
Goby Underwater Autonomy Project

User Manual for Version 1.0
<https://launchpad.net/goby>

Contents

Contents 1

1 Introduction 3
1.1 What is Goby? . 3
1.2 Structure of this Manual . 3
1.3 How to get help . 4

2 The Hello World example 5
2.1 Meeting goby::core::ApplicationBase 5
2.2 Creating a simple Google Protocol Buffers Message: HelloWorldMsg . 7
2.3 Learning how to publish: HelloWorld1 8
2.4 Learning how to subscribe: HelloWorld2 10
2.5 Compiling our applications using CMake 11
2.6 Trying it all out: running from the command line 12
2.7 Code . 12

3 The GPS Driver example 15
3.1 Reading configuration from files and command line: DepthSimulator 15
3.2 Our first useful application: GPSDriver 19

1

https://launchpad.net/goby

CONTENTS 2

3.3 Subscribing for multiple types: NodeReporter 20
3.4 Putting it all together . 21
3.5 Reading the log files (SQLite3) . 22
3.6 Code . 22

4 What’s next 39

A Goby MOOS Modules 40
A.1 Unified Command andControl for SubseaAutonomous SensingNet-

works . 40
A.2 Overview of the LAMSS Communication Stack 42
A.3 pAcommsHandler . 45
A.4 iCommander . 88
A.5 pREMUSCodec . 94
A.6 iMOOS2SQL . 97
A.7 pGeneralCodec . 97
A.8 pBTRCodec . 97
A.9 pCTDCodec . 97
A.10 pAcommsPoller . 97

Glossary 98

Bibliography 100

1Introduction
1.1 What is Goby?

The Goby Underwater Autonomy Project is an autonomy architecture tailored for
marine robotics. It can be considered a direct descendant of the MOOS [1], with
inspiration from LCM [2]. The motivation for Goby was the desire to seamlessly
integrate acoustic networking (and other low bandwidth channels found in marine
robotics) into the autonomy middleware.

The Goby autonomy architecture (goby-core) is still in rapid experimental de-
velopment but you are welcome to begin playing with it. The Goby Acoustic Com-
munications libraries (goby-acomms) form themajority of the stable contribution for
Version 1.0. See the Developers’ documentation for details on these libraries at [3].
Users of the MOOS application pAcommsHandler should see Appendix A.

Goby allows you to
• create custom applications (hereafter Goby applications) that communicate

with other Goby applications in a publish/subscribe manner using custom
designedmessage objects provided by the Google Protocol Buffers (protobuf)
project [4]. This message passing is mediated by an application called the
Goby daemon (gobyd)

• log message data using a choice of Structured Query Language (SQL) back-
ends (SQLite3 [5] or PostgreSQL [6]), allowing a choice between simplicity and
power. This SQL logger is seamlessly integratedwith the protobufmessaging.
SQL provides a well-known and standards compliant way to easily access data
at runtime and during post-processing.

• log debugging output in a flexible manner to either the terminal window or
a file or both, with fine-grained control over the verbosity.

• robustly configure your Goby applications both using a text configuration file
and/or command line options bywriting a configuration schema in protobuf.
Gone are the days of manual command line and configuration file parsing
and validity checking. Only fields allowed in the schema are accepted by the
parser, greatly reducing syntax errors in the configuration files.

1.2 Structure of this Manual
This manual is designed to start slow with introductory features and then ramp up
to more powerful features for advanced users. Please read as far as you wish and

3

CHAPTER 1. INTRODUCTION 4

then as soon as possible get your feet wet. In fact, youmaywant to go download and
install Goby now before reading further: https://launchpad.net/goby. Once
you are familiar with the workings of Goby, you will be interested in reading the
separate Developers’ manual available at [3].

1.3 How to get help
The Goby community is here to support you. This is an open source project so we
have limited time and resources, but you will find that many are willing to con-
tribute their help, with the hope that you will do the same as you gain experience.
Please consult these resources and people, probably in this order of preference:

1. This user manual.
2. Questions andAnswers onLaunchpad: https://answers.launchpad.net/

goby.
3. The developers’ documentation: http://gobysoft.com/doc.
4. Email the listserver goby@mit.edu. Please sign up first: http://mailman.

mit.edu/mailman/listinfo/goby.
5. Email the lead developer (T. Schneider): tes@mit.edu.

https://launchpad.net/goby
https://answers.launchpad.net/goby
https://answers.launchpad.net/goby
http://gobysoft.com/doc
mailto:goby@mit.edu
http://mailman.mit.edu/mailman/listinfo/goby
http://mailman.mit.edu/mailman/listinfo/goby
mailto:tes@mit.edu

2The Hello World example
Goby is currently written entirely in C++. We hope to support more languages in
the future, but we feel that C++ is a good blend of elegance, speed, and power. While
the core of Goby is based on a number of advanced C++ techniques, you only need a
small amount of C++ knowledge to get started writing your own Goby application.
If you are new to programming and C++, we recommend Prata’s C++ Primer Plus [7]. If
you are experienced in programming but new to C++, we recommend Stroustrup’s
The C++ Programming Language [8]. The website www.cplusplus.com is an excellent
online reference.

This complete example is located at the end of this chapter in section 2.7. It’s
probably a good idea to download and install Goby now so you can try this out for
yourself: https://launchpad.net/goby.

This example involves passing a single type of message (class HelloWorldMsg)
from one Goby application (hello_world1_g1) to another (hello_world2_g). Since
Goby has a star topology, gobyd will mediate this transaction.

For this examplewewill write twoGoby applications and one protobufmessage.
See Fig. 2.1 for the software structure of this example.

2.1 Meeting goby::core::ApplicationBase
goby::core::ApplicationBase is the building block (base class) upon which we will
makeourGoby applications (whichwill be derived classes ofApplicationBase). ApplicationBase
provides us with a number of tools; the main ones are:

• a constructor ApplicationBase() that reads the command line and configura-
tion (we will learn about this later) and connects to the Goby daemon (gobyd)
for us.

• a virtual method loop() that is called at a regular frequency (10 Hertz by de-
fault).

• a method subscribe() which tells gobyd that we wish to receive all messages
of this type.

• a method newest() which returns the newest (latest received) message of a
given type that we have previously called subscribe() for. We will learn how
to filter the subscriptions later.

1you can name your applications whatever you want, but we like appending “ g” to the end to
indicate that this is a Goby application.

5

www.cplusplus.com
https://launchpad.net/goby

CHAPTER 2. THE HELLO WORLD EXAMPLE 6

#ApplicationBase()

#loop()

#publish()

#subscribe()

#newest()

#glogger()

-receive(in msg : HelloWorldMsg)

goby::core::ApplicationBase

«extends» «extends»

-receive()

-send()

-log()

-publish(in msg : HelloWorldMsg)

-subscribe(in msg : HelloWorldMsg)

goby::core::Daemon

+HelloWorld1()

-loop()

HelloWorld1

+HelloWorld2()

-loop()

HelloWorld2

+set_telegram()

+set_count()

+telegram() : std::string

+count() : unsigned int

-telegram : std::string

-count : unsigned int

«protobuf»

HelloWorldMsg

Figure 2.1: Structure diagram of the Hello World example showing the classes and
dependencies. HelloWorld1 and HelloWorld2 are both Goby applications and
thus are classes derived (solid arrows) from goby::core::ApplicationBase.
Both of them (dashed arrows) depend on the Protocol Buffers message
HelloWorldMsg because they use it to communicate. They also both depend
on goby::core::Daemon (gobyd) for passing this message. See Fig. 2.2 for the
sequence of sending a message in this example.

• a method publish() allowing us to publish messages to gobyd and thereby to
any subscribers of that type.

• a method glogger() which acts just like std::cout2 and lets us write to the de-
bug (terminal window / text file) goby logger.

2glogger() accesses an instantiation of goby::util::FlexOstream, a derived class of std::ostream.
std::cout is also a derived class of std::ostream.

CHAPTER 2. THE HELLO WORLD EXAMPLE 7

hello_world1_g : HelloWorld1 gobyd : goby::core::Daemon hello_world2_g : HelloWorld2

subscribe(msg:HelloWorldMsg)

publish(msg:HelloWorldMsg)

publish(msg:HelloWorldMsg)

publish(msg:HelloWorldMsg)

receive(msg:HelloWorldMsg)

receive(msg:HelloWorldMsg)

receive(msg:HelloWorldMsg)

Figure 2.2: Sequence diagramof theHelloWorld example. HelloWorld2 subscribes
for all messages of type HelloWorldMsg after which HelloWorld1 publishes re-
peatedly a HelloWorldMsg that is processed and sent by gobyd to all subscribers
(in this case just HelloWorld2).

2.2 Creating a simple Google Protocol Buffers Message:
HelloWorldMsg
Google Protocol Buffers (protobuf) allows us to create custom objects for holding
and transmitting data in a structured fashion. Transmitting data typically is done
in a long string of bytes. However, humans do not view the world as a string of
bytes. We think and communicate using tangible and intangible objects. For ex-
ample, a baseball might be described by its diameter, color, weight, and materials.
Goby (using protobuf objects) allowsmessages to be formed using thismore natural
object-based representation.

The protobuf language is simplewith a syntax similar to that of C. Protobufmes-
sages are written in .proto files and passed to the protobuf compiler (protoc) which
generates C++ code to pass to the C++ compiler (gcc on Linux). Protobuf messages
can contain a number of basic types (or vectors of these types) as well as nested
messages. Fields are labeled as required, optional or repeated (essentially a vector).
Required fields must be filled in; clearly, optional fields can be omitted. This might
be a good time to read the Protocol Buffers tutorial [9] to get a feel for the language
and usage.

As you become familiar with using protobuf, the language reference [10] will
help you in creating .proto files and the generated code reference [11] will assist
you in accessing the C++ classes created by the .proto files when passed through
protoc.

For this example, we wish to send “hello world” (of course) so we need a string
to hold our message that we will call ‘telegram’:
required string telegram = 1;

CHAPTER 2. THE HELLO WORLD EXAMPLE 8

The = 1 simply indicates that ‘telegram’ is thefirst field in themessage HelloWorldMsg.
Furthermore, we want to keep track of how many times we’ve said “hello” so we’ll
add an unsigned integer called ‘count’
required uint32 count = 2;

The resulting .proto file is given in section 2.7.1.
We chose ‘required’ to prefixbothfields becausewe feel that a valid HelloWorldMsg

must contain both a ‘telegram’ and a ‘count.’ uint32 is an unsigned (non-negative)
32 bit integer. The numbers following the “=” sign are unique identifiers for each
field. These numbers can be chosen however one likes as long as they are unique
within a given protobuf message. Ascending numbers in the order fields are de-
clared in the file is a reasonable choice.

This .proto file is “compiled” into a class with the same name as the message
(HelloWorldMsg). This class is accessed by including a header filewith the samename
as the .proto file, but with “.proto” replaced with “.pb.h”. Furthermore, we can set
the contents of this class using calls (“mutators” or “setters”) that are the same as
the field name (i.e. ‘telegram’ or ‘count’) prepended with “set ”:

1 // C++
2 #include "hello_world.pb.h"
3
4 // create and populate a ``HelloWorldMsg'' called `msg'
5 HelloWorldMsg msg;
6 msg.set_telegram("hello world");
7 msg.set_count(3);

and access them using these methods (“accessors” or “getters”) that have the
same function name as the field name:

1 // C++
2 // print information about `msg' to the screen
3 std::cout << msg.telegram() << ": " << msg.count() << std::endl;

2.3 Learning how to publish: HelloWorld1
To create a Goby application, one needs to

• create a derived class of goby::core::ApplicationBase. We also must include
the goby core header (#include "goby/core/core.h").

CHAPTER 2. THE HELLO WORLD EXAMPLE 9

• run the applicationusing the goby::run() function. Because goby::core::ApplicationBase
reads our configuration (including command line options) for us, we also pass
argv and argc to run().

That is all one needs to create a valid working Goby application. All together
the “bare-bones” Goby application looks like:

1 #include "goby/core/core.h"
2
3 class HelloWorld1 : public goby::core::ApplicationBase {};
4
5 int main(int argc, char* argv[])
6 {
7 return goby::run<HelloWorld1>(argc, argv);
8 }

However, we would like our application to do a little bit more.
ApplicationBase provides a virtual method called loop() that is called on some

regular interval (it is the synchronous event in Goby), by default 10 Hertz. By over-
loading loop() in our derived class HelloWorld1, we can do any kind of synchronous
work that needs to be done without tying up the CPU all the time3. In this exam-
ple, we will create a simple message (of type HelloWorldMsg which we previously
designed in chapter 2.2) and publish it to gobyd and thus all subscribers (we create
a subscriber in chapter 2.4).

Let’s walk through each line of our loop() method:

1 void loop()
2 {
3 static int i = 0;
4 HelloWorldMsg msg;
5 msg.set_telegram("hello world!");
6 msg.set_count(++i);
7 glogger() << "sending: " << msg << std::endl;
8 publish(msg);
9 }

Line 1: loop() takes no arguments and returns nothing (void). We declare (line
3) a static integer4 to keep track of how many times we have looped and thus print

3in between calls to loop(), ApplicationBase handles incoming subscribed messages
4static in this context means that the variable will keep its value across calls to the function

loop().

CHAPTER 2. THE HELLO WORLD EXAMPLE 10

an increasing integer value. Then we create a HelloWorldMsg called msg (line 4)
and set the values of its fields (lines 5 and 6). We then publish a human debugging
log message using glogger() (just like std::cout or other std::ostreams), which will
be put to the terminal window in verbose mode5. Finally, we publish our message
(line 8). The entirety of the code for hello_world1_g is listed in section 2.7.2.

2.4 Learning how to subscribe: HelloWorld2
Now that our hello_world1_g application is publishing a message, we would like to
create an application that subscribes for it. To subscribe for a message, we typically
provide two things:

• The type of the message we want to subscribe for (e.g. HelloWorldMsg).
• Amethod or function that should be called when we receive that type (a call-

back).
Subscriptions typically takeplace in the constructor (here, HelloWorld2::HelloWorld2()),

but can happen at any time as needed (within loop(), for example). You subscribe
for a type once, and then you will continue to receive all other applications’ pub-
lishes to that type.

We subscribe for a type using a call to subscribe() that looks like this:

1 subscribe<HelloWorldMsg>(&HelloWorld2::receive_msg, this);

While a bit complicated at first, this call should make sense shortly. It reads
“subscribe for all messages of type HelloWorldMsg andwhen you receive one, call the
method HelloWorld2::receive_msg which is a member of this class (HelloWorld2).”6.
The method provided as a callback (here receive_msg()) must have the signature

1 void func(const ProtoBufMessage&);

where ProtoBufMessage is the type subscribed for (here, HelloWorldMsg). receive_msg()
has that signature

5goby provides operator« for google::protobuf::Message objects as a wrapper for
google::protobuf::Message::DebugString()

6You can call a member function (method) of another class by passing the pointer to the desired
class instantiation instead of this. Alternatively, you can call a non-class function by just giving its
pointer, e.g. subscribe(&receive msg).

CHAPTER 2. THE HELLO WORLD EXAMPLE 11

1 void HelloWorld2::receive_msg(const HelloWorldMsg& msg);

and thus is a valid callback for this subscription. After subscribing, receive_msg()
will be called immediately (an asynchronous event) upon receipt of a message of
type HelloWorldMsg unless

• loop() is in the process of being called or
• another message callback is in the process of being called.

In these cases, receive_msg() is called as soon as the blocking method returns. For
this example, inside of receive_msg() we simply post the message to the debug log:

1 void receive_msg(const HelloWorldMsg& msg)
2 {
3 glogger() << "received: " << msg << std::endl;
4 }

The full source listing for hello_world2_g can be found in section 2.7.3.

2.5 Compiling our applications using CMake
CMake [12], while still lacking in documentation, is probably the easiest way to
build software these days, especially for cross platform support. I will briefly walk
through building a Goby application using CMake within the larger Goby project
configuration. If you look at the CMakeLists.txt file in 2.7.4, you can see the steps
needed to add our new applications to the project:

1 protobuf_generate_cpp(PROTO_SRCS PROTO_HDRS hello_world.proto)
2 add_executable(hello_world1_g hello_world1.cpp ${PROTO_SRCS} ${PROTO_HDRS})
3 target_link_libraries(hello_world1_g goby_core)

Line 1 tells CMake to add “hello world.proto” to the files needed to be pre-
compiled by the Google Protocol Buffers compiler protoc. protobuf generate cpp
is provided by the CMake module goby/cmake modules/FindProtobufGoby.cmake.
Line 2 adds our application hello_world1_g to the list to be compiled by the C++ com-
piler, using the sources hello_world1.cpp and the generated Protocol Buffers code.
We append “ g” as a convention to quickly recognize Goby applications. Line 3 links

http://bazaar.launchpad.net/~goby-dev/goby/trunk/annotate/head:/cmake_modules/FindProtobufGoby.cmake

CHAPTER 2. THE HELLO WORLD EXAMPLE 12

our application against the goby core library, whichprovides goby::core::ApplicationBase,
our base class.

Adding hello_world2_g is directly analogous.

2.6 Trying it all out: running from the command line
Now, assuming you’ve compiled everything, we can run the example.

You’ll need three terminalwindows, one for gobyd, and one for each of our “hello
world” applications. You need to start gobyd first

1 > gobyd -p hello_auv

I’ve gone ahead andnamed this platform“hello auv”. Theplatformname is a unique
identifier for both intra- and inter-vehicle communications in Goby. Now we can
launch our two applications (order doesn’t matter), with the added “-v” flag to in-
dicate we want verbose terminal output:

1 > hello_world1_g -p hello_auv -v
2 > hello_world2_g -p hello_auv -v

You should see hello_world1_g passingmessages to hello_world2_g every 1/10th
second.

2.7 Code
This entire example can be browsed online at http://bazaar.launchpad.net/
~goby-dev/goby/1.0/files/head:/share/examples/core/ex1_hello_world.

2.7.1 goby/share/examples/core/ex1 hello world/hello world.proto

1 // see http://code.google.com/apis/protocolbuffers/docs/cpptutorial.html
2 // http://code.google.com/apis/protocolbuffers/docs/proto.html
3
4 message HelloWorldMsg
5 {
6 required string telegram = 1;
7 required uint32 count = 2;
8 }
9

http://bazaar.launchpad.net/~goby-dev/goby/1.0/files/head:/share/examples/core/ex1_hello_world
http://bazaar.launchpad.net/~goby-dev/goby/1.0/files/head:/share/examples/core/ex1_hello_world

CHAPTER 2. THE HELLO WORLD EXAMPLE 13

2.7.2 goby/share/examples/core/ex1 hello world/hello world1.cpp

1 // for goby::core::ApplicationBase
2 #include "goby/core/core.h"
3
4 // autogenerated Protocol Buffers header
5 #include "hello_world.pb.h"
6
7 // allows us to directly output protobuf messages to streams
8 using goby::core::operator<<;
9

10 // create our Goby Application with ApplicationBase as a public base
11 class HelloWorld1 : public goby::core::ApplicationBase
12 {
13 private:
14 // loop() is a virtual method of ApplicationBase that is called
15 // at 10 Hz (by default)
16 void loop()
17 {
18 static int i = 0;
19 // create a message of type HelloWorldMsg (defined in
20 // hello_world.proto)
21 HelloWorldMsg msg;
22 // set the fields we need
23 msg.set_telegram("hello world!");
24 msg.set_count(++i);
25
26 glogger() << "sending: " << msg << std::endl;
27
28 // publish it to `gobyd` who will send to all subscribers
29 publish(msg);
30 }
31 };
32
33 int main(int argc, char* argv[])
34 {
35 // start up our application (ApplicationBase will read argc and
36 // argv for us)
37 return goby::run<HelloWorld1>(argc, argv);
38 }

2.7.3 goby/share/examples/core/ex1 hello world/hello world2.cpp

1 #include "goby/core/core.h"
2 #include "hello_world.pb.h"

CHAPTER 2. THE HELLO WORLD EXAMPLE 14

3
4 using goby::core::operator<<;
5
6 class HelloWorld2 : public goby::core::ApplicationBase
7 {
8 public:
9 HelloWorld2()

10 {
11 // subscribe for all messages of type HelloWorldMsg
12 subscribe<HelloWorldMsg>(&HelloWorld2::receive_msg, this);
13 }
14
15 private:
16 void receive_msg(const HelloWorldMsg& msg)
17 {
18 // print to the log the newest received "HelloWorldMsg"
19 glogger() << "received: " << msg << std::endl;
20 }
21 };
22
23 int main(int argc, char* argv[])
24 {
25 return goby::run<HelloWorld2>(argc, argv);
26 }

2.7.4 goby/share/examples/core/ex1 hello world/CMakeLists.txt

1 # tells CMake to generate the *.pb.h and *.pb.cc files from the *.proto
2 protobuf_generate_cpp(PROTO_SRCS PROTO_HDRS hello_world.proto)
3
4 # add these executables to the project
5 add_executable(hello_world1_g hello_world1.cpp ${PROTO_SRCS} ${PROTO_HDRS})
6 add_executable(hello_world2_g hello_world2.cpp ${PROTO_SRCS} ${PROTO_HDRS})
7
8 # and link in the goby_core library
9 target_link_libraries(hello_world1_g goby_core)

10 target_link_libraries(hello_world2_g goby_core)
11

3The GPS Driver example
Marine robots need to know where they are. The simplest way now is to use a GPS
receiver. While this works only when the robot is on the surface of the ocean, it is
one of the most accurate forms of positioning available and thus used as a starting
point for undersea dead reckoningusingDopplerVelocity Loggers (DVLs) or Inertial
MeasurementUnits (IMUs). Therefore, reading a GPS receiver’s output into a usable
form for decisionmaking is a useful and necessary ability for ourmarine robot. This
example shows how we might do this using Goby.

