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Abstract—The Dynamic Compact Control Language (DCCL)
extends the ubiquitous Extensible Markup Language (XML) to
provide a structure for defining very short messages comprised
of bounded basic variable types, suitable for transmission over a
low throughput acoustic channel. Algorithms are provided to con-
sistently encode and decode the fields of these messages, and an
implementation of DCCL with encryption is provided as a open
source C++ library. Furthermore, DCCL has been incorporated
into a publish/subscribe robotic autonomy architecture and used
on numerous simulations and field trials involving heterogeneous
networks of vehicles; we present the results of several. The ease
of reconfiguration and error checking provided by DCCL make
it well suited for collaborative autonomous underwater vehicle
operations, where the flexibility to quickly change the message
set, combined with low incidence of error, is necessary for success.

I. INTRODUCTION

Sound is the most practical carrier for digital messages over
any appreciable distance (i.e. O(1) km or further) in the sea.
However, due to a variety of physical realities pertaining to
sound transduction and propagation in water, acoustic commu-
nications (especially between moving nodes) is characterized
by a list of undesirables: low data rates, high latency, a large
number of errors, and drop-outs. These challenges are well
summarized by Baggeroer [1] [2] and Partan [3].
Much work has been done on the communications systems

required to perform acoustic telemetry [4], and mature sys-
tems have been developed such as the WHOI Micro-Modem
[5]. Also, substantial research on the lower level networking
protocols such as medium access control (MAC) has been
performed: a number of underwater MAC schemes and their
relative merits are discussed in [6]. Now that the hardware is
relatively robust, it is possible to make meaningful strides in
higher level acoustic networking. The subject of this paper,
data marshalling, resides in this category.
In response to this state of acoustic communications, we

developed the Dynamic Compact Control Language (DCCL),
a language for defining highly compact messages. Given
constraints on data rates afforded by modern acoustic modems

(and enforced by physics at a more fundamental level), it ap-
pears that minimizing the size of command and data messages
is a necessary goal for usable subsea networks.
DCCL is comprised of two components: 1) a structure

language based on XML with which to define messages
(described in section II); and 2) a C++ library (libdccl,
detailed in section III) that validates the XML structure
and implements consistent encoding and decoding of each
message. libdccl is provided with the goby-acomms project,
freely available under the GNU General Public License from
<http://launchpad.net/goby>.
Thus far, DCCL has been used primarily with the Mission

Oriented Operating Suite (MOOS), a publish/subscribe auton-
omy architecture for autonomous underwater vehicles (AUVs).
Thus, several additional features (discussed in section IV)
were developed for libdccl to facilitate use of DCCL with
this and similar architectures. DCCL is presently being used
by a number of institutions: NURC (La Spezia, Italy), NUWC
(Newport, RI), WHOI (Woods Hole, MA), NAVSEA (Panama
City, FL), and MIT (Cambridge, MA). In section V, we
mention results from a subset of field trials which used DCCL.

A. Design goals

In order to produce messages as small as possible, DCCL
offers these features:

• Defined bounded field types with customizable ranges.
For example, an integer with minimum value of 0 and
maximum value of 5000 takes 13 bits instead of the 32
bits often used for the integer type, regardless of whether
the full integer type is needed.

• Dissolved byte boundaries (unaligned messages): fields
in the message can be an arbitrary number of bits. Octets
(bytes) are only used in the final message produced.

• Delta encoding of correlated data (e.g. CTD instrument
data): rather then sending the full value for each sample
in a message, each value is differenced from both a pre-
shared key and the first sample within the message.



We also wanted to remove some of the complexity and
potential sources of human error involved in binary encoding
and bit arithmetic. To make DCCL straightforward, we made
several design choices:

• All bounds on types can be specified as any number, such
as powers of ten, rather than restricting the message de-
signer to powers of two. This leads to a small inefficiency
since the message is encoded by powers of two, but this
drawback is balanced by the value of simplicity since the
human mind is much more comfortable with powers of
ten than powers of two.

• XML is the basis of the markup language that defines
the structure of a DCCL message. XML was chosen for
its ubiquity (e.g. XHTML for the web, RSS for news,
KML for Google Earth), which means a host of tools are
already available for editing and checking the validity of
DCCL messages.

