sc,a(x) · Id(x)

since fσ
sc,a is now a function.

3.6. The Multigrid Newton algorithm

We combine now our global similarity measures in eq. (3.273.27) and together with
the structure tensor prior EpriorST (eq. (3.143.14)) and the TV prior EpriorTV (eq. (2.1262.126))
to the following two models

EgST (d) = EdataY,I (σscale,d) + λST

2∑
i=1

EpriorST (∇di) (3.38)

EgTV (d) = EdataY,I (σscale,d) + λTV

2∑
i=1

EpriorTV (∇di) (3.39)
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Algorithm 1 Multigrid Optical Flow (MOF)
Initialize d0 = 0, k = 0, σMOF = 0.7
Set r0 = δE(d)

δd (d0)
scale s = sMax
while s > 1 do

downsample ys = Gs·σMOF ? y0, Is = Gs·σMOF ? I0
while ‖r‖ > ε or k < N do

set dk+1 = dk + αδ

expand E (dk+1) = E (dk) + αbTk δ + α2

2 δ
TQkδ

solve Qkδ = bk for δ with conjugate gradients
compute dk+1 = dk + αδ, k → k + 1

end while
upsample dN , set d0 = dN , k = 0
s = s− 1

end while
set optimal solution d? = dN

To minimize the models in eqs. 3.383.38 to 3.393.39 and obtain the optimum flow field
d? we deploy a simple newton scheme with a nested linearization (see alg. 11
(MOF) where E(d) is to be substituted with the models in eqs. 3.383.38 to 3.393.39). The
linearized model is solved by a conjugate gradients algorithm with block Jacobi
preconditioning.

When minimizing the structure tensor based modelEgST (eq. (3.383.38)) the following
major numeric problem occurs: The problem arises in step 99 of the MOF algo-
rithm. The second functional derivative Qgk,ST of the energy model EgST consists
of one part comming from the likelihood and one part coming from the prior,
Qgk = Qdata,gk + λSTQ

prior
k,ST . The matrix Qpriork,ST is the second derivative of the prior

EpriorST with respect to the individual components of d

Qprior,iik,ST = δ2

δd2
i

EpriorST (∇di) Qprior,ij = 0 (3.40)

Since EpriorST (∇di) is purely quartic in di by definition (eq. (3.143.14)) the matrix
Qpriork,ST in eq. (3.403.40) a purely quadratic functional of di. At small k in alg 11 its
eigenvalues equal zero due to the initial guess d0 = 0. The matrix Qdatak is the
second derivative of the data term EdataY,I in eq. (3.383.38) and eq. (3.393.39). In regions
where there is no motion the eigen values of Qdatak are also small. This makes
the linearized solution in step 99 numerically instable and the instability carries
on to all stages s of the MOF alg. 11. Our solution to this problem is to extend
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EpriorST (∇di) to include an L2 prior on the flow field d but with a small lagrange
multiplier λ2

ẼpriorST (∇di) = EpriorST (∇di) + λ2 ‖∇di‖2 (3.41)

With the L2 prior in 3.413.41 the linearized solution in step 99 becomes numerically
stable. Thus we substitute EpriorST for ẼpriorST (eq. (3.413.41)) in eq. (3.383.38)

EgST (d) = EdataY,I (σscale,d) + λST

2∑
i=1

ẼpriorST (∇di) (3.42)

The challenge is to find the appropriate setting for λ2 in eq. (3.413.41) such that on
the one side the MOF alg. 11 becomes numerically stable but on the other side the
isotropic L2 part in eq. (3.413.41) does not over weigh the original anisotropic prior
ẼpriorST . In section 3.7.63.7.6 we will map out a strategy for finding a suitable value for
λ2 based on the eigen values of the second order functional derivative of EpriorST

in eq. (3.413.41).

3.7. Results

In this section we want to evaluate and compare the two optical flow models in
eqs. 3.383.38 and 3.393.39. The methodology for this section is as follows: In section 3.7.13.7.1
we want to study the effect of the size of the structure tensor S in eq. (3.383.38) on
the estimation of the optical flow d. We evaluate the models in eqs. 3.383.38 and 3.393.39
on a sequence of two images obtained from one camera from the Middleburry
data-set [8888] (figure 3.33.3). The Middleburry data-set offers also the ground truth
optical flow dgt which we use to asses the quality of the estimated optical flow
of the models in eqs. 3.383.38 and 3.393.39. Since the data in figure 3.33.3 is collected from
one camera we use the global similarity measure in eq. (3.273.27) thereby setting
σ = 0. Thus eq. (3.273.27) effectively reduces to the brightness constancy constraint
in eq. (2.1462.146). We compare the results of the models 3.383.38 and 3.393.39 for different
window sizes σST of the structure tensor S to find the best value for σST . Having
found the optimal windowsize σST we will extend the evaluation of section 3.7.13.7.1
to include a synthesized multi-modal image set in section 3.7.43.7.4. The goal of that
section is to study the effect of the PSF Wσsc on the global similarity measure
EdataY,I (σsc,d) in a multi-modal coaxial setup similar to that in figure 2.62.6. Hereby
we will create an artificial low resolution image yscaletest by taking the image I in
figure 3.3a3.3a, filtering it with a Gaussian filter of standard deviation σsctest, thus
creating an artificial scale difference and inverting the result. We will show that
Edata
yscaletest ,I

(σsc,0) is minimal at σsc = σsc,?.

56



(a) (b) d?ST (c) d?TV (d)

Figure 3.3.: Rubberwhale Sequence: Figure 3.3a3.3a shows one frame of the sequence. figure 3.3b3.3b
shows the estimated optical flow d?ST , figure 3.3c3.3c the flow d?TV and figure 3.3d3.3d shows
the provided ground truth

With the optimal windowsize σST for the structure tensor S and a strategy for
finding the correct scale difference we turn to the problem of estimating the
optical flow on the real data in section 3.7.53.7.5. As we discussed in section 3.53.5 the
similarity measure EdataY,I (σsc,d) is based on the assumption that the images Y
and I share the linear relationship Y = αI + β which is not supported when the
cameras CY and CI are sensitive to different light spectra. For this reason we
will deploy the local similarity measure Edata,lY,I (σsc,d) introduced in eq. (3.373.37) in
the localized optical flow models

EST (d) = Edata,ly,I (σsc, a,d) + λSTE
prior
ST (∇d) (3.43)

ETV (d) = Edata,ly,I (σsc, a,d) + λTVE
prior
TV (∇d) (3.44)

We will show that our strategy in section 3.7.43.7.4 for finding the true scale difference
σsc,? between the images y and I also yields a strategy for finding the correct
window size a for Edata,ly,I (σsc, a,d) such that y = αI + β locally holds.

3.7.1. Uni-Modal Data

We will now discuss the results of our optical flow method on the middleburry
data set for which there exists ground truth (GT). As the GT is the true flow field
for the data we use it to asses the quality of the computed optical flow. To do this
we define the Endpoint error (EPE)

EPE (x) = ‖d− dgt‖ (x) (3.45)

The EPE meassures how well the computed optical flow d fits the true optical
flow dgt.
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(a) (b) d?ST (c) d?TV (d)

Figure 3.4.: Hydrangea Sequence: Figure 3.4a3.4a shows one frame of the sequence. figure 3.4b3.4b shows
the estimated optical flow d?ST , figure 3.4c3.4c the flow d?TV and figure 3.4d3.4d shows the
provided ground truth

We will further need the definition of the mean curvature (eq. (2.1392.139))

κ = Div
( ∇I
|∇I|

)
(3.46)

The curvature κ is a good measure to show which features can be reliably
matched by the optical flow d and thus have small EPE values.

3.7.2. Rubber Whale Sequence

Our goal in this section is to evaluate the effect of the structure tensor window
size σST of the model EST (eq. (3.383.38)) on the quality of the optical flow mapping
d between two images YC and IC recorded by the same camera C. We compare
the results of the model EST with those obtained by ETV , thereby denoting
d?ST the optical flow obtained by EST and d?TV the flow obtained by ETV . In
figure 3.33.3 the rubber whale sequence of the middleburry data set is shown, and
in figure 3.3d3.3d the corresponding ground truth dgt. This sequence is generated
with one camera recording a dynamic scene. The reason for choosing this scene
is that it contains linear level-set features as well curvy-linear features such as
circular features. In figure 3.3a3.3a we have highlighted a linear level-set region of
interest (ROI) labeled as Box Edge, a ROI partially containing linear structures
labeled as Fence, a circular feature labeled as Wheel and a ROI containing a
generic non-linear level-set called Shell . In figure 3.3b3.3b the computed flow-field
d?ST for the energy EST (d) (eq. (3.383.38)) is shown for a filter size of σST = 11, while
in figure 3.3c3.3c the resulting flow for the TV model is shown. We can observe
from the comparison between figures 3.3b3.3b and 3.3c3.3c that the TV model produces
smoother results which are closer to the ground truth (figure 3.3d3.3d). In figure 3.53.5
we have binned the curvature κ in to 40 bins and plotted the average EPE per
curvature bin for both the ST model in eq. (3.383.38) (varying σST in figures 3.5a3.5a to
3.5c3.5c) and for the TV model in eq. (3.393.39) (figure 3.5d3.5d). In all plots in figure 3.53.5 the
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(a) (b) (c) (d)

Figure 3.5.: EPE to level-set curvature: Figures 3.5a3.5a to 3.5d3.5d show plots of the EPE (eq. (3.453.45))
against the curvature κ (eq. (3.463.46)) for the rubber whale sequence (figure 3.33.3). Figures
3.5a3.5a to 3.5c3.5c show the results for the structure tensor model EST and figure 3.5d3.5d the
result for the TV model ETV . The curvature κ was split into 40 bins and the height of
the bars is the average EPE per curvature bin.

ROI Filtersize Median EPE ROI Filtersize Median EPE

Wheel

7 2.36

Fence

7 0.46
9 1.32 9 0.39
11 1.15 11 0.35
TV 1.38 TV 0.18

Shell

7 0.86
Box Edge

7 0.44
9 0.62 9 0.34
11 0.50 11 0.30
TV 0.17 TV 0.09

Table 3.1.: EPE for different filter-sizes σST for the model EgST (eq. (3.383.38)) and for the TV model
EgTV (eq. (3.393.39)). The value shown in the column Median EPE is the median EPE
per ROI. The median per ROI was chosen over the average EPE per ROI due to its
robustness towards outlier EPE values. The EPE values for the model EgST decrease
with increasing structure tensor filtersizes σST . However the general trend is that the
ROI’s with high curvatures κ (Wheel and Shell ) tend to have higher EPE values then
the ROI’s with low curvatures (Fence and Box Edge).

general tendency is that level-sets with low curvature values κ ≈ 0 have high
EPE values while with increasing curvature up to ‖κ‖ ≈ 2 the EPE values fall off.
This verifies the aperture problem (discussed in section 2.62.6) where less distinctive
level-sets with intrinsic dimension iD < 2 (low κ) lead to less accurate optical
flow estimates. However for higher curvature values ‖κ‖ > 2 the EPE values
significantly rise. This is due to the fact that both the priors EpriorST (eq. (3.383.38))
and EpriorTV (eq. (3.393.39)) penalize level-sets in the optical flow d which have higher
curvature then level-sets which are more straight. In the case of EpriorTV this is
more evident since according to eqs. 2.1392.139 and 2.1402.140 in section 2.52.5 the curvature
κ is the functional derivative of EpriorTV and thus explicitly forced to vanish. Now
comparing the plots in figures 3.5a3.5a to 3.5c3.5c we can see larger window sizes σST
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of the structure tensor in eq. (3.383.38) lead to small values for the EPE and thus
more accurate optical flow estimates. In comparison with the TV model in
eq. (3.393.39) (figure 3.5d3.5d) the EPE values structure tensor model EST with σST = 11
in figure 3.5c3.5c are closest to those of the TV model in figure 3.5d3.5d with an average
discrepancy of 0.3 between figure 3.5c3.5c and figure 3.5d3.5d. For this reason we will
set σST = 11 for the rest of this section.

Table 3.13.1 shows the median EPE values for different ROI’s in figure 3.3a3.3a. We can
see that ROI’s with rather linear level-sets like the Fence and the Box Edge ROI
have comparatively lower EPE values then ROI’s containing level-set with larger
curvature like the Wheel and the Shell for the EST model. For the ETV only the
Wheel has a higher EPE value.

3.7.3. Hydrangea Sequence

In figure 3.4a3.4a we show the hydrangea sequence of the middleburry dataset.
In contrast to the rubber whale sequence in figure 3.3a3.3a figure 3.4a3.4a consists of
a largely texture-less background and a hydrangea plant in the foreground.
The hydrangea contains largely level-sets with high curvature κ which leads
to erroneous optical flows d?ST (figure 3.4b3.4b) and d?TV (figure 3.4c3.4c) compared to
the ground truth dgt in figure 3.4d3.4d. In figure 3.63.6 we have again plotted the EPE
against the curvature κ in a fashion similar to figure 3.53.5. Other than in figure 3.53.5
we can see that for increasing window sizes σST = 7 (figure 3.6a3.6a) to σST = 11
(figure 3.6c3.6c) for the model EST the EPE values increase, especially at higher
curvatures ‖κ‖ > 2. Since the background in figure 3.4a3.4a is largely constant the
condition defining the level-sets SV (see eq. (2.772.77))

SV = {x |VeI (x) = 0} Ve = v∇ (3.47)

is independent of the vector Ve. In other words the background in figure 3.4a3.4a
contains level-set of all possible curvatures κ. This leads to an equal distribution
of the EPE values over the different curvatures κ in figure 3.6c3.6c. Comparing the
EST model to the TV based model ETV we see that the EPE values in figure 3.6d3.6d
are comparatively smaller then those for the EST model in figures 3.6a3.6a to 3.6c3.6c .
The EPE values in figure 3.6d3.6d however are larger then the corresponding values
in figure 3.5d3.5d for the rubber whale sequence (figure 3.3a3.3a).

3.7.4. Estimation of the Scale Difference σsc

In this section we want to analyze the dependency of the similarity measure
Edatay,I (σsc,d) on the scale difference parameter σsc of the PSF Wσsc . First we
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(a) (b) (c) (d)

Figure 3.6.: EPE to level-set curvature: Figures 3.6a3.6a to 3.6d3.6d show plots of the EPE (eq. (3.453.45))
against the curvature κ (eq. (3.463.46)) for the hydrangea sequence (figure 3.43.4). Figures
3.6a3.6a to 3.6c3.6c show the results for the structure tensor model EST and figure 3.5d3.5d the
result for the TV model ETV . The curvature κ was split into 40 bins and the height of
the bars is the average EPE per curvature bin.