Typically we might also need to know the depth of our vehicle. This is often
determined by measuring the ambient pressure. In this example, we will simulate
the scalar depth reading of such a pressure sensor.

Finally, it is often useful to have an aggregate of the vehicle’s status that includes
a snapshot of the vehicle’s location, orientation, speed, heading, and perhaps other
factors such as battery life and health. For this example, we call such a message
a NodeReport and provide an application node_reporter_g that compiles the reports
from the GPS and the depth sensor into a single message. To extend this example,
we could add data from other sources, such as an inertial measurement unit (IMU)
or Doppler Velocity Logger (DVL).

As the first example, the files for this example are located at the end of the
chapter in section 3.6.

3.1 Reading configuration from files and command line:
DepthSimulator
“DepthSimulator” is reads a starting depth value from a configuration file and re-
ports that value as the current depth, perturbed slightly by a random value. It’s a
primitive constant depth simulator, but allows us to illustrate another feature of
Goby, the configuration file reader.

Goby reads configuration text files and the command line using protobuf, in a
similar manner messages are defined for passing between applications. The Goby
application author provides a .proto file containing a protobuf message that de-
fines all possible valid configuration values for the given application in the form
of a protobuf message. Then the application instantiates a copy of this configu-
ration message and passes it to the goby::core::ApplicationBase constructor with
reads the configuration text file and/or command line options. If the configura-
tion text file and/or command line options properly populate the provided proper
configuration protobuf message, the message is returned to the derived class (the
Goby application). Otherwise, execution of the application ends with a useful error

15

CHAPTER 3. THE GPS DRIVER EXAMPLE 16

message for the user explaining the errors involved with the passed configuration.
Thus, for the DepthSimulatorwedefine aprotobufmessage called DepthSimulatorConfig:

1 message DepthSimulatorConfig
2 {
3 required AppBaseConfig base = 1;
4 required double depth = 2;
5 }

An embeddedmessage of type AppBaseConfig is always provided for configuring
parameters common for all Goby applications, such as the frequency that the virtual
method loop() is called, the name of the application to use with gobyd (if different
from the compiled name), and the name of the platform that this application be-
longs on (and thus which gobyd to connect to if multiple gobyds are running on a sin-
gle computer). The AppBaseConfigmessage is defined in goby/src/core/proto/app base config.proto.

Specifically, for our DepthSimulator, we only have one other configuration pa-
rameter, a double called ‘depth’. It is required, so our application will fail to run
without a depth provided.

Touse theGoby configuration reader, we create an instantationof our DepthSimulatorConfig

1 class DepthSimulator : public goby::core::ApplicationBase
2 {
3 ...
4 static DepthSimulatorConfig cfg_;
5 };

which must either be a global object or a static member of our class1.
Then, all we must do is pass a pointer to that object to the constructor of the

base class:

1 DepthSimulator()
2 : goby::core::ApplicationBase(&cfg_)

goby::core::ApplicationBase will take of the rest. To see what configuration val-
ues can be used in our compiled depth_simulator_g, we can run it with the -h (or
equivalently, --help) flag:

1The configuration object must be a static member so that it is instantiated before the
goby::core::ApplicationBase since normal members of our DepthSimulator class would be
instantiated after ApplicationBase, which would lead to trouble when ApplicationBase tried to
use the object

CHAPTER 3. THE GPS DRIVER EXAMPLE 17

1 > depth_simulator_g --help

which should provides output

1 Allowed options:
2
3 Typically given in depth_simulator_g configuration file,
4 but may be specified on the command line:
5 --base arg (req)
6 platform_name: "AUV-23" same as self.name for
7 gobyd cfg (req)
8 app_name: "myapp_g" default is compiled name -
9 change this to run multiple

10 instances (opt)
11 verbosity: QUIET Terminal verbosity
12 (opt) (default)
13 loop_freq: 10 the frequency (Hz) used to run
14 loop() (opt) (default)
15 --depth arg (req)
16
17 Given on command line only:
18 -c [--cfg_path] arg path to depth_simulator_g configuration file
19 (typically depth_simulator_g.cfg)
20 -h [--help] writes this help message
21 -p [--platform_name] arg name of this platform (same as gobyd configuration
22 value `self.name`)
23 -a [--app_name] arg name to use when connecting to gobyd (default:
24 depth_simulator_g)
25 -v [--verbose] arg output useful information to std::cout. -v is
26 verbosity: verbose, -vv is verbosity: debug, -vvv
27 is verbosity: gui

Thus, to configure depth_simulator_g I could create a textfile (let’s say depth simulator.cfg)
with values like

1 # depth_simulator.cfg
2 base
3 {
4 platform_name: "AUV-1"
5 loop_freq: 1
6 }
7
8 depth: 10.4

CHAPTER 3. THE GPS DRIVER EXAMPLE 18

Then, when we run depth_simulator_gwe pass the path to the configuration file
as the first command line option:

1 > depth_simulator_g depth_simulator.cfg

If we didn’t want to use a configuration file, we could pass the same contents of
the depth simulator.cfg file given above on the command line instead:

1 > depth_simulator_g --base 'platform_name: "AUV-1" loop_freq: 1' --depth 10.4

If the same configuration values are provided in both the configuration file and
on the command line, they are merged for “repeat” fields. For “required” or “op-
tional” fields, the command line value overwrites the configuration file value.

Thus, if we run

1 > depth_simulator_g depth_simulator.cfg --depth 20.5

cfg_.depth() is 20.5 since the command line provided value takes precedence.
Some commonly used configuration values have shortcuts for the command

line. For example, the following two commands are equivalent ways to set the plat-
form name:

1 > depth_simulator_g --base 'platform_name: "AUV-1"'
2 > depth_simulator_g -p "AUV-1"

Other than reading a configuration file, all DepthSimulator does is repeatedly
write a message of type DepthReading (see section 3.6.2) based off a random offset to
the configuration value “depth”:

1 void loop()
2 {
3 DepthReading reading;
4 // just post the depth given in the configuration file plus a small random offset
5 reading.set_depth(cfg_.depth() + (rand() % 10) / 10.0);
6
7 glogger() << reading << std::flush;
8 publish(reading);
9 }

CHAPTER 3. THE GPS DRIVER EXAMPLE 19

Youwill note that depth reading.proto contains an import command and a field
of type ‘Header’:

1 import "goby/core/proto/header.proto";
2
3 message DepthReading
4 {
5 // time is in header
6 required Header header = 1;
7 required double depth = 2;
8 }

‘Header’ (defined in goby/src/core/proto/header.proto) provides commonlyused
fields such as time and source / destination addressing. It is highly recommended to
include this inmessages sent throughGoby, but not required. goby::core::ApplicationBase
will populate any required fields in ‘Header’ not given by DepthSimulator. For ex-
ample, if neither timefield (‘unix time’ nor ‘iso time’) is set, goby::core::ApplicationBase
will set the time based on the time publish()was called. However either ‘unix time’
or ‘iso time’ should be set if the calling application has a better time stamp for the
message than the publish time.

3.2 Our first useful application: GPSDriver

GPSDriver doesn’t introduce any new features of Goby, but it attempts to be the first
non-trivial application we have seen thus far. GPSDriver connects to a NMEA-0183
compatible GPS receiver over a serial port, reads all the messages and parses the
GGA sentence into a useful protobufmessage for posting to the database (via gobyd).

3.2.1 Configuration
The configuration needed for GPSDriver all pertains to how the serial GPS receiver
is connected and how it communicates:

1 message GPSDriverConfig
2 {
3 required AppBaseConfig base = 1;
4
5 required string serial_port = 2;
6 optional uint32 serial_baud = 3 [default = 4800];
7 optional string end_line = 4 [default = "\r\n"];
8 }

CHAPTER 3. THE GPS DRIVER EXAMPLE 20

Note the use of defaults when they are meaningful (the NMEA-0183 specifica-
tion requires carriage return (\r) and new line (\n) to signify the end of a line so this
default will likely often be precisely what our users want, saving them the effort of
specifying it every time).

3.2.2 Protobuf Messages
GPSDriver uses two protobuf messages both defined in gps nmea.proto (see section
3.6.7). The first (NMEASentence) is a parsed version of a generic NMEA-0183 message.
The second (GPSSentenceGGA) contains a NMEASentence but also the parsed fields of
the GGA positionmessage. Providing the GPSSentenceGGA gives all subscribers of this
message rapid access to useful data without parsing the original NMEA string again.

3.2.3 Body
GPSDriver should be straightforward to understand given what we have learned to
this point. It makes use of some utilities in the goby::util libraries, especially the
goby::util::SerialClient used for reading the serial port. These utilities are docu-
mented along with all the other Goby classes at http://gobysoft.com/doc.

Goby makes heavy use of the Boost libraries (http://www.boost.org). While
you are not required to use any of Boost when developing Goby applications, it
would beworth yourwhile becoming acquaintedwith them. For example, the Boost
Date-Time library gives a handy object oriented way to handle dates and times that
far exceeds the abilities of ctime (i.e. time.h).

3.3 Subscribing for multiple types: NodeReporter
NodeReporter subscribes to both the output of DepthSimulator (DepthReading) and
GPSDriver (GPSSentenceGGA). Whenever either is published, a new NodeReport mes-
sage is created as the aggregate of pieces of bothmessages. The NodeReport (defined
in node report.proto in section 3.6.4) is a useful summation of the status of a given
node (synonomously, platform). Because DepthReading and GPSSentenceGGA are pub-
lished asynchronously, we also keep track of the delays between different parts of
the NodeReport message (the *_lag fields).

The NodeReport provides
1. Name of the platform
2. Type of the platform (e.g. AUV, buoy)

http://gobysoft.com/doc
http://www.boost.org

CHAPTER 3. THE GPS DRIVER EXAMPLE 21

3. The global position of the vehicle in geodetic coordinates (latitude, longitude,
depth)

4. The local position of the vehicle in a local cartesian coordinate system (x, y, z)
based off the datum defined in the configuration for gobyd. This is generally
more useful for vehicle operators than the global fix.

5. The Euler angles of the current vehicle pose: roll, pitch, yaw (heading).
6. The speed of the vehicle.
In this example, we only set the first three fields given above. The others would

require further sensing capability than we have in this example.

3.4 Putting it all together
First, we either need a real GPS unit or simulate one somehow. If you have a real
NMEA-0183 GPS handy, by all means use it. Otherwise, I’ve made a fake GPS using
socat and a log file of a real GPS (nmea.txt). This fake GPS can be run using
./fake_gps.sh nmea.txt

which writes a line from nmea.txt every second to the fake serial port /tmp/ttyFAKE.
This should be good enough for us here. If you don’t have socat, you should be able
tofind it in thepackagemanager for your Linuxdistribution (sudo apt-get install socat
in Debian or Ubuntu).

Next we need to launch everything. The list is beginning to grow

1 ./fake_gps.sh nmea.txt
2 gobyd gobyd.cfg -v
3 ./gps_driver_g gps_driver_g.cfg -v
4 ./depth_simulator_g depth_simulator_g.cfg -v
5 ./node_reporter_g node_reporter_g.cfg -v

but fortunatelywe’ve provided a script that launches everything for you in separate
terminal windows. So all you need to do is type

1 ./launch.sh

and enjoy the magic unfold. Should you wish to modify how things are launched,
just edit launch list.txt in goby/share/examples/core/ex2 gps driver.

CHAPTER 3. THE GPS DRIVER EXAMPLE 22

3.5 Reading the log files (SQLite3)
Youmayhavenoticed that everytimeyou run gobyd it creates a logfile called AUV-1_YYYYMMDDTHHMMSS_goby.db.
This is an SQLite3 [5] SQL database. Every variable published in Goby is written to
this database. To read it, you need a tool capable of reading SQLite3 databases. One
candidate is the sqlite3 command line tool. The followingwill dump to your screen
all the DepthReading values recorded. Using the interactive mode:

1 sqlite3 AUV-1_20110304T212549_goby.db
2 sqlite> .mode column
3 sqlite> .headers ON
4 sqlite> SELECT * FROM DepthReading;

or similarly on the command line only

1 sqlite3 -header -column AUV-1_20110304T212549_goby.db "SELECT * FROM DepthReading"

If a Graphical User Interface (GUI) is more your style, http://www.sqlite.
org/cvstrac/wiki?p=ManagementToolshas awhole list. Mypreference is Sqlite-
man, accessible in Ubuntu with sudo apt-get install sqliteman. Then it’s just a
matter of loading up the database and away you go:

1 sqliteman AUV-1_20110304T212549_goby.db

3.6 Code
This entire example can be browsed online at http://bazaar.launchpad.net/
~goby-dev/goby/1.0/files/head:/share/examples/core/ex2_gps_driver.

3.6.1 goby/share/examples/core/ex2 gps driver/config.proto

1 import "goby/protobuf/option_extensions.proto";
2 import "goby/protobuf/app_base_config.proto";
3
4 message GPSDriverConfig
5 {
6 required AppBaseConfig base = 1;

http://www.sqlite.org/cvstrac/wiki?p=ManagementTools
http://www.sqlite.org/cvstrac/wiki?p=ManagementTools
http://bazaar.launchpad.net/~goby-dev/goby/1.0/files/head:/share/examples/core/ex2_gps_driver
http://bazaar.launchpad.net/~goby-dev/goby/1.0/files/head:/share/examples/core/ex2_gps_driver

CHAPTER 3. THE GPS DRIVER EXAMPLE 23

7
8 required string serial_port = 2;
9 optional uint32 serial_baud = 3 [default = 4800];

10 optional string end_line = 4 [default = "\r\n"];
11 }
12
13 message NodeReporterConfig
14 {
15 required AppBaseConfig base = 1;
16 }
17
18 message DepthSimulatorConfig
19 {
20 required AppBaseConfig base = 1;
21 required double depth = 2;
22 }

3.6.2 goby/share/examples/core/ex2 gps driver/depth reading.proto

1 import "goby/protobuf/header.proto";
2
3 message DepthReading
4 {
5 // time is in header
6 required Header header = 1;
7 required double depth = 2;
8 }

3.6.3 goby/share/examples/core/ex2 gps driver/depth simulator.cpp

1 #include <cstdlib> // for rand
2
3 #include "goby/core/core.h"
4
5 #include "config.pb.h"
6 #include "depth_reading.pb.h"
7
8 using goby::core::operator<<;
9

10 class DepthSimulator : public goby::core::ApplicationBase
11 {
12 public:

CHAPTER 3. THE GPS DRIVER EXAMPLE 24

13 DepthSimulator()
14 : goby::core::ApplicationBase(&cfg_)
15 { }
16
17 void loop()
18 {
19 DepthReading reading;
20 // just post the depth given in the configuration file plus a
21 // small random offset
22 reading.set_depth(cfg_.depth() + (rand() % 10) / 10.0);
23
24 glogger() << reading << std::flush;
25 publish(reading);
26 }
27
28 static DepthSimulatorConfig cfg_;
29 };
30
31 DepthSimulatorConfig DepthSimulator::cfg_;
32
33 int main(int argc, char* argv[])
34 {
35 return goby::run<DepthSimulator>(argc, argv);
36 }
37

3.6.4 goby/share/examples/core/ex2 gps driver/node report.proto

1 import "goby/protobuf/header.proto";
2 import "goby/protobuf/app_base_config.proto";
3 import "goby/protobuf/config.proto";
4
5 message NodeReport
6 {
7 required Header header = 1;
8 required string name = 2;
9

10 // defined in goby/core/proto/config.proto
11 required goby.core.proto.VehicleType type = 3;
12
13 // lat, lon, depth
14 required GeodeticCoordinate global_fix = 4;
15 // x, y, z on local cartesian grid
16 optional CartesianCoordinate local_fix = 5;

CHAPTER 3. THE GPS DRIVER EXAMPLE 25

17
18 // roll, pitch, yaw
19 optional EulerAngles pose = 7;
20
21 // speed over ground (not relative to water or surface)
22 optional double speed = 8;
23 optional SourceSensor speed_source = 9;
24 optional double speed_time_lag = 11;
25
26 }
27
28 enum SourceSensor { GPS = 1;
29 DEAD_RECKONING = 2;
30 INERTIAL_MEASUREMENT_UNIT = 3;
31 PRESSURE_SENSOR = 4;
32 COMPASS = 5;
33 SIMULATION = 6;}
34
35 message GeodeticCoordinate
36 {
37 required double lat = 1;
38 required double lon = 2;
39 optional double depth = 3 [default = 0]; // negative of "height"
40 optional double altitude = 4;
41
42 optional SourceSensor lat_source = 5;
43 optional SourceSensor lon_source = 6;
44 optional SourceSensor depth_source = 7;
45 optional SourceSensor altitude_source = 8;
46
47 // time lags (in seconds) from the message Header time
48 optional double lat_time_lag = 9;
49 optional double lon_time_lag = 10;
50 optional double depth_time_lag = 11;
51 optional double altitude_time_lag = 12;
52 }
53
54 // computed from GeodeticCoordinate
55 message CartesianCoordinate
56 {
57 required double x = 1;
58 required double y = 2;
59 optional double z = 3 [default = 0]; // negative of "depth"
60 }
61
62 // all in degrees

CHAPTER 3. THE GPS DRIVER EXAMPLE 26

63 message EulerAngles
64 {
65 optional double roll = 1;
66 optional double pitch = 2;
67 optional double yaw = 3; // also known as "heading"
68
69 optional SourceSensor roll_source = 4;
70 optional SourceSensor pitch_source = 5;
71 optional SourceSensor yaw_source = 6;
72
73 // time lags (in seconds) from the message Header time
74 optional double roll_time_lag = 7;
75 optional double pitch_time_lag = 8;
76 optional double yaw_time_lag = 9;
77 }
78

3.6.5 goby/share/examples/core/ex2 gps driver/node reporter.h

1 #ifndef NODEREPORTER20101225H
2 #define NODEREPORTER20101225H
3
4 #include "goby/core/core.h"
5 #include "config.pb.h"
6
7 #include "gps_nmea.pb.h"
8 #include "depth_reading.pb.h"
9

10 class NodeReporter : public goby::core::ApplicationBase
11 {
12 public:
13 NodeReporter();
14 ~NodeReporter();
15
16
17 private:
18 void create_node_report(const GPSSentenceGGA& gga,
19 const DepthReading& depth);
20
21 void handle_depth(const DepthReading& reading)
22 {
23 create_node_report(newest<GPSSentenceGGA>(), reading);
24 }
25

CHAPTER 3. THE GPS DRIVER EXAMPLE 27

26 void handle_gps(const GPSSentenceGGA& gga)
27 {
28 create_node_report(gga, newest<DepthReading>());
29 }
30
31 static NodeReporterConfig cfg_;
32 };
33
34 #endif

3.6.6 goby/share/examples/core/ex2 gps driver/node reporter.cpp

1
2 #include "node_reporter.h"
3
4 #include "node_report.pb.h"
5
6 using goby::core::operator<<;
7
8 NodeReporterConfig NodeReporter::cfg_;
9

10 int main(int argc, char* argv[])
11 {
12 return goby::run<NodeReporter>(argc, argv);
13 }
14
15 NodeReporter::NodeReporter()
16 : goby::core::ApplicationBase(&cfg_)
17 {
18 // from Pressure Sensor Simulator
19 subscribe<DepthReading>(&NodeReporter::handle_depth, this);
20
21 // from GPS Driver
22 subscribe<GPSSentenceGGA>(&NodeReporter::handle_gps, this);
23 }
24
25 NodeReporter::~NodeReporter()
26 { }
27
28
29 void NodeReporter::create_node_report(const GPSSentenceGGA& gga,
30 const DepthReading& depth_reading)
31 {
32 if(!(gga.IsInitialized() && depth_reading.IsInitialized()))