• Encoding and decoding for basic types are predefined
and handled automatically by the DCCL C++ library
(libdccl), meaning that in the vast majority of the cases
no new code needs to be written to create or redefine
a DCCL message. Writing code on cruises is always a
risky endeavor, and minimizing that risk is important
to maximizing use of ship time. However, flexibility
to define custom algorithms to assist with encoding is
provided for the fairly rare case when the basic encoding
does not satisfy the needs of a particular message.

B. State of the art

1) Compact Control Language: This work owes inspiration
and part of the name to the Compact Control Language (CCL)
developed at WHOI by Roger Stokey and others for the
REMUS series of AUVs. An overview of CCL is available
in [7], and the specification is given in [8]. In our experience,
before DCCL, CCL was the de facto standard data marshalling
scheme for acoustic networks based on the WHOI Micro-
Modem.
DCCL is intended to build on the ideas developed in CCL

but with several notable improvements. DCCL provides the
ability for messages to adapt quickly to changing needs of
the researchers without changing software code (i.e. dynamic).
CCL messages are hard coded in software while DCCL
messages are configured using XML.
Also, significantly smaller messages are created with DCCL

than with CCL since the former uses unaligned fields, while
the latter, with the exception of a few custom fields (e.g.
latitude and longitude), requires that message fields fit into
an even number of bytes. Thus, if a value needs eleven bits
to be encoded, CCL uses two bytes (sixteen bits), whereas
DCCL uses the exact number of bits (eleven in this case).
DCCL also offers several features that CCL does not, including
encryption, delta-differencing, and data parsing abilities.
To the best of the authors’ knowledge (which is supported

by Chitre, et al. in [9]), CCL is the only previous effort to
provide an open structure for defining messages to be sent
through an underwater acoustic network. Other attempts have

been ad-hoc encoding for a specific project. In order not to
trample on Stokey’s work and maximize interoperability, we
have made DCCL compatible with a CCL network, giving
DCCL the CCL initial byte flag of 0x20 (decimal 32). This
allows vehicles using CCL and DCCL to interoperate, as-
suming all nodes have appropriate encoders for both message
languages.
2) Text Encoding: Two approaches to encoding that have

proven useful in other applications for compressing data are
dictionary coders (e.g. LZW [10]) and entropy coders (e.g.
Huffman coding [11]). Both of these are successful on sparse
data, such as human readable text. Their utility for the types of
messages encountered commonly in marine robotics is limited,
however. These messages tend to be short and full of numeric
values, whose information entropy is much greater than that
of human generated text.
Furthermore, the overhead cost incurred by these text en-

coders means that the compressed message may not be more
efficient than the original message until a sizable amount
of data (perhaps several kilobytes) has been encoded. This
exceeds the size of individual frames in the WHOI Micro-
Modem, meaning that in messages would have be split across
frames and reassembled. Given the low throughput and high
error rate of the acoustic channel, it is impractical to attempt to
send a message that is more than several frames before being
decodable. Furthermore, the resulting message from these text
encoders is variable length, as the compressibility depends on
the input data. This can cause further difficulties transporting
these data across the acoustic network.
Given these considerations, we decided that currently avail-

able text encoders would not an acceptable solution to the
problem at hand, i.e. creating short messages for acoustic
communications.
3) Abstract Syntax Notation One: Abstract Syntax Notation

One (ASN.1) is a mature and widely used standard for ab-
stractly representing data structures (or messages) in a human-
readable textual form. It also specifies a variety of rules for
encoding data using the ASN.1 structures. In both these areas,
ASN.1 is similar to DCCL: DCCL also provides a structure
language (based on XML in this case), and a set of encoding
rules. In fact, the rules used by DCCL are very similar to the
ASN.1 unaligned Packed Encoding Rules (PER). For a good
treatment of ASN.1, see Larmouth’s book [12].
If DCCL used the ASN.1 notation, it could hope to draw on

the advantages of being standards compliant. However, DCCL
does not currently use the ASN.1 representation at this time
for two main reasons:
1) Given the severe restrictions on message size due to the
acoustic modem hardware, existing ASN.1 structures are
unlikely to be useful, unless the designers were origi-
nally careful in specifying bounds on numerical types
(e.g. INTEGER) and minimizing use of string types
(UTF8STRING/IA5STRING). Thus, for simplicity of
the DCCL specification, the authors prefer the XML
specification given in section II and currently used by
DCCL.