(a) I (b) y2 (c) y4

Figure 3.7.: Synthesized multi-modal data. This data simulates the camera arrangement in fig-
ure 2.62.6. The image I in figure 3.7a3.7a is from the rubberwhale data set in figure 3.33.3.
Figures 3.7b3.7b and 3.7c3.7c show the image yσsc

test (eq. (3.493.49)) at the scales σsctest = 2 and
σsctest = 4

assume two co-aligned cameras Cy and CI (see figure 2.62.6) with the images
y and I being generated the following way (see figure 3.73.7): I is taken from
the rubberwhale data set in figure 3.33.3. We simulate images yσsctest of different
resolutions σsctest = 1 · · · 5 first by inverting the intensities of I followed by filter
operations with Gaussians of the standard deviations σsctest = 1 · · · 5 and the
addition of iid noise

Y (x) = −I (x) + Imin + Imax (3.48)
ytestσ (x) = 〈Y 〉σsctest (x) + n (x) , n ∼ N (0, χstd) (3.49)

Imin and Imax in eq. (3.483.48) are the minimum respectively maximum intensity of
the image I and the standard deviation χstd in eq. (3.493.49) was set to χstd = 50. In
figure 3.73.7 the image I is shown along with the synthesized images y2 and y4 (ytestσ

from eq. (3.493.49) with σsctest = 2 rsp. σsctest = 4). The goal is now to show that
Edatay,I (σsc,0) seen as a function of σsc is minimal at the test scale σsc,? = σsctest.
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(a) y = y2 (b) y = y4

Figure 3.8.: Figures 3.8a3.8a and 3.8b3.8b show plots the similarity measure Edatay,I (σsc,d) for the cases
y = y2, σsctest = 2, and y = y4, σsctest = 4. We can observe that Edatay,I (σsc,d) is
minimal with respect to σsc at the correct scales σsctest

This might seem obvious since Edatay,I which was computed in eq. (3.273.27)

Edatay,I (σsc,d) = 1
2

∫
Ω

(
y (x)− f · 〈I〉σsc (x)

)2
· F (3.50)

f = Cσ
sc

y,〈Id〉σscC
σsc,−1
〈Id〉σsc ,〈Id〉σsc (3.51)

F = Cσ
sc

〈Y 〉σsc |〈Id〉σsc

(
Cσ

sc

〈Y 〉σsc |〈Id〉σsc + λCn
)−2

(3.52)

was derived from the basic assumption that y is the result of the convolution of
the PSF Wσsc with the high resolution image Y along with additive noise (see
eq. (2.1602.160))

y = 〈Y 〉σsc + n n ∼ N (0|Cn) (3.53)

which is similar to how we generated the test images ytestσ in eq. (3.493.49). However
the factor F in eq. (3.503.50) is highly non-linear in σsc, so we want to show that
despite this non-linearity Edatay,I (σsc,0) has a global minimum at σsc,? = σsctest.
In figure 3.83.8 we have plotted Edatay,I (σsc,0) over σsc for the cases σsctest = 2
(figure 3.8a3.8a) and σsc = 4 (figure 3.8b3.8b). For both cases Edatay,I (σsc,0) is minimal at
the correct scale σsctest. From this we learn that Edatay,I (σsc,d) is sensitive to the
scale difference σsc between y and I and we can use it to determine the true scale
difference σsctest.
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(a) (b) (c)

Figure 3.9.: figure 3.9a3.9a shows an image from a visual spectrum camera (VSC). The object recorded
is a carbon-fiber reinforced polymer (CFRP). Figure 3.9b3.9b shows an image of the same
CFRP recorded with a thermographic camera (TC). The TC is sensitive in the infra-
red domain, thus higher intensities in figure 3.9b3.9b correspond to warmer objects (the
CFRP) and lower intensities to colder objects (the background). As in figure 3.1a3.1a
the optical centers of the VSC and the TC are physically separated so the problem
that is being addressed is that of finding the optical flow field d(x) (see eq. (2.1422.142))
which maps every pixel in the TC image to the corresponding pixel in the VSC image.
Figure 3.9c3.9c shows the joint histogram of the VSC and TC image. It shows a complex
mapping of the intensities of figure 3.9a3.9a to those of figure 3.9b3.9b indicating that a linearity
assumption between the TC and the VSC is not valid

3.7.5. Real Multimodal Optical Flow Data

We would now like to evaluate our optical flow model in eq. (3.383.38) on the data
in figure 3.93.9. The image ytc (figure 3.9b3.9b) was recorded with a thermographic
camera (TC) Ctc and the image Ivsc with a visual spectrum camera (VSC) Cvsc.
The recorded object is a carbon fiber reinforced polymer (CFRP). CFRP materials
are becoming increasingly widespread in automotive and aerospace industries,
but also in consumer goods, due to their adaptivity to different shapes, good
rigidity and high strength-to-weight ratio [8989, 9090, 9191, 9292]. Improved fabrica-
tion techniques such as Injection and Double Vacuum Assisted Resin Transfer
Molding [9292] are reducing the production costs and time to manufacture. The
properties of CFRP strongly depend on the processing of the material, thus de-
tection of defects within the layers of the CFRP and their characterization are
indispensable, especially for safety-relevant parts. Active thermal measurement
methods [9393, 9494, 9595] have become vital for the assessment of the quality of CFRP
materials. These methods are based on the evaluation of a previously excited heat
flow in the tested component and its disturbance by hidden defects. The heat
flow is generated with a heat pulse or through sinusoidal modulation, observed
with a TC, followed by a pixel-wise computation of the complex phase between
the excitation signal and the reflected infrared signal. This phase information
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encodes the heat-loss within a penetration depth δ of the probed material, with
depths of 1mm to 2mm typical for CFRPs.

Current state-of-the-art TCs possess resolutions of only 640× 512 pixels and a
noise equivalent temperature difference of 20mK. Nevertheless, these cameras
are very expensive, and the CFRP application domain requires the detection
of defects at the noise limit. On the other hand, VSCs are inexpensive and
easily deliver images of 10 megapixels per frame with very little noise. Thus
the goal is to combine low resolution TC image ytc with the high frequency
information borrowed from the VSC image Ivsc. Since the cameras Ctc and
Cvsc are a) physically separated from each other and b) have different optical
resolutions we could utilize our optical flow model in eq. (3.383.38) to estimate the
optical flow mapping between Ctc and Cvsc, thereby computing a high resolution
version Ytc of ytc. However the similarity measure Edatay,I (σsc,d) in eq. (3.383.38)
is based on the assumption that the cameras Cy and CI to be registered have
a linear relationship in their intensity spectrum and the images ytc and Ivsc in
figure 3.93.9 lack this linearity relationship. This can be seen in the joint histogram in
figure 3.9c3.9c where there is no unique correspondence between the intensities of ytc
to those of Ivsc. In section 3.53.5 we therefore introduced the local similarity measure
Edata,ly,I (σsc, a,d) which constrains the similarity assessment of the images y and
I to the local square regions Aax0 of size a centered around x0 ∈ Ω

Edata,lytc,Ivsc,d
(σsc, a,d) = 1

2

∫
Ω

(
ytc − 〈fσ

sc,aIvsc,d〉σsc
)2
· Uσsc,ad2x (3.54)

Uσ
sc,a (x) = Cσ

sc,a
〈Y 〉σsc |〈Id〉σsc (x)

(
Cσ

sc,a
〈Y 〉σsc |〈Id〉σsc (x) + λCn

)−2
(3.55)

The problem that arises is how large to set the window size a. If it is set too
small the signal to noise ratio will be too small so that not enough information of
the features in the ytc and the Ivsc image are captured to robustly register them.
On the other hand if a is set too large we eventually loose the local linearity
between the ytc and the Ivsc image. In order to find the correct value for the
window size a we propose the following strategy: We first make sure that the
cameras Cvsc and Ctc have the same aperture angle. This allows us to deduce the
difference in optical scale, σscale? directly from the resolutions of the cameras. In
section 3.7.43.7.4 we showed that the global similarity measure in eq. (3.273.27) is convex
in the optical scale parameter σsc. For fixed widow sizes a the local similarity
measure in eq. (3.553.55) is also convex in σsc but the minimum scale σscmin (a) is a
function of a. The idea is to vary a such that for an optimum a? the minimum
scale σscmin (a?) equals the true scale difference σscale?.

In more detail: The markers on the CFRP in figure 3.93.9 were used to set the zoom
of the lenses such that the aperture angles of Ctc and Cvsc are approximately
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(a) (b) (c)

Figure 3.10.: ??: Plot Edata,lytc,Ivsc
(σsc, a,0) over the PSF scale difference σsc for the images ytc and

Ivsc in figure 3.93.9 for the window size a = 25. Figure 3.10b3.10b shows the minimum scale
σscmin defined in eq. (3.583.58) as a function over the window size a and figure 3.10c3.10c the
similarity measure Edata,lmin (eq. (3.593.59)) over a. The minimum scale σscmin increases
or stays constant but does not decrease for larger window sizes a. The window
size a = 21 marks a sweet spot where σscmin(21) = σsc,? = 3 while Edata,lmin (21) is
comparatively minimal.

equal

wtc
ftc
≈ wvsc
fvsc

(3.56)

where ftc/vsc is the focal length and wtc/vsc the width of the CCD in the TC/ the
VSC. The true difference in optical scale σsc,? between the cameras Ctc and Cvsc
is given by the fraction of the focal lengths

σsc,? = fvsc
ftc
≈ wvsc

wtc
(3.57)

Now the TC Ctc that was used to capture ytc has a resolution of 640× 480 and
the VSC Cvsc is a Full HD camera (1920× 1080) so that we have σsc,? ≈ 1920

640 = 3.
We make the following definitions

σscmin (a) = argmin
σ

(
Edata,lytc,Ivsc

(σsc, a,0)
)

(3.58)

Edata,lmin (a) = Edata,lytc,Ivsc
(σscmin (a) , a,0) (3.59)

where the minimum scale σscmin (a) is a function of the window size a and
Edata,lmin (a) is the value of the similarity measure Edata,lytc,Ivsc

for that particular win-
dow size. Figure 3.10c3.10c shows the plot of Edata,lmin (eq. (3.593.59)) over the window size
a which is non-convex. Hence we cannot compute an optimal window size a?

by attempting to minimize Edata,lmin (a). However Edata,lytc,Ivsc
in eq. (3.553.55) is convex
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(a) d?ST (b) d?TV

Figure 3.11.: Resulting optical flows of the local models ElST (d?ST , eq. (3.433.43)) and ElTV (d?TV ,
eq. (3.443.44)). We can see that the structure tensor prior in the model ElST fails to
isotropically smooth the optical flow d?ST in the regions where the images ytc and
Ivsc are predominantly homogeneous. In these regions the TV model ElTV excels
due to the L1 piecewise smoothing term in eq. (2.1272.127).

in σsc for fixed values of a. The idea now is to find the optimal value a? such
that σscmin (a?) ≈ σsc,?. Figure 3.10b3.10b shows σscmin (a) as plotted over different
values of a. We can see that σscmin (a) increases with increasing window size a
although not monotone and the true optical scale difference σscmin (a?) = 3 is
reached for the window size a? = 21. Thus the window size a? = 21 is the size
for which ytc|Aa?x0

and Ivsc|Aa?x0
are expected to be linearly dependent

ytc|Aa?x0
≈ f · 〈Id?,vsc〉σsc |Aa?x0

(3.60)

With the values a? = 21 and σsc,? = 3 we compute the optical flow d for the
models ElST and ElTV

ElST (d) = Edata,lY,I (σsc,?, a?,d) + λST

2∑
i=1

ẼpriorST (∇di) (3.61)

ElTV (d) = Edata,lY,I (σsc,?, a?,d) + λTV

2∑
i=1

EpriorTV (∇di) (3.62)

In figure 3.113.11 we show the resulting optical flow d?ST and d?TV . The model ETV
produces a piece-wise smooth optical flow d?TV due to the piece-wise smoothing
term of TV in eq. (2.1272.127). On the other side the structure tensor model EST
produces artificial motion boundaries in the regions where ytc and Ivsc are struc-
tureless. This is due to the small weighting of the L2 term in eq. (3.413.41). The
value λ2 = 10−6 was chosen purely for stabilizing the structure tensor models
in eq. (3.383.38) and eq. (3.613.61) in the initial iterations of the multigrid optical flow
algorithm in alg. 11. However regions with structure are correctly matched by
both models. To access the local linearity hypothesis in eq. (3.603.60) we deployed
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(a) (b) (c)

Figure 3.12.: Comparison of the p-values (eq. (3.653.65)) for the hypotheses (eq. (3.683.68)) Hd̂=0 (fig-
ure 3.12a3.12a), Hd̂=d?

ST
(figure 3.12b3.12b) and Hd̂=d?

T V
(figure 3.12c3.12c). The p-values where

computed for windows Ax0 around each pixel x0 ∈ Ω and plotted over the binned
values of the gradient ∇y. All three diagrams show high p-values for gradients
∇y ≈ 0 indicating that the structureless areas in the data in figure 3.93.9 obey the linear
relation in eq. (3.683.68) regardless of the optical flow d̂. For higher values of the gradient
∇y the hypothesis Hd̂=0 in figure 3.12a3.12a fails as expected since the p-values tend to
zero. The p-values at higher gradients for the hypotheses Hd̂=d?

ST
(figure 3.12b3.12b) and

Hd̂=d?
T V

(figure 3.12c3.12c) are significantly higher then for Hd̂=0 with Hd̂=d?
T V

having

the highest p-values meaning that the total variation model ElTV in eq. (3.443.44) best
fulfills the linearity hypothesis in eq. (3.683.68).

Pearson’s χ2 statistic [9696].

Pearson’s χ2 statistic

Pearson’s χ2 statistic is a method of assessing whether a hypothesis HΘ which is
parameterized by the parameter set Θ is compatible a given set of observations
X̂i, 1 ≤ i ≤ k. . We will give a short overview of the method. Suppose the k
observations X̂i are realizations of the random variables Xi. For each random
variable Xi we can compute an expectation value Ei given our hypothesis HΘ.
The sum V defined by

V =
k∑
i=1

(Xi − Ei)2

Ei
(3.63)

is a random variable that follows the χ2 distribution with cumulative distribution
function P

P (V̄ < v) =
∫ v

0
f(v′)dv′, f(v) = v

k
2−1e−

v
2

2
k
2 Γ
(
k
2

) (3.64)

67



where V̄ is a potential value the random variable V can take. P (V̄ < v) is the
probability that V̄ is smaller then a given number v. The probability that the
number v is smaller then any value V̄ is computed by

p(v) = 1− P (V̄ < v) (3.65)

p(v) is called the p-value of v. The method of accepting or rejecting the hypothesis
HΘ goes as follows: We can compute the observation V̂ from the data X̂i and the
expectation values Ei generated by the hypothesis HΘ

V̂ =
k∑
i=1

(
X̂i − Ei

)2

Ei
(3.66)

If the p-value of the particular realization V̂ satisfies

p(V̂ ) > α (3.67)

for some given α ∈ [0, 1] then the hypothesis HΘ is accepted as compatible with
the data X̂i.

We want to use Pearson’s χ2 test to evaluate the optical flow results d?ST and
d?TV . The hypotheses to test are generated by the assumption that the local data
term Edata,lY,Id

in eq. (3.273.27) is minimal for a particular optical flow d̂

Hd̂ : y (x) ≈ µ
Ỹ |Ĩd̂

(x) µ
Ỹ |Ĩd̂

(x) = 〈fσ
sc,?,a?

d̂
· Id̂〉σsc (x) (3.68)

The random variables Xi are taken to be the pixels of the CCD of the TC, Ctc,
which can record different intensities. The particular recorded image intensities
ytc(x) are interpreted as the realizations X̂i and the conditional expectation val-
ues µ

Ỹ |Ĩd̂

(x) are the expectationsEi of theXi. We calculate the local observations

V̂ (x0)

V̂d̂(x0) =
∫
Ax0

(
y(x)− µ

Ỹ |Ĩd̂

(x)
)2
· µ−1

Ỹ |Ĩd̂

(x) d2x (3.69)

and compute the p-values p(V̂d̂(x0)) from eq. (3.643.64) and eq. (3.653.65) which we
abbreviate by pd̂(x0). In figure 3.123.12 we have plotted the local p-values pd̂(x0) over
the gradients ‖∇y(x0)‖ through binning by the value of the gradient for the cases
d̂ = 0, d̂ = d?TV and d̂ = d?ST . For regions of less structure ‖∇y(x0)‖ ≈ 0 all three
hypothesis yield high p-values such the local linearity assumption in eq. (3.683.68) is
valid. However the p-value pd0 converges to 0 for regions with higher gradients
invalidating the hypothesis d̂ = 0 for those regions as expected since the cameras
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Joint Histogram VSC Ivsc warped VSC Ivsc,d TC ytc

(a) (b) (c) d = d?ST (d)

(e) (f) (g) d = d?TV (h)

Figure 3.13.: Comparison of region of interests (ROI) of size a? = 21. Figures 3.13b3.13b and 3.13f3.13f show
a ROI of Ivsc and 3.13d3.13d and 3.13h3.13h the corresponding ROI of the image ytc. Figures
3.13c3.13c and 3.13g3.13g show figure 3.13b3.13b warped by the flows d?ST and d?TV . 3.13a3.13a and 3.13e3.13e
show the histograms between 3.13d3.13d and the filtered roi’s Ĩvsc,d = Wσsc,? ? Ivsc,d

Cvsc and Ctc are not aligned. If we set the threshold for acceptance α = 0.5
then the linearity hypotheses Hd?TV and Hd?ST (eq. (3.683.68)) are valid for regions
with gradients ‖∇ytc‖ < 10 since the corresponding p-values in figure 3.12c3.12c and
figure 3.12b3.12b are exceed α. For higher valued gradients ‖∇ytc‖ > 10 the p-value
pd?TV (figure 3.12c3.12c) is slightly higher than pd?ST (figure 3.12b3.12b) hence the model
total variation model ElTV in eq. (3.443.44) better fulfills the hypothesis of linearity
in eq. (3.683.68) then the structure tensor based model ElST in eq. (3.433.43) and is thus
better suited for multi-modal optical flow.