CHAPTER 3. THE GPS DRIVER EXAMPLE 28

33 {
34 glogger() << warn << "need both GPSSentenceGGA and DepthReading "
35 << "message to proceed" << std::endl;
36 return;
37 }
38
39 glogger() << gga << depth_reading << std::flush;
40
41
42 // make an abstracted position and pose aggregate from the newest
43 // readings for consumption by other processes
44 NodeReport report;
45
46 // use the time from the GGA message as the base message time
47 report.mutable_header()->set_iso_time(gga.header().iso_time());
48 report.set_name(cfg_.base().platform_name());
49 report.set_type(global_cfg().self().type());
50
51 GeodeticCoordinate* global_fix = report.mutable_global_fix();
52 global_fix->set_lat(gga.lat());
53 global_fix->set_lon(gga.lon());
54
55 // we set message time from GPS GGA, so no lag
56 global_fix->set_lat_time_lag(0);
57 global_fix->set_lon_time_lag(0);
58
59 global_fix->set_lat_source(GPS);
60 global_fix->set_lon_source(GPS);
61
62 // set the depth sensor data
63 global_fix->set_depth(depth_reading.depth());
64 global_fix->set_depth_source(SIMULATION);
65 global_fix->set_depth_time_lag(gga.header().unix_time()
66 -depth_reading.header().unix_time());
67
68 // TODO(tes): compute the local coordinates
69
70 // in a better world we would want data for altitude, speed and
71 // Euler angles too!
72 glogger() << report << std::flush;
73
74 publish(report);
75
76 }

CHAPTER 3. THE GPS DRIVER EXAMPLE 29

3.6.7 goby/share/examples/core/ex2 gps driver/gps nmea.proto

1 import "goby/protobuf/header.proto";
2
3 message NMEASentence
4 {
5 // e.g. "GP"
6 required string talker_id = 1;
7 // e.g. "GGA"
8 required string sentence_id = 2;
9 // e.g. 71

10 required uint32 checksum = 3;
11 // e.g. part[0] = $GPGGA
12 // part[1] = 123519
13 // part[2] = 4807.038
14 // part[3] = N
15 // and so on
16 repeated string part = 4;
17 }
18
19 message GPSSentenceGGA
20 {
21 // time is in header
22 required Header header = 1;
23 required NMEASentence nmea = 2;
24
25 // decimal degrees
26 required double lat = 3;
27 required double lon = 4;
28
29 enum FixQuality
30 {
31 INVALID = 0;
32 GPS_FIX = 1;
33 DGPS_FIX = 2;
34 PPS_FIX = 3;
35 REAL_TIME_KINEMATIC = 4;
36 FLOAT_RTK = 5;
37 ESTIMATED = 6;
38 MANUAL_MODE = 7;
39 SIMULATION_MODE = 8;
40 }
41 required FixQuality fix_quality = 5;
42 required uint32 num_satellites = 6;
43 required float horiz_dilution = 7;
44 required double altitude = 8;
45 required double geoid_height = 9;

CHAPTER 3. THE GPS DRIVER EXAMPLE 30

46 }

3.6.8 goby/share/examples/core/ex2 gps driver/gps driver.h

1 #ifndef GPSDRIVER20101014H
2 #define GPSDRIVER20101014H
3
4 #include "goby/core/core.h"
5 #include "goby/util/time.h"
6 // for serial driver
7 #include "goby/util/linebasedcomms.h"
8 #include "config.pb.h"
9

10 // forward declare (from gps_nmea.proto)
11 class NMEASentence;
12 class GPSSentenceGGA;
13
14 class GPSDriver : public goby::core::ApplicationBase
15 {
16 public:
17 GPSDriver();
18 ~GPSDriver();
19
20
21 private:
22 void loop();
23 boost::posix_time::ptime nmea_time2ptime(const std::string& nmea_time);
24 void string2nmea_sentence(std::string in, NMEASentence* out);
25 void set_gga_specific_fields(GPSSentenceGGA* gga);
26
27 goby::util::SerialClient serial_;
28 static GPSDriverConfig cfg_;
29 };
30
31 // very simple exception classes
32 class bad_nmea_sentence : public std::runtime_error
33 {
34 public:
35 bad_nmea_sentence(const std::string& s)
36 : std::runtime_error(s)
37 { }
38 };
39
40 class bad_gga_sentence : public std::runtime_error

CHAPTER 3. THE GPS DRIVER EXAMPLE 31

41 {
42 public:
43 bad_gga_sentence(const std::string& s)
44 : std::runtime_error(s)
45 { }
46 };
47
48
49 #endif

3.6.9 goby/share/examples/core/ex2 gps driver/gps driver.cpp

1 #include "gps_driver.h"
2
3 #include "gps_nmea.pb.h"
4
5 #include "goby/util/binary.h" // for goby::util::hex_string2number
6 #include "goby/util/string.h" // for goby::util::as
7
8 using goby::core::operator<<;
9

10 GPSDriverConfig GPSDriver::cfg_;
11
12 int main(int argc, char* argv[])
13 {
14 return goby::run<GPSDriver>(argc, argv);
15 }
16
17 GPSDriver::GPSDriver()
18 : goby::core::ApplicationBase(&cfg_),
19 serial_(cfg_.serial_port(), cfg_.serial_baud(), cfg_.end_line())
20 {
21 serial_.start();
22 }
23
24 GPSDriver::~GPSDriver()
25 {
26 serial_.close();
27 }
28
29 void GPSDriver::loop()
30 {
31 std::string in;
32 while(serial_.readline(&in))

CHAPTER 3. THE GPS DRIVER EXAMPLE 32

33 {
34 glogger() << "raw NMEA: " << in << std::flush;
35
36 // parse
37 NMEASentence nmea;
38 try
39 {
40 string2nmea_sentence(in, &nmea);
41 }
42 catch (bad_nmea_sentence& e)
43 {
44 glogger() << warn << "bad NMEA sentence: " << e.what()
45 << std::endl;
46 }
47
48 if(nmea.sentence_id() == "GGA")
49 {
50 glogger() << "This is a GGA type message." << std::endl;
51
52 // create the message we send on the wire
53 GPSSentenceGGA gga;
54 // copy the raw message (in case later users want to do their
55 // own parsing)
56 gga.mutable_nmea()->CopyFrom(nmea);
57
58 try
59 {
60 set_gga_specific_fields(&gga);
61
62 // parse the time stamp
63 boost::posix_time::ptime t = nmea_time2ptime(nmea.part(1));
64 gga.mutable_header()->set_iso_time(
65 boost::posix_time::to_iso_string(t));
66
67 glogger() << gga << std::flush;
68
69 publish(gga);
70 }
71 catch(bad_gga_sentence& e)
72 {
73 glogger() << warn << "bad GGA sentence: " << e.what()
74 << std::endl;
75 }
76
77 }
78

CHAPTER 3. THE GPS DRIVER EXAMPLE 33

79 }
80 }
81
82
83 // from http://www.gpsinformation.org/dale/nmea.htm#GGA
84 // GGA - essential fix data which provide 3D location and accuracy data.
85 // $GPGGA,123519,4807.038,N,01131.000,E,1,08,0.9,545.4,M,46.9,M,,*47
86 // Where:
87 // GGA Global Positioning System Fix Data
88 // 123519 Fix taken at 12:35:19 UTC
89 // 4807.038,N Latitude 48 deg 07.038' N
90 // 01131.000,E Longitude 11 deg 31.000' E
91 // 1 Fix quality: 0 = invalid
92 // 1 = GPS fix (SPS)
93 // 2 = DGPS fix
94 // 3 = PPS fix
95 // 4 = Real Time Kinematic
96 // 5 = Float RTK
97 // 6 = estimated (dead reckoning)
98 // (2.3 feature)
99 // 7 = Manual input mode

100 // 8 = Simulation mode
101 // 08 Number of satellites being tracked
102 // 0.9 Horizontal dilution of position
103 // 545.4,M Altitude, Meters, above mean sea level
104 // 46.9,M Height of geoid (mean sea level) above WGS84
105 // ellipsoid
106 // (empty field) time in seconds since last DGPS update
107 // (empty field) DGPS station ID number
108 // *47 the checksum data, always begins with *
109 // If the height of geoid is missing then the altitude should be suspect.
110 // Some non-standard implementations report altitude with respect to the
111 // ellipsoid rather than geoid altitude. Some units do not report negative
112 // altitudes at all. This is the only sentence that reports altitude.
113
114 void GPSDriver::set_gga_specific_fields(GPSSentenceGGA* gga)
115 {
116 using goby::util::as;
117 const NMEASentence& nmea = gga->nmea();
118
119 const std::string& lat_string = nmea.part(2);
120
121 if(lat_string.length() > 2)
122 {
123 double lat_deg = as<double>(lat_string.substr(0, 2));
124 double lat_min = as<double>(lat_string.substr(2, lat_string.size()));

CHAPTER 3. THE GPS DRIVER EXAMPLE 34

125 double lat = lat_deg + lat_min / 60;
126 gga->set_lat((nmea.part(3) == "S") ? -lat : lat);
127 }
128 else
129 {
130 throw(bad_gga_sentence("invalid latitude field"));
131 }
132
133 const std::string& lon_string = nmea.part(4);
134 if(lon_string.length() > 2)
135 {
136 double lon_deg = as<double>(lon_string.substr(0, 3));
137 double lon_min = as<double>(lon_string.substr(3, nmea.part(4).size()));
138 double lon = lon_deg + lon_min / 60;
139 gga->set_lon((nmea.part(5) == "W") ? -lon : lon);
140 }
141 else
142 throw(bad_gga_sentence("invalid longitude field: " + nmea.part(4)));
143
144 switch(goby::util::as<int>(nmea.part(6)))
145 {
146 default:
147 case 0: gga->set_fix_quality(GPSSentenceGGA::INVALID); break;
148 case 1: gga->set_fix_quality(GPSSentenceGGA::GPS_FIX); break;
149 case 2: gga->set_fix_quality(GPSSentenceGGA::DGPS_FIX); break;
150 case 3: gga->set_fix_quality(GPSSentenceGGA::PPS_FIX); break;
151 case 4: gga->set_fix_quality(GPSSentenceGGA::REAL_TIME_KINEMATIC);
152 break;
153 case 5: gga->set_fix_quality(GPSSentenceGGA::FLOAT_RTK); break;
154 case 6: gga->set_fix_quality(GPSSentenceGGA::ESTIMATED); break;
155 case 7: gga->set_fix_quality(GPSSentenceGGA::MANUAL_MODE); break;
156 case 8: gga->set_fix_quality(GPSSentenceGGA::SIMULATION_MODE); break;
157 }
158
159 gga->set_num_satellites(goby::util::as<int>(nmea.part(7)));
160 gga->set_horiz_dilution(goby::util::as<float>(nmea.part(8)));
161 gga->set_altitude(goby::util::as<double>(nmea.part(9)));
162 gga->set_geoid_height(goby::util::as<double>(nmea.part(11)));
163 }
164
165 // converts a NMEA0183 sentence string into a class representation
166 void GPSDriver::string2nmea_sentence(std::string in, NMEASentence* out)
167 {
168
169 // Silently drop leading/trailing whitespace if present.
170 boost::trim(in);

CHAPTER 3. THE GPS DRIVER EXAMPLE 35

171
172 // Basic error checks ($, empty)
173 if (in.empty())
174 throw bad_nmea_sentence("message provided.");
175 if (in[0] != '$')
176 throw bad_nmea_sentence("no $: '" + in + "'.");
177 // Check if the checksum exists and is correctly placed, and strip it.
178 // If it's not correctly placed, we'll interpret it as part of message.
179 // NMEA spec doesn't seem to say that * is forbidden elsewhere?
180 // (should be)
181 if (in.size() > 3 && in.at(in.size()-3) == '*') {
182 std::string hex_csum = in.substr(in.size()-2);
183 int cs;
184 if(goby::util::hex_string2number(hex_csum, cs))
185 out->set_checksum(cs);
186 in = in.substr(0, in.size()-3);
187 }
188
189 // Split string into parts.
190 size_t comma_pos = 0, last_comma_pos = 0;
191 while((comma_pos = in.find(",", last_comma_pos)) != std::string::npos)
192 {
193 out->add_part(in.substr(last_comma_pos, comma_pos-last_comma_pos));
194
195 // +1 moves us past the comma
196 last_comma_pos = comma_pos + 1;
197 }
198 out->add_part(in.substr(last_comma_pos));
199
200 // Validate talker size.
201 if (out->part(0).size() != 6)
202 throw bad_nmea_sentence("bad talker length '" + in + "'.");
203
204 // GP
205 out->set_talker_id(out->part(0).substr(1, 2));
206 // GGA
207 out->set_sentence_id(out->part(0).substr(3));
208
209 }
210
211
212 // converts the time stamp used by GPS messages of the format HHMMSS.SSS
213 // for arbitrary precision fractional
214 // seconds into a boost::ptime object (much more usable class
215 // representation of for dates and times)
216 // *CAVEAT* this assumes that the message was received "today" for the

CHAPTER 3. THE GPS DRIVER EXAMPLE 36

217 // date part of the returned ptime.
218 boost::posix_time::ptime GPSDriver::nmea_time2ptime(const std::string& mt)
219 {
220 using namespace boost::posix_time;
221 using namespace boost::gregorian;
222
223 // must be at least HHMMSS
224 if(mt.length() < 6)
225 return ptime(not_a_date_time);
226 else
227 {
228 std::string s_hour = mt.substr(0,2), s_min = mt.substr(2,2),
229 s_sec = mt.substr(4,2), s_fs = "0";
230
231 // has some fractional seconds
232 if(mt.length() > 7)
233 s_fs = mt.substr(7); // everything after the "."
234
235 try
236 {
237 int hour = boost::lexical_cast<int>(s_hour);
238 int min = boost::lexical_cast<int>(s_min);
239 int sec = boost::lexical_cast<int>(s_sec);
240 int micro_sec = boost::lexical_cast<int>(s_fs)*
241 pow(10, 6-s_fs.size());
242
243 return (ptime(date(day_clock::universal_day()),
244 time_duration(hour, min, sec, 0)) +
245 microseconds(micro_sec));
246 }
247 catch (boost::bad_lexical_cast&)
248 {
249 return ptime(not_a_date_time);
250 }
251 }
252 }
253

3.6.10 goby/share/examples/core/ex2 gps driver/gobyd.cfg

1 self
2 {
3 name: "AUV-1"
4 type: AUV

CHAPTER 3. THE GPS DRIVER EXAMPLE 37

5 }

3.6.11 goby/share/examples/core/ex2 gps driver/depth simulator g.cfg

1 base
2 {
3 platform_name: "AUV-1"
4 loop_freq: 1
5 }
6
7 depth: 10

3.6.12 goby/share/examples/core/ex2 gps driver/gps driver g.cfg

1 base
2 {
3 platform_name: "AUV-1"
4 loop_freq: 1
5 }
6 serial_port: "/tmp/ttyFAKE"

3.6.13 goby/share/examples/core/ex2 gps driver/node reporter g.cfg

1 base
2 {
3 platform_name: "AUV-1"
4 loop_freq: 0.5
5 }

3.6.14 goby/share/examples/core/ex2 gps driver/nmea.txt

1 $GPRMC,183729,A,3907.356,N,12102.482,W,000.0,360.0,080301,015.5,E*6F
2 $GPRMB,A,,,,,,,,,,,,V*71
3 $GPGGA,183730,3907.356,N,12102.482,W,1,05,1.6,646.4,M,-24.1,M,,*75
4 $GPGSA,A,3,02,,,07,,09,24,26,,,,,1.6,1.6,1.0*3D
5 $GPGSV,2,1,08,02,43,088,38,04,42,145,00,05,11,291,00,07,60,043,35*71
6 $GPGSV,2,2,08,08,02,145,00,09,46,303,47,24,16,178,32,26,18,231,43*77
7 $PGRME,22.0,M,52.9,M,51.0,M*14

CHAPTER 3. THE GPS DRIVER EXAMPLE 38

8 $GPGLL,3907.360,N,12102.481,W,183730,A*33
9 $PGRMZ,2062,f,3*2D

10 $PGRMM,WGS 84*06
11 $GPBOD,,T,,M,,*47
12 $GPRTE,1,1,c,0*07
13 $GPRMC,183731,A,3907.482,N,12102.436,W,000.0,360.0,080301,015.5,E*67
14 $GPRMB,A,,,,,,,,,,,,V*71

4What’s next
That’s all for goby-core in Release 1.0. There’s still a lot to do so keep tuned. If you
want the bleeding edge, you can checkout theGoby trunkbranchwith bzr checkout lp:goby.

Here’s what’s on the horizon:
• support for seamless inter-platformcommunications via acoustics (acomms),

serial, wifi, and ethernet. Maybe even two cans and a string.
• a Wt [13] based configuration, launch, and runtime manager.
Stay tuned at https://launchpad.net/goby. Thanks.

39

https://launchpad.net/goby

AGoby MOOS Modules
The acoustic communications portionofGobywasdevelopedoriginally for theMOOS
autonomy architecture. Thus, the relevant MOOS modules pAcommsHandler and oth-
ers are still maintained (in goby/src/moos) for the use of the MOOS-IvP commu-
nity. MOOS-IvP is explained in [14] and is available at http://moos-ivp.org. The
usage of these modules is documented here. See http://gobysoft.com/doc/
#install for how to install Goby.

The beginning of this appendixmotivates the design, followed by a detailed user
manual for the individual MOOS processes.

A.1 Unified Command and Control for Subsea Autonomous
Sensing Networks
The process of undersea observation, mapping, and monitoring is experiencing a
dramatic paradigm shift away from platform-centric, human-controlled sensing,
processing and interpretation. Rather, distributed sensing using networks of au-
tonomous platforms is becoming the preferred technique. An optimal platform
suite is often highly heterogeneous with large differences in mobility, maneuver-
ability, sensing capability, and communication connectivity. The sensor systems
have different constraints on platform mobility and communication capacity, and
some network operations require highly coordinated maneuvering of heteroge-
neous platforms. Unified Command and Control [15] is a new command and control
paradigm inherently suited for such heterogeneous networks. Implemented using
MOOS-IvP, Unified C2 provides the fully integrated sensing, modeling and control
that allows each platform, on its own or in collaboration with partners of opportu-
nity, to autonomously detect, classify, localize and track (DCLT) an episodic, natural
or human-created event, and subsequently report back to the operators.

A robust undersea communication infrastructure is crucial to the operation of
such networks. In contrast to air and land-based equivalents, the extremely limited
bandwidth, latency and intermittency of underwater acoustic communication im-
poses severe requirements to the selectivity ofmessage handling. Thus, contact and
track reports for high-priority event, such as a detected chemical plume fromadeep
ocean vent, which may indicate an imminent volcanic eruption, must be transmit-
ted to the system operators without delay. On the other hand, reports concerning
less important events and platform status reports may be delayed without signifi-
cant effects. Previous message handling systems for underwater communications
have only a rigid, hard-coded queuing infrastructure, and do not support such ad-
vanced priority-based selectivity, hampering the type and amount of information

40

http://moos-ivp.org
http://gobysoft.com/doc/#install
http://gobysoft.com/doc/#install

APPENDIX A. GOBY MOOS MODULES 41

Figure A.1: Collaborative autonomy demonstrated in SWAMSI09 using MIT LAMSS
communication stack. The two BF21 AUVs Unicorn and Macrura perform synchro-
nized swimming maintaining a constant bistatic angle of 60◦ relative to a proud
cylindrical target (cp).

that can be passed between cooperating nodes in the network. This severely limits
the level of autonomy that can be supported on the network nodes.

In response to this problem, a new MOOS-IvP communication software stack was
developed at theMIT Laboratory for AutonomousMarine Sensing Systems (LAMSS)
[16], in support of autonomous sensing programs such as the ONR ASAP MURI,
GOATS, and SWAMSI. This new stack has enabled the operation of a communica-
tion infrastructure which provides robust message handling for collaborative au-
tonomous sensingbyheterogeneous, undersea autonomous assets, as demonstrated
in a handful of major recent field experiments. As an example, Fig. A.1 shows the
collaborative, multistatic MCM mission by the Unicorn and Macrura BF21 AUVs
during SWAMSI09 in Panama City, FL. The two vehicles are circling a proud cylinder
(cp) at a distance of 80 m maintaining a constant bistatic angle of 60 degrees. The
collaborationwas achieved fully autonomouslywithout any intervention by the op-
erators, with each vehicle adapting its speed based on its current position and the
position of the other vehicle extrapolated from the latest status, contact or track
report. Such collaborative maneuvers would not be possible using traditional com-
munication schemes, where navigation packets must be rigidly interleaved with
messages containg data and command and control sequences. In contrast, the Dy-
namic Compact Control Language (DCCL) used by the LAMSS communication stack
allows for adequate navigation information to be packed with all other required
message content.