2) ASN.1 structures are commonly “compiled” into source
code which is then compiled into the finished program.
This does not allow for dynamic message structures,
which is at the core of the DCCL goal. DCCL does
not compile the message structure, but rather translates
it into a collection of objects at runtime. We argue that
for the underwater robotics research community, at least,
changes to messages should not need recompilation of
code. Perhaps as the field matures and messages become
widely used and standardized, support for compiling of
messages will become more desirable.

Support for ASN.1 may become a desirable goal in the
future to take advantage of the knowledge base and experience
of this well accepted standard. However, we will likely have
to choose a tightly reduced subset of the ASN.1 specification
to meet the restrictive demands of the underwater acoustic
channel. One possible path would be to match the XML
definition of DCCL to the ASN.1 XML Encoding rules. Then,
either the ASN.1 definition or XML definition could be used
to encode messages using the Packed Encoding Rules, which
are similar to the rules already used in DCCL (see section III).

C. Hardware Layer

DCCL was developed initially for the WHOI Micro-Modem
acoustic modem, a relatively mature and widely deployed
system originally presented in [5]. The WHOI Micro-Modem
appends error checking bits and destination/source addressing
to the user’s data (in our case, the DCCL message). The
WHOI Micro-Modem has several fixed length frame sizes (32,
64, and 256 bytes) corresponding to different data rates (and
modulation schemes).
However, DCCL can be used to encode a message of any

fixed length, and thus can be used in any communications
scenario where compact short messages are desirable. In our
field trials, we use DCCL for both subsea (via the WHOI
Micro-Modem) and surface communications (via an IEEE
802.11 UDP or TCP/IP network). This allows for a seamless
transition between surface and subsea networks.

II. DEFINING MESSAGES

DCCL messages are defined using a custom language built
from XML. Thus, the message structure is given by a text
file composed of a series of nested tags (e.g. <message>).
Such files can be edited by any text editor or any of a large
of tools designed specifically for composing XML. The basic
tags needed to define a message are given in this section. A
number of additional tags are available for interacting with
the vehicle’s autonomy architecture; these tags are described
in section IV.

A. XML Specification

The full XML schema is available with the source code
at <http://launchpad.net/goby>; here we give a summary of
the tags. A DCCL message file always consists of the root
tag <message_set> which has one or more <message>
tags as its children. The <message> children are as follows:

• <id>: an identification number (9 bits, so <id> ∈
[0, 511]) representing this message to all decoding nodes
[unsigned integer].

• <name>: a name for the message. This tag and <id>
must each be a unique identifier for this message.
[string].

• <size>: the maximum size of this message in bytes
[unsigned integer]. DCCL may produce a smaller
message, but will not validate this message XML file if
it exceeds this size.

• <header>: the children of this tag allow the user to
rename the header parts of the DCCL message. See Fig. 1
for a sketch of the DCCL header format. These names are
used when passing values at encode time for the various
header fields.
– <time>: seconds elapsed since 1/1/1970 (“UNIX
time”). In the DCCL encoding, this reduced to sec-
onds since the start of the day, with precision of
one second. Upon decoding, assuming the message
arrives within twelve hours of its creation, it is
properly restored to a full UNIX time.
∗ <name>: the name of this field; optional, the
default is “ time”. [string]

– <src_id>: a unique address (<src_id> ∈
[0, 31]) of the sender of this message. For a given
experiment these short unique identifiers can be
mapped on to more global keys (such as vehicle
name, type, ethernet MAC address, etc.).
∗ <name>: default is “ src id”. [string]

– <dest_id>: the eventual destination of this mes-
sage (also an unsigned integer in the range
[0,31]). If this destination exists on the same subnet
as the sender, this will also be the hardware layer
destination id number.
∗ <name>: default is “ dest id”. [string]

• <layout>: the children of this tag define the generic
data fields of the message, which can be drawn from
any combination of the following types, summarized in
Table I.
– <bool>: a boolean value.

∗ <name>: the name of this field. [string]
– <int>: a bounded integer value.

∗ <name>: see <bool><name>.
∗ <max>: the maximum value this field can take.
[real number].

∗ <min>: the minimum value this field can take.
[real number].

– <float>: a bounded real number value.
∗ <name>: see <bool><name>.
∗ <max>: see <int><max>.
∗ <min>: see <int><min>.
∗ <precision>: specifies the number of decimal
digits to preserve. For example, a precision of
“2” causes 1042.1234 to be rounded to 1042.12;
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(0x20)
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time of day
<time>
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flags user data 
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Fig. 1: Layout of the DCCL header, showing the fixed size (in bits) of each header field. The user cannot modify the size
of these header fields, but can access and set the data inside through the same methods used for the customizable data fields
specified in <layout>. The flags are not used by DCCL, but are included for use by the lower level networking.