Figure 3.133.13 shows a comparison between an ROI in the image ytc (figure 3.13h3.13h)
and the corresponding ROI from the image Ivsc (figure 3.13b3.13b) warped by d?ST
(figure 3.13c3.13c) and by d?TV (figure 3.13g3.13g). The gradients within this ROI are of
the order ‖∇ytc‖ ≈ 10 and hence the corresponding p-values pd?TV and pd?ST are
in the accepted range, pd?TV > α and pd?ST > α. Hence the linearity hypothesis
in eq. (3.683.68) holds for both d̂ = d?TV and d̂ = d?ST and the histograms in fig-
ure 3.13e3.13e (hypothesis d̂ = d?TV ) and figure 3.13a3.13a (hypothesis d̂ = d?ST ) visually
reflect the linear dependence of the ROI in the image ytc (figure 3.13h3.13h) and the
corresponding ROI from the image Ivsc (figure 3.13b3.13b).
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(a) λ2 = 10−3 (b) λ2 = 10−6 (c) λ2 = 10−9

Figure 3.14.: The largest eigenvalue σkQ of Qreg plotted over the iterations k for three values of λ2

in eq. (3.413.41). Initially we have σkQ ≈ 8λ2 which is the eigenvalue of the L2 term in
eq. (3.413.41). For λ2 = 10−3 we see that σkQ slowly rises for increasing iterations k until
at k ≈ 40 a sudden jump occurs and σkQ begins to decrease. This is the regime where
the structure tensor prior EpriorST begins to act an-isotropically. For smaller values of
λ2 (figures 3.14b3.14b and 3.14c3.14c) the jump occurs sooner indicating quicker an-isotropic
behavior of EpriorST .

3.7.6. Eigenvalue analysis and the stabilization parameter λ2

In chapter 3.33.3 we stated that the L2 term in eq. (3.413.41) is needed to support the
numerical stability of the model. We will back this statement now. Figures
3.14a3.14a, 3.14b3.14b and 3.14c3.14c show the largest eigenvalue of Qireg, σiQ at each iteration
on the coarsest scale of the pyramid for different values of λ2 in the multigrid
optical flow algorithm in alg. 11. The data used was the rubber whale sequence in
figure 3.33.3 but we found similar results for the hydrangea sequence in figure 3.43.4
and the CFRP data in figure 3.93.9. The figures all show that σNQ rises to a maximum
after which it decreases and converges. The initial value of σiQ is of the order of
λ2 indicating that in the initial steps the L2 term in eq. (3.413.41) governs the regular-
ization. As the number of iterations increases the structure tensor determinant
gets more weight, until the point where its influence over weighs that of the
L2 term. For λ2 = 10−9 (figure 3.14c3.14c) the sudden jump occurs nearly instantly.
Since the influence of the L2 is negligible, the specific decaying form of σkQ in
figure 3.14c3.14c is an indication that EpriorST is smoothing an-isotropically. On the
other side Figures 3.15a3.15a, 3.15b3.15b and 3.15c3.15c show the residual vector b for different
values of λ2. Comparing the magnitude of the residual vector b in Figures 3.15a3.15a,
3.15b3.15b and 3.15c3.15c we see that for λ2 = 10−9, b is an order of magnitude larger then
the other cases, which leads to longer convergence rates or numerically instable
solution. This means we have a trade-off between

• λ2 ∼ 10−3: Faster convergence but less influence of structure tensor (need
i > 40 iterations for ST to act)

• λ2 ∼ 10−9: slower convergence but more influence of structure tensor
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(a) λ2 = 10−3 (b) λ2 = 10−6 (c) λ2 = 10−9

Figure 3.15.: The residual vector b plotted over the iterations k for three values of λ2 in eq. (3.413.41).
While the norm of b is approximately equal for λ2 = 10−3 and λ2 = 10−6, it is an
order of magnitude higher for λ2 = 10−9. This indicates a numerical instability of
the MOF algorithm for λ2 = 10−9

(need only i > 1 iterations for ST to act)

We choose λ2 = 10−6 since in this case b is of the same order of magnitude as
for λ2 = 10−3 but as we see in figure 3.14b3.14b the structure tensor only needs 4
iterations until its eigenvalues over-weigh the eigenvalues of the L2 term.

3.7.7. Summary

In this section we introduced a prior energy EpriorST (∇φ) based on the structure
tensor [8787, 3434]. The construction was based on the principles outlined in section
2.22.2, namely that EpriorST must be invariant under the action of the group G =
T×SO(2) in order to preserve linear level-sets of φ regardless of their orientation.
We deployed EpriorST in the context of multi-modal optical flow. In Multi-modal
optical flow the task is to register two images y and I recorded by the cameras
Cy and CI on a pixel-by-pixel basis with a mapping represented by the GRF
d(x). Within this context a similarity measure Edatay,I (σsc,d) which measures how
similar the image y is with the warped image Id = I(x+ d(x)) was introduced.
The similarity measure Edatay,I is a cross correlation type measure with the feature
that it can handle the situation in which the images y and I have differing optical
resolutions. Essentially Edatay,I (σsc,d) measures the similarity between the low
resolution image y and the filtered image 〈Id〉σsc and since it is a CC type measure
it is minimal when

y(x) ≈ f〈Id?〉σsc(x) + β (3.70)

holds for an optimal value d? of the optical flow and constants f and β.

First we combined our new similarity measure Edatay,I together with our new prior

71



energy EpriorST and with the total variation prior EpriorTV from section 2.52.5 to the
optical flow models

EgST (d) = EdataY,I (σscale,d) + λST

2∑
i=1

EpriorST (∇di) (3.71)

EgTV (d) = EdataY,I (σscale,d) + λTV

2∑
i=1

EpriorTV (∇di) (3.72)

To compare EpriorST with the total variation prior EpriorTV we deployed both models
in eqs. (3.713.71) and (3.723.72) on the rubber whale sequence (figure 3.33.3) and the hy-
drangea sequence (figure 3.43.4) from the middleburry dataset [8888]. Both sequences
are uni-modal (σsc,?=0) and hence the similarity measure EdataY,I reduces to an
ordinary CC measure. Our findings is that the model EgST in eq. (3.713.71) produces
optical flows d?ST with better endpoint errors (EPE) when the window size of
the structure tensor σST is sufficiently large. The best results where achieved for
σST = 11. However the TV based model in eq. (3.723.72) still produces an optical
flow d?TV with an EPE better then the best result for the model EgST .

We went on to simulate a setup of co-aligned (no separating flow d = 0) images
ytestσ and Itest which are different in optical resolution and intensity distribution.
Several images ytestσ were generated from Itest by inverting the intensities of Itest

followed by Gaussian filtering with spacial standard deviations σsc,?test = 1 · · · 5
and addition of iid noise, thus simulating the linearity relation in eq. (3.703.70). The
goal was to find out if the similarity measure Edataytestσ ,Itest(σ

sc,0) is capable of
capturing the true scale difference σsc,?test through variation with respect to the
scale parameter σsc. We showed that Edataytestσ ,Itest(σ

sc,0) is convex with respect to
σsc. Furthermore the minimum is equal to the true scale difference, σsc,? = σsc,?test .
Thus we concluded that given the hypothesis that two images y and I with
different optical resolutions are linearly dependent (eq. (3.703.70)), the similarity
measure Edatay,I (σsc,0) is sensitive to the true scale difference σsc,?.

An analysis of our optical flow method followed for a real world multi-modal
setup. The setup included a camera rig containing a thermographic camera (TC)
Ctc and a visual spectrum camera (VSC) Cvsc. Both cameras recorded an object
made out of carbon fiber reinforced polymers (CFRP) producing the images ytc
and Ivsc, and the cameras are known to have a difference in optical scale of σsc,? =
3. The task was to estimate the optical flow d? between ytc and Ivsc. The problem
we encountered was that ytc and Ivsc do not share a global linear relationship
such as eq. (3.703.70), since the infra-red reflectance of the CFRP can vary across
different regions of equal intensity in the visual spectrum domain. Therefore we
proposed a local CC-type similarity measure Edata,ly,I (σsc, a,d) which is based on
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the hypothesis that ytc and Ivsc are locally linearly dependent

H?
d : ytc|Aa?x0

≈ f · 〈Id?,vsc〉σsc |Aa?x0
(3.73)

where Aa?x0 is a window around any point x0 ∈ Ω with some optimal window
size a?. We showed that the optimal scale d? of Edata,lytc,Ivsc

(σsc, a,0) is a function of
the local window size a, σsc,? : σsc,?(a). The value a? = 21 was deduced from
the expectation that σsc,?(a?) should be equal to the true optical scale difference,
σsc,?(a?) = 3. We were able to compute the optical flow between ytc and Ivsc
with the local models

EST (d) = Edata,ly,I (σsc,?, a?,d) + λSTE
prior
ST (∇d) (3.74)

ETV (d) = Edata,ly,I (σsc,?, a?,d) + λTVE
prior
TV (∇d) (3.75)

To analyze the validity of the local linearity hypothesis H?
d in eq. (3.733.73) for

the computed flows d? = d?ST (from eq. (3.743.74)) and d? = d?TV (eq. (3.753.75)) we
deployed Pearson’s χ2 test. The p-value p?d(x) in Pearson’s χ2 test is an indicator
for the validity of the hypothesis H?

d such that p?d(x) = 1 means that H?
d is

definitely valid at the point x and p?d(x) = 0 means that H?
d must be rejected.

The p-values pd?ST (x) and pd?TV (x) in regions with small gradients ‖ytc‖ < 10
were sufficient, pd?ST /d?TV ≈ 1, to accept the linearity hypotheses Hd?ST and Hd?TV .
For higher gradients ‖ytc‖ > 10 both p-values dropped off below the 50% quan-
tile, however with pd?TV being slightly larger then pd?ST . Thus although both
models in eq. (3.753.75) and eq. (3.743.74) are not fully consistent with the linearity hy-
pothesis in eq. (3.733.73) at the boundaries of the CFRP, the TV model in eq. (3.753.75)
produced an optical flow d?TV which is more consistent with the data ytc and Ivsc
at the boundaries then the structure tensor based model in eq. (3.743.74).

The good p-values in the regions ‖ytc‖ < 10 do not give any information about
how consistent the computed flows d?ST (from eq. (3.743.74)) and d?TV (eq. (3.753.75)) are
themselves. This is why we visually compared d?ST and d?TV to each other: The
flow d?ST had a lot of artificial linear boundaries in regions where ytc and Ivsc
are largely constant. In contrast the flow d?TV was smooth everywhere except
at the physical boundary locations of the CFRP. This is due to the behavior of
EpriorST (∇d), namely that it only penalizes the curvature of the level-sets of d.
On the other hand the TV prior EpriorTV not only penalizes the curvature of the
level-sets but also enforces smoothness of the solution d?TV in regions where
the images ytc and Ivsc are not discontinuous. Thus we conclude two things:
First the TV prior EpriorTV is superior to our structure tensor based prior EpriorST

for multi-modal optical flow since the TV model in eq. (3.753.75) produces visually
more consistent optical flows. Secondly the local linearity hypothesis in eq. (3.733.73)
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which emerges from our proposed similarity measure Edata,lytc,Ivsc
(σsc, a,d) holds

very well in regions where the images ytc and Ivsc vary only gradually with
no discontinuities, but must be rejected at the discontinuities of ytc and Ivsc.
This behavior is presumably due to the lack of information about the physics
of the TC in the similarity measure Edata,lytc,Ivsc

(σsc, a,d) as we had only encoded
the basic assumption that TC produces Gaussian noise (see eq. (2.1602.160) in section
2.72.7). Including a more realistic noise distribution into Edata,lytc,Ivsc

will generally lead
to a (possibly non-linear) relation between ytc and Ivsc which is better suited to
estimate the optical flow at the boundaries of the CFRP.
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4. The Extended Least Action
Algorithm

In section 2.1.12.1.1 we had reviewed the principle of least action (PLA) of an arbitrary
Gibbs random field (GRF) theory which is modeled by the energy

E
(
φ,XΩ

e φ
)

= Edata (φ)+Eprior
(
XΩ
e φ
)

=
∫

Ω
Etot

(
φ (x) ,XΩ

e φ (x)
)
d2x (4.1)

where the prior Eprior
(
XΩ
e φ
)

depends on the operators XΩ,i
e ∈ B of a commuta-

tive sub algebra B ⊂ G of some arbitrary Lie algebra G. In short the PLA states
that the minimizer φ? of the energy E in eq. (4.14.1) is the value of the GRF φ which
obeys the Euler-Lagrange equations

[Etot] (φ(x)) |φ=φ? = 0, [Etot] (φ(x)) = δE
δφ(x) −Div(P ) (4.2)

Div(P ) =
∑
µ

d

dxµ

(∑
i

ωµΩ,iPi

)
, Pi = δEprior

δXΩ,i
e

(4.3)

Section 2.4.22.4.2 was dedicated to the analysis of the energy E
(
φ,XΩ

e φ
)

under

the action of an r-dimensional finite Lie Group G = Gφ × GΩ which contains
transformations of the GRF φ and of the coordinate frame Ω. Noether’s theorem
in eq. (2.1152.115) states that if the energy E in eq. (4.14.1) is invariant under the Lie
group G = Gφ × GΩ and if Gφ and GΩ are independent from each other, then E
must be invariant under GΩ. Then the canonical momentum P and hence the
prior energy Eprior must fulfill eq. (2.1202.120) for any value of the GRF φ

B̃φ = 0, B̃ =
∑
i

Pi
[
XΩ,i
e , XΩ,m

e

]
(4.4)

Eq. (4.44.4) stems from the group GΩ, the spatial transformations of the domain
Ω, while the Euler-Lagrange equations in eq. (4.24.2) stem from the group Gφ, the
functional transformations of the GRF φ. The coupling of the Euler-Lagrange
differentials [E ] and the product B̃φ in eq. (2.1142.114) suggest that eq. (4.44.4) and thus
GΩ impact the solutions space of the Euler-Lagrange equations in eq. (4.24.2). Indeed
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(a) φ0(x) (b) Ω0 (c) φ̃(x) = φ0(TBt ◦ x) (d) Ωε = TBt ◦ Ω0

Figure 4.1.: Figure 4.1a4.1a shows an image φ0 with parabolic level-sets according to eq. (4.94.9). The
white line indicates the level-sets Sφ0,c with 39 < c < 43. In figure 4.1b4.1b the coordinate
frame Ω0 is shown together with the level-sets Sφ0,c. Figure 4.1c4.1c shows the warped
image φ0(TBt ◦ x) and figure 4.1d4.1d the transformed coordinate frame Ω̃ = TBt ◦ Ω0. Ω̃
has been deformed by the algorithm in eq. (4.104.10) in such a way that the level-set Sφ0,c

(indicated by the black line) appears to be straight and hence it is identified with the
linear domain Ωε of the TV prior EpriorTV (∇φ).

we will show that there exists an optimal deformation of the coordinate frame Ω
which serves as an aid to solving the Euler-Lagrange equation in eq. (4.24.2). The
deformation algorithm will exploit the non-trivial symmetries of the energy in
eq. (4.14.1) in order to narrow down the space of possible solutions to the Euler-
Lagrange equations in eq. (4.24.2). We will evaluate its effectiveness for both the
TV prior EpriorTV which we reviewed in section 2.52.5 and the structure tensor prior
EpriorST which we introduced in section 33.

The Basic Idea

We will start the motivation of the new algorithm in the following way: As we
outlined in section 2.32.3 the role of the prior energy Eprior

(
XΩ,i
e φ

)
in eq. (4.14.1) is

to set a constraint on the form of the level-sets of the image φ. By constraint
we mean the particular geometrical form of the level-sets Sεα of the minimizers
φ? ∈ A ( A was defined in eq. (2.342.34)). This form is defined by the coordinate
transformation ε(x) which obeys the Cauchy-Riemann equations in eq. (2.822.82).
The coordinate transformation ε(x) simply transforms the level-set Sεα to the
linear domain Ωε (the image of ε(x), see eq. (2.802.80)) where Sεα appears to be a line
with orientation vector α.

Two examples of prior energies previously introduced, The structure tensor
based prior energy in eq. (3.143.14) in section 3.33.3 and the total variation (TV) prior
in eq. (2.1262.126), are constructed from the Lie algebra t of the translation group T
which is spun by the Cartesian operators {∂x, ∂y}. Thus the level-sets S of their
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minimizers are lines (zero curvature κ (eq. (2.1382.138))) in the Cartesian coordinate
frame Ω.