APPENDIX A. GOBY MOOS MODULES 42

Being based on the established open source goby-acomms libraries of message
handling software, the open source architecture of this newMOOS communication
stack (embodied primarily in the MOOS application pAcommsHandler lends itself di-
rectly to a wide range of military and civilian applications. It supports an arbitrary
message suite and content without requirement of modifying software. All mes-
sage encoding and decoding information is specified in a mission-unique configu-
ration file written in the standard XML format. Not only does this ensuremaximum
flexibility in regard to message design, but it inherently enables arbitrary levels of
encryption for LPI/LPD communication networks.

A.2 Overview of the LAMSS Communication Stack
MIT LAMSS [16] has over the last decade focused its research on the development
of sensor-adaptive, collaborative, autonomous sensing concepts for the capture of
episodic undersea events, including themapping of coastal fronts, chemical plumes,
and natural and man-made underwater acoustic sources. All these applications in-
volve the Detection, Classification, Localization and Tracking (DCLT) of the event.
To exploit the benefits of having multiple platforms involved in tracking the event,
an underwater robust communication system is obviously a requirement. On the
other hand, the communication capacity of such systems is many orders of magni-
tude below land- and air-based equivalents, requiring a much higher level of data
compression and on-board processing and decision-making than is required in air-
based systems. Unified C2 [15], developed over the last decade by LAMSS, is an ex-
ample of such an autonomy-driven undersea sensing concept. Although this con-
cept is based on the philosophy that the systemmust be able to achieve its mission
objective even during periods with no or limited communication, there is obviously
still a need for occasional communication, e.g. for reporting detected events of in-
terest.

The new MOOS-IvP communication stack alleviates some of the problems and
limitations of the existing software stacks in this regard. These software stacks in
general were designed to sequentially transmit all messages generated by the au-
tonomy system, with only a rigid, hard-coded priority-based message queuing in-
frastructure.

In undersea autonomous systems the priorities of information generated by the
on-board processing are highly dynamic, depending on the tactical situation and
the criticality of the generated information. Thus, for example, a contact report for
a target of interest obviouslymust bypass queued contact reports for less significant
targets. Also, in high-clutter environments, the number of contact reports may
by far exceed the communication capacity and on-board priority-based filtering is

APPENDIX A. GOBY MOOS MODULES 43

MOOS Computer

«executable»

pAcommsHandler

{responsibility = Message Manager}

«executable»

pHelmIvP

{responsibility = Backseat Control}

«executable»

iREMUS

{responsibility = Frontseat Control}

«executable»

MOOSDB

«file»

XML ConfigurationOpen Source

(GPL License)
UCII Specific

C2

Sensor«executable»

iSensor

{responsibility = Sensor Interface}

Recon

«executable»

pContactManager

{responsibility = Contact Manager}

«executable»

pMissionMonitor

{responsibility = Mission Manager}

Figure A.2: Incorporation of the open source LAMSS communication stack into a
MOOS-IvP DCLT Autonomy System. The green boxes identify the open sourcemod-
ules, including the IvPHelm, the genericmissionmanagermodule, and the commu-
nication stack. The red modules are project specific, including the frontseat driver
module, and the sensor modules. Also the message configuration specifying the
message content and the coding, is project specific.

APPENDIX A. GOBY MOOS MODULES 44

required.

MOOS (Backseat) Computer

Hydrophone Array

Main Vehicle

Computer

WHOI Micro-Modem

«subsystem»

Vehicle Autonomy Control

{components = pHelmIvP}

«subsystem»

Tracking

{components = p1BTracker, pTrackQuality}

«subsystem»

Front Seat Interface

{components = pHuxley}

«subsystem»

Acoustic Communications

{components = pAcommsHandler,

pREMUSCodec, pBTRCodec, pCTDCodec,

pGeneralCodec, pAcommsPoller}

Environmental

Sensor (e.g. CTD)

«subsystem»

Sonar Interface and Processing

{components = iDAS, pBearingTrack}

«subsystem»

Environmental Sampling

{components = iCTD, pEnvtGrad}

«executable»

MOOSDB

Figure A.3: MOOS-IvP community for MIT sonar AUVs, with the autonomous com-
munication, command and control modules highlighted in gold.

The incorporation of the MIT LAMSS communication stack into a MOOS-IvP
DCLT Autonomy System is illustrated in Fig. A.2. The green boxes identify the Open
Source modules, including the helm pHelmIvP, the generic mission manager mod-
ule pMissionMonitor, and the communication stack. The red modules are project-
specific, including the frontseat driver module iRemus, the sensor modules, and
the contact manager process pContactManager. Also the message configuration files
specifying the message content and the coding specifics, are project-specific and
not hard-wired into the communication stack.

APPENDIX A. GOBY MOOS MODULES 45

Vehicle MOOS ComputerTopside MOOS Computer

«MOOS process»
iCommander

«MOOS process»
MOOSDB

«MOOS process»
pAcommsHandler

«firmware»
WHOI Micro-Modem

«MOOS process»
pAcommsHandler

«firmware»
WHOI Micro-Modem

«human»
Operator

«MOOS process»
pAcommsPoller

types commands

OUT_COMMAND

OUT_COMMAND

$CCCYC (Poll)

$CADRQ (Data request)

$CCTXD (Transmit data)

Acoustic PSK/FSK Data

Acoustic Ack

$CAACK (Acknowledgement)

$CARXD (Receive data)

«MOOS process»
pHelmIvP

ACOMMS_ACK

ACOMMS_ACK

display ack

IN_COMMAND

Message encoded
and queued.

«MOOS process»
MOOSDB

Message decoded.

IN_COMMAND

Message flushed

FigureA.4: UMLSequence diagram for sending a command to anAUVvia the LAMSS
Acoustic Communications Modules.

FigureA.3 shows the communications subsystemaspart of thewholeMITLAMSS
AUV MOOS community.

Figure A.4 shows the sequence of commands for a single operator command
message sent using iCommander.

The structure of the MIT LAMSS communication stack is illustrated in Fig. A.5.

A.3 pAcommsHandler
A.3.1 Problem

Acoustic communications arehighly limited in throughput. Thus, it is unreasonable
to expect “total throughput” of all communications data. Furthermore, even if total
throughput is achievable over time, certain messages have a lower tolerance for
delay (e.g. vehicle status) than others (e.g. CTD sample data). Reference http://
acomms.whoi.edu/umodem/documentation.html for more information on the
WHOI Micro-Modem.

Also, in order to make the best use of this available bandwidth, messages need
to be compacted to a minimal size before sending (effective encoding). To do this,
pAcommsHandler provides an interface to the Dynamic Compact Control Language
(DCCL1.) encoder/decoder. Furthermore, DCCL has powerful parsing abilities (“al-

1thename comes from the original CCLwritten byRoger Stokey for theREMUSAUVs, butwith the

http://acomms.whoi.edu/umodem/documentation.html
http://acomms.whoi.edu/umodem/documentation.html

APPENDIX A. GOBY MOOS MODULES 46

MOOS (Backseat Computer)

Acoustic Communications Subsystem

WHOI Micro-Modem

«executable»

pAcommsHandler

«executable»

pREMUSCodec

«executable»

pBTRCodec

«executable»

pCTDCodec

«executable»

pGeneralCodec

«executable»

pAcommsPoller

«subsystem»

Vehicle Autonomy Control

{components = pHelmIvP}

«executable»

MOOSDB

«CCL» «DCCL» «DCCL» «DCCL»

Figure A.5: UML Component Model of the MIT LAMSS communication stack. The
principal message handler module is pAcommsHandler, which communicates di-
rectly with the modem using built-in drivers, and thus not dependent on third-
party MOOS modem drivers. It also manages the message stream by a dynamic,
priority-based queuing system. The message coding and decoding is performed by
pGeneralCodec based on the rules set out in the configuration file, and dedicated
DCCL codecs for transmitting various data streams.The stack also supports standard
fixed Compact Control Language (CCL) messages such as the State message used by
the Remus AUV, using dedicated codecs. Dashed line indicate dependencies be-
tween components.

APPENDIX A. GOBY MOOS MODULES 47

gorithms”) for both encoding and decoding, including the ability to perform cer-
tain geodesic conversions (e.g. latitude, longitude ↔ UTM x,y) and lookups (e.g.
modem id↔ vehicle name) on data.

pAcommsHandler roughly performs the same functions of pFramer, pRouter,
pAcommsPoller, and iMicroModem but generalized to handle any number of mes-
sage queues and extended to give more control over queue parameters. The DCCL
encoding is much more flexible and more compact than the CCL encoding used by
these older processes.

A.3.2 Solution
pAcommsHandler provides a(n):

1. Encoder/decoder unit (codec): encodes and decodes messages using DCCL
(goby-acomms dccl library), which reduces the data required to be sent by:

• Predefined messages: the user must specify a message structure what
specifieswhatfields themessage contains andhow large eachfield should
be (in an intuitive fashion that DCCL turns into bits). Both the sender
and receiver have preshared knowledge of the message structure. From
this knowledge, no meta information about the message (beyond an
identifier) needs to be sent, simply the data.

• Custom field sizes: message fields are defined with custom tolerances
(ranges and precisions) that are tighter than those given by the IEEE
standards for floating point and integer numbers. For example, if a field
needs to hold an integer that will never range outside [0, 1000] that field
in the message will only be 10 bits long (ceil(log2 1001)).

2. Priority Queuing System: maintains an arbitrary number of message queues
(each tied to a different MOOS variable) for hexadecimal data strings. (goby-
acomms queue library)

• allows configuration of the queue priorities and dynamic growth of the
priority over the time since the last sent message.

• allows management of WHOI CCL message types as well as DCCL queu-
ing.

3. Modem Driver: handles all Micro-Modem serial communications. The driver
(goby-acomms modemdriver library) can be used with other modems besides

ability to dynamically reconfigure messages based on mission need. DCCL is backwards compatible
with a CCL network as it uses CCL message number 32

APPENDIX A. GOBY MOOS MODULES 48

theWHOIMicro-Modem(seehttp://gobysoft.com/doc/acomms__driver.
html#acomms_writedriver for information on writing a new driver).

4. MACManager: providesmediumaccess control in the formof a simple slotted
time division-multiple access (TDMA) scheme or flexible centralized polling
(goby-acomms amac library).

A.3.3 Limitations
pAcommsHandler does not:

• presently provide any multi-hop routing. The sender and receiver must be
directly connected acoustically.

• split user messages into packets. The user must provide data that are small
enough to fit into the modem frame desired (32 - 256 bytes for the WHOI
Micro-Modem).

A.3.4 Compilation
pAcommsHandler depends on theGoby andMOOS libraries. See goby/DEPENDENCIES
for help resolving the dependencies on your system.

A.3.5 Parameters for the pAcommsHandler Configuration Block
Example moos file
You can always get a complete listing of MOOS file parameters with their syntax by
running
> pAcommsHandler --example_config

This is a complete list of all the configuration values pAcommsHandler accepts.
Most of the time you will need far fewer configuration options to use it.

1 ProcessConfig = pAcommsHandler
2 {
3 common { # Configuration common to all Goby MOOS applications
4 # (opt)
5 log: true # Should we write a text log of the terminal
6 # output? (opt) (default=true) (can also set MOOS
7 # global "log=")
8 log_path: "./" # Directory path to write the text log of the

http://gobysoft.com/doc/acomms__driver.html#acomms_writedriver
http://gobysoft.com/doc/acomms__driver.html#acomms_writedriver

APPENDIX A. GOBY MOOS MODULES 49

9 # terminal output (if log=true) (opt)
10 # (default="./") (can also set MOOS global
11 # "log_path=")
12 community: "AUV23" # The vehicle's name (opt) (can also set
13 # MOOS global "Community=")
14 lat_origin: 42.5 # Latitude in decimal degrees of the local
15 # cartesian datum (opt) (can also set MOOS
16 # global "LatOrigin=")
17 lon_origin: 10.9 # Longitude in decimal degrees of the local
18 # cartesian datum (opt) (can also set MOOS
19 # global "LongOrigin=")
20 app_tick: 10 # Frequency at which to run Iterate(). (opt)
21 # (default=10)
22 comm_tick: 10 # Frequency at which to call into the MOOSDB
23 # for mail. (opt) (default=10)
24 verbosity: VERBOSITY_VERBOSE # Verbosity of the terminal
25 # window output (VERBOSITY_QUIET,
26 # VERBOSITY_WARN,
27 # VERBOSITY_VERBOSE,
28 # VERBOSITY_DEBUG, VERBOSITY_GUI)
29 # (opt)
30 # (default=VERBOSITY_VERBOSE)
31 initializer { # Publish a constant value to the MOOSDB at
32 # startup (repeat)
33 type: INI_DOUBLE # type of MOOS variable to publish
34 # (INI_DOUBLE, INI_STRING) (req)
35 moos_var: "SOME_MOOS_VAR" # name of MOOS variable to
36 # publish to (req)
37 global_cfg_var: "LatOrigin" # Optionally, instead of
38 # giving `sval` or `dval`, give
39 # a name here of a global MOOS
40 # variable (one at the top of
41 # the file) whose contents
42 # should be written to
43 # `moos_var` (opt)
44 dval: 3.454 # Value to write for type==INI_DOUBLE (opt)
45 sval: "a string" # Value to write for type==INI_STRING
46 # (opt)
47 }
48 }
49 modem_id: 1 # Unique number 1-31 to identify this node (req)
50 driver_type: DRIVER_NONE # Corresponding driver for the type
51 # of physical acoustic modem used
52 # (DRIVER_NONE, DRIVER_WHOI_MICROMODEM,
53 # DRIVER_ABC_EXAMPLE_MODEM) (opt)
54 # (default=DRIVER_NONE)

APPENDIX A. GOBY MOOS MODULES 50

55 driver_cfg { # Configure the acoustic modem driver (opt)
56 modem_id: 1 # Unique number 1-31 to identify this node (req)
57 connection_type: CONNECTION_SERIAL # Physical connection
58 # type from this computer
59 # (running Goby) to the
60 # acoustic modem
61 # (CONNECTION_SERIAL,
62 # CONNECTION_TCP_AS_CLIENT,
63 # CONNECTION_TCP_AS_SERVER,
64 # CONNECTION_DUAL_UDP_BROADC
65 # AST) (opt)
66 # (default=CONNECTION_SERIAL
67 #)
68 line_delimiter: "\r\n" # String used to delimit new lines
69 # for this acoustic modem (opt)
70 # (default="\r\n")
71 serial_port: "/dev/ttyS0" # Serial port for
72 # CONNECTION_SERIAL (opt)
73 serial_baud: 19200 # Baud rate for CONNECTION_SERIAL (opt)
74 tcp_server: "192.168.1.111" # IP Address or domain name for
75 # the server if
76 # CONNECTION_TCP_AS_CLIENT (opt)
77 tcp_port: 50010 # Port to serve on (for
78 # CONNECTION_TCP_AS_SERVER) or to connect to
79 # (for CONNECTION_TCP_AS_CLIENT) (opt)
80 }
81 mac_cfg { # Configure the acoustic Medium Access Control (opt)
82 modem_id: 1 # Unique number 1-31 to identify this node (req)
83 type: MAC_NONE # The type of TDMA MAC scheme to use
84 # (MAC_NONE, MAC_FIXED_DECENTRALIZED,
85 # MAC_AUTO_DECENTRALIZED, MAC_POLLED) (opt)
86 # (default=MAC_NONE)
87 slot { # Configure a slot in the communications cycle. Slots
88 # are run in the order they are declared. Omit for
89 # MAC_AUTO_DECENTRALIZED. (repeat)
90 src: 1 # source modem id for this transmission (initiating
91 # platform) (req)
92 dest: -1 # destination modem id for this transmission; 0
93 # means broadcast, -1 means query the queuing layer
94 # for next available message (opt) (default=-1)
95 rate: 0 # bit rate (integer from 0-5, 0 is slowest) (opt)
96 # (default=0)
97 type: SLOT_DATA # type of message to initiate in this slot
98 # (SLOT_DATA, SLOT_PING, SLOT_REMUS_LBL)
99 # (req) (default=SLOT_DATA)

100 slot_seconds: 15 # length of this slot in seconds (opt)

APPENDIX A. GOBY MOOS MODULES 51

101 last_heard_time: "" # used internally, no need to
102 # configure manually (opt)
103 }
104 rate: 0 # Set rate to use for MAC_AUTO_DECENTALIZED. Use
105 # `slot` for other MACTypes (opt) (default=0)
106 slot_seconds: 15 # Set duration of the slot for
107 # MAC_AUTO_DECENTRALIZED. Use `slot` for
108 # other MACTypes (opt) (default=15)
109 expire_cycles: 30 # Set number of quiet cycles for
110 # discarding a node from the cycle for
111 # MAC_AUTO_DECENTRALIZED. (opt) (default=30)
112 }
113 queue_cfg { # Configure the Priority Queuing layer (opt)
114 modem_id: 1 # Unique number 1-31 to identify this node (req)
115 message_file { # XML message file containing one or more
116 # DCCL message descriptions. Use for specifying
117 # DCCL queues. (repeat)
118 path: "/home/toby/goby/src/acomms/examples/chat/chat.xml"
119 # path to the
120 # message XML file
121 # (req)
122 manipulator: NO_MANIP # manipulators to modify the
123 # encoding and queuing behavior of the
124 # messages in this file (NO_MANIP,
125 # NO_ENCODE, NO_DECODE, NO_QUEUE,
126 # LOOPBACK, ON_DEMAND, TCP_SHARE_IN)
127 # (repeat)
128 }
129 queue { # Use for specifying CCL queues; use message_file
130 # for DCCL queues. (repeat)
131 ack: true # Require acoustic acknowledgments of messages
132 # sent from this queue (opt) (default=true)
133 blackout_time: 0 # Time in seconds to ignore this queue
134 # after the last send from it. (opt)
135 # (default=0)
136 max_queue: 0 # Maximum allowed messages in this queue (0
137 # means infinity). (opt) (default=0)
138 newest_first: true # true = FILO queue, false = FIFO queue
139 # (opt) (default=true)
140 value_base: 1 # Base value (general importance) of the
141 # messages in this queue (opt) (default=1)
142 ttl: 1800 # Time to live in seconds; messages exceeding
143 # this time are discarded. Also factors into
144 # priority equation (opt) (default=1800)
145 key { # (opt)
146 type: QUEUE_DCCL # Type of messages in this queue

APPENDIX A. GOBY MOOS MODULES 52

147 # (QUEUE_DCCL, QUEUE_CCL) (req)
148 # (default=QUEUE_DCCL)
149 id: 14 # DCCL ID for QUEUE_DCCL, CCL Identifier (first)
150 # byte for QUEUE_CCL (req)
151 }
152 name: "Remus_State" # Human readable name for this queue
153 # (req)
154 in_pubsub_var: "REMUS_STATE_RAW_IN" # Publish subscribe
155 # architecture variable
156 # for posting incoming
157 # data to (opt)
158 out_pubsub_var: "REMUS_STATE_RAW_OUT" # Publish subscribe
159 # architecture
160 # variable for
161 # fetching outgoing
162 # data from (opt)
163 }
164 }
165 dccl_cfg { # Configure the Dynamic Compact Control Language
166 # Encoding/Decoding unit (opt)
167 modem_id: 1 # Unique number 1-31 to identify this node (req)
168 message_file { # XML message file containing one or more
169 # DCCL message descriptions (repeat)
170 path: "/home/toby/goby/src/acomms/examples/chat/chat.xml"
171 # path to the
172 # message XML file
173 # (req)
174 manipulator: NO_MANIP # manipulators to modify the
175 # encoding and queuing behavior of the
176 # messages in this file (NO_MANIP,
177 # NO_ENCODE, NO_DECODE, NO_QUEUE,
178 # LOOPBACK, ON_DEMAND, TCP_SHARE_IN)
179 # (repeat)
180 }
181 crypto_passphrase: "twinkletoes%24" # If given, encrypt all
182 # communications with this
183 # passphrase using AES.
184 # Omit for unencrypted
185 # communications. (opt)
186 }
187 modem_id_lookup_path: "" # Path to file containing mapping
188 # between modem_id and vehicle name &
189 # type (opt) (can also set MOOS global
190 # "modem_id_lookup_path=")
191 tcp_share_enable: false # Enable TCP Sharing (Experimental)
192 # (opt) (default=false)

APPENDIX A. GOBY MOOS MODULES 53

193 tcp_share_port: 11000 # Port to listen on for TCP Sharing
194 # (Experimental) (opt) (default=11000)
195 tcp_share_to_ip: "" # internet_address:port to share incoming
196 # messages to (Experimental). (repeat)
197 }

Filling out the .moos file
Many of the parameters are sufficiently explained in the above list of configuration
parameters. What follows is a detailed explanation of the parameters that need
further explanation.