TABLE I: Types supported by the Dynamic Compact Control
Language

Type Name DCCL XML Tag C++ Typea

Bounded integer <int> long int

Bounded real <float> double

String <string> std::string

Enumeration <enum> std::string

Boolean <bool> bool

Pre-encoded hexadecimal <hex> std::string
a the preferred C++ type when encoding using libdccl, however any mean-
ingful casts from other types (using streams from the std library) will be
made.

a precision of “-1” rounds 1042.1234 to 1.04e3.
[integer].

– <string>: a fixed length string value.

∗ <name>: see <bool><name>.
∗ <max_length>: the length of the string
value in this field. Longer strings are truncated.
<max_length>4</max_length> means
“ABCDEFG” is sent as “ABCD”. [unsigned
integer].

– <enum>: an enumeration of string values.

∗ <name>: see <bool><name>.
∗ <value>: a possible value the enumeration can
take. Any number of values can be specified.
[string].

– <hex>: a pre-encoded hexadecimal value.

∗ <name>: see <bool><name>.
∗ <num_bytes>: the number of bytes for this
field. The string provided should have twice as
many characters as <num_bytes> since each
character of a hexadecimal string is one nibble (4
bits or 1

2 byte). [unsigned integer].

B. Message Design

When designing a DCCL message, a few considerations
must be made. Each message needs to be given a <name>
and<id> unique within the DCCL network that this message
is intended to live. Sometimes messages may have limited
scope or may be mutually exclusive, in which case duplicate
<id> numbers may be assigned.

Furthermore, the overall size of the message needs to be
determined. This may be a constraint imposed by the hardware
layer that this message is intended to traverse. In the case of
the WHOI Micro-Modem, this should match the frame size of
the intended data rate to be used (32 bytes for rate 0, 64 bytes
for rate 2, and 256 bytes for rates 3 and 5). The size of the
message is given by the header overhead (six bytes) and the
sum of the sizes of the fields. The field sizes are calculated
using the expressions given in the ”Size” column of Table II.
These sizes are calculated at runtime with libdccl, so it is
rarely necessary to calculate these by hand. However, these
expressions give a sense of how much space a given field will
typically take, which is important when considering how to
type and bound the data.
An example XML message file, showing all the field tags,

is provided in Fig. 2.

III. ALGORITHMS AND IMPLEMENTATION

Along with the XML message structure defined in section II,
DCCL provides a set of consistent encoding and decoding
tools in the C++ libdccl library, a piece of the freely available
goby-acomms project (<http://launchpad.net/goby>). The
class structure and sequence of using libdccl is modelled in
Fig. 3. The tools provided by libdccl include:

• XML file parsing and validation using the Xerces-C++
XML Parser [13]. This ensures that the syntax of the
XML file is valid and structure matches that of the DCCL
schema.

• Calculation of message field sizes and comparison to
the mandated maximum size (specified in the <size>
tag). Messages exceeding this size are rejected and the
designer must choose to remove and/or reduce fields or
increase the message <size>.

• Encoding of DCCL messages using the expressions given
in Table II. The user passes values of the C++ types given
in Table I for all the fields in <layout> and desired
fields in <header>. Fig. 2 provides an example of the
encoding process for a DCCL message.

• Decoding of DCCL messages using the reciprocal of the
expressions used for encoding. The user of libdccl will
receive values of the C++ types as given in Table I for
all header and layout fields.



TABLE II: Formulas for encoding the DCCL types.

DCCL Type Size (bits) Encodea

<bool> 2 xenc =

{
2 if x is true
1 if x is false
0 if x is undefined

<enum> �log2(1 +
∑

εi)� xenc =

{
i+ 1 if x ∈ {εi}
0 otherwise

<string> length · 8 ASCIIb

<int> �log2(max −min+ 2)� xenc =

{
nint(x−min) + 1 if x ∈ [min,max]

0 otherwise

<float> �log2((max −min) · 10precision + 2)� xenc =

{
nint((x −min) · 10precision) + 1 if x ∈ [min,max]

0 otherwise

<hex> num bytes · 8 xenc = x

· x is the original (and decoded) value; xenc is the encoded value.
· min,max, length, precision, num bytes are the contents of the <min>, <max>, <max_length>, <precision>, and <num_bytes>
tags, respectively. εi is the ith <value> child of the <enum> tag (where i = 0, 1, 2, . . .).
· nint(x) means round x to the nearest integer.

a for all types except <string> and <hex>, if data are not provided or they are out of range (e.g. x > max), they are encoded as zero (xenc = 0)
and decoded as not-a-number (NaN).

b the end of the string is padded with zeros to length before encoding if necessary.