Our idea is to find a method for obtaining a transformation of the coordinate
frame Ω, TBt such that given an arbitrary image φ0(x) the level-sets of the
warped image φ0(TBt ◦x) satisfies the geometrical constraints imposed by Eprior,
specifically such that the level-sets

S =
{
x′
∣∣∣∣∣∑
i

αiX
Ω,i
e φ

(
x′
)

= 0
}
, x′ = TBt ◦ x (4.5)

are linear in the linear domain Ωε of the prior Eprior(XΩ,i
e φ) (see figure 4.14.1). In

general it is not possible to derive TBt analytically since an analytical expression
for the level-sets of an arbitrary image φ0 is not available. We have therefore
devised a method to iteratively estimate TBt as the result of a flow equation on
the domain Ω

ẋ (t) = b (P ,x (t)) (4.6)

where P is the canonical momentum (eq. (4.24.2)). Then the action of TBt on Ω can
be understood as the integration of ẋ(t) in eq. (4.64.6) over the flow parameter t

TBt ◦ x =
∫ T

0
b (P ,x (t)) dt (4.7)

We will later derive the explicit form of b from eq. (2.1192.119). For now we only need
to know that b only depends on the prior energy Eprior and not on the data term
Edata. Therefore we consider the total energy E(φ,∇φ) in eq. (4.14.1) only to consist
of the TV prior EpriorTV

E (φ,∇φ) = EpriorTV (∇φ) (4.8)

What follows is a display how the flow equation in eq. (4.64.6) helps to (partially)
minimize EpriorTV . Consider the image φ0(x) in figure 4.1a4.1a. It’s level-sets have the
shape of a parabola

Sφ0,y0 =
{
x
∣∣∣y = (x− x0)2 + y0, (x, y)T = x, y0 ∈ R

}
(4.9)

where x0 is the x-component of the center pixel of φ0 and y0 is an offset in y-
direction. The white line in figure 4.1a4.1a indicates the bundle of level-sets Sφ0,y0

with 39 < y0 < 43, it is not part of the actual image. We implemented a simple
algorithm that solves the integration problem in eq. (4.74.7) by splitting the time
domain {0, T} into N time steps tn, 0 ≤ n ≤ N and iteratively computing a new
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coordinate frame Ωn+1 given an old estimate Ωn

Ωn+1 : xn+1 = xn + τΩb (P ,xn) , xn ∈ Ωn (4.10)

where Ωn is the transformed coordinate frame at time step tn. The initial coordi-
nate frame Ω0 (figure 4.1b4.1b) is the Cartesian coordinate frame and the black line
in figure 4.1b4.1b indicates the level-set Sφ0,y0 . The simple procedure in eq. (4.104.10)
deforms the coordinate frame Ω0 under the influence of the prior EpriorTV such
that it assumes the form Ω̃ = TBt ◦ Ω0 in figure 4.1d4.1d after N = 2500 iterations.
In figure 4.1c4.1c the image φ0(TBt ◦ x) is shown which is the result of transforming
the original image φ0(x) (figure 4.1a4.1a) to the frame Ω̃ in figure 4.1d4.1d. Within this
frame the level-sets of φ0 appear to be straight lines since the curvature κ of the
level-sets of φ0 are penalized by the TV prior EpriorTV . Hence the domain Ω̃ can
be identified with the linear domain Ωε of the TV prior EpriorTV . In figure 4.1d4.1d we
can see that the transformed domain Ω̃ has been curved in the opposite direction
and thus Ω̃ has negative curvature −κ. Hence the curvature of φ0 in figure 4.1a4.1a
is not cancelled but merely inverted and deferred to the coordinate frame Ω.

4.0.8. Newtonian Minimization

One of the basic algorithms for solving the Euler-Lagrange equations in eq. (4.24.2)
is the method of steepest descent (see [66] for an overview of gradient methods in
image processing). The basic idea of steepest descent is to view the minimizers
φ? ∈ A as the result of a flow equation driven by the Euler-Lagrange differentials
[Etot]

φ̇(t,x0) = − [Etot] (φ(t,x0)) (4.11)

such that for t → t? where the limit t? might by infinite, φ(t,x0) converges to
φ?(x0)

φ̇(t,x0)
∣∣∣
t→t?

= 0 =⇒ φ(t,x0)|t→t? = φ?(x0) (4.12)

In practical implementations we discretize the interval [0, t?] into N time steps
tn and identify the GRF φ at the the different time steps by φn(x0) = φ(tn,x0).
Starting with an initial guess φ0, we compute a new estimate of the field φ by
advancing a previous estimate φn along the negative direction of the gradient of
E(φ,XΩ

e φ) which is provided by the Euler-Lagrange differentials [Etot]

φn+1(x0) = φn(x0)− τφ [Etot] (φn(x0)) (4.13)
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The scheme is repeated (see algorithm 22, Basic Newton Algorithm (BNA) ) until
either the Euler-Lagrange differentials vanish or the fixed number N of iterations
is reached.

Our new methodology is to combine the concept of steepest descent for the
spacial coordinate frame Ω from eq. (4.64.6) with the concept of steepest descent for
the image φ (in eq. (4.114.11))

φ̇(t,x(t)) = − [Etot] (φ(t,x(t))) (4.14)
ẋ (t) = b (P (t),x (t)) (4.15)

where the canonical momentum P depends on the current state (φ(t,x(t))),
hence the time dependence. The combination of the discretized eqs. (4.104.10) and
(4.134.13) is straightforward

φn+1(xn) = φn(xn)− τφ [Etot] (φn(xn)) (4.16)
xn+1 = xn + τΩb (Pn,xn) (4.17)

The exact form of the vector b(x) will soon be deduced, now we wish to give an
intuitive idea of b(x) should look like. For this we will discuss the influence of
Noether’s Theorem on the level-sets S. From this discussion it will follow that
the VVF b(x(t)) is the set of tangential vectors to the level-sets of φ at time t.

4.0.9. The dynamics of the level-sets S

Noethers Theorem states that if the energy functional E is invariant under a Lie
group G of dimension r, then there exists r identities relating the Euler-Lagrange
differentials [E ] (eq. (4.454.45)) and the divergences of r vector valued functionsWm

(eq. (2.1112.111))

d

dt
gγt ◦ E

∣∣∣∣
t=0

=
∫

Ω

∑
m

αm
(

div (Wm) + ω̃φm[Etot]
)
d2x = 0 (4.18)

ω̃φm = ωφm −Xm,Ω
e (φ) (4.19)

for any one-parameter subgroup gγt ⊂ G. If G is a pure spacial Lie group, ωφm = 0,
then eq. (4.184.18) simplifies to

d

dt
gγt ◦ E

∣∣∣∣
t=0

=
∫

Ω

∑
m

αm
(

div (Wm)−Xm,Ω
e (φ) [Etot]

)
d2x = 0 (4.20)
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Figure 4.2.: This figure shows a transformation of the level-set S to S′ along the vector Wm(x).
The region A ⊂ Ω is the region a section of S traverses as it is shifted alongWm to the
end position S′. If the divergence ofWm vanishes, this means that the incoming flux
ofWm equals the outgoing flux (both indicated by the red arrows),Wm|S = Wm|S′

which is independent of the integration region. Since eq. (4.204.20) must hold for
any coefficient vector α, the individual divergences must satisfy∫

Ω
(div (Wm)) d2x =

∫
Ω

(
Xm,Ω
e (φ) [Etot]

)
d2x (4.21)

Thus on the set φ? ∈ A the VVFsWm are divergence free.

Dynamics of the normal vector nS

Eq. (4.214.21) must hold for any integration domain Ω which means that the inte-
grands themselves must be equal

div (Wm) = Xm,Ω
e (φ) [Etot] (4.22)

By Gauss’ law the integrated divergence ofWm within any subset A ⊂ Ω equals
the integral of the flux ofWm over the surface ∂A∫

A
div (Wm) d2x =

∫
∂A
WmdnS (4.23)

where n is the normal vector on the surface ∂A. Thus from eq. (4.224.22) we have∫
∂A
WmdnS =

∫
A

(
Xm,Ω
e (φ) [Etot]

)
d2x (4.24)

In figure 4.24.2 we have depicted the situation where a level-set S is shifted along
the vectorWm with S′ being the result of the shift and A is the region traversed
by the shift of a section of S. We denote this transformation by S → S′. The
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boundary ∂A consists of two lines tangential to Wm besides the sections of S
and S′. Since the flux over the tangential lines vanishes we have∫

S
WmdnS −

∫
S′
WmdnS′ =

∫
A
Xm,Ω
e (φ) [Etot] dx2 (4.25)

From Eq. (4.254.25) we see that the Euler-Lagrange differentials [Etot] and the basis
element Xm,Ω

m act as a source that drives the transformation S → S′ in the sense
that the level-set S propagates until it traverses a region in which the integrand of
the right hand side in eq. (4.254.25) vanishes. More precisely eq. (4.254.25) can interpreted
as an equation of motion for the normal vector on S, nS .

Dynamics of the tangential vector to S

The goal of this section is to show that eq. (4.254.25) does not suffice explain the
motion of the level-sets S in the BNA (algorithm 22). We will derive an equation
for the normalized tangential vectors of the level-sets S, which we label bS(x).
In fact the vector b(x(t)) which was introduced in eq. (4.64.6) happens to be equal
to bS evaluated at x(t)

b (x(t)) = bS(x)|x=x(t) (4.26)

Since bS is the tangential vector to S we can write the level-set equation for S in
the form of an operator equation

Bφ = 0, B = bµS (x) ∂µ (4.27)

If we define B to be the basis operator of the algebra of a one parameter Lie
group TBt (see eq. (2.552.55))

d

dt
TBt ◦ φ

∣∣∣∣
t=0

= Bφ = bµS∂µφ = 0 (4.28)

then the image φ(x) is an invariant TBt . At first glance it seems that the operator
B can not achieve what we set out to do in the flow equation in eq. (4.64.6) (and
figure 4.14.1). And indeed we are led to believe that the energy E in eq. (4.14.1) is also
invariant to the transformation TBt

d

dt
TBt ◦ E

(
φ,XΩ

e φ
)∣∣∣∣
t=0

= 0 (4.29)

since it depends on φ which in turn obeys eq. (4.284.28). Noether’s theorem in
eq. (2.1112.111) holds independently of the image φ, hence eq. (4.294.29) would have to
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(a)

Figure 4.3.: Figure 4.3a4.3a shows an image φ in which a group of level-sets with 47 < φ < 53
(indicated by the white area) all converge into one point P at the top of the image.
The line sections S1,2 and T1,2 enclose the region AB in eq. (4.354.35) and eq. (4.374.37). The
normal vectors nS1,2 of lines S1,2 are orthogonal to bS , hence the corresponding line
integrals on the right hand side of eq. (4.354.35) vanish. In contrast the normal vectors
nT1,2 of lines T1,2 are parallel to bS so that the corresponding line integrals on the
right hand side of eq. (4.354.35) do not vanish

hold for any image φ. We will show that eq. (4.294.29) cannot hold for at least one
image φ if eq. (4.274.27) holds uniformly for all x ∈ Ω by contradiction:

Assume eq. (4.294.29) to hold for TBt . Then by Noether’s theorem there must exist a
vector valued functionWB(x) for which similar to eq. (4.214.21) the identity∫

Ω
(div (WB)) d2x =

∫
Ω

(B (φ) [Etot]) d2x (4.30)

must hold. However due to eq. (4.284.28) the integrand of the right hand side of
eq. (4.304.30) vanishes uniformly on Ω, leading to the conclusion that the divergence
ofWB(x) must vanish uniformly too

div (WB) (x) = 0, ∀x ∈ Ω (4.31)

The fallacy in our argumentation lies in the last statement in eq. (4.314.31). As we
will see eq. (4.314.31) cannot hold: We recall the generic form of the divergence vector
Wm from eq. (2.1132.113)

Wµ
m = ωµmE +

∑
i

ωµi

(
ωφm −Xm,Ω

e (φ)
) δE
δ (Xi

eφ) (4.32)

and replace Xm,Ω
e with B as the generating operator, thereby setting ωφm = 0 (B

is a purely spacial operator)

Wµ
B = bµSE −

∑
i

ωµi ·B (φ) δE
δ (Xi

eφ) (4.33)
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Again by virtue of eq. (4.284.28)WB simplifies even more

Wµ
B = bµSE (4.34)

To show why div(WB) = 0 cannot hold we have constructed an image φ (fig-
ure 4.3a4.3a) in which a group of level-sets indicated by a white region converge into
one point P . We construct an integral over a regionAB which is enclosed by two
level-sets S1 and S2 (the blue lines in figure 4.3a4.3a) and two curves T1 and T2 (the
red lines in figure 4.3a4.3a) connecting the level-sets∫

AB
div(WB)d2x =

∫
S1
E · (bS · nS1) dS1 +

∫
S2
E · (bS · nS2) dS2

+
∫
T1
E · (bS · nT1) dT1 +

∫
T2
E · (bS · nT2) dT2 (4.35)

The arrows in figure 4.3a4.3a indicate the orientation of the line integral on the right
hand side of eq. (4.354.35). Since the vector valued function bS(x) is the tangent
vector on the level-sets S1 and S2 the corresponding line integrals in eq. (4.354.35)
vanish. Furthermore T1 and T2 have opposite orientation so we can choose the
gauge

(bS |T1 · nT1) = +1, (bS |T2 · nT2) = −1 (4.36)

Thus we have for the divergence∫
AB

div(WB)d2x =
∫
T1
E
(
φ(x),XΩ

e φ(x)
)
dT1 −

∫
T2
E
(
φ(x),XΩ

e φ(x)
)
dT2

(4.37)

If div(WB) = 0 was to be true then the two line integrals in eq. (4.374.37) would
have to cancel. However we did not make any assumptions on the length of
the curves Ti or on the distance between them so eq. (4.374.37) must hold for any
configuration of the Ti. If we push T1 to the point P where it has zero length,
‖T1‖ = 0, then eq. (4.374.37) simplifies to

0 = −
∫
T2
E
(
φ(x),XΩ

e φ(x)
)
dT2 (4.38)

since the T1 integral in eq. (4.374.37) vanishes (integrals over sets of zero measure
vanish). Eq. (4.384.38) holds for any configuration of T2 with non zero length. Hence
we conclude that the energy density E(φ(x),XΩ

e φ(x)) must vanish on Ω. In other
words: There cannot exist a non zero energy density which is invariant under
TBt given the image φ in figure 4.3a4.3a. We have derived a clear contradiction. It
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follows that the energy E cannot be an invariant of the transformation TBt !

d

dt
TBt ◦ E

(
φ,XΩ

e φ
)∣∣∣∣
t=0
6= 0 (4.39)

The question that remains is that if TBt does not change the values of φ(x) what
does it change? In eq. (4.64.6) we already gave a hint: TBt is an operator on the
coordinates x themselves

x (t) = TBt ◦ x0 (4.40)

The constraint in eq. (4.284.28) guaranties that the level-set of φ(x(t)) move along
with the flow in eq. (4.404.40). The image φ just appears to be transformed if we
view it from an absolute reference frame Ω0

φ̃ (x0) = φ
(
TBt ◦ x0

)
, x0 ∈ Ω0 (4.41)

However the particular reference frame Ω0 is irrelevant as two frames Ω and Ω′
may always be connected by the flow in eq. (4.404.40).