• common: Parameters that can be set for any of the Goby MOOS applications.
Here you can control logging to a text file, terminal verbosity. You can also
initialize a variable in the MOOS database at startup. Many of these parame-
ters will automatically be set to a global MOOS variable (specified outside any
ProcessConfig block) if left empty. For example, the global MOOS variable
LatOriginwill set the pAcommsHandler variable common::lat_origin. This al-
lows pAcommsHandler to conform to MOOS de facto conventions.

– verbosity: choose VERBOSITY_VERBOSE for full text terminal output, VERBOSITY_WARN
forwarnings only, and VERBOSITY_QUIET for no terminal output. VERBOSITY_GUI
opens an NCurses GUI helpful to debugging and visualizing the many
data flows of pAcommsHandler.

– initializer: since many times it is useful to have a MOOS variable in-
cluding in a message that remains static for a given mission (vehicle
name, etc), we give the option to publish initialMOOS variables here (for
later use in messages [until overwritten, of course]). If global_cfg_var
is set, pAcommsHandler looks for a global (i.e. specified at the top of
the MOOS file or outside any ProcessConfig blocks) value in the .moos
file with the name to the right of the colon and publishes it to a MOOS
variable with the name to the left of the colon. For example:
initializer { global_cfg_var: "LatOrigin" moos_var: "LAT_ORIGIN" }

looks for a variable in the .moos file called LatOrigin and publishes it
to the MOOSDB as a double variable LAT_ORIGIN with the value given by
LatOrigin.

– log_path: folder to log all terminal output to for later debugging. Similar
to system logs in /var/log.

APPENDIX A. GOBY MOOS MODULES 54

– log: boolean to indicate whether to log terminal output or not to files
in the path by log_path.

• modem_id: integer that specifies the modem_id of this current vehicle / commu-
nity. For the WHOI Micro-Modem this is the Micro-Modem “SRC” configura-
tion parameter (as set by \$CCCFG,SRC,# to check). For the remainder of the
document, modem_id refers to the value \$CCCFG,SRC,modem_id. This configura-
tion parameter will be set on startup. Setting this within the main block for
pAcommsHandler sets it for all the modems (driver_cfg, dccl_cfg, queue_cfg,
mac_cfg)

• modem_id_lookup_path: path to a text file giving themapping between modem_id
and vehicle name and type for a given experiment. This file should look like:

1 // modem id, vehicle name (should be community name), vehicle type
2 0, broadcast, broadcast
3 1, endeavor, ship
4 3, unicorn, auv
5 4, macrura, auv

Encoding/Decoding (DCCL) Parameters (dccl cfg)
• modem_id: Will be set to the same as ProcessConfig { modem_id: } . There is

no need to set it again here.
• message_file: path to an XML file containing a message set of one or mes-

sages. If you want, you can insert one or more manipulators that change the
behavior of pAcommsHandler for messages defined in that file. Allowed ma-
nipulators:

– NO_MANIP: blank manipulator (behavior is not modified by this manipu-
lator)

– NO_ENCODE: do not encode this message
– NO_DECODE: do not decode this message
– NO_QUEUE: do not queue this message
– LOOPBACK: decode thismessage internally immediately following encode.

Note that messages addressed to the local vehicle are looped back re-
gardless of the value of this manipulator.

APPENDIX A. GOBY MOOS MODULES 55

– ON_DEMAND: encode immediately preceding a data request command (use
for time sensitive messages like STATUS). This only works if all the mes-
sage variables are always assumed fresh in the MOOSDB.

• crypto_password: optionally provide a password here to encrypt all commu-
nications using AES. All receiving nodes must have the same password.

Queuing Parameters (queue cfg) All queue configuration for DCCL messges must
be configuredwithin theXMLfiles <queuing /> tag and includedwith message_file: {path: "message.xml"}.
Any message_files specified for dccl_cfg are copied to queue_cfg and vice-versa, so
you don’t need to specify them in two places.

CCL messages are configured using the queue { } object. The fields for queue
correspond to the XML <queuing /> tags:

• id: DCCL: a unique ID for this message (in the range 0-511). CCL: The decimal
representation of the first byte of the CCL message to be queued.

• ack: boolean flag (1=true, 0=false) whether to request an acoustic acknowl-
edgment on all sent messages from this field. If omitted, default of 0 (false,
no ack) is used.

• blackout_time: time in seconds after sending a message from this queue for
which no more messages will be sent. Use this field to stop an always full
queue fromhogging the channel. If omitted, default of 0 (no blackout) is used.

• max_queue: number of messages allowed in the queue before discarding mes-
sages. If newest_first is set to true, the oldest message in the queue is dis-
carded to make room for the newmessage. Otherwise, any newmessages are
disregarded until the space in the queue opens up.

• newest_first: booleanflag (1=true=FILO, 0=false=FIFO)whether to sendnewest
messages in the queue first (FILO) or not (FIFO).

• ttl: the time (in seconds) the message is allowed to live before being dis-
carded. This also factors into thepriority calculation asmessageswith a lower
time-to-live (ttl) grow in priority faster.

• value_base: Each queue has a base value (Vbase) and a time-to-live (ttl) that
create the priority (P (t)) at any given time (t):

P (t) = Vbase
(t− tlast)

ttl

where tlast is the time of the last send from this queue.

APPENDIX A. GOBY MOOS MODULES 56

This means for every queue, the user has control over two variables (Vbase

and ttl). Vbase is intended to capture how important the message type is in
general. Higher base values mean the message is of higher importance. The
ttl governs the number of seconds the message lives from creation until it is
destroyed by libqueue. The ttl also factors into the priority calculation since
all things being equal (sameVbase), it is preferable to sendmore time sensitive
messages first. So in these two parameters, the user can capture both overall
value (i.e. Vbase) and latency tolerance (ttl) of the message queue.

• in_pubsub_var: name of the moos variable that is published for received mes-
sages to this queue. Not used for DCCL queuing.

• out_pubsub_var: name of the moos variable to subscribe to for messages to
add to this queue. Not used for DCCL queuing.

An example queuing block (for DCCL messages):

1 <message_set>
2 <message>
3 <id>23</id>
4 ...
5 <queuing>
6 <ack>false</ack>
7 <blackout_time>0</blackout_time>
8 <max_queue>1</max_queue>
9 <newest_first>true</newest_first>

10 <value_base>4</value_base>
11 <ttl>1000</ttl>
12 </queuing>
13 </message>
14 ...
15 </message_set>

Modem Driver Parameters (driver cfg)
• driver_type: The only real driver implemented is the DRIVER_WHOI_MICROMODEM.

DRIVER_ABC_EXAMPLE_MODEM is a simple test “modem”. DRIVER_NONE disables the
modem driver.

• connection_type: type of connection tomake to themodem (CONNECTION_SERIAL,
CONNECTION_TCP_AS_CLIENT, CONNECTION_TCP_AS_SERVER).

• serial_port: serial port to which the modem is connected.

APPENDIX A. GOBY MOOS MODULES 57

• serial_baud: baud rate to use. Should be set to 19200 for the WHOI Micro-
Modem.

• tcp_port: networking port to use.
• tcp_server: IPv4 networking address of the server to connect to.
Extensions for the WHOI Micro-Modem
• [MicroModemConfig.nvram_cfg]: set some modem NVRAM setting to a value.

Set [MicroModemConfig.reset_nvram]: true to reset all NVRAM (CFG) parame-
ters on startup (\$CCCFG,ALL,0). All the [MicroModemConfig.nvram_cfg] values
are sent after this reset. You do not need to send SRC as this is set to the
modem_id.

• [MicroModemConfig.hydroid_gateway_id]: Set to the HYDROID gateway id (1
or 2) only if using a HYDROID gateway buoy. Omit for a normal WHOI Micro-
Modem.

Medium Access Control (MAC) Parameters (mac cfg)
• type: type ofMediumAccess Control. Seehttp://gobysoft.com/doc/acomms_
_mac.html#amac_schemes for an explanation of the various MAC schemes.

• slot_seconds: length, in seconds, of each communication slot for the type: MAC_AUTO_DECENTRALIZED
MAC option.

• rate: rate for the type: MAC_AUTO_DECENTRALIZED MAC option. For the WHOI
Micro-Modem 0 is a single 32 byte packet (FSK), 2 is three frames of 64 bytes
(PSK), 3 is two frames of 256 bytes (PSK), and 5 is eight frames of 256 bytes
(PSK)

• expire_cycles: number of consecutive cycles in which a vehicle can be silent
before being removed from the cycle for the type: MAC_AUTO_DECENTRALIZED
MAC option.

• slot: use this repeated field to specify a manual polling or fixed TDMA cycle
for the type: MAC_FIXED_DECENTRALIZED and type: MAC_POLLED.

– src: The sending modem_id for this slot.
– dest: The receiving modem_id for this slot.
– rate: Bit-rate code for this slot (0-5).

http://gobysoft.com/doc/acomms__mac.html#amac_schemes
http://gobysoft.com/doc/acomms__mac.html#amac_schemes

APPENDIX A. GOBY MOOS MODULES 58

– type: Type of transaction to occur in this slot. Can be SLOT_DATA (send a
datagram), SLOT_PING (send a ranging two-way ping to anothermodem),
SLOT_REMUS_LBL (ping aREMUSLBLnetwork (WHOIMicro-Modemonly)).

– slot_seconds: The duration of this slot, in seconds.

A.3.6 MOOS variables subscribed to by pAcommsHandler
Except for DCCL <src var>s and <trigger var>s, pAcommsHandler uses the
Google Protocol Buffers TextFormat class for parsing fromMOOS strings. This saves
significant effort in manually parsing strings. You should use these same facilities
for creating and reading messages. Two helper functions are provided in
goby/moos/libmoos util/moos protobuf helpers will help you serialize and parse
these messages. See http://gobysoft.com/doc/acomms.html#protobuf for a
brief overview of Google Protocol Buffers as used in Goby.

• DCCL: Most variables subscribed to by pAcommsHandler are configured in the
message XML files and are designated by the tags<src var> (used to fetch
data for a particular message_varwithin aDCCLmessage) and<trigger var>
(used to trigger the creatinon of a particular DCCL message and possibly pro-
vide some data for that message. See A.3.8 for details on the XML configura-
tion.

• Queue:
– Subscribes to the variables given in queue_cfg.queue.in_pubsub_var for

CCL queue sending. The contents of this MOOS variable should be a se-
rialized ModemDataTransmission).

– ACOMMS_RANGE_COMMAND (type: ModemRangingRequest): You write this to
initiate a ranging request outside the MAC schedule. Note in general it
is preferable to use the MAC cycle to coordinate data and ranging.

• MAC: ACOMMS_MAC_CYCLE_UPDATE (type: MACUpdate) You write this to update the
MAC cycle for MAC_FIXED_DECENTRALIZED and MAC_POLLED modes of operation.

For example, to publish a ACOMMS_MAC_CYCLE_UPDATE, you would use code like this:

1 // provides serialize_for_moos
2 #include <goby/moos/libmoos_util/moos_protobuf_helpers.h>
3 // provides goby::acomms::protobuf::MACUpdate
4 #include <goby/protobuf/amac.pb.h>

http://code.google.com/apis/protocolbuffers/docs/reference/cpp/google.protobuf.text_format.html
http://gobysoft.com/doc/moos__protobuf__helpers_8h.html
http://gobysoft.com/doc/acomms.html#protobuf
http://gobysoft.com/doc/modem__message_8proto_source.html
http://gobysoft.com/doc/modem__message_8proto_source.html
http://gobysoft.com/doc/amac_8proto_source.html

APPENDIX A. GOBY MOOS MODULES 59

5
6 ...
7
8 MyMOOSApp::Iterate()
9 {

10 if(do_update_mac)
11 {
12 using namespace goby::acomms::protobuf;
13 MACUpdate mac_update;
14 mac_update.set_dest(1); // update for us if modem_id == 1
15 // add slot to end of existing cycle
16 mac_update.set_update_type(MACUpdate::ADD);
17 Slot* new_slot = mac_update.add_slot();
18 new_slot->set_src(1); // send from us
19 new_slot->set_dest(3); // send to vehicle 3
20 new_slot->set_rate(0);
21 new_slot->set_slot_seconds(15);
22 new_slot->set_type(SLOT_DATA);
23
24 std::string serialized;
25 serialize_for_moos (&serialized, mac_update);
26 m_Comms.Notify("ACOMMS_MAC_CYCLE_UPDATE", serialized);
27 }
28 }

A.3.7 MOOS variables published by pAcommsHandler
Except for DCCL<publish var>s (which use a printf style syntax), pAcommsHan-
dler uses theGoogle Protocol Buffers TextFormat class for serializing toMOOS strings.

• DCCL: Most variables published by pAcommsHandler are configured in the
message XML files and are designated by the tags <publish var> within
a<publish> block. See A.3.8 for details on the XML configuration.

• Queue:
– ACOMMS_INCOMING_DATA (type: ModemDataTransmission) written for all

received messages containing a data payload
– ACOMMS_OUTGOING_DATA (type: ModemDataTransmission) written for all

queued messages containing a data payload
– ACOMMS_RANGE_RESPONSE (type: ModemRangingReply)written in response

to ranging request (to another modem or LBL beacons)

http://gobysoft.com/doc/modem__message_8proto_source.html
http://gobysoft.com/doc/modem__message_8proto_source.html
http://gobysoft.com/doc/modem__message_8proto_source.html

APPENDIX A. GOBY MOOS MODULES 60

– ACOMMS_ACK (type: ModemDataAck) written when received data is ac-
knowledged acoustically by a third party. Contains the original mes-
sage.

– ACOMMS_EXPIRE (type: ModemDataExpire) written when a message ex-
pires (time-to-live [ttl] exceeded) from the queue before being sent (ack
= false) or acknowledged (ack = true)

– ACOMMS_QSIZE (type: QueueSize) written when a queue changes size (pop
or push) with the new size of the queue.

• MAC: Does not publish anything.
• ModemDriver:

– ACOMMS_NMEA_IN (type: string), ModemMsgBase::raw() for all incoming
messages (”$CA...” for WHOI Micro-Modem)

– ACOMMS_NMEA_OUT (type: string), ModemMsgBase::raw() for all outgoing
messages (”$CC...” for WHOI Micro-Modem)

For example, to read an ACOMMS_RANGE_RESPONSE, you would use code like this:

1 // provides parse_for_moos
2 #include <goby/moos/libmoos_util/moos_protobuf_helpers.h>
3 // provides goby::acomms::protobuf::ModemRangeReply
4 #include <goby/protobuf/modem_message.pb.h>
5
6 ...
7
8 MyMOOSApp::OnNewMail()
9 {

10 ...
11 if(moos_msg.GetKey() == "ACOMMS_RANGE_RESPONSE")
12 {
13 using namespace goby::acomms::protobuf;
14 ModemRangeReply range_response;
15 parse_for_moos (serialized, &range_response);
16
17 // now do what you want to with the nice `range_response` object
18 std::cout << "one way travel time to " << range_response.base().dest()
19 << " is " << range_response.one_way_travel_time(0) << std::endl;
20 }
21 }

http://gobysoft.com/doc/modem__message_8proto_source.html
http://gobysoft.com/doc/modem__message_8proto_source.html
http://gobysoft.com/doc/queue_8proto_source.html

APPENDIX A. GOBY MOOS MODULES 61

A.3.8 DCCL Encoding/Decoding Unit: Overview
Example message XML file
First, let us give a brief background on XML (eXtensible Markup Language). XML
files contain tags (like<name>) that are considered “metadata” anddefine both the
structure of the following data and the contents. Order of the tags does not matter
for a given level unless otherwise specified. Text data resides both in the tags (like
<name>bob</name>or as attributes of the tag (such as<name id="1245"></name>).
XML files can be edited with any text editor. For more information on XML consult
any number of books on the subject or browse the internet. XML is a very widely
used format for storing data that can be both read by both people and computers.
Also see section A.3.9 for further examples. Let’s call this file example1.xml, which
we will use in two following examples:

1 <?xml version="1.0" encoding="ASCII" standalone="yes"?>
2 <message_set>
3 <message>
4 <name>GoToCommand</name>
5 <id>1</id>
6 <trigger>publish</trigger>
7 <trigger_var mandatory_content="CommandType=GoTo">
8 OUTGOING_COMMAND
9 </trigger_var>

10 <size>32</size>
11 <header>
12 <dest_id>
13 <name>Destination</name>
14 </dest_id>
15 </header>
16 <layout>
17 <static>
18 <name>type</name>
19 <value>goto</value>
20 </static>
21 <int>
22 <name>goto_x</name>
23 <max>10000</max>
24 <min>0</min>
25 </int>
26 <int>
27 <name>goto_y</name>
28 <max>10000</max>
29 <min>0</min>
30 </int>

APPENDIX A. GOBY MOOS MODULES 62

31 <bool>
32 <name>lights_on</name>
33 </bool>
34 <string>
35 <moos_var>SPECIAL_INSTRUCTIONS</moos_var>
36 <name>new_instructions</name>
37 <max_length>10</max_length>
38 </string>
39 <float>
40 <name>goto_speed</name>
41 <max>3</max>
42 <min>0</min>
43 <precision>2</precision>
44 </float>
45 </layout>
46 <on_receipt>
47 <publish>
48 <publish_var>INCOMING_COMMAND</publish_var>
49 <all />
50 </publish>
51 <publish>
52 <publish_var>SPECIAL_INSTRUCTIONS</publish_var>
53 <format>special_instructions=%1%,lights_on=%2%</format>
54 <message_var>new_instructions</message_var>
55 <message_var>lights_on</message_var>
56 </publish>
57 </on_receipt>
58 </message>
59 <message>
60 <name>VehicleStatus</name>
61 <id>2</id>
62 <trigger>time</trigger>
63 <trigger_time>30</trigger_time>
64 <size>32</size>
65 <layout>
66 <float>
67 <name>nav_x</name>
68 <src_var>NAV_X</src_var>
69 <max>1000</max>
70 <min>0</min>
71 <precision>1</precision>
72 </float>
73 <float>
74 <name>nav_y</name>
75 <src_var>NAV_Y</src_var>
76 <max>1000</max>

APPENDIX A. GOBY MOOS MODULES 63

77 <min>0</min>
78 <precision>1</precision>
79 </float>
80 <enum>
81 <name>health</name>
82 <src_var>VEHICLE_HEALTH</src_var>
83 <value>good</value>
84 <value>low_battery</value>
85 <value>abort</value>
86 </enum>
87 </layout>
88 <on_receipt>
89 <publish>
90 <publish_var>STATUS_SUMMARY</publish_var>
91 <all />
92 </publish>
93 </on_receipt>
94 </message>
95 </message_set>

A.3.9 DCCL Encoding/Decoding Unit: Designing Messages
Designing a publish triggered message
We will look at two scenarios and detail how to design a proper message file for
each scenario. We will reference the example file given in section A.3.8 for both
scenarios.

Scenario: you want to command an surface craft to move to a new location:
1. Identify the data: location (x (goto_x) and y (goto_y) on a local grid). you also

want to specify a speed (goto_speed) at which it should transit, whether it
shouldhave lights (lights_on) onornot, andfinally a string (special_instructions)
with possible special instructions. All these data will come in to a moos vari-
able OUTGOING_COMMAND on a string like:

OUTGOING_COMMAND: Destination=3,CommandType=GoTo,goto_x=351,goto_y=294,
lights_on=true,special_instructions=make_toast,goto_speed=2.3

2. Type the data (i.e. is it an int, a float, a string?) and give the ranges and
precisions needed:

• goto_x: integer (in meters) (int) that will operate on a (positive valued)
local grid not to exceed 10 km in either dimension.

• goto_y: same as goto_x.

APPENDIX A. GOBY MOOS MODULES 64

• goto_speed: speed in m/s. the vehicle cannot exceed 3 m/s and does not
go backwards. we would like to give precise speeds to the hundredths
place. thus, we need a float ranging from 0 to 3 with precision 2.

• lights_on: simply a flag (boolean value) whether to have our lights on
or off. thus, we need a bool message var.

• special_instructions: We want a field that can hold any string of char-
acters, but we know it will not exceed ten characters. thus, we need a
string message var.