4.1. The Extended Least Action Algorithm

In this section we will compute the exact form of the operator B. The two core
aspects of the operator B as motivated in the previous section are: B must be a
level-set operator (eq. (4.274.27)) and furthermore it must be the generator of a one
parameter flow equation on the coordinate frame Ω in the sense of eq. (4.404.40). Thus
we are looking for a level-set operator which comes from a spacial transformation.
In eq. (2.1042.104) we studied how the energy E from eq. (4.14.1) transforms under an
arbitrary sub group gγ(t) ⊂ G

d

dt
gγt ◦ E

∣∣∣∣
t=0

=
∫

Ω

(∑
i

[
V Ω
e , X

Ω,i
e

]
(φ) · Pi + vφ[Etot]

)
d2x = 0 (4.42)

=
∫

Ω

(∑
m

αmB̃mφ+ vφ[Etot]
)
d2x = 0 (4.43)

B̃m =
q∑
i=1

Pi
[
Xm,Ω
e , Xi,Ω

e

]
, Pi

(
XΩ
e φ (x)

)
= δEprior
δ
(
XΩ,i
e φ

) (4.44)

As we explained in section 2.42.4 the variation to the field φ, vφ and the operator
V Ω
e φ which comes from the variation of the spacial coordinates x are taken to be

independent from each other. Thus for eq. (4.434.43) to hold both the Euler-Lagrange
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differentials [Etot] and the product B̃mφ must vanish

[Etot] (φ?) = 0 (4.45)

B̃mφ = 0 (4.46)

While eq. (4.454.45) only holds for the minimizers φ?, eq. (4.464.46) holds according to
section 2.4.32.4.3 for any image φ if the energy E is invariant under pure spacial
transformations induced by V Ω

e . Furthermore eq. (4.464.46) must hold independently
from the coefficient vector α, since eq. (4.434.43) must hold for any gγt ∈ G. We will
show now that eq. (4.464.46) defines the level-set operator B. Since the commutator
in eq. (4.434.43) is an element of the Lie algebra G, by eq. (2.672.67) it can be represented
in terms of the basis Xi

e[
Xm,Ω
e , Xi,Ω

e

]
=
∑
l

C lmiX
Ω,l
e (φ) (4.47)

As the basis elements XΩ,l
e are represented by the Cartesian gradient operator∇

XΩ,l
e = ωµl (x) ∂µ (4.48)

the operator B̃m in eq. (4.434.43) takes the form

B̃m =
∥∥∥b̃m∥∥∥Bmφ (x) , b̃µm (x) =

∑
i

Pi
(
φ (x)

)
C lmiω

µ
l (x) (4.49)

Bm =bµm (x) ∂µ, bµm =
∥∥∥b̃m∥∥∥−1

b̃µm (4.50)

We would like to discuss the normalized operatorBm. By eq. (4.494.49) and eq. (4.464.46)
the operatorBm must satisfy the level-set equation

Bmφ = bµm∂µφ = 0 (4.51)

The r operatorsBm are the basis of an algebra GB and an associated group GB .
For reasons soon to be clear we call the group GB the bending group and the
algebra GB the bending algebra. The dimension rB of GB is not necessarily equal
to the dimension r of the original algebra G, since Bm 6= 0 holds only for the
non trivial elements of G. For instance in the case G = T× SO(2) only the SO(2)
group allows for the construction of a bending group SOB(2) since E is trivially
invariant under T. It is the rB non trivial operators Bm 6= 0 which we use to
define the diffusion equation for the coordinate frame Ω from eq. (4.404.40)

x (t) = TBt ◦ x,
dx (t)
dt

∣∣∣∣
t=0

=
r∑

m=1
βmBmx = B · x (4.52)

85



The operator B is a linear combination of the r operators Bm from eq. (4.504.50)
and the coefficient vector β is an arbitrary constant vector. Since allBm 6= 0 are
level-set operators (eq. (4.514.51)) the linear combination B is also a level-set operator.
The normalization in eq. (4.504.50) is needed for the gauge conditions in eq. (4.364.36)
to hold. Thus from the arguments leading to eq. (4.394.39) the diffusion equation in
eq. (4.524.52) must minimize the total energy E in eq. (4.14.1). The combination of the
flow driven by the bending operator B in eq. (4.524.52) and the flow driven by the
Euler-Lagrange differentials [Etot] in eq. (4.114.11)

φ̇(t,x(t)) = − [Etot] (φ(t,x(t))) (4.53)
ẋ (t) = B · x(t) (4.54)

can be interpreted as the defining differential equations of a transformation
T (t) = (T φt , TBt ) which maps the initial guess φ0 to a minimizer of total energy
E in eq. (4.14.1)

φ(x0, t) = T φt ◦ φ0 (x(t)) , x(t) = TBt ◦ x0, x0 ∈ Ω0 (4.55)
φ?tot(x0) = lim

t→∞
φ(x0, t) (4.56)

The bending flow in eq. (4.544.54) cannot be deduced from eq. (4.534.53). Hence it
provides an extension to the principle of least action.

The Curvature Operator K

The diffusion process in eq. (4.524.52) is a non-linear process since the coefficient
vector bm(x) itself (eq. (4.504.50)) is a function of the coordinates x(t) and the GRF
φ. It is guided along those operators Bm which do not vanish due to trivial
symmetries. We had motivated in figure 4.14.1 that the diffusion equation in
eq. (4.524.52) bends the coordinate frame so that the level-sets of the image φ appear
to respect the geometric constraints imposed by the prior energy Eprior. The
geometric constraints imposed by Eprior are constraints on the curvature κ of
the level-sets S. For instance the TV prior EpriorTV (eq. (2.1262.126)) penalizes level-sets
with non-zero mean curvature (eq. (2.1392.139)). The geometric constraints imposed
by Eprior are fulfilled when the functional derivative of Eprior[

Eprior
]

(φ) = −DivP (φ) (4.57)

vanishes. In section 4.0.94.0.9 we had shown that the energy E is not invariant to the
flow in eq. (4.524.52) and is thus minimized. However if E is minimized, then the
diffusion process must also have an effect on the Euler-Lagrange differentials
in eq. (2.1162.116), especially on the divergence of the canonical momentum P in
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(a) (b)

Figure 4.4.: Effect of the diffusion x′ = gB(t) ◦ x (eq. (4.524.52)) on the canonical momentum P .
Figure 4.4a4.4a shows a schematic picture of a region AB ⊂ Ω between two level-sets
S1 and S2. The canonical momentum (the vectors on the level-sets S1,2) is denoted
by PS1,2 . P changes its orientation when shifted along the level-sets S1 and S2 since
the norm of the curvature operatorK (eq. (4.594.59)) is non zero. In figure 4.4b4.4b the level-
sets S1,2 have been deformed according to x′ = gB(t) ◦ x such that the canonical
momentum P becomes invariant with respect to shifts along S1,2. In this case the
norm of the curvature operatorK vanishes

eq. (4.574.57). The effect of TBt on DivP is interesting for the reason that P has a
relation to the gradient ∇φ and thus to the level-sets S, for instance for the TV
prior EpriorTV we will show later that P is parallel to ∇φ. If we know how DivP
changes under the flow in eq. (4.524.52), we will know how P and thus the level-sets
S deform under eq. (4.524.52).

The rate of change of DivP can be computed by considering the integral

F =
∫

Ω

d

dt
TBt ◦DivP (x)

∣∣∣
t=0

φ (x)Nd2x (4.58)

where Nd2x is the volume measure preserved under the flow in eq. (4.524.52).
Eq. (4.584.58) can be transformed into an integral over an operator on φ (see appendix
B.1B.1)

F =
∫

Ω
Kφ (x)Nd2x, K =

[
B, PiXi

e

]
(4.59)

We call the operatorK the curvature operator for two reasons. First it represents
the mixed second order derivate of the energy E, since E was first functionally
derived by its argument φ then by the flow parameter t from eq. (4.524.52). Second
and importantly K relates to a geometrical curvature: Since B is a level-set
operator eq. (4.274.27),K describes the change the vector P undergoes when being
shifted along the level-sets S. In figure 4.44.4 we have schematically depicted the
action of TBt on the canonical momentum P . Figure 4.4a4.4a shows a regionAB ⊂ Ω
which is foliated by level-sets ranging from S1 to S2. The vector P varies upon
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Algorithm 2 Basic Newton Algorithm (BNA)

Set k = 0
Set Initial guess φ0

Compute residual rk = − [Etot]
(
φk
)

while ‖r‖ > δ and k < N do
Compute φk+1 (x) = φk (x)− τφ [Etot]

(
φk (x)

)
Recompute rk+1 = − [Etot]

(
φk+1

)
Store Ek+1 = E(φk+1,∇φk+1) in a vector {Ek}
Set k → k + 1

end while

Algorithm 3 Diffusion Algorithm (DA)

Set k = 0
Set Initial guess φ0, x0

while k < N do
Compute xk+1 = xk − τΩb

(
xk
)

Compute φk+1 (x) = φ0
(
xk+1

)
Store Ek+1 = E(φk+1,∇φk+1) in a vector {Ek}
Set k → k + 1

end while

Algorithm 4 Extended Least Action Algorithm (ELAA)

Set k = 0
Set Initial guess φ0, x0

Compute residual rk = − [Etot]
(
φk
)

while ‖r‖ > δ and k < N do
Compute xk+1 = xk − τΩb

(
xk
)

Compute φk+1
(
xk+1

)
= φk

(
xk+1

)
− τφ [Etot]

(
φk
(
xk
))

Recompute rk+1 = − [Etot]
(
φk+1

)
Store Ek+1 = E(φk+1,∇φk+1) in a vector {Ek}
Set k → k + 1

end while

shifts along the level-sets S1,2. Hence by eq. (4.594.59) the norm of the curvature
operatorK is non-zero. In figure 4.4b4.4b the region AB has been deformed to A′B
via the diffusion in eq. (4.524.52). The level-sets S1,2 have been deformed such that
PS1,2 is constant along S1,2. Thus the norm of the curvature operatorK vanishes.
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(a) (b) (c) (d)

Figure 4.5.: Figure 4.5a4.5a shows a picture φc of a person. φc is taken to be free of noise. Figure 4.5b4.5b
is a noise corrupted version of φc in figure 4.5a4.5a, φd = φc + n where n is iid Gaussian
noise with a standard deviation σ = 100. Figure 4.5c4.5c shows the result of the ELAA
(alg. 44) and figure 4.5d4.5d the result of the BNA (alg. 22)

For prior energies Eprior for which the canonical momentum P is parallel to the
gradient ∇φ, the vanishing of the norm of the curvature operator K, ‖K‖ = 0
means that the gradient∇φ itself is invariant with respect to the diffusion process
eq. (4.524.52), hence the level-sets S of φ are lines.

4.1.1. Image De-noising

In section 2.1.22.1.2 we had described the problem of noise contamination of the
image Îc of an object O recorded by the camera C. The image Îc is modeled
as the sum of the projection of the object O onto the image plane of C, IO and
additive noise drawn from a distribution p

Îcij = IO (xi,j) + n n ∼ p
(
Icij |IO (xi,j)

)
(4.60)

The problem is that we would like infer the projection IO given the data Îc and
knowledge of the distribution p in eq. (4.604.60). However this inference problem
is ill-defined and to make it well-defined we need to consider the geometrical
properties of the object O. In eq. (2.192.19) we reformulated the problem of inference
of IO as a minimization problem

I?O = argminIO (EIc (IO)) , EIc (IO) = EdataIc (IO) +Eprior
(
XΩ
e IO

)
(4.61)

where the image IO is considered to be a GRF for which the geometrical neighbor-
hood properties are specified by the prior energyEprior and the noise distribution
p in eq. (4.604.60) is connected to the data term EdataIc in eq. (4.614.61) via the exponential
mapping in eq. (2.52.5).
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Algorithm 5 Image de-noising analysis

Select φ0 from image database, i = 0, σ = 100
while i<100 do

Sample noise disturbed image φ = φ0 + n, n ∼ N (0, σ)
Run BNA, DA or ELAA and obtain vector of energies {Ek}
Store in matrix E, Ei,k = Ek

end while
For each iteration k compute the expectation value 〈Ek〉 and the standard
deviation σEk from the k-th column vector of E

The goal of this section is to evaluated the Extended Least Action Algorithm
(ELAA) (alg. 44) for the inference problem in eq. (4.614.61). For this we will assume
the situation where the noise distribution p in eq. (4.604.60) is Gaussian

E (φ) = 1
2

∫
Ω
|IO − Ic|2d2x+ Eprior

(
XΩ
e IO

)
(4.62)

We have run both the Basic Newton (alg. 22) and our Extended Least Action
algorithm (alg. 44) to minimize the energy in eq. (4.624.62) for the total variation prior
and our new structure tensor based prior.

Analysis Method

We minimized the image denoising model in eq. (4.624.62) for both the TV-Prior and
the structure tensor prior using the Basic Newton Algorithm (BNA) in alg. (22), the
Diffusion Algorithm (DA) in alg. (33) and the Extended Least Action Algorithm
(ELAA) in alg. (44). All three algorithms were analyzed with statistical analysis
algorithm (SAA) in alg. (55). The SAA samples Gaussian noise at a standard
deviation of σ = 100 and adds it to the image φ0. Then it runs the BNA, DA,and
the ELAA. The energy Ek at each iteration of the BNA, DA and ELAA is stored
in a vector. This procedure is repeated 100 times so that for each iteration k of all
algorithms we have 100 sample energies Ek. Then the mean energy per iteration
k, 〈Ek〉 and the standard deviation σEk are computed. In the same manner we
computed the mean 〈‖K‖〉 and the standard deviation σ‖K‖ of the norm ‖K‖.
The whole procedure was repeated on a total of ten images of the middleburry
data set [8888]. In figure 4.54.5 we show the Army image of the middleburry data
set together with the results of the BNA and the ELAA, and in section B.2B.2 of the
appendix we show the results of the other nine images.
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(a) (b)

Figure 4.6.: Figure 4.6a4.6a shows the mean energy 〈Ek〉 and figure 4.6b4.6b the standard deviation σEk

per iteration k for the Army image in figure 4.5a4.5a. The the ELAA (solid line) converges
about twice as fast as the BNA (dashed line) according to figure 4.6a4.6a. The standard
deviation σEk in figure 4.6b4.6b converges approximately three times faster for the ELAA
then for the BNA indicating that the ELAA is robuster to noise at every iteration k

Total Variation based Image De-Noising

The TV based image de-noising model is defined by the energy

E (IO,∇IO) =1
2

∫
Ω
|IO − Ic|2d2x+

∫
Ω
Eprior (∇IO (x)) d2x (4.63)

Eprior (∇IO (x)) =λ
√
∇T IO · ∇IO, P = λ

∇IO
‖∇IO‖

(4.64)

The prior Eprior in eq. (4.644.64) is an invariant of the Lie group G = T× SO(2), the
group of translation and rotations. However the associated bending operatorBT

vanishes for the translation group T vanishes since

Bx
T = P ν [∂ν , ∂x] = 0, By

T = P ν [∂ν , ∂y] = 0 (4.65)

that is T is a trivial symmetry of Eprior and E (IO,∇IO). The bending operator
Bθ associated with the rotation group SO(2) does not vanish, but computes to

Bθ = bµθ∂µ, bθ = ∇⊥IO√
∇T IO · ∇IO

= P⊥ (4.66)

We have run the statistical analysis algorithm (SAA) in alg. (55) on the Army
image in figure 4.5a4.5a and in figure 4.64.6 we have plotted the results. In figure 4.6a4.6a
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Figure 4.7.: Figure 4.7a4.7a shows the mean curvature 〈‖K‖k〉 and figure 4.7b4.7b the standard deviation
σ‖K‖k per iteration k for the Army image in figure 4.5a4.5a. For the DA (dotted line),
which only depends on the TV prior EpriorTV , 〈‖K‖〉 has an exponential decay. For the
ELAA (solid line) 〈‖K‖〉 drops faster then for the DA, until a point where the data
term Edata prohibits further smoothing of the level-sets S. Then 〈‖K‖〉 rises slightly
and converges at a higher value. The BNA falls off slower then the ELAA and the
DA and converging at a slightly higher value then the ELAA. The standard deviation
σ‖K‖ is for both the ELAA and the BNA comparatively of equal order and small and
two orders of magnitude smaller then 〈‖K‖〉. When comparing the ELAA and the
BNA to the DA (dotted line) we can see that the data term Edata has an impact on
the noise distribution of the curvature ‖K‖ particularly at later iterations k > 100.
Figure 4.7c4.7c shows a fit of the exponential function in eq. (4.674.67) to the curvature of the
DA algorithm. The difference between the DA (solid line) and the fit (dashed line) is
of the order 104, an order of magnitude smaller then ‖K‖

the mean energy 〈Ek〉 per iteration k is plotted for the BNA (dashed line), the DA
(dotted line) and the ELAA (solid line). The DA which only depends on the prior
EpriorTV converges the slowest. However the ELAA, which is a combination of
the DA and the BNA, converges approximately twice as fast as for the BNA and
several times faster then the DA. As for the standard deviation σEk (figure 4.6b4.6b)
we see that the ELAA converges more than twice as fast then the BNA. σEk is
a measure for how robust the solution IkO at iteration k is with respect to noise.
Thus we conclude that the ELAA is at every iteration robuster to noise then the
original BNA. In figure 4.74.7 we show the results of the SAA for the curvature ‖K‖.
The curvature for the DA follows an exponential behavior. This is expected since
by the definition of the mean curvature κ in eq. (2.1392.139) and the definition of the
curvature operatorK in eq. (4.594.59) we have∫

Ω

d

dt

(
gtB ◦ κ

)∣∣∣∣
t=0

IOd
2x =

∫
Ω
KIOd

2x (4.67)

The left hand side of eq. (4.674.67) is the rate of change of the curvature κ with
respect to the parameter t of the diffusion process in eq. (4.524.52) and the right hand
side is linear in the curvature operator K. Thus the curvature κ must have an
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exponential dependency on t

gtB ◦ κ = αexp (−βt) + γ (4.68)

We did a least squares fit of the parameters (α, β, γ) in eq. (4.684.68) to the curvature
‖K‖ of the DA shown in figure 4.7a4.7a. The estimated parameters are α = 3.46 · 105,
β = 0.0044 and γ = 1.23 · 105. The error of the fit is of the order 103, which is two
order of magnitude smaller then ‖K‖. Hence we conclude two things: first the
interpretation of the curvature operator K as the curvature of the level-sets is
valid. Second the evolution of the curvature of the level-sets under the diffusion
process in eq. (4.524.52) follows an exponential law.