3. Putting all this together, we can define the <layout> portion of the first
message defined in sectionA.3.8. We do not need any<src var> tagswithin
themessage vars since all the data are contained in the contents of the trigger
variablemessage (OUTGOING_COMMAND). That is, whenwe leave out the<src var>,
pAcommsHandler will insert <src var>OUTGOING COMMAND</src var>,
which is exactly what we want. For example, taking one of themessage vars:

1 <int>
2 <name>goto_x</name>
3 <max>10000</max>
4 <min>0</min>
5 </int>

is exactly the same as saying

1 <int>
2 <name>goto_x</name>
3 <src_var>OUTGOING_COMMAND</src_var>
4 <max>10000</max>
5 <min>0</min>
6 </int>

4. Now we can fill out the rest of the tags on the<message> level:
• <name>GoToCommand</name>: just a name so we can identify this

message quickly when reading through the XML.
• <trigger>publish</trigger>: we are creating this message on a

publish (to OUTGOING_COMMAND).

APPENDIX A. GOBY MOOS MODULES 65

• <trigger var mandatory content="CommandType=GoTo"> OUTGOING COMMAND
</trigger var>: OUTGOING_COMMAND is the trigger variable and it must
contain the substring CommandType=GoTo. That is, other commandsmight
be published here (e.g. CommandType=Loiter, CommandType=Track) and we
donot define themessage structure of thosehere (this particular<message>
is only for aGoTomessage). Othermessages canbe created to encode/decode
these other command types.

• <size>32</size>: we want this message to fit in a WHOI micromo-
dem FSK frame (32 bytes).

5. Finally, we fill out the <publish> section which indicates where (i.e. what
moos variables) and how (what format and which part(s) of the message) pA-
commsHandler should publish decoded messages upon receipt of hex from
other vehicles. Each <publish> indicates a separate action that is taken
upon receipt of a message. As many<publish> sections as desired may be
included for a given message. So, for our example message, we want to repli-
cate the original string (a common practice):

INCOMING_COMMAND: CommandType=GoTo,goto_x=351,goto_y=294,
lights_on=true,special_instructions=make_toast,goto_speed=2.3

to do thiswefill out a publish<all>. This is the simplest formof the<publish>
section:

1 <on_receipt>
2 <publish>
3 <publish_var>INCOMING_COMMAND</publish_var>
4 <all />
5 </publish>
6 </on_receipt>

this says to take everymessage var andmake a “key=value” comma-delimited
string from it. the above <publish> block is a shortcut for a much longer
form:

1 <on_receipt>
2 <publish>
3 <publish_var>INCOMING_COMMAND</publish_var>
4 <format>type=goto,goto_x=%1%,goto_y=%2%,lights_on=%3%,

APPENDIX A. GOBY MOOS MODULES 66

5 special_instructions=%4%,goto_speed=%5%</format>
6 <message_var>goto_x</message_var>
7 <message_var>goto_y</message_var>
8 <message_var>lights_on</message_var>
9 <message_var>special_instructions</message_var>

10 <message_var>goto_speed</message_var>
11 </publish>
12 </on_receipt>

These two blocks are functionally identical.
We may want to also publish the special_instructions to another moos vari-
able, so that:
SPECIAL_INSTRUCTIONS: special_instructions=make_toast,lights_on=true

we can do this with another publish block:

1 <publish>
2 <publish_var>SPECIAL_INSTRUCTIONS</publish_var>
3 <format>special_instructions=%1%,lights_on=%2%</format>
4 <message_var>new_instructions</message_var>
5 <message_var>lights_on</message_var>
6 </publish>

in this case the<format> block is necessary because the default would be
<format>new instructions=%1%,lights on=%2%</format> not
<format>special instructions=%1%,lights on=%2%</format>.

Those are the basics to designing a publish triggering message.

Designing a time triggered message Scenario: we need a status message that grabs
data from various moos variables and publishes them (encoded) on a time interval.
We will not go into as much detail here, but rather highlight the changes from the
previous scenario.

• you will notice

1 <trigger>time</trigger>
2 <trigger_time>30</trigger_time>

APPENDIX A. GOBY MOOS MODULES 67

instead of

1 <trigger>publish</trigger>
2 <trigger_var mandatory_content="CommandType=GoTo">
3 OUTGOING_COMMAND
4 </trigger_var>

this indicates that a message should be made on a time interval (given by
<trigger time>, which is every 30 seconds here), rather than on a publish
to some MOOS variable.

• you will notice that all the message vars have a <src var> tag, which was
omitted in the previous example since we were taking data from the trigger
variable. Obviously, there is no trigger variable now so we must specify a
location for the data to come from (in the MOOSDB). The newest available
value will be used when the message needs to be made. This means there
is no guarantee that the data is fresh. Thus, you should use MOOS variables
that are often updated for a<trigger>time</trigger>message. If this
is not the case, a <trigger>publish</trigger> message (see previous
scenario) may be a better choice.

• the format of the value read from the <src var> can have several options.
First, if the message var is of a numeric type (<int>, <float>, <bool>)
and the <moos var> is a double, the value of the double is used as is (with
appropriate rounding and type casting). If themessage var is a string, two op-
tions are available. First, pAcommsHandler looks for a substring of the form:
name=value

within the string and picks out value to send for the message. If there is no
such name= substring, the entire string is converted to the appropriate form.
An example: we have a <float> called <name>my float</name> that
has a tag<moos var>SOME FLOAT VARIABLE</moos var>:

– if

1 (double)SOME_FLOAT_VARIABLE: 3.56

then 3.56 is sent.
– if instead

APPENDIX A. GOBY MOOS MODULES 68

2 (string)SOME_FLOAT_VARIABLE: "my_float=3.56"

then 3.56 is still sent.
– if instead

3 (string)SOME_FLOAT_VARIABLE: "3.56"

again, 3.56 is sent.
– Finally, if some other string like

4 (string)SOME_FLOAT_VARIABLE: "blah=3.56"

then blah=3.56 is converted to a float, which will probably be zero or
something else undesired. In other words, case 4 is not what you want,
whereas 1-3 are fine.

Further examples
• I currently store some example working message files in goby/xml. look for

.xml files in this directory for further examples.
• Probably the simplest message you can make (for a single string MOOS vari-

able published to IN_MESSAGE that gets truncated at 26 chars (need six bytes
for the DCCL header) and sent to broadcast):

1 <?xml version="1.0" encoding="UTF-8"?>
2 <message_set>
3 <message>
4 <name>Chat</name>
5 <id>1</id>
6 <size>32</size>
7 <queuing>
8 <ack>true</ack>
9 <newest_first>false</newest_first>

10 </queuing>
11 <layout>
12 <string>

APPENDIX A. GOBY MOOS MODULES 69

13 <name>message</name>
14 <max_length>26</max_length>
15 </string>
16 </layout>
17
18 <!-- only used by pAcommsHandler (publish/subscribe)-->
19 <trigger>publish</trigger> <!-- pack -->
20 <trigger_var>OUT_MESSAGE</trigger_var>
21 <on_receipt> <!-- unpack -->
22 <publish>
23 <publish_var>IN_MESSAGE</publish_var>
24 <message_var>message</message_var>
25 </publish>
26 </on_receipt>
27 <!-- end used by pAcommsHandler -->
28
29 </message>
30 </message_set>

A.3.10 DCCL Encoding/Decoding Unit: XML Tag Reference
The XML tag reference is now part of the Goby Developers documentation (http:
//gobysoft.com/doc:

• Seehttp://gobysoft.com/doc/acomms__dccl.html#dccl_tags for a struc-
ture of all the allowed tags.

• Visithttp://gobysoft.com/doc/acomms__dccl.html#dccl_tags_details
for an up-to-date reference of all the DCCL tags with a description of their us-
age.

Algorithms
You can perform a number of simple algorithms on data either before encoding
(specified in the message var tag (e.g. <string algorithm="">) or after receipt
(specified in the <message var> tag. You can apply more than one algorithm
by separating them with commas and they are processed in the order given. The
currently implemented algorithms include:

• to_upper: converts string, enum, or bool to uppercase
• to_lower: converts string, enum, or bool to lowercase
• angle_0_360: wraps float or int angle in degrees into the range of [0, 360)

http://gobysoft.com/doc
http://gobysoft.com/doc
http://gobysoft.com/doc/acomms__dccl.html#dccl_tags
http://gobysoft.com/doc/acomms__dccl.html#dccl_tags_details

APPENDIX A. GOBY MOOS MODULES 70

• angle_-180_180: wraps float or int angle in degrees into the range of [-180,
180)

• lon2utm_x: converts longitude to a local utmcoordinate (meters) usedby LAMSS2.
Requires LatOrigin and LongOrigin to be specified at the top of the moos file.
Since a UTM conversion requires a lon/lat pair, you must specify the latitude
variable here to pair with by adding a colon after this algorithm followed by
the name of the latitude variable. e.g.

<message_var algorithm="lon2utm_x:our_lat">our_lon</message_var>

converts our_lon to a local x (easting) using our_lat as the latitude point.
• lat2utm_y: similar to lon2utm_x but for latitude. e.g.

<message_var algorithm="lat2utm_y:our_lon">our_lat</message_var>

converts our_lat to a local y (northing) using our_lon as the longitude point.
• utm_x2lon: the reverse conversion from x to longitude. similarly to the lati-

tude, longitude to x,y conversion you must pair x and y. e.g.,

<message_var algorithm="utm_x2lon:our_y">our_x</message_var}

• utm_y2lat: example:

<message_var algorithm="utm_y2lat:our_x">our_y</message_var}

• modem_id2name: converts a WHOI modem_id to a vehicle name. requires a file
(path given in the .moos as modem_id_lookup_path: "/path/to/modemidlookup.txt".
an example file:

1 // modem_id, vehicle name (should be community name), vehicle type
2 0, broadcast, broadcast
3 1, endeavor, ship
4 3, unicorn, auv
5 4, macrura, auv

2we define a latitude/longitude origin near our basis of operations. From this datumwe calculate
the UTM northings (y) and eastings (x). All further UTM calculations are the offset from this datum
point. This offset is what is returned by this algorithm. Contact me if you need more information on
this.

APPENDIX A. GOBY MOOS MODULES 71

if no match is found, the modem id is returned as a string (e.g. ”10”).
• name2modem_id: performs the (case insensitive) reverse lookup on the same

file. if no match is found, atoi(name.c_str()) is returned (probably zero un-
less you passed something like ”4” to this function).

• modem_id2type: similar to modem_id2name but returns the type of the vehicle
(ship, auv, etc.)

• power_to_dB: takes 10 log10 of the value.
• dB_to_power: takes power antilog of the value.
• alg_TSD_to_soundspeed: applied to temperature, with references to salinity

and depth, calculates the speed of sound using the Mackenzie equation. For
example:

<message_var algorithm="alg_TSD_to_soundspeed:sal:depth">temp</message_var>

• add: adds the reference <message var> to the current <message var>.
example: <message var algorithm="add:b">a</message var> adds
b to a.

• subtract: subtracts the reference<message var> from the current<message var>.

A.3.11 DCCL Encoding/Decoding Unit: Under the Hood
Seehttp://gobysoft.com/doc/acomms__dccl.html#dccl_how and [17] for de-
tails on how the DCCL encoding is done.

A.3.12 Priority Message Queuing Unit
pAcommsHandler takes all the configured queues and maintains a stack of mes-
sages for each queue. when it is prompted by data by the modem, it has a pri-
ority ”contest” between the queues. the queue with the current highest priority
(as determined by the value_base and ttl fields) is selected. The next message in
that queue is then provided to the MicroModem to send. For modem messages
with multiple frames per packet, each frame is a separate contest. Thus a single
packet may contain frames from different queues (e.g. a rate 5 PSK packet has
eight 256 byte frames. frame 1 might grab a STATUS message since that has the
current highest queue. then frame 2 may grab a BTR message and frames 3-8 are
filled up with CTD messages (e.g. STATUS is in blackout, BTR queue is empty)). See
http://gobysoft.com/doc/acomms__queue.html#queue_priority for more

http://gobysoft.com/doc/acomms__dccl.html#dccl_how
http://gobysoft.com/doc/acomms__queue.html#queue_priority

APPENDIX A. GOBY MOOS MODULES 72

For messages with ack: true (acknowledge requested), the last message contin-
ues to be re-sent (that is, it is not popped from the message queue) until the ACK is
received from the modem (thus blocking the sending of other messages). Messages
with ack: false are popped and discarded when they are sent (no retries).

If you do not wish for dynamic growth of the priorities, simply set the ttl to
the special value 0. Then the priorities grow as P = V base and messages never
expire. Note that this is the same as setting ttl =∞.

Messages not to us are ignored We choose modem id 0 as broadcast. thus messages
with the destination field = 0 will always be read by all nodes and reported to the
appropriate moos variable. Otherwise, we ignore messages unless they correspond
to our modem id. so if you send a message to modem id 10, pAcommsHandler for
modem ids 1 → 9, 11 → N will ignore that. This is not the default behavior of the
WHOI Micro-Modem, which always reports data, regardless of the sender’s ID.

TheXML tag reference is nowpart of theGobyDevelopers documentation (http:
//gobysoft.com/doc:

• Seehttp://gobysoft.com/doc/acomms__queue.html#queue_tags for a
structure of all the allowed tags.

• http://gobysoft.com/doc/acomms__queue.html#queue_tags_details
provides an up-to-date reference of all the Queue tags with a description of
their usage.

A.3.13 Modem Driver Unit
The Modem driver unit current supports the WHOI Micro-Modem acoustic mo-
dem and is extensible to other acoustic modems. To directly monitor the modem
feed, subscribe to ACOMMS NMEA IN andACOMMS NMEA OUT. For a complete list
of supported commands of the WHOI Micro-Modem, see http://gobysoft.com/
doc/acomms__driver.html#acomms_mmdriver.

A.3.14 Medium Access Control (MAC) Unit
TheMACunit uses time division (TDMA) to attempt to ensure a collision-free acous-
tic channel.

pAcommsHandler supports two variants of the TDMAMAC scheme: centralized
and decentralized. As the names suggest, Centralized TDMA (type: MAC_POLLED) in-
volves control of the entire cycle from a single master node, whereas each node’s
respective slot is controlled by that node in Decentralized TDMA.Within decentral-
izedTDMA,Goby supports both afixed (preprogrammed) cycle (type: MAC_FIXED_DECENTRALIZED)

http://gobysoft.com/doc
http://gobysoft.com/doc
http://gobysoft.com/doc/acomms__queue.html#queue_tags
http://gobysoft.com/doc/acomms__queue.html#queue_tags_details
http://gobysoft.com/doc/acomms__driver.html#acomms_mmdriver
http://gobysoft.com/doc/acomms__driver.html#acomms_mmdriver

APPENDIX A. GOBY MOOS MODULES 73

and anautodiscoverymode (type: MAC_AUTO_DECENTRALIZED). Todisable thepAcommsHan-
dler MAC, use (type: MAC_NONE)

Centralized TDMA (Polling)
Centralized TDMA involves amaster node (usually aboard the Research Vessel or on
land) which initiates every transmission for the entire communcations cycle (i.e.
“polls” each node for data). Thus, the other nodes are not required to maintain
synchronized clocks as the timing is all performed on the master node.

This style of MAC has been widely used for small AUV operations using the
WHOI Micro-Modem. Its principal advantages are that it has 1) no requirement
for synchronized clocks, 2) full control over the communications cycle at runtime
(assuming the master is accessible to the vehicle operators, as is usually the case);
and 3) a master who can acknowledge “broadcast” messages.

However, centralized TDMAhas a number of substantial disadvantages. In order
for a third-party master to initiate a transmission, an acoustic packet must be sent
for this initialization. This additional “cycle initialization” packet, like any acoustic
message, has a high chance of being lost (afterwhich the data arenever sent because
the sending node did not receive a cycle initialization message), consumes power,
and lengthens the time of the communications slot. See Fig. A.6 for the various
parts of the communication cycle with (for Centralized TDMA) and without (for
Decentralized TDMA) the cycle initializationmessage. The additional time required
for each slot of Centralized TDMA is

τci + rmax/c (A.1)

where τci is the length (in seconds) of the cycle initalization packet (about one sec-
ond for theWHOIMicro-Modem), rmax is themaximum range of the network (typi-
cally of order 1000s ofmeters), and c is the compressional speed of sound (nominally
1500 m/s).

Decentralized TDMA with passive auto-discovery
Decentralized TDMA removes the cycle initialization packet and thus reduces the
length of each slot and the chance of errors. However, it introduces the constraint
of synchronized clocks3 for all nodes, which can be somewhat tricky to maintain
underwater.

3the accuracy of the clock synchronization can be low relative to other timing needs such as bi-
static sonar. Generally, accuracy better than 0.1 seconds is acceptable; higher inaccuracies can be
handled by increasing the guard time on both sides of each slot.

APPENDIX A. GOBY MOOS MODULES 74

Cycle Initialization (Poll)

Propagation

Message

Propagation

Acknowledge

Propagation

(a) Centralized
TDMA

Message

Propagation

Acknowledge

Propagation

(b) Decentralized
TDMA

Figure A.6: Comparison of the time needed for a single slot for the two types of
TDMA supported by pAcommsHandler. Eq. A.1 gives the additional length of time
required by the Centralized variant.

Decentralized TDMA gives each vehicle a single slot in which it transmits. Each
vehicle initiates its own transmission at the start of its slot. Collisions are avoided by
each vehicle following the same rules about slot placement within the timewindow
(based on the time of day). All slots are ordered by ascending acoustic MAC address
(or “modem identification number”), which is an unsigned integer unique for each
network.

During the runtime of the network, it is often desirable to add or remove nodes.
Since the MAC is spread throughout the nodes, there is no easy way to change the
cycle during runtime. libamac supports passive auto-discovery (and subsequent ex-
piration) of nodes to provide a solution to this problem. This auto-discovery is pas-
sive because it requires no control messaging beyond the normal communications
between nodes.

Vehicles are discovered by shifting a blank slot in each cycle based on their
knowledge of the world and the time of day. If a new vehicle is heard from during
the blank, it is added to the listening vehicle’s knowledge of the world and hence
their cycle. In the simplified situation (which is really a worst case scenario) dis-
covery is defined by a single vehicle transmitting during a cycle and all the others
silent (the current slot is not equal to each vehicle’s acoustic MAC address).

A.3.15 Simple complete example MOOS files
Example 1: Basic CCL (goby/share/cfg/MOOS/basic ccl)
This example sends the bytes 0x020304 from node 1 (mm1) to node 2 (mm2). It shows
use of all the parts of pAcommsHandler except the DCCL encoding / decoding unit.
I use iModemSim here to simulate the WHOI Micro-Modem. This process is avail-
able inmoos-ivp-local (http://oceanai.mit.edu/moos-ivp/pmwiki/pmwiki.

http://oceanai.mit.edu/moos-ivp/pmwiki/pmwiki.php?n=Support.Milocal

APPENDIX A. GOBY MOOS MODULES 75

3 sends

1 sends 2 sends 3 sends

1 sends 2 sends 3 sends

3 sends

1 sends

2 sends

2 sends

1 sends 1 sends 1 sends

Vehicle 1 Vehicle 2 Vehicle 3

blank

“ground

 state”

blank

“ground

 state”

blank

“ground

 state”

blank

“excited

 state”

blank

“ground

 state”

blank

“ground

 state”

blank

“excited

 state”

blank

“ground

 state”

blank

“excited

 state”

blank

“ground

 state”

Figure A.7: Graphical example of auto discovery for three nodes launched at the
same time. Each circle represents the vehicle’s cycle at each time step (represented
by horizontal rows) based on the vehicle’s current knowledge of the world. In the
first row, all vehicles only know of themselves and put the blank slot in the last
slot; thus, all communications collide and no discoveries are made. In the second
row, vehicle 1’s blank is moved (by pseudo-chance) to the penultimate (first) slot,
so vehicles 2 and 3 discover 1. Then, in the third row vehicles 2 and 3 are discovered
by the others because vehicle 3 moves its blank slot. By the fourth row all vehicles
have discovered the others and continue to transmit without collision following the
cycle diagrammed on this row.

http://oceanai.mit.edu/moos-ivp/pmwiki/pmwiki.php?n=Support.Milocal
http://oceanai.mit.edu/moos-ivp/pmwiki/pmwiki.php?n=Support.Milocal

APPENDIX A. GOBY MOOS MODULES 76

time vehicle 1 vehicle 2 result
0 send send collision
15 blank blank nothing
30 blank send success: 1 discovers 2
45 cycle wait blank nothing
60 cycle wait send success
75 cycle wait blank nothing
90 send blank success: 2 discovers 1
105 listen for 2 cycle wait nothing
120 blank cycle wait nothing
135 send listen for 1 success
150 listen for 2 send success
165 blank blank nothing
180 send listen for 1 success
195 blank blank nothing
210 listen for 2 send success

Table A.1: Example initialization for the Decentralized TDMA with autodiscovery.
By 135 seconds, both vehicles have discovered each other and are synchronized.
Thus, nomore collisionswill occur. This scenario assumes that both vehicles always
have some data to send during their slot.

php?n=Support.Milocal). You can also easily substitute real modems by remov-
ing iModemSim references and changing the serial_port.

MOOS file for Node 1: goby/share/cfg/MOOS/basic ccl/mm1.moos

1 // t. schneider tes@mit.edu 2.16.11
2
3 // bare bones acoustic communications
4 // stack for topside receiver
5 // for CCL message
6
7 ServerHost = localhost
8 ServerPort = 9101
9 Community = mm1

10
11 LatOrigin = 0
12 LongOrigin = 0
13

http://oceanai.mit.edu/moos-ivp/pmwiki/pmwiki.php?n=Support.Milocal
http://oceanai.mit.edu/moos-ivp/pmwiki/pmwiki.php?n=Support.Milocal
http://oceanai.mit.edu/moos-ivp/pmwiki/pmwiki.php?n=Support.Milocal

APPENDIX A. GOBY MOOS MODULES 77

14 ProcessConfig = ANTLER
15 {
16 MSBetweenLaunches = 10
17 Run = MOOSDB @ NewConsole = false
18
19 /////////////////////////////////////
20 // acomms related
21 /////////////////////////////////////
22 // queuing
23 Run = pAcommsHandler @ NewConsole = true
24 // modem simulator
25 Run = iModemSim @ NewConsole = true
26
27 // simulate CCL data source
28 Run = uTimerScript @ NewConsole = true
29 }
30
31 ProcessConfig = pAcommsHandler
32 {
33 modem_id: 1
34
35 driver_type: DRIVER_WHOI_MICROMODEM
36
37 driver_cfg
38 {
39 serial_port: "/dev/ttyLOOPA2"
40 # doesn't work with iModemSim, set to true for real ops
41 [MicroModemConfig.reset_nvram]: false
42 }
43
44 mac_cfg
45 {
46 type: MAC_FIXED_DECENTRALIZED
47 slot
48 {
49 src: 1
50 dest: 2
51 rate: 0
52 type: SLOT_DATA
53 slot_seconds: 10
54 }
55 }
56
57 queue_cfg
58 {
59 queue

APPENDIX A. GOBY MOOS MODULES 78

60 {
61 key {
62 type: QUEUE_CCL
63 id: 2 # decimal CCL id (first byte)
64 }
65 in_pubsub_var: "IN_TEST_32B"
66 out_pubsub_var: "OUT_TEST_32B"
67 name: "TEST"
68 }
69 }
70 }
71 // must set serial_loopbacks to use
72 // as root run the shell script (in moos-ivp-local/scripts)
73 // > loopbacks
74 ProcessConfig = iModemSim
75 {
76 AppTick = 4
77 CommsTick = 4
78
79 Port = /dev/ttyLOOPA1
80 Speed = 19200
81
82 IPPort = 49234
83 BroadcastAddr = 127.0.0.1
84
85 InputLocType = constant_local
86 ConstantPosX = 0
87 ConstantPosY = 0
88 ConstantDepth = 0
89 }
90
91
92
93 ProcessConfig = uTimerScript
94 {
95 // data is 2 2 3 4 in octal
96 EVENT = var=OUT_TEST_32B, val="data: "\002\002\003\004"", time = 10
97 RESET_TIME = end
98 }

MOOS file for Node 2: goby/share/cfg/MOOS/basic ccl/mm2.moos

1 // t. schneider tes@mit.edu 4.28.10
2

APPENDIX A. GOBY MOOS MODULES 79

3 // bare bones acoustic communications
4 // stack for auv
5 // for CCL message
6
7 ServerHost = localhost
8 ServerPort = 9102
9 Community = mm2

10
11 LatOrigin = 0
12 LongOrigin = 0
13
14 ProcessConfig = ANTLER
15 {
16 MSBetweenLaunches = 10
17 Run = MOOSDB @ NewConsole = false
18
19 /////////////////////////////////////
20 // acomms related
21 /////////////////////////////////////
22 // queuing
23 Run = pAcommsHandler @ NewConsole = true
24
25 Run = iModemSim @ NewConsole = true
26 }
27
28 ProcessConfig = pAcommsHandler
29 {
30 modem_id: 2
31
32 driver_type: DRIVER_WHOI_MICROMODEM
33
34 driver_cfg
35 {
36 serial_port: "/dev/ttyLOOPB2"
37 # doesn't work with iModemSim, set to true for real ops
38 [MicroModemConfig.reset_nvram]: false
39 }
40
41 mac_cfg
42 {
43 type: MAC_FIXED_DECENTRALIZED
44 slot
45 {
46 src: 1
47 dest: 2
48 rate: 0

APPENDIX A. GOBY MOOS MODULES 80

49 type: SLOT_DATA
50 slot_seconds: 10
51 }
52 }
53
54 queue_cfg
55 {
56 queue
57 {
58 key {
59 type: QUEUE_CCL
60 id: 2 # decimal CCL id (first byte)
61 }
62 in_pubsub_var: "IN_TEST_32B"
63 out_pubsub_var: "OUT_TEST_32B"
64 name: "TEST"
65 }
66 }
67 }
68
69
70 // must set serial_loopbacks to use
71 // as root run the shell script (in moos-ivp-local/src/bin)
72 // > loopbacks
73 ProcessConfig = iModemSim
74 {
75 AppTick = 4
76 CommsTick = 4
77
78 Port = /dev/ttyLOOPB1
79 Speed = 19200
80
81 IPPort = 49234
82 BroadcastAddr = 127.0.0.1
83
84 InputLocType = constant_local
85 ConstantPosX = 0
86 ConstantPosY = 0
87 ConstantDepth = 0
88 }

Example 2: DCCL and CCL (goby/share/cfg/MOOS/ccl and dccl)
This example sends the DCCL “Simple Status” messsage from node 1 (mm1) to node
2 (mm2). mm2 sends the REMUS CCL State message to mm1. It thus uses all the compo-
nents of pAcommsHandler. As in the previous example, you can use realmodems by

APPENDIX A. GOBY MOOS MODULES 81

removing iModemSim and changing the serial_port to the proper real serial port.

MOOS file for Node 1: goby/share/cfg/MOOS/ccl and dccl/mm1.moos

1 // t. schneider tes@mit.edu 3.2.11
2
3 // bare bones acoustic communications
4 // stack for topside receiver
5
6 ServerHost = localhost
7 ServerPort = 9101
8 Community = mm1
9

10 LatOrigin = 42.35
11 LongOrigin = -70.95
12
13 NoNetwork = true
14 modem_id_lookup_path = modemidlookup.txt
15
16
17 ProcessConfig = ANTLER
18 {
19 MSBetweenLaunches = 10
20 Run = MOOSDB @ NewConsole = false
21
22 Run = pREMUSCodec @ NewConsole = true, XConfig=1
23 Run = pAcommsHandler @ NewConsole = true, XConfig=2
24 Run = iModemSim @ NewConsole = true, XConfig=3
25
26 1 = -geometry,80x15+0+0
27 2 = -geometry,80x100+0+230
28 3 = -geometry,80x15+0+570
29 }
30
31 ProcessConfig = pREMUSCodec
32 {
33 mdat_state_var: "IN_REMUS_STATUS"
34 mdat_state_out: "OUT_REMUS_STATUS"
35 create_status: false
36 }
37
38
39 ProcessConfig = pAcommsHandler
40 {
41 common
42 {

APPENDIX A. GOBY MOOS MODULES 82

43 verbosity: VERBOSITY_GUI
44 initializer { type: INI_DOUBLE global_cfg_var: "LatOrigin" moos_var: "LAT_ORIGIN" }
45 initializer { type: INI_DOUBLE global_cfg_var: "LongOrigin" moos_var: "LONG_ORIGIN" }
46 initializer { type: INI_STRING moos_var: "VEHICLE_TYPE" sval: "topside" }
47 initializer { type: INI_STRING moos_var: "VEHICLE_NAME" sval: "mm1" }
48 initializer { type: INI_DOUBLE moos_var: "NAV_X" dval: 100 }
49 initializer { type: INI_DOUBLE moos_var: "NAV_Y" dval: 300 }
50 initializer { type: INI_DOUBLE moos_var: "NAV_HEADING" dval: 150 }
51 initializer { type: INI_DOUBLE moos_var: "NAV_SPEED" dval: 0 }
52 initializer { type: INI_DOUBLE moos_var: "NAV_DEPTH" dval: 0 }
53 }
54
55 modem_id: 1
56
57 driver_type: DRIVER_WHOI_MICROMODEM
58 driver_cfg
59 {
60 serial_port: "/tmp/ttyLOOPA2"
61 # doesn't work with iModemSim, set to true for real ops
62 [MicroModemConfig.reset_nvram]: false
63 }
64
65 mac_cfg
66 {
67 type: MAC_FIXED_DECENTRALIZED
68 slot { src: 1 dest: 2 rate: 0 type: SLOT_DATA slot_seconds: 10 } # downlink
69 slot { src: 2 dest: 1 rate: 0 type: SLOT_DATA slot_seconds: 10 } # uplink
70 }
71
72 queue_cfg
73 {
74 queue
75 {
76 key {
77 type: QUEUE_CCL
78 id: 14 # decimal CCL id (first byte)
79 }
80 in_pubsub_var: "IN_REMUS_STATUS"
81 out_pubsub_var: "OUT_REMUS_STATUS"
82 name: "Remus_State"
83 }
84 }
85
86 dccl_cfg
87 {
88 message_file { path: "../../../xml/simple_status.xml" }

APPENDIX A. GOBY MOOS MODULES 83

89 }
90 }
91
92 // must set serial_loopbacks to use
93 // as root run the shell script (in moos-ivp-local/src/bin)
94 // > loopbacks
95 ProcessConfig = iModemSim
96 {
97 AppTick = 4
98 CommsTick = 4
99

100 Port = /tmp/ttyLOOPA1
101 Speed = 19200
102
103 IPPort = 49234
104 BroadcastAddr = 127.0.0.1
105
106 InputLocType = constant_local
107 ConstantPosX = 0
108 ConstantPosY = 0
109 ConstantDepth = 0
110 }
111

MOOS file for Node 2: goby/share/cfg/MOOS/ccl and dccl/mm2.moos

1 // t. schneider tes@mit.edu 3.2.11
2
3 // bare bones acoustic communications
4 // stack for auv
5
6 ServerHost = localhost
7 ServerPort = 9102
8 Community = mm2
9

10 LatOrigin = 42.35
11 LongOrigin = -70.95
12
13 modem_id_lookup_path = modemidlookup.txt
14 modem_id = 2
15
16 NoNetwork = true
17
18 ProcessConfig = ANTLER

APPENDIX A. GOBY MOOS MODULES 84

19 {
20 MSBetweenLaunches = 10
21
22 Run = MOOSDB @ NewConsole = false
23
24 Run = pREMUSCodec @ NewConsole = true, XConfig=1
25 Run = pAcommsHandler @ NewConsole = true, XConfig=2
26 Run = iModemSim @ NewConsole = true, XConfig=3
27
28 1 = -geometry,80x15-0+0
29 2 = -geometry,80x100-0+230
30 3 = -geometry,80x15-0+570
31 }
32
33 ProcessConfig = pREMUSCodec
34 {
35 create_status: true
36
37 mdat_state_var: "IN_REMUS_STATUS"
38 mdat_state_out: "OUT_REMUS_STATUS"
39 modem_id_lookup_path: "modemidlookup.txt"
40 }
41
42 ProcessConfig = pAcommsHandler
43 {
44 common
45 {
46 verbosity: VERBOSITY_GUI
47 initializer { type: INI_DOUBLE global_cfg_var: "LatOrigin" moos_var: "LAT_ORIGIN" }
48 initializer { type: INI_DOUBLE global_cfg_var: "LongOrigin" moos_var: "LONG_ORIGIN" }
49 initializer { type: INI_STRING moos_var: "VEHICLE_TYPE" sval: "auv" }
50 initializer { type: INI_STRING moos_var: "VEHICLE_NAME" sval: "mm2" }
51 initializer { type: INI_DOUBLE moos_var: "NAV_X" dval: 123 }
52 initializer { type: INI_DOUBLE moos_var: "NAV_Y" dval: 321 }
53 initializer { type: INI_DOUBLE moos_var: "NAV_HEADING" dval: 45 }
54 initializer { type: INI_DOUBLE moos_var: "NAV_SPEED" dval: 1.2 }
55 initializer { type: INI_DOUBLE moos_var: "NAV_DEPTH" dval: 111 }
56 }
57
58 modem_id: 2
59 modem_id_lookup_path: "modemidlookup.txt"
60
61 driver_type: DRIVER_WHOI_MICROMODEM
62 driver_cfg
63 {
64 serial_port: "/tmp/ttyLOOPB2"

APPENDIX A. GOBY MOOS MODULES 85

65 # doesn't work with iModemSim, set to true for real ops
66 [MicroModemConfig.reset_nvram]: false
67 }
68
69 mac_cfg
70 {
71 type: MAC_FIXED_DECENTRALIZED
72 slot { src: 1 dest: 2 rate: 0 type: SLOT_DATA slot_seconds: 10 } # downlink
73 slot { src: 2 dest: 1 rate: 0 type: SLOT_DATA slot_seconds: 10 } # uplink
74 }
75
76 queue_cfg
77 {
78 queue
79 {
80 key { type: QUEUE_CCL id: 14 }
81 in_pubsub_var: "IN_REMUS_STATUS"
82 out_pubsub_var: "OUT_REMUS_STATUS"
83 name: "Remus_State"
84 }
85 }
86
87 dccl_cfg
88 {
89 message_file { path: "../../../xml/simple_status.xml"
90 manipulator: NO_ENCODE }
91 }
92 }
93
94 // must set serial_loopbacks to use
95 // as root run the shell script (in moos-ivp-local/src/bin)
96 // > loopbacks
97 ProcessConfig = iModemSim
98 {
99 AppTick = 4

100 CommsTick = 4
101
102 Port = /tmp/ttyLOOPB1
103 Speed = 19200
104
105 IPPort = 49234
106 BroadcastAddr = 127.0.0.1
107
108 InputLocType = constant_local
109 ConstantPosX = 0
110 ConstantPosY = 0

APPENDIX A. GOBY MOOS MODULES 86

111 ConstantDepth = 0
112 }

XML definition of Simple Status: goby/xml/simple status.xml

1 <?xml version="1.0" encoding="UTF-8"?>
2 <message_set>
3 <message>
4 <name>SIMPLE_STATUS</name>
5 <trigger>time</trigger>
6 <trigger_time>5</trigger_time>
7 <size>32</size>
8 <header>
9 <id>20</id>

10 <time>
11 <name>Timestamp</name>
12 </time>
13 <src_id algorithm="to_lower,name2modem_id">
14 <name>Node</name>
15 <moos_var>VEHICLE_NAME</moos_var>
16 </src_id>
17 </header>
18 <layout>
19 <static>
20 <name>MessageType</name>
21 <value>LAMSS_STATUS</value>
22 </static>
23 <float>
24 <name>nav_x</name>
25 <moos_var>NAV_X</moos_var>
26 <max>100000</max>
27 <min>-100000</min>
28 <precision>0</precision>
29 </float>
30 <float>
31 <name>nav_y</name>
32 <moos_var>NAV_Y</moos_var>
33 <max>100000</max>
34 <min>-100000</min>
35 <precision>0</precision>
36 </float>
37 <float>
38 <name>Speed</name>
39 <moos_var>NAV_SPEED</moos_var>

APPENDIX A. GOBY MOOS MODULES 87

40 <max>20</max>
41 <min>-2</min>
42 <precision>1</precision>
43 </float>
44 <float algorithm="angle_0_360">
45 <name>Heading</name>
46 <moos_var>NAV_HEADING</moos_var>
47 <max>360</max>
48 <min>0</min>
49 <precision>2</precision>
50 </float>
51 <float>
52 <name>Depth</name>
53 <moos_var>NAV_DEPTH</moos_var>
54 <max>6400</max>
55 <min>0</min>
56 <precision>1</precision>
57 </float>
58 </layout>
59
60 <!-- decoding -->
61 <on_receipt>
62 <publish>
63 <moos_var>STATUS_REPORT_IN</moos_var>
64 <all />
65 </publish>
66 <publish>
67 <moos_var>NODE_REPORT</moos_var>
68 <format>NAME=%1%,TYPE=%2%,UTC_TIME=%3$.0lf,X=%4%,Y=%5%,LAT=%6$lf,LON=%7$lf,SPD=%8%,HDG=%9%,DEPTH=%10%</format>
69 <message_var algorithm="modem_id2name">Node</message_var>
70 <message_var algorithm="modem_id2type">Node</message_var>
71 <message_var>Timestamp</message_var>
72 <message_var>nav_x</message_var>
73 <message_var>nav_y</message_var>
74 <message_var algorithm="utm_y2lat:nav_x">nav_y</message_var>
75 <message_var algorithm="utm_x2lon:nav_y">nav_x</message_var>
76 <message_var>Speed</message_var>
77 <message_var>Heading</message_var>
78 <message_var>Depth</message_var>
79 </publish>
80 </on_receipt>
81 <queuing>
82 <ack>false</ack>
83 <blackout_time>10</blackout_time>
84 <ttl>300</ttl>
85 <value_base>1.5</value_base>

APPENDIX A. GOBY MOOS MODULES 88

86 </queuing>
87 </message>
88 </message_set>
89

Modem Lookup Table: goby/share/cfg/MOOS/ccl and dccl/modemidlookup.txt

1 1,mm1,topside
2 2,mm2,auv

A.4 iCommander
iCommander is a topside command and control (C2) tool which provides a simple con-
sole for issuing commands through the acoustic network. By sharing DCCLmessage
configuration (XML) files with pAcommsHandler it automatically adapts to the current
message set, without any need to change code.

Parameters for the iCommander Configuration Block
Example .moos file The moos file is simple since the bulk of the configuration is
stored in separate XML files (see section A.3.8 for the configuration of these files):

1 ProcessConfig = iCommander
2 {
3 common { # Configuration common to all Goby MOOS applications
4 # (opt)
5 log: true # Should we write a text log of the terminal
6 # output? (opt) (default=true) (can also set MOOS
7 # global "log=")
8 log_path: "./" # Directory path to write the text log of the
9 # terminal output (if log=true) (opt)

10 # (default="./") (can also set MOOS global
11 # "log_path=")
12 community: "AUV23" # The vehicle's name (opt) (can also set
13 # MOOS global "Community=")
14 lat_origin: 42.5 # Latitude in decimal degrees of the local
15 # cartesian datum (opt) (can also set MOOS
16 # global "LatOrigin=")
17 lon_origin: 10.9 # Longitude in decimal degrees of the local
18 # cartesian datum (opt) (can also set MOOS

APPENDIX A. GOBY MOOS MODULES 89

19 # global "LongOrigin=")
20 app_tick: 10 # Frequency at which to run Iterate(). (opt)
21 # (default=10)
22 comm_tick: 10 # Frequency at which to call into the MOOSDB
23 # for mail. (opt) (default=10)
24 verbosity: VERBOSITY_VERBOSE # Verbosity of the terminal
25 # window output (VERBOSITY_QUIET,
26 # VERBOSITY_WARN,
27 # VERBOSITY_VERBOSE,
28 # VERBOSITY_DEBUG, VERBOSITY_GUI)
29 # (opt)
30 # (default=VERBOSITY_VERBOSE)
31 initializer { # Publish a constant value to the MOOSDB at
32 # startup (repeat)
33 type: INI_DOUBLE # type of MOOS variable to publish
34 # (INI_DOUBLE, INI_STRING) (req)
35 moos_var: "SOME_MOOS_VAR" # name of MOOS variable to
36 # publish to (req)
37 global_cfg_var: "LatOrigin" # Optionally, instead of
38 # giving `sval` or `dval`, give
39 # a name here of a global MOOS
40 # variable (one at the top of
41 # the file) whose contents
42 # should be written to
43 # `moos_var` (opt)
44 dval: 3.454 # Value to write for type==INI_DOUBLE (opt)
45 sval: "a string" # Value to write for type==INI_STRING
46 # (opt)
47 }
48 }
49 dccl_cfg { # Configure the DCCL Encoder (opt)
50 modem_id: 1 # Unique number 1-31 to identify this node (req)
51 message_file { # XML message file containing one or more
52 # DCCL message descriptions (repeat)
53 path: "/home/toby/goby/src/acomms/examples/chat/chat.xml"
54 # path to the
55 # message XML file
56 # (req)
57 manipulator: NO_MANIP # manipulators to modify the
58 # encoding and queuing behavior of the
59 # messages in this file (NO_MANIP,
60 # NO_ENCODE, NO_DECODE, NO_QUEUE,
61 # LOOPBACK, ON_DEMAND, TCP_SHARE_IN)
62 # (repeat)
63 }
64 crypto_passphrase: "twinkletoes%24" # If given, encrypt all

APPENDIX A. GOBY MOOS MODULES 90

65 # communications with this
66 # passphrase using AES.
67 # Omit for unencrypted
68 # communications. (opt)
69 }
70 modem_id_lookup_path: "" # Path to file containing mapping
71 # between modem_id and vehicle name &
72 # type (opt) (can also set MOOS global
73 # "modem_id_lookup_path=")
74 load: "" # Path to iCommander save file to load automatically
75 # on startup (repeat)
76 show_variable: "" # MOOS Variable to scope on the GUI (repeat)
77 force_xy_only: false # Set true to set all Latitude/Longitude
78 # fields to use x/y values instead (opt)
79 # (default=false)
80 }

Aswith pAcommsHandler, the above configurationfile can be generated at any time
with the command:

1 iCommander --example_config

Filling out the .moos file Some of the DCCL configuration (dccl_cfg) parameters are
not used, such as the crypto_passphrase.