Structure Tensor Prior

In this section we applied our structure tensor prior from eq. (3.143.14) in section 3.23.2
to the image de-noising problem

E (IO,∇IO) =1
q

∫
Ω
|IO − Ic|qd2x+

∫
Ω
EpriorST (∇IO (x)) d2x (4.69)

EpriorST (∇IO (x)) =1
2det (S) (4.70)

In order to apply the ELAA in alg. 44 to the model in eq. (4.704.70) we need to compute
the coefficient vector b of the bending operatorB. From section 3.23.2 we know that
EpriorST is invariant to the group G = T× SO(2). Like the TV prior the translation
group T is a trivial symmetry so that it suffices to compute the bending operator
Bθ corresponding to the group SO(2). We remember from eq. (3.173.17) that the
structure tensor prior in eq. (4.704.70) transforms under the SO(2) in the following
way

d

dθ
EpriorST (Sθ)

∣∣∣∣
θ=0

=
∫

Ω
Tr (BST · S) d2x = 0, BST = PST ·Mθ (4.71)

where Mθ is the Pauli matrix (the generator of the algebra so(2), eq. (2.742.74)). The
matrix BST has a striking similarity to the bending operator Bm in eq. (4.504.50)
since it is a product of the canonical momentum PST and the structure constants
of the SO(2), the matrix Mθ. The trace

Tr (BST · S) = Bµ,ν
ST Sµ,ν = 0 (4.72)

is a scalar product which runs over two indexes (we used the Einstein summation
convention) as opposed to scalar products between two vectors. Hence eq. (4.724.72)
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Figure 4.8.: Figure 4.8a4.8a shows the mean energy 〈E〉 as a function of the iteration k for the ELAA
(solid line) and the DA (dotted line) for the structure tensor model. Figure 4.8b4.8b shows a
close up of 〈E〉ELAA for k ≥ 10 and figure 4.8c4.8c shows the difference between 〈E〉BNA
and 〈E〉ELAA. From figure 4.8b4.8b we can see that the mean energy for the ELAA
〈E〉ELAA is 2 orders of magnitude smaller then the mean energy for the DA and by
figure 4.8c4.8c only slightly smaller then 〈E〉BNA. Thus the effect of the diffusion process
in eq. (4.524.52) on the minimization of the energy E in eq. (4.704.70) is at most marginal

can be seen as the level-set equation for the structure tensor S, much like eq. (4.274.27)
is the level-set equation for the image φ.

In order deploy the ELAA in alg. 44 we need to transform the level-set equation
of the structure tensor S into a level-set equation like eq. (4.274.27) with an operator
BST , since the diffusion equation in eq. (4.524.52) necessitates a differential operator
of the form in eq. (4.504.50).∫

Ω
Tr (BST · S) d2x =

∫
Ω
BST IOd

2x (4.73)

If we insert the definition of the structure tensor from eq. (3.53.5), S = 〈∇IO∇T IO〉σST
into the left hand side os eq. (4.734.73) we can shift the convolution operation in S
onto the matrix BST and use the cyclic periodicity property of the trace to isolate
the gradient∇IO∫

Ω
Tr (BST · S) d2x =

∫
Ω

Tr
(
BST · 〈∇IO∇T IO〉σST

)
d2x

=
∫

Ω
Tr
(
〈BST 〉σST · ∇IO∇

T IO
)
d2x =

∫
Ω
∇T IO〈BST 〉σST∇IOd

2x (4.74)

from eq. (4.744.74) we can read of the form ofBST

BST = 1
‖bST ‖

bµST∂µ, bST = 〈BST 〉σST∇IO (4.75)

The matrix 〈BST 〉σST in eq. (4.754.75) is the convolution of the elements of BST with
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(a) (b) (c)

Figure 4.9.: Figure 4.9a4.9a shows the standard deviation σE as a function of the iteration k for the
ELAA (solid line) and the DA (dotted line) for the structure tensor model. Figure 4.9b4.9b
shows a close up of σE,ELAA for k ≥ 10 and figure 4.9c4.9c shows the difference between
σE,BNA and σE,ELAA. We essentially see the same behavior for the standard devi-
ation σE as for the mean energy in figure 4.84.8: By figure 4.9b4.9b the standard deviation
energy for the ELAA σE,ELAA is 1 order of magnitude smaller that of the DA and by
figure 4.9c4.9c only slightly smaller then σE,BNA. Hence the diffusion process eq. (4.524.52)
has a marginal contribution to the statistical robustness of the minimizers of E in
eq. (4.704.70)

the weight function w(x) from the definition of the structure tensor S in eq. (3.53.5).
Due to eq. (4.724.72) the operator BST is also a level-set operator in the sense of
eq. (4.274.27).

In figure 4.8a4.8a the energies for the ELAA and the DA algorithm are shown.
We can see that the energy 〈E〉DA hardly converges at the same rate as the
energy 〈E〉ELAA. 〈E〉DA stays within the range of 〈E〉DA ∼ 3 · 1010 while from
figure 4.8b4.8b (〈E〉ELAA for k ≥ 10) we can see that 〈E〉ELAA drop down by 3 orders
of magnitude. Figure 4.8c4.8c shows the difference between the mean energies of the
BNA and the ELAA. The difference 〈E〉BNA − 〈E〉ELAA is only in the range of
104 which is 4 orders of magnitude smaller than the absolute value of 〈E〉ELAA in
figure 4.8b4.8b. Thus although the diffusion process in eq. (4.524.52) has a positive impact
on the ELAA, this impact is insignificant compared to the impact of eq. (4.524.52) on
the TV-Denoising model (figure 4.6a4.6a). The explanation is that the structure tensor
prior EpriorST effectively only measures the curvature up to the scale determined
by the window size σST . Loosely speaking, since EpriorST involves the weighted
integral of the gradient ∇IO∇T IO over a local neighborhood of size σST , level-
sets S with higher curvature are integrated out and hence do not contribute to
the total energy. To show this we have evaluated the structure tensor model
in eq. (4.704.70) with the ELAA for various window sizes σST in figure 4.104.10. In
figure 4.10c4.10c the initial energy 〈Ek〉ELAA (k = 0) and in figure 4.10d4.10d the initial
curvature 〈‖K‖k〉 (k = 0) are shown for different window sizes σST . For window
sizes σST ≥ 13 we can see that the energy 〈E0〉ELAA rises while the curvature
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(a) (b)

(c) (d)

Figure 4.10.: Study of the dependency the mean energy 〈Ek〉ELAA and the mean curvature 〈‖K‖〉
on the window size σST of the structure tensor prior EpriorST . Figure 4.10a4.10a shows the
mean energy 〈Ek〉ELAA per iteration k ≥ 100 for various σST and figure 4.10b4.10b the
mean curvature 〈‖K‖〉, also for various σST . Figures 4.10c4.10c and 4.10d4.10d show the initial
energy 〈Ek〉ELAA and the initial curvature 〈‖K‖〉 for k = 0. In figure 4.10a4.10a we can
see that for smaller σST the energy 〈Ek〉ELAA converges to lower values. Conversely
for larger window sizes σST the mean energy profiles 〈Ek〉ELAA per σST converge.
In figure 4.10b4.10b we observe a similar behavior for the curvature 〈‖K‖〉: For small σST
the curvature 〈‖K‖〉 is comparatively large. As σST rises the profile of 〈‖K‖〉 per
σST converge, albeit at lower values. Figures 4.10c4.10c and 4.10d4.10d show that the initial
energy and the initial curvature for σST = 3 have half the values then for the larger
window sizes σST = 13 · · · 63
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〈‖K‖0〉 falls. Since by eq. (4.594.59) the curvature operator K is proportional to
the decay rate of the Euler-Lagrange differentials [E ] we expect 〈Ek〉ELAA to
converge at a slower rate for larger window sizes σST . In figure 4.10a4.10a we have
plotted the relative energy

RE (k, σST ) = 〈E
k〉

〈E0〉
(4.76)

The relative energy RE(k, σST ) tells us how much the energy 〈Ek〉 has decayed
at iteration k > 0 relative to the initial energy 〈E0〉 for a specific window size
σST . Lower values of RE(k, σST ) indicate higher decay rates of 〈Ek〉 and vice
versa. This is supported by figure 4.10b4.10b where the curvature 〈‖K‖k〉 (k ≥ 100) is
plotted for the same window sizes σST as for the energy 〈Ek〉ELAA in figure 4.10a4.10a.
The curvature 〈‖K‖k〉 is inverse proportional to the window size σST at every
iteration k. By eqs. (4.584.58) and (4.594.59) the decay rate of Euler-Lagrange differentials
[E ] is also inverse proportional to σST . Thus we conclude that larger window
sizes σST have a negative impact on the convergence behavior of the ELAA. On
the other hand from figure 4.10c4.10c and figure 4.10d4.10d we can see that for the smallest
window size σST = 3 the mean energy 〈E0〉ELAA and the curvature 〈‖K‖0〉
both have the smallest values. Thus again by eq. (4.594.59) the energy 〈Ek〉ELAA for
σST = 3 has the worst convergence behavior due to the low initial curvature
〈‖K‖0〉.

4.2. summary

We have introduced a new algorithm based on an extension to the principle
of least action (PLA). The PLA is the idea that for any problem which can be
modeled by a Gibbs random field φ it is possible to construct an energy functional

E (φ,Xeφ) = Edata (φ) + λEprior (Xeφ) (4.77)

The minimizer φ? of the energy E is obtained by solving the Euler-Lagrange
equations

[Etot] (φ(x)) |φ=φ? = 0, [Etot] (φ(x)) = δE
δφ(x) −

∑
µ

d

dxµ

(
δE

∂µφ(x)

)
(4.78)
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where Etot is the integral density function of the energy E. Our extension to the
PLA is based around a flow equation for the coordinate frame Ω

x (t) = TBt ◦ x,
dx (t)
dt

∣∣∣∣
t=0

= B · x (4.79)

We termed the operator B the bending operator since it bends the coordinate
frame Ω such that the level-sets of the GRF φ obtain the geometric form preferred
by the prior energy functional Eprior(Xeφ). We showed that the rate of change
of the Euler-Lagrange differentials [Etot] under the flow in eq. (4.794.79) is equal to
Kφ, where the curvature operatorK describes the curvature of the level-sets of
φ. The bending operatorB obeys the relationBφ = 0 for any value of the GRF
φ at every time instance t of the flow in eq. (4.794.79) as a consequence of Noethers
first theorem. Another consequence is thatB and thusK is entirely determined
by the prior energy Eprior alone.

The flow equation in eq. (4.794.79) was evaluated in the context of image de-noising.
For image de-noising with the total variation (TV) prior from section 2.52.5 we
showed that eq. (4.794.79) dramatically improves the traditional Newton method
for the minimization of the energy functional E, in terms of both speed and
robustness of the solution φ? towards noise in the initial guess φ0. The functional
derivative of the TV prior ‖∇φ‖ is equal to κ(x(t)), the mean curvature of the
level-set at the point x(t). We showed that κ(x(t)) understood as a function
of the flow parameter t follows an exponential behavior which is theoretically
predicted since its rate of change under the flow in eq. (4.794.79) is equal to the
curvatureKφ.

The other model we tested for image de-noising deployed the structure tensor
prior EpriorST from section 33. We found that the flow in eq. (4.794.79) had virtually
no effect on the minimization of the energy E. It was shown that the root of
the problem is that EpriorST depends on the structure tensor S which integrates
the gradient ∇φ (more specifically the tensor product ∇φ · ∇Tφ) over a region
AST ⊂ Ω of size σST around each pixel x ∈ Ω. We showed empirically that for
window sizes σST > 3 the curvature Kφ (averaged over Ω) decreases as σST
increases. Since the curvature Kφ is equal to the rate of change of the Euler-
Lagrange differentials, the result is that EpriorST and the total energy E converge
at slower rates for larger window sizes σST under the flow in eq. (4.794.79).
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5. Conclusions

The focus of this thesis are problems in computer vision which can be modeled
by Gibbs random field models (GRF). In section 2.12.1 we shortly reviewed the
theory of GRFs, namely that a GRF is a function φ(x) for which an energy
EY (φ,Xeφ) = EdataY (φ)+Eprior(Xeφ) is defined. The GRF φ is a hidden variable
which cannot be directly observed and the problem of inferring the optimal value
of φ given the data Y is equal to finding the minimum φ?tot = argminEY (φ,Xeφ).
The data term EdataY (φ) defines how the GRF φ is coupled to the data Y and the
prior Eprior(Xeφ) incorporates geometrical constraints on the level-sets of φ via
the analytical form of the differential operatorsXe = (X1

e , · · · , Xk
e ). For instance

it was shown that if the differential operators of the prior are the Cartesian
derivatives, Xe = ∇, then Eprior(∇φ) penalizes level-sets of φ with non-zero
curvature κ.

We emphasized that the prior Eprior(Xeφ) must be invariant upon the action
of a group of continuous smooth transformations G, g ◦ Eprior = Eprior for all
g ∈ G. The operators g ∈ G operate on both the field φ(x) and the coordinates
x themselves, g ◦ φ(x) = gφ ◦ φ(gΩ ◦ x). The reason for this constraint is that
the (local) minimizers φ?tot ∈ Atot of the total energy EY is a trade-off between
the minimizers of the data term EdataY and the minimizers of the prior energy
EpriorY . The number of minimizers of the data term EdataY is usually small, since
they are highly conditioned on the data Y . However since the energy EY has to
accommodate many different values of the data Y , the prior energy Eprior(Xeφ)
must not penalize φ to few distinct minima φ?. Instead we argued that the
minimizers of Eprior must be a large set A generated by the Lie group G, A =
{φ? |φ? = g ◦ φ?0, g ∈ G}. φ?0 is an arbitrary minimizer of Eprior.

Although the prior Eprior is invariant under the group G, the total energy EY is
generally not invariant, due to the data term EdataY , it may be invariant under
local transformations around the unity, g ∈ Ue ⊂ G. In the case that EY (φ,Xeφ)
is symmetric upon the action of the group Ue, g ◦EY = EY for all g ∈ Ue, Emmy
Noether [3535, 3636] discovered that there exist r vector valued functionsWm(x) for
which the following relation holds

div (Wm)−XΩ
e,m (φ) [E ] = 0 (5.1)
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where the generator Xe,m is an element of the Lie algebra G corresponding to the
group G. In section 2.32.3 we reviewed the theory of Lie groups and in section 2.4.22.4.2
we transformed eq. (5.15.1) into an equation involving r differential operatorsBm

acting on φ and derived from the Lie algebra G of the group G

Bmφ = 0, Bm =
∑
i

δEprior

δXi
e(φ) ·

[
Xm
e , X

i
e

]
(5.2)

Although the total energy EY was taken into account in eqs. (5.15.1) and (5.25.2) the
Bm only depend on the prior energy density Eprior and stem from the variation
of the total energy EY under the spatial transformations gΩ.

In section 2.52.5 we reviewed the total variation (TV) based prior
EpriorTV (∇φ) =

∫
‖∇φ‖ d2x, considering its transformation properties under the 3

dimensional group G = T× SO(2), the group of translations and rotation on the
R2 plane. EpriorTV is a widely used prior since it preserves discontinuities in the
GRF φ. It was shown that the 2 operatorsBx andBy related to the subgroup T
vanish independently of φ,Bx/y = 0. We called the symmetry under T a trivial
symmetry. The operatorBθ which is related to SO(2) does not vanish, however
it still obeys eq. (5.25.2), hence SO(2) is a non-trivial symmetry group of EpriorTV . It
was argued that the level-sets of the minimizers φ? ∈ A have zero curvature,
thus the level-sets are the lines x(s) = x0 + s · v. By the rotation invariance of
EpriorTV the orientation of v is arbitrary.

In section 33 we developed a new prior EpriorST based on the structure tensor in
[8787, 3434]. The starting point was that the consideration to build the prior from the
differential operator V = v ·∇with constant vector v. We reviewed the structure
tensor S(∇φ) which is a weighted sum over the orientations of ∇φ with in a
windowAx0,ST of size σST around each point x0. Its eigenvector to the strongest
eigenvalue is parallel to ∇φ and the eigenvector to the weakest eigenvalue is
the component vector v from our differential operator V . We proposed to use
the determinant of the structure tensor as a prior, EpriorST (∇φ) = Det(S). The
rational behind this proposal is that the minimizers φ? of EpriorST have level-sets
which are approximately linear within the regionsAx0,ST . Hence the prior EpriorST

smooths the GRF φ along the dominant level-set within the regionAx0,ST at point
x0. Like the TV prior EpriorTV , our new prior EpriorST is invariant under the group
G = T× SO(2) so that it agnostic towards the orientation of the level-sets of φ.
In section 33 we evaluated the use of both priors in the context of multi-modal
optical flow, the results of which are summarized in section 3.7.73.7.7.

In section 44 we proposed a new kind of algorithm for the minimization problem
φ?tot = argminEY (φ,Xeφ). We focused on describing the minimization problem
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as a mapping T (t) from some initial guess φ0 to the minimizer φ?tot, φ?tot =
T (t) ◦φ0, t→∞. Similar to the analysis of the symmetries of EY , we proposed
splitting the transformation T (t) into a part T φt that operates on the GRF φ and a
part TBt which operates only on the coordinate frame Ω

φ(x, t) = T φt ◦ φ0 (x(t)) , x(t) = TBt ◦ x0, x0 ∈ Ω0 (5.3)
φ?tot(x) = lim

t→∞
φ(x, t) (5.4)

where Ω0 is an initial reference frame. We showed that both operators T φt and
TBt lead to two coupled flow equations for the GRF φ and the coordinate system
Ω

dφ(x(t), t)
dt

∣∣∣∣
t=0

= [E ] (φ,x(t)) (5.5)

dx(t)
dt

∣∣∣∣
t=0

= B · x(t) (5.6)

where the operator B in eq. (5.65.6) is a linear combination of the operatorsBm in
eq. (5.25.2). The flow equation in eq. (5.55.5) is the conventional flow equation used in
many algorithms for solving the minimization problem φ?tot = argminEY (φ,Xeφ)
like steepest descent methods [66]. It is however mostly deployed on the rigid
Cartesian coordinate frame Ω0. This where the flow equation in eq. (5.65.6) comes
into play. The rational behind eq. (5.65.6) is that it should bend the coordinate frame
Ω in such a manner that the level-sets of the initial guess φ0 when evaluated on
the coordinates x(t), φ0(x(t)), appear to fulfill the geometric constraints imposed
by the prior energy Eprior.

We tested the effectiveness of the bending operator B in the context of image
denoising for both the TV prior EpriorTV and the structure tensor prior EpriorST .
The flow in eq. (5.65.6) was run on an initial image φ0(x0) which is contaminated
with Gaussian noise with the individual priors. Indeed we found that both
prior energies get minimized by the flow in eq. (5.65.6), however EpriorST converges
significantly slower then EpriorTV . To get a better picture we analytically computed
the rate of change of the Euler-Lagrange densities for the priors under the flow
in eq. (5.65.6) and found out that it is equal to an operator equationKφ which we
interpret as the curvature of of the level-sets of φ

d
[
Eprior

]
(φ,x(t))

dt

∣∣∣∣∣
t=0

= Kφ (5.7)

The curvatureK in eq. (5.75.7) is functionally dependent on the bending operatorB.
We showed that due toBφ = 0 (eq. (5.25.2)) eq. (5.75.7) holds for the Euler-Lagrange
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differentials of the total energy EY

d [E ] (φ,x(t))
dt

∣∣∣∣
t=0

= Kφ (5.8)

It was shown that the flow TBt in eq. (5.65.6) alone, that is without the action of T φt
in eq. (5.55.5), minimizes the curvatureK and hence the total energy EY .

In the case of the prior EpriorST we found out through experimental analysis that
the norm of the curvatureK is inverse proportional to the window size σST of
the structure tensor. This means that EpriorST decreases slower for larger window
sizes σST . We concluded that due to the neighborhood nature of the structure
tensor, the window AST acts like a drag-net that tampers the speed of the flow
in eq. (5.65.6). Thus the result of minimizing the energy EY with the combined flow
in eqs. (5.55.5) and (5.65.6) is only marginally better then deploying the original flow
in eq. (5.55.5) alone.

On the other hand the image denoising model with the TV based prior EpriorTV

behaved completely differently. The energy EY converged approximately twice
as fast when running the combined flow in eqs. (5.55.5) and (5.65.6) as compared
to running the flow in eq. (5.55.5) alone! Our explanation is that EpriorTV does not
measure the curvature of the level-sets of φ based on local statistics like EpriorST

does. Instead it measures the mean curvature κ(x(t)) of a level-set at the point
x(t). More precisely the mean curvature κ(x) is the (weak) functional derivative
of EpriorTV (∇φ) with respect to φ, thus the Euler-Lagrange differential of EpriorTV . By
eq. (5.75.7) κ(x) is related to the curvature operatorK

κ̇(x(t)) = Kφ(x(t)) (5.9)

Eq. (5.95.9) suggests that the mean curvature κ(x(t)) follows an exponential law,
given that only the flow in eq. (5.65.6) is run. Indeed we were able to run the
flow in eq. (5.65.6) and fit the observed values for κ to the exponential function
κ(x(t)) = α exp(−βt) + γ. The relative error of the fit (error divided by the value
of κ ) is of the order 10−1. Since the mean curvature κ at a single point x can be
significantly higher then the averaged curvature over a regionAST (as is the case
for the structure tensor prior EpriorST ) the decreasing rate κ̇(x(t)) can also be high.
This explains why the combined flow in eqs. (5.55.5) and (5.65.6) is faster then eq. (5.55.5)
alone.
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5.1. Outlook

The bending operator B in eq. (5.65.6) and the theory behind it was developed
for GRF models with total energies EY (φ,Xeφ) which only contain first order
derivatives. However Emmy Noethers first theorem covers models with deriva-
tives of any order. Thus future research should provide the advancement of the
proposed theory to higher order derivative models EY (φ,Xk

e φ), k > 1 along the
same lines discussed in section 44. Such higher order models allow for constraints
on the second or higher order derivative of the GRF φ and are thus less restrictive
then first order models. Due to the validity Emmy Noethers first for all higher
order models, we can expect the same positive results of a higher order bending
algebra on the minimization of EY (φ,Xk

e φ).

Another option for future research is the advancement of the bending algebra
theory to Emmy Noethers second theorem which handles the case of infinite
dimensional Lie groups G∞. As briefly explained in section 2.4.12.4.1 the Lie algebra
G∞ of the group G∞ is loosely speaking not globally constant but a function
on the coordinate frame Ω, the structure ’constants’ C lmn of G∞ are actually
functions C lmn := C lmn(x). Models based on the infinite dimensional Lie group
G∞ are called gauge theories. Virtually all models in contemporary physics
are gauge theories, from the quantum field theories of the standard model [99]
to general relativity [9797], Loop Quantum Gravity [9898] and String Theory [9999].
The development of the extended principle of least action in section 44 to a more
general principle of least action encoding G∞ might be beneficial not only for the
computational algorithms used in the aforementioned gauge theories but may
also prove to provide a better understanding the theories themselves.
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A. Lie Groups

A.1. The Prolonged Action

The prolonged action of an r-dimensional Lie Group G on the gradient ∇φ is
given by

Dφνi = dωφi
dxν
−
∑
µ

dωiµ
dxν

∂µφ (A.1)

We want to derive eq. (A.1A.1) following [2828, 3131] by considering an arbitrary one di-
mensional subgroup gγ(t) ⊂ G with gγ(0) = e. The function γ(t) = (a1(t) . . . ar(t))
is a continuous path in the parameter space of the group G. The gradient ∇φ
transforms under the action of gγ(t) like

F (t,∇φ (x)) = gγ(t) ◦ (∇φ (x)) = ∇̃φ̃ (x̃) , ∇̃ = J−Tt ∇ (A.2)

where Jt is the Jacobian

Jt,µν = dx̃µ
dxν

, x̃ = gγ(t) ◦ x (A.3)

We compute the prolonged action Dφνi by taking the derivative of F (t,∇φ (vx))
with respect to t at t = 0

dF

dt

∣∣∣∣
t=0

= d

dt
J−Tt

∣∣∣∣
t=0
∇φ+ J−T∇ d

dt
φ̃ (x̃)

∣∣∣∣
t=0

(A.4)

=− J−Tt
d

dt
Jt

∣∣∣∣
t=0

J−Tt ∇φ+ J−T∇ d

dt
φ̃ (x̃)

∣∣∣∣
t=0

(A.5)

The Jacobian evaluated at t = 0 yields the identity matrix

J0,µν = δµν (A.6)
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The derivative of the transformed coordinates x̃ and the field φ̃ with respect to t
at t = 0 yield linear combinations of the infinitesimal variations ωi and ωiφ

dx̃µ
dt

∣∣∣∣
t=0

=
r∑
i=1

ωiµαi,
dφ̃ (x̃)
dt

∣∣∣∣∣
t=0

=
r∑
i=1

ωiφαi (A.7)

ωiµ = ∂ai x̃µ|g=e, ωiφ = ∂ai φ̃|g=e, αi = ai
dt

∣∣∣∣
t=0

(A.8)

The derivative of the Jacobian evaluates to

dJt,µν
dt

∣∣∣∣
t=0

=
r∑
i=1

dωiµ
dxν

αi (A.9)

So that eq. (A.5A.5) becomes

dFν
dt

∣∣∣∣
t=0

=
r∑
i=1

(
dωφi
dxν
−
∑
µ

dωiν
dxµ

∂µφ

)
αi =

r∑
i=1

Dφνi αi (A.10)

The prolonged action for higher order gradients goes along the same lines,
expressing the transformed gradient ∇̃n in terms of the Jacobian Jt

∇̃nφ̃ = (
n∏
l=1

J−T∇)φ̃ (A.11)

and using the product rule to compute the derivative with respect to t.

A.2. Geometrical Meaning of the Commutator [·, ·]

In section 2.32.3 we mentioned that ifXe ∈ G is a left invariant vector field evaluated
at the identity e of the Lie group G and gγ(t) ⊂ G is a one parameter subgroup
defined by the vector field Vg

dgγ(t)
dt

∣∣∣∣
t=0

= Ve (A.12)

then the rate of change of Xgγ(t) (Xe translated by gγ(t)) is governed by the
commutator between Xe and Ve

dXgγ(t)

dt

∣∣∣∣∣
t=0

= [Ve, Xe] (A.13)
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Since both Xg and Vg are left invariant the commutator in eq. (A.13A.13) is also left
invariant and thus an element of G. We will prove eq. (A.13A.13) for the case when
both Vg and Xg are spatial operators

Xe = ωνΩ (x) ∂ν , Ve = vνΩ (x) ∂ν (A.14)

We compute the rate of change of Xgγ(t)

dXgγ(t)

dt

∣∣∣∣∣
t=0

= dωνΩ (x̃)
dt

∣∣∣∣
t=0

∂ν + ωνΩ (x) d∂̃ν
dt

∣∣∣∣∣
t=0

(A.15)

= dωνΩ
dxµ

· vµΩ · ∂ν − ω
ν
Ω ·

dvµΩ
dxν

∂µ (A.16)

=
(
dωµΩ
dxν
· vνΩ − ωνΩ ·

dvµΩ
dxν

)
∂µ = (Ve (ωµΩ)−Xe (vµΩ)) ∂µ (A.17)

On the other hand we can directly compute the commutator of Xe and Ve

[Ve, Xe] = vµΩ
d

dxµ

(
ωνΩ

d

dxν

)
− ωµΩ

d

dxµ

(
vνΩ

d

dxν

)
(A.18)

When carrying out the product rule the terms vµΩω
ν
Ω

d
dxµ

d
dxν

cancels out so that
eq. (A.18A.18) equals eq. (A.17A.17) proving eq. (A.13A.13).

A.3. Derivation Of Noethers Theorem

In this section we want to derive Noethers theorem from the variation of the
energy

E
(
φ,XΩ

e φ
)

=
∫

Ω
E
(
φ (x) ,XΩ

e φ (x)
)
Nd2x (A.19)

under an arbitrary one parameter sub group gγ(t) ⊂ G, where the Lie group G
is the group of spatial and intensity transformations G = GΩ × Gφ of dimension
r. The set XΩ

e is the commutative sub algebra of the Lie algebra G of G. The
tangential vector Ve at the identity of gγ(t) is an element of G and has the form

dgγ(t)
dt

∣∣∣∣
t=0

= Ve = vµ(x)∂µ + vφ(x) δ
δφ

(A.20)

To reduce clutter we will use vµ := vµ(x) and vφ := vφ(x) in the following,
remembering that vµ and vφ are functions of x. Noethers first theorem says that
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the energy E in eq. (A.19A.19) is invariant upon the action of the r-dimensional Lie
group G

d

dt

(
gγ(t) ◦ E

)∣∣∣∣
t=0

= 0 (A.21)

if and only if there exists r vector valued functionsWm(x) such that the following
r relations hold

Div (Wm) +
(
ωφm − ωΩ,µ

m ∂µφ
)

[E ] = 0, 1 ≤ m ≤ r (A.22)

where [E ] is the Euler-Lagrange differential

[E ] = δE
δφ
−Div (P ) , Div (P ) =

r∑
i=1

d

dxµ

(
ωµΩ,iP

i
)
, P i = δE

δXΩ,i
e φ

(A.23)

and P is the canonical momentum of the energy in eq. (A.19A.19). We now want to
prove that eq. (A.22A.22) follows from eq. (A.21A.21) thereby calculating the analytical
form of the r vector valued functionsWm(x).

Proof : The derivative of the one parameter group gγ(t) with respect to t in
eq. (A.21A.21) yields the operator Ve acting on the energy density E and the volume
form d2x. Since E does not directly depend on the coordinates x, the partial
derivatives vanish, vµ∂µE = 0. Hence we have

d

dt

(
gγ(t) ◦ E

)∣∣∣∣
t=0

=
∫ {

vφ
δE
δφ

+
r∑
i=1

(
XΩ,i
e

(
vφ
))
P i (A.24)

+
r∑
i=1

([
V Ω
e , X

Ω,i
e

]
φ
)
P i + E dv

µ

dxµ

}
d2x (A.25)

In eq. (A.24A.24) the coordinates x and the GRF φ are treated as independent vari-
ables, since the subgroups Gφ and GΩ are independent from each other. The sum-
mand in eq. (A.25A.25) proportional to P comes from the chain-rule and eq. (A.13A.13)
while dvµ

dxµd
2x is the rate of change of the volume form d2x under the action of

gγ(t). We add zeros in the form

vµ∂µφ
δE
δφ
− vµ∂µφ

δE
δφ

= 0 (A.26)

r∑
i=1

(
V Ω
e

(
XΩ,i
e φ

))
P i −

r∑
i=1

(
V Ω
e

(
XΩ,i
e φ

))
P i = 0 (A.27)

107



to eq. (A.25A.25) and use[
V Ω
e , X

Ω,i
e

]
+XΩ,i

e

(
vφ
)
− V Ω

e

(
XΩ,i
e φ

)
= XΩ,i

e

(
vφ − V Ω

e φ
)

(A.28)

After some reordering of terms in eq. (A.25A.25) and factorizing out (vφ − V Ω
e φ) we

get

d

dt

(
gγ(t) ◦ E

)∣∣∣∣
t=0

=
∫ {

vµ∂µφ
δE
δφ

+
r∑
i=1

(
vµ∂µ

(
XΩ,i
e φ

))
P i (A.29)

+
(
vφ − vµ∂µφ

) δE
δφ

+
r∑
i=1

XΩ,i
e

(
vφ − V Ω

e φ
)
P i + E dv

µ

dxµ

}
d2x

(A.30)

The summands in eq. (A.29A.29) can be combined to the total derivative acting on
the energy density E

vµ∂µφ
δE
δφ

+
r∑
i=1

(
vµ∂µ

(
XΩ,i
e φ

))
P i = vµ

dE
dxµ

(A.31)

and we can combine eq. (A.31A.31) with the term E dvµdxµ from eq. (A.30A.30) to the total
divergence

vµ
dE
dxµ

+ E dv
µ

dxµ
= d

dxµ
(vµE) (A.32)

so that eq. (A.30A.30) and eq. (A.31A.31) simplify to

d

dt

(
gγ(t) ◦ E

)∣∣∣∣
t=0

=
∫ {

d

dxµ
(vµE) +

(
vφ − vµ∂µφ

) δE
δφ

(A.33)

+
r∑
i=1

XΩ,i
e

(
vφ − V Ω

e φ
)
P i
}
d2x (A.34)