• common: See section A.3.5.
• dccl_cfg.message_file: path to an XML file containing a message set of one

or messages. These are the DCCL messages. You can also load messages XML
files through the Main Menu in the program.

• load: path to a file of iCommander saved message(s) to load automatically on
startup. You can also load messages through the Main Menu in the program.

Reference Sheet
Main Menu

1 __
2 | iCommander: Vehicle Command Message Sender |
3 | 2 messages loaded. |

APPENDIX A. GOBY MOOS MODULES 91

4 | Main Menu: |
5 | > Return to active message |
6 | > Select Message |
7 | > Load |
8 | > Save |
9 | > Import Message File |

10 | > Exit |
11 |__|

• Return to active message - only available if you have actively edited a message
this session. Choose to return to the editing screen of the last message you
were editing.

• Select Message - pick a message type to edit. All messages are read from DCCL
(dynamic compact control language) XML message files.

• Load - load a savedmessage parameters file. This allows you to save values for
message fields from session to session.

• Save - saves all openmessages to a single file for later use. These files are plain
text for easy use outside iCommander.

• Import Message File - import another DCCL XML file for use.
• Exit - quit cleanly.

Editing screen

1
2 __
3 | |
4 |Editing message variable 1 of 22: MessageType |
5 |(static) you cannot change the value of this field|
6 |__|
7
8 ___
9 | |

10 |Message (Type: SENSOR_PROSECUTE) |
11 |22 entries total |
12 | {Enter} for options |
13 | {Up/Down} for more message variables |
14 | |
15 | _________________ |

APPENDIX A. GOBY MOOS MODULES 92

16 | | ||
17 |1. MessageType (static) |SENSOR_PROSECUTE ||
18 | |_________________||
19 | _________________ |
20 | | ||
21 |2. SensorCommandType (int) |1 ||
22 | |_________________||
23 | _________________ |
24 | | ||
25 |3. SourcePlatformId (int) |0 ||
26 | |_________________||
27 | _________________ |
28 | | ||
29 |4. DestinationPlatformId (int) |3 ||
30 | |_________________||
31 |___|

Scroll to select the box to edit. Note that you will need to scroll up or down off
the screen to see all the fields at once. The information box at the top will tell you
how large the field can be based on the DCCL settings. You cannot enter a value
outside these ranges. Hit enter to get the editing menu.

Editing menu

1 __
2 | |
3 | Choose an action |
4 |> Return to message |
5 |> Send |
6 |> Preview |
7 |> Quick switch to another open message |
8 |> Insert special: current time |
9 |> Insert special: local X,Y to longitude,latitude |

10 |> Insert special: community |
11 |> Insert special: modem id |
12 |> Clear message |
13 |> Main Menu |
14 | |
15 | |
16 |__|

• Return to message
• Send - publish the variables for use by pAcommsHandler

APPENDIX A. GOBY MOOS MODULES 93

• Preview - preview the message to be sent in exact syntactical form
• Quick switch to another openmessage - switch to anothermessage with informa-

tion (either edited this session or loaded)
• Insert special: current time - insert a placeholder (“ time”) that will be replaced

with the currentUNIX timewhenmessage is sent (e.g. 1236053988). Shortcut:
type ’t’ directly into the field and bypass this menu.

• Insert special: local X,Y to longitude,latitude - insert a placeholder designator to
do a UTM local grid to latitude / longitude conversion. first the latitude (Y
or northings) is entered (“y(lat)1:”), then you choose where to put the lon-
gitude (X or eastings) (“x(lon)1:”). after the colon enter the desired value
in meters that will be converted to latitude/longitude based in the LatOri-
gin/LongOrigin set in the top of the MOOS file. Note that you may have more
thanonepair of x/y. This is the reason for thenumber following “y(lat)”/“x(lon)”.
“y(lat)1” is pairedwith “x(lon)1”, “y(lat)2” is pairedwith “x(lon)2”, etc. Short-
cut: type ’y’ or ’x’ respectively directly into the fields and bypass this menu.

• Insert special: community - insert the name of this MOOS community.
• Insert special: modem id - choose a modem id from a list of names. This is based

off the modem id lookup table used by pAcommsHandler.
• Clear message
• Main Menu

Acknowledgments If you are using pAcommsHandler with the ACK field set to 1
(true), all acousticmessage acknowledgments are displayed at the top of the screen.
For example, the ack of a LAMSS_DEPLOY message would look like this:

1 ___
2 | |
3 |Message acknowledged from queue: LAMSS_DEPLOY|
4 | for destination: 5 |
5 | at time: 2011-Mar-03 22:38:12 |
6 |___|

Similarly, expired messages (messages that exceed their ttl without being sent)
are shown as well:

APPENDIX A. GOBY MOOS MODULES 94

1 ___
2 | |
3 |Message expired from queue: LAMSS_DEPLOY |
4 | for destination: 5 |
5 | at time: 2011-Mar-03 22:38:12 |
6 |___|

A.5 pREMUSCodec
Example .moos file

1 ProcessConfig = pREMUSCodec
2 {
3 common { # Configuration common to all Goby MOOS applications
4 # (opt)
5 log: true # Should we write a text log of the terminal
6 # output? (opt) (default=true) (can also set MOOS
7 # global "log=")
8 log_path: "./" # Directory path to write the text log of the
9 # terminal output (if log=true) (opt)

10 # (default="./") (can also set MOOS global
11 # "log_path=")
12 community: "AUV23" # The vehicle's name (opt) (can also set
13 # MOOS global "Community=")
14 lat_origin: 42.5 # Latitude in decimal degrees of the local
15 # cartesian datum (opt) (can also set MOOS
16 # global "LatOrigin=")
17 lon_origin: 10.9 # Longitude in decimal degrees of the local
18 # cartesian datum (opt) (can also set MOOS
19 # global "LongOrigin=")
20 app_tick: 10 # Frequency at which to run Iterate(). (opt)
21 # (default=10)
22 comm_tick: 10 # Frequency at which to call into the MOOSDB
23 # for mail. (opt) (default=10)
24 verbosity: VERBOSITY_VERBOSE # Verbosity of the terminal
25 # window output (VERBOSITY_QUIET,
26 # VERBOSITY_WARN,
27 # VERBOSITY_VERBOSE,
28 # VERBOSITY_DEBUG, VERBOSITY_GUI)
29 # (opt)
30 # (default=VERBOSITY_VERBOSE)
31 initializer { # Publish a constant value to the MOOSDB at
32 # startup (repeat)

APPENDIX A. GOBY MOOS MODULES 95

33 type: INI_DOUBLE # type of MOOS variable to publish
34 # (INI_DOUBLE, INI_STRING) (req)
35 moos_var: "SOME_MOOS_VAR" # name of MOOS variable to
36 # publish to (req)
37 global_cfg_var: "LatOrigin" # Optionally, instead of
38 # giving `sval` or `dval`, give
39 # a name here of a global MOOS
40 # variable (one at the top of
41 # the file) whose contents
42 # should be written to
43 # `moos_var` (opt)
44 dval: 3.454 # Value to write for type==INI_DOUBLE (opt)
45 sval: "a string" # Value to write for type==INI_STRING
46 # (opt)
47 }
48 }
49 create_status: false # Will generate REMUS State message if
50 # true (opt) (default=false)
51 mdat_state_var: "IN_REMUS_STATUS_HEX_30B" # MOOS variable for
52 # incoming REMUS state
53 # messages (raw) (opt)
54 # (default="IN_REMUS_ST
55 # ATUS_HEX_30B")
56 mdat_state_out: "OUT_REMUS_STATUS_HEX_30B" # MOOS variable for
57 # outgoing REMUS
58 # state messages
59 # (raw) (opt)
60 # (default="OUT_REMUS_
61 # STATUS_HEX_30B")
62 mdat_ranger_var: "IN_REMUS_RANGER_HEX_30B" # MOOS variable for
63 # incoming REMUS
64 # ranger messages
65 # (raw) (opt)
66 # (default="IN_REMUS_R
67 # ANGER_HEX_30B")
68 mdat_ranger_out: "OUT_REMUS_RANGER_HEX_30B"
69 # MOOS variable for
70 # outgoing REMUS
71 # ranger messages
72 # (raw) (opt)
73 # (default="OUT_REMUS_
74 # RANGER_HEX_30B")
75 mdat_redirect_var: "IN_REMUS_REDIRECT_HEX_30B"
76 # MOOS variable for
77 # incoming REMUS
78 # redirect messages

APPENDIX A. GOBY MOOS MODULES 96

79 # (raw) (opt)
80 # (default="IN_REMUS_R
81 # EDIRECT_HEX_30B")
82 mdat_redirect_out: "OUT_REMUS_REDIRECT_HEX_30B"
83 # MOOS variable for
84 # outgoing REMUS
85 # redirect messages
86 # (raw) (opt)
87 # (default="OUT_REMUS_
88 # REDIRECT_HEX_30B")
89 mdat_alert_var: "IN_REMUS_ALERT_HEX_30B" # MOOS variable for
90 # incoming REMUS alert
91 # messages (raw) (opt)
92 # (default="IN_REMUS_ALE
93 # RT_HEX_30B")
94 mdat_alert_out: "OUT_REMUS_ALERT_HEX_30B" # MOOS variable for
95 # outgoing REMUS alert
96 # messages (raw) (opt)
97 # (default="OUT_REMUS_A
98 # LERT_HEX_30B")
99 mdat_alert2_var: "IN_REMUS_ALERT2_HEX_30B" # MOOS variable for

100 # incoming REMUS
101 # alert2 messages
102 # (raw) (opt)
103 # (default="IN_REMUS_A
104 # LERT2_HEX_30B")
105 mdat_alert2_out: "OUT_REMUS_ALERT2_HEX_30B"
106 # MOOS variable for
107 # outgoing REMUS
108 # alert2 messages
109 # (raw) (opt)
110 # (default="OUT_REMUS_
111 # ALERT2_HEX_30B")
112 modem_id_lookup_path: "" # Path to file containing mapping
113 # between modem_id and vehicle name &
114 # type (opt) (can also set MOOS global
115 # "modem_id_lookup_path=")
116 }

Aswith pAcommsHandler, the above configurationfile can be generated at any time
with the command:

1 pREMUSCodec --example_config

APPENDIX A. GOBY MOOS MODULES 97

This codec handles several of the standard REMUS CCLmessages. It can be con-
figured to generate CCL State messages at regular intervals, and it will translate
incoming CCL State messages into the standard NODE_REPORT format used internally
in the LAMSS autonomy systems. This codec allows a MOOS vehicle to perform col-
laborative behaviors, such as collision avoidance, with a non-MOOS, standard CCL
vehicle. See section A.3.15 for an example of using pREMUSCodec.

A.6 iMOOS2SQL
This is a transponder process, which translates Status, Contact, and Track Reports
into a format for interfacing the MOOS C2 with the generic Google Earth-based
(geov) topside display, e.g. as shown in Fig. A.1. This module is available in moos-
ivp-local (http://oceanai.mit.edu/moos-ivp/pmwiki/pmwiki.php?n=Support.
Milocal).

A.7 pGeneralCodec
Deprecated. Do not use, rather use pAcommsHandler with no driver, no MAC, and no queue-
ing if only encoding/decoding is desired.

A.8 pBTRCodec
Deprecated. Do not use, rather use the <array length> feature of pAcommsHandler
which provides the same functionality.

A.9 pCTDCodec
Deprecated. Do not use, rather use the<max delta> feature of pAcommsHandler which
provides all the same functionality but with much more generality.

A.10 pAcommsPoller
Deprecated. Use the MAC built into pAcommsHandler.

http://oceanai.mit.edu/moos-ivp/pmwiki/pmwiki.php?n=Support.Milocal
http://oceanai.mit.edu/moos-ivp/pmwiki/pmwiki.php?n=Support.Milocal

Glossary
acoustic networking a way of connecting underwater vehicles and other nodes wire-

lessly using sound waves (since light is rapidly attenuated in sea water). See
also http://gobysoft.com/doc/acomms. 2

application a collection of code that compiles to a single exectuable unit on your
operating system. synonymously (and more precise): processes or binaries.
2

asynchronous From [18]: ” of, used in, or being digital communication (as between
computers) in which there is no timing requirement for transmission and in
which the start of each character is individually signaled by the transmitting
device.”. 10

autonomy architecture lossly defined, a collection of software applications and li-
braries that facilitate communications, decision making, timing, and other
utilties needed for making robots function. Another common term for this is
autonomy “middleware”. 2

base class also known as subclass or child class. 4, 98

daemon an application on a Linux/UNIX machine that runs continuously in the
background. the gobyd is a server and the Goby applications are clients.. 2, 4

derived class also known as superclass or parent class. 4, 98

LAMSS Amultidiscplinary researchgroupat theCenter forOceanEngineering (Dept.
of Mechanical Engineering) at Massachusetts Institute of Technology. LAMSS
focuses on collaborative marine robotics for a variety of acoustic and non
acoustic sensing tasks. See http://lamss.mit.edu.. 40, 41, 44

protobuf From [4]: “Protocol buffers areGoogle’s language-neutral, platform-neutral,
extensiblemechanism for serializing structureddata – thinkXML, but smaller,
faster, and simpler. You define how youwant your data to be structured once,
then you can use special generated source code to easily write and read your
structured data to and from a variety of data streams and using a variety of
languages – Java, C++, or Python.”. 2, 4, 6, 14, 19

publish/subscribe a method of communication between processes that is roughly
analogous to authors and customers of a newspaper or newsletter. Certain

98

http://gobysoft.com/doc/acomms
http://lamss.mit.edu

GLOSSARY 99

people (applications) publish stories (data) that other people (applications)
subscribe for and read in the newsletter. Typically applications perform both
tasks, subscribing for some data and publishing others. See also http://en.
wikipedia.org/wiki/Publish/subscribe. 2

SQL a language (in the sense of a programming language) that allows querying or
accessing data from a database. For example, if I wanted to know the best
baseball players in history and I had a database of players’ stats, I could write
in SQL the following query that would provide the data I need: "SELECT *
FROM baseball players WHERE batting average > 0.300 ORDER BY
batting average DESC". 2, 21

star topology all communications pass througha centralmediator (in this case, gobyd)
and not directly from any Goby application to another. 4

synchronous From [19]: ”recurring or operating at exactly the same period.”. 8

virtual A member of a base class than can be redefined in a derived class. See also
http://www.cplusplus.com/doc/tutorial/polymorphism/. 8

http://en.wikipedia.org/wiki/Publish/subscribe
http://en.wikipedia.org/wiki/Publish/subscribe
http://www.cplusplus.com/doc/tutorial/polymorphism/

Bibliography
[1] P. Newman, “The MOOS: Cross platform software for robotics research.” [On-

line]. Available: http://www.robots.ox.ac.uk/~mobile/MOOS/wiki/pmwiki.
php

[2] A. S. Huang, E. Olson, and D. C. Moore, “Lightweight communications and
marshalling.” [Online]. Available: http://code.google.com/p/lcm/

[3] Goby Developers, “Goby underwater autonomy project documentation.”
[Online]. Available: http://gobysoft.com/doc

[4] Google, “Protocol buffers.” [Online]. Available: http://code.google.com/apis/
protocolbuffers/

[5] SQLite Developers, “Sqlite.” [Online]. Available: http://www.sqlite.org/
[6] PostgreSQL Global Development Group, “Postgresql.” [Online]. Available:

http://www.postgresql.org/
[7] S. Prata, C++ Primer Plus (Fourth Edition), 4th ed. Indianapolis, IN, USA: Sams,

2001.
[8] B. Stroustrup, The C++ Programming Language, 3rd ed. Boston, MA, USA:

Addison-Wesley Longman Publishing Co., Inc., 2000.
[9] Google, “Protocol buffer basics: C++.” [Online]. Available: http://code.google.

com/apis/protocolbuffers/docs/cpptutorial.html
[10] ——, “Language guide.” [Online]. Available: http://code.google.com/apis/

protocolbuffers/docs/proto.html
[11] ——, “C++ generated code.” [Online]. Available: http://code.google.com/apis/

protocolbuffers/docs/reference/cpp-generated.html
[12] Kitware, “CMake.” [Online]. Available: http://www.cmake.org/
[13] Emweb, “Wt, a C++ web toolkit.” [Online]. Available: http://www.webtoolkit.

eu/wt
[14] M. R. Benjamin, H. Schmidt, P. M. Newman, and J. J. Leonard, “Nested

autonomy for unmanned marine vehicles with MOOS-IvP,” Journal of Field
Robotics, vol. 27, no. 6, pp. 834–875, 2010. [Online]. Available: http:
//dx.doi.org/10.1002/rob.20370

100

http://www.robots.ox.ac.uk/~mobile/MOOS/wiki/pmwiki.php
http://www.robots.ox.ac.uk/~mobile/MOOS/wiki/pmwiki.php
http://code.google.com/p/lcm/
http://gobysoft.com/doc
http://code.google.com/apis/protocolbuffers/
http://code.google.com/apis/protocolbuffers/
http://www.sqlite.org/
http://www.postgresql.org/
http://code.google.com/apis/protocolbuffers/docs/cpptutorial.html
http://code.google.com/apis/protocolbuffers/docs/cpptutorial.html
http://code.google.com/apis/protocolbuffers/docs/proto.html
http://code.google.com/apis/protocolbuffers/docs/proto.html
http://code.google.com/apis/protocolbuffers/docs/reference/cpp-generated.html
http://code.google.com/apis/protocolbuffers/docs/reference/cpp-generated.html
http://www.cmake.org/
http://www.webtoolkit.eu/wt
http://www.webtoolkit.eu/wt
http://dx.doi.org/10.1002/rob.20370
http://dx.doi.org/10.1002/rob.20370

BIBLIOGRAPHY 101

[15] T. Schneider and H. Schmidt, “Unified command and control for heteroge-
neous marine sensing networks,” Journal of Field Robotics, vol. 27, no. 6, pp.
876–889, 2010. [Online]. Available: http://dx.doi.org/10.1002/rob.20346

[16] “The laboratory for autonomous marine sensing systems (LAMSS).” [Online].
Available: http://lamss.mit.edu/

[17] T. Schneider and H. Schmidt, “The Dynamic Compact Control Language: A
compact marshalling scheme for acoustic communications,” in Proceedings of
the IEEE Oceans Conference 2010, Sydney, Australia, 2010.

[18] Merriam-Webster Online Dictionary, “asynchronous,” 2011. [Online]. Avail-
able: http://www.merriam-webster.com/dictionary/asynchronous

[19] ——, “synchronous,” 2011. [Online]. Available: http://www.merriam-webster.
com/dictionary/synchronous

http://dx.doi.org/10.1002/rob.20346
http://lamss.mit.edu/
http://www.merriam-webster.com/dictionary/asynchronous
http://www.merriam-webster.com/dictionary/synchronous
http://www.merriam-webster.com/dictionary/synchronous

	Contents
	Introduction
	What is Goby?
	Structure of this Manual
	How to get help

	The Hello World example
	Meeting goby::core::ApplicationBase
	Creating a simple Google Protocol Buffers Message: HelloWorldMsg
	Learning how to publish: HelloWorld1
	Learning how to subscribe: HelloWorld2
	Compiling our applications using CMake
	Trying it all out: running from the command line
	Code

	The GPS Driver example
	Reading configuration from files and command line: DepthSimulator
	Our first useful application: GPSDriver
	Subscribing for multiple types: NodeReporter
	Putting it all together
	Reading the log files (SQLite3)
	Code

	What's next
	Goby MOOS Modules
	Unified Command and Control for Subsea Autonomous Sensing Networks
	Overview of the LAMSS Communication Stack
	pAcommsHandler
	iCommander
	pREMUSCodec
	iMOOS2SQL
	pGeneralCodec
	pBTRCodec
	pCTDCodec
	pAcommsPoller

	Glossary
	Bibliography