We expand the operator XΩ,i
e in terms of the Cartesian gradient∇, XΩ,i

e = ωµΩ,i∂µ.
Then we can convert the summand in eq. (A.34A.34) into the sum of a total divergence
and a summand proportional to the divergence of the canonical momentum P

r∑
i=1

XΩ,i
e

(
vφ − V Ω

e φ
)
P i =

r∑
i=1

d

dxµ

(
ωµΩ,i

(
vφ − V Ω

e φ
)
P i
)

−
(
vφ − V Ω

e φ
)

Div (P ) , Div (P ) =
r∑
i=1

d

dxµ

(
ωµΩ,iP

i
)

(A.35)
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We substitute eq. (A.34A.34) with the right hand side of eq. (A.35A.35) and group all the
total divergences together as well as the term proportional to (vφ − V Ω

e φ)

d

dt

(
gγ(t) ◦ E

)∣∣∣∣
t=0

=
∫ {

d

dxµ

(
vµE +

r∑
i=1

ωµΩ,i

(
vφ − V Ω

e φ
)
P i
)

+
(
vφ − V Ω

e φ
)

[E ]
}
d2x (A.36)

[E ] = δE
δφ
−Div (P ) (A.37)

If eq. (A.21A.21) holds for the specific path gγ(t) with the tangential vector operator
Ve then it follows that the integrand of the right hand side of eq. (A.36A.36) must
vanish

d

dxµ

(
vµE +

r∑
i=1

ωµΩ,i

(
vφ − V Ω

e φ
)
P i
)

+
(
vφ − V Ω

e φ
)

[E ] = 0 (A.38)

The statement in eq. (A.21A.21) applies for all one parameter sub groups, therefore
we need to expand Ve in terms of the basis

{
Xi
e

}
Ve =

r∑
m=1

αmX
m
e =⇒ vφ =

r∑
m=1

αmω
φ
m, vµ,Ω =

r∑
m=1

αmω
µ,Ω
m (A.39)

then eq. (A.38A.38) translates to

d

dt

(
gγ(t) ◦ E

)∣∣∣∣
t=0

=
r∑

m=1
αm

{
d

dxµ
(Wµ

m) +
(
ωφm −XΩ,m

e φ
)

[E ]
}

= 0 (A.40)

Wµ
m = ωµ,Ωm E +

r∑
i=1

ωµΩ,i

(
ωφm −XΩ,m

e φ
)
P i (A.41)

Eq. (A.40A.40) holds for all one parameter sub groups gγ(t) ⊂ G if the sum vanishes
for any configuration of the coefficients αm. It follows that eq. (A.22A.22) holds for
all r vector valued functionsWm.

A.3.1. Connection between Bm, Wm and [E ]

We want to briefly clarify the relation between the bending operator Bm =∑r
i=1 P

i
[
XΩ,m
e , XΩ,i

e

]
, the vector valued functionsWm and the Euler-Lagrange

differentials [E ]. For this we need the rate of change of the energy E (eq. (A.19A.19))
under the one parameter Lie group gγ(t) corresponding to the vector Ve (eq. (A.20A.20)).
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This rate of change is given by (eq. (A.25A.25))

d

dt

(
gγ(t) ◦ E

)∣∣∣∣
t=0

=
∫ {

vφ
δE
δφ

+
r∑
i=1

(
XΩ,i
e

(
vφ
))
P i (A.42)

+
r∑
i=1

([
V Ω
e , X

Ω,i
e

]
φ
)
P i + E dv

µ

dxµ

}
d2x (A.43)

Similar to eq. (A.35A.35) we use the following transformation

r∑
i=1

XΩ,i
e

(
vφ
)
P i =

r∑
i=1

d

dxµ

(
ωµΩ,iv

φP i
)
− vφDiv (P ) (A.44)

to transform eq. (A.42A.42)

d

dt

(
gγ(t) ◦ E

)∣∣∣∣
t=0

=
∫ {

vφ [E ] +
r∑
i=1

d

dxµ

(
ωµΩ,iv

φP i
)

(A.45)

+
r∑
i=1

([
V Ω
e , X

Ω,i
e

]
φ
)
P i + E dv

µ

dxµ

}
d2x (A.46)

We use eq. (A.39A.39) to express Ve in terms of the basis
{
Xi
e

}
d

dt

(
gγ(t) ◦ E

)∣∣∣∣
t=0

=
∫ r∑

m=1
αm

{
ωφm [E ] +

r∑
i=1

d

dxµ

(
ωµΩ,iω

φ
mP

i
)

+
r∑
i=1

([
XΩ,m
e , XΩ,i

e

]
φ
)
P i + E

dωµΩ,m
dxµ

}
d2x (A.47)

Comparing eq. (A.46A.46) with eq. (A.40A.40) we obtain

Bmφ = d

dxµ

(
W̃µ
m

)
−XΩ,m

e φ [E ]− E
dωµΩ,m
dxµ

(A.48)

Bmφ =
r∑
i=1

([
XΩ,m
e , XΩ,i

e

]
φ
)
P i, W̃µ

m = Wµ
m −

r∑
i=1

ωµΩ,iω
φ
mP

i

Eq. (A.48A.48) is independent of the intensity variations ωφm and hence independent
of the entire sub group Gφ. If the energy E in eq. (A.19A.19) is invariant under the
sub group GΩ, then it follows thatBm is a level-set operator

Bmφ = 0 (A.49)

Eq. (A.49A.49) is valid for all φ and poses a constraint on the possible values of the
Euler-Lagrange differentials [E ] via eq. (A.48A.48).
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B. The Bending Algebra

B.1. The curvature operator

Given an energy functional E(φ,XΩ
e φ) for the GRF φ we would like to compute

the rate of change of the corresponding Euler-Lagrange differentials [Etot] under
the spatial deformation TBt (eq. (4.524.52))

x (t) = TBt ◦ x,
dx (t)
dt

∣∣∣∣
t=0

=
r∑

m=1
βmBmx = B · x (B.1)

We write the rate of change as

[Etot]′ =
d

dt

(
TBt ◦ [Etot]

)∣∣∣∣
t=0

(B.2)

where [Etot] is

[Etot] (φ(x)) = δEdata

δφ(x) −Div(P ) (B.3)

Div(P ) =
∑
µ

d

dxµ

(∑
i

ωµΩ,iPi

)
, Pi = δEprior

δXΩ,i
e

(B.4)

Since B in eq. (B.1B.1) is a level-set operator of the GRF φ the data energy density
Edata(φ(x)) and all its functional derivatives are invariant under the flow in
eq. (B.1B.1)

d

dt

(
TBt ◦ Edata

)∣∣∣∣
t=0

= δEdata

δφ(x) Bφ = 0 (B.5)

Thus [Etot]′ reduces to

[Etot]′ = −
d

dt

(
TBt ◦Div(P )

)∣∣∣∣
t=0

(B.6)
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In order to compute eq. (B.6B.6) we consider the integral

F =
∫

Ω
Div(P )φ(x)d2x (B.7)

We compute the rate of change of F in eq. (B.7B.7)

d

dt

(
TBt ◦ F

)∣∣∣∣
t=0

=
∫

Ω

[
d

dt

(
TBt ◦Div (P )

)∣∣∣∣
t=0

φ+ Div (P ) Bφ
]
d2x (B.8)

Since Bφ = 0 we have

d

dt

(
TBt ◦ F

)∣∣∣∣
t=0

=
∫

Ω

d

dt

(
TBt ◦Div (P )

)∣∣∣∣
t=0

φd2x =
∫

Ω
[Etot]′ φd2x (B.9)

The integral in eq. (B.7B.7) is well-defined even in the case when the GRF φ con-
tains discontinuities. By the Riesz Representation theorem [4040] we can shift the
derivatives in eq. (B.7B.7) from P onto the GRF φ

F = −
∫

Ω

∑
i

Piω
µ
Ω,i∂µφd

2x = −
∫

Ω

∑
i

PiX
Ω,i
e φd2x (B.10)

where XΩ,i
e = ωµΩ,i∂µ is an element of the commutative Lie algebra B used to

construct the prior Eprior. We define the vector field Pg

Pg =
∑
i

Pi,g ·XΩ,i
g , Pi,g = Pi(XΩ,i

g φ) (B.11)

Then the product
∑
i PiX

Ω,i
e in eq. (B.10B.10) is the evaluation of the vector field Pg

at the identity e ∈ G and eq. (B.10B.10) can be written as

F = −
∫

Ω
Peφd

2x (B.12)

The rate of change of Pg under the flow in eq. (B.1B.1) is

d

dt
PTBt

∣∣∣∣
t=0

= [B,Pe] (B.13)

so that from eq. (B.12B.12) we have

d

dt

(
TBt ◦ F

)∣∣∣∣
t=0

= −
∫

Ω
[B,Pe]φd2x (B.14)
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We equate eq. (B.14B.14) with eq. (B.9B.9)∫
Ω

[Etot]′ φd2x = −
∫

Ω
Kφd2x, K = [B,Pe] (B.15)

The operatorK is the curvature operator and we can see that [Etot]′, the rate of
change of the Euler-Lagrange differential [Etot] under the flow in eq. (B.1B.1), can
only be understood as the eigenvalue to the negative curvature operator

[Etot]′ · φ = −Kφ (B.16)

The curvature operatorK can be expanded in terms of the Cartesian gradient∇

Kφ = k∇φ (B.17)

and we define the norm ‖K‖ as the length of the coefficient vector k, ‖K‖ = ‖k‖.
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B.2. TV Image Denoising, supplementary results

(a) input image (b) φ0 (c) φ?ELAA (d) φ?BNA

(e) (f) (g) (h)

(i) input image (j) φ0 (k) φ?ELAA (l) φ?BNA

(m) (n) (o) (p)
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(a) input image (b) φ0 (c) φ?ELAA (d) φ?BNA

(e) (f) (g) (h)

(i) input image (j) φ0 (k) φ?ELAA (l) φ?BNA

(m) (n) (o) (p)
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(a) input image (b) φ0 (c) φ?ELAA (d) φ?BNA

(e) (f) (g) (h)

(i) input image (j) φ0 (k) φ?ELAA (l) φ?BNA

(m) (n) (o) (p)
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(a) input image (b) φ0 (c) φ?ELAA (d) φ?BNA

(e) (f) (g) (h)

(i) input image (j) φ0 (k) φ?ELAA (l) φ?BNA

(m) (n) (o) (p)
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(a) input image (b) φ0 (c) φ?ELAA (d) φ?BNA

(e) (f) (g) (h)
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C. Multimodal Optical Flow

We want to derive the similarity measure Edatay,I in a fashion which covers both
the global version Edatay,I (σsc,d) (eq. (3.503.50)) and the local version Edatay,I (σsc,d)
(eq. (3.553.55)). We will assume that lower case letters like y stand for low resolution
and upper case letters like I stand for high resolution images. The computation
deploys the row major lexicographic reordering of images to vectors and filters
to (sparse banded) matrices

y(x)→ y,

∫
u(x)v(x)d2x→ uT v (C.1)∫

Ax0

w(x− x0) · y(x)d2x→Wy (C.2)

To derive the similarity measure Edatay,I we considered in section 3.33.3 a low reso-
lution camera Cy which records the image y and a high resolution camera CI
recording the image I . Since Cy and CI are physically separated the task was to
compute the optical flow dmapping I to y. To handle the difference in optical
resolution, σsc,?, between y and I , in section 3.33.3 the low resolution image y is
assumed to be result of a sub-sampling process with additive Gaussian noise

y = WσscY + n, n ∼ N (0, Cn) (C.3)

where the point-spread function (PSF) Wσsc which models the difference in
optical scale is approximately Gaussian. Eq. (C.3C.3) connects the low frequency
components of Y to the low resolution image y. From eq. (C.3C.3) the log-likelihood
of y given Y is given by

−ln
(
p
(
y|Y

))
= 1

2
(
y −WσscY

)T
C−1
n

(
y −WσscY

)
(C.4)

To compute the similarity measure Edatay,I , the correspondence between Y and
the warped image Id needs to be established. To do this we can compute the
conditional distribution p(Y |I): We assume d to be fixed and Y and Id to be
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jointly Gaussian with the distribution p(Y , Id)

−ln (p(Y , I)) = 1
2V

TQV , V T =
(
Y − µ

Y
Id − µId

)
, Q =

(
CY Y CY Id

CIdY CIdId

)−1

(C.5)

The covariances C·,· and the means µ · in eq. (C.5C.5) can be either the global covari-
ance and mean in eq. (2.1642.164) or the local variance and mean in eq. (3.333.33). In both
cases C·,· is diagonal. The precision matrix Q can be expressed in terms of the
Schur-Complement S = CY Y −CY Id

C−1
IdId

CIdY

Q =
(

S−1 −S−1CY Id
C−1
Id,Id

C−1
Id,Id

CIdY S−1 ?

)
(C.6)

then the joint distribution in eq. (C.5C.5) can be split into the product p(Y , Id) = p(Y |Id)p(Id)
where the conditional distribution p(Y |Id) can be written in terms of the Schur
complement S

−ln (p(Y |Id)) = 1
2 Ỹ

TS−1Ỹ − 1
2 Ỹ

TS−1CY Id
C−1
IdId

Ĩd −
1
2 Ĩ

T
dC−1

IdId
CIdY S−1Ỹ

(C.7)

= 1
2
(
Y − µ

Y |Id

)T
C−1
Y |Id

(
Y − µ

Y |Id

)
(C.8)

CY |Id
= S, µ

Y |Id
= µ

Y
+ CY Id

C−1
IdId

Ĩd (C.9)

where Ĩd = Id − µId
and Ỹ = Y − µ

Y
. We combine the conditional p(Y |Id)

from eq. (C.8C.8) together with the likelihood p
(
y|Y

)
from eq. (C.4C.4) to the posterior

p
(
Y |y, Id

)
= p

(
y|Y

)
p(Y |Id) with the energy E(Y )

E(Y ) = 1
2
(
y −WσscY

)T
C−1
n

(
y −WσscY

)
+ 1

2
(
Y − µ

Y |Id

)T
C−1
Y |Id

(
Y − µ

Y |Id

)
(C.10)

The minimizer Y ?
d of the energy E(Y ) is

Y ?
d = µ

Y |Id
+ CY |Id

WT
σscH−1

(
y −Wµ

Y |Id

)
(C.11)

H = WσscCY |Id
WT

σsc + Cn (C.12)
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We define the similarity measure Edatay,I in terms of the conditional distribution
p(Y |Id) from eq. (C.8C.8) evaluated at the minimizer Y ?

d

Edatay,I (d) = −ln (p(Y ?
d|Id)) (C.13)

which after some manipulations becomes

Edatay,I (d) = 1
2x

TH−1WσscCY |Id
WT

σscH−1x, x = y −WσscµY |Id
(C.14)

Edatay,I in eq. (C.14C.14) is intractable to compute due to the dense inverse matrix H−1.
Similar to [8686] we make the simplifications

WσscCY |Id
WT

σsc → C〈Y 〉σsc |〈Id〉σsc (C.15)

H→ H̃ = C〈Y 〉σsc |〈Id〉σsc + Cn (C.16)

and eq. (C.14C.14) reduces to

Edatay,I (d) = 1
2x

T H̃−1C〈Y 〉σsc |〈Id〉σsc H̃
−1x, x = y −WσscµY |Id

(C.17)

We rewrite eq. (C.17C.17) back in terms of filters and integrals with the inverse
lexicographic reordering If we insert the global covariances in eq. (2.1642.164) into
the precision matrix Q in eq. (C.5C.5) we get the global similarity measure from
eq. (3.273.27)

Edatay,I (d) = 1
2

∫
Ω

(
y (x)− µY − f · (〈Id〉σsc (x)− µI)

)2
· Uσsc (C.18)

f = Cσ
sc

y,〈Id〉σscC
σsc,−1
〈Id〉σsc ,〈Id〉σsc , Uσ

sc = Cσ
sc

〈Y 〉σsc |〈Id〉σsc

(
Cσ

sc

〈Y 〉σsc |〈Id〉σsc + Cn
)−2

(C.19)

And if we insert the local covariances in eq. (3.333.33) into eq. (C.5C.5) we get the local
similarity measure Edata,ly,Id

from eq. (3.373.37)

Edata,ly,Id
(σsc, a,d) = 1

2

∫
Ω

(
y (x)− 〈fσsc,aId〉σsc (x)

)2
· Uσsc,a (x) d2x

Uσ
sc,a (x) = Cσ

sc,a
〈Y 〉σsc |〈Id〉σsc (x)

(
Cσ

sc,a
〈Y 〉σsc |〈Id〉σsc (x) + Cn

)−2
(C.20)
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