A. Encryption

libdccl provides encryption of the <layout> portion of
the message using the Advanced Encryption Standard (AES
or Rijndael) [14]. AES is a National Institute of Standards
and Technology (NIST) certified cipher for securely encrypting
data. It has been certified by the National Security Agency
(NSA) for use encrypting top secret data.
libdccl uses a SHA-256 hash of a user provided passphrase

to form the secret key for the AES cipher (see [15] for
the specification of SHA-256). In order to further secure the
message, an initialization vector (IV) is used with the AES
cipher. The IV used for DCCL is the most significant 128
bits of a SHA-256 hash of the header of the message. Since
the message header contains the time of day, it provides the
continually changing value required of an IV. This ensures
that the ciphertext created from the same data encrypted with
the same secret key will only look the same in the future on
a given day on the exact second it was created. The open
source Crypto++ library available at [16] is used to perform
the cryptography tasks.

IV. INCORPORATION WITH AUTONOMY ARCHITECTURE

The primary use of libdccl thus far has been with the
Mission Oriented Operating Suite (MOOS) autonomy archi-
tecture, explained by Benjamin, et al. in [17]. MOOS is a
publish/subscribe infrastructure, where processes publish data
to a central data bus (the MOOSDB) and receive messages from
the data bus for which they had previously subscribed. To
facilitate operation with such an architecture, libdccl provides
an additional set of XML tags that allow messages to: 1)
define the source variables from which to encode an outgoing
message; 2) provide publish (i.e. destination) variables to post
decoded data from an incoming message; and 3) provide
“trigger” events that cause the creation of a DCCL message.

These tags are optional and are ignored when using the regular
encode/decode functions described in section III.

A. Source variables

As a child of any of the DCCL types1 or header vari-
ables2, the tag <src_var key=""> indicates the name of
a variable in the autonomy architecture that should be used
to provide the value for this field when encoding. In the
case of MOOS, this is a double or string MOOS variable.
libdccl will perform a number of parsing and casting tasks on
the value provided in order to fill the field. If the provided
value is a std::string and the parameter “key” is given
for the <src_var>, libdccl assumes the string is of the
form key1=value1,key2=value2,key3=value3...
and extracts the value for the given key from the string. This
value then forms the value encoded into the given field of the
DCCL message.
For all other C++ types, casting is done using by the

MessageVal class to attempt to transform the data into a
form acceptable for the given field of the DCCL message.
MessageVal uses unbiased rounding and std streams to
perform these casts. For example, the double 3.5 would be
placed in an <int> field as 4. Similarly, the std::string
“24.5” would be placed as 24.

B. Trigger

The <trigger> tag allows an event to be chosen that
will be used to create a new DCCL message. Currently, two
triggers are provided, one event driven and one time-based:

1) “publish”: create a message when the variable specified
by <publish_var> is published (i.e. written to) in
the autonomy architecture.

1<int>, <float>, <string>, <bool>, <enum>, <hex>
2<time>, <src_id>, <dest_id>



<?xml version="1.0" encoding="UTF-8"?>
<message_set>
  <message>
    <id>1</id>
    <header>
      <src_id>
        <name>Src</name>
      </src_id>
      <dest_id>
        <name>Dest</name>
      </dest_id>
    </header>
    <layout>
      <bool>
        <name>B</name>
      </bool>
      <enum>
        <name>E</name>
        <value>cat</value>
        <value>dog</value>
        <value>mouse</value>
      </enum>
      <string>
        <name>S</name>
        <max_length>4</max_length>
      </string>
      <int>
        <name>I</name>
        <max>100</max>
        <min>-50</min>   
      </int>
      <float>
        <name>F</name>
        <max>100</max>
        <min>-50</min>   
        <precision>2</precision>
      </float>      
      <hex>
        <name>H</name>
        <num_bytes>1</num_bytes>
       </hex>
    </layout>
    <name>Example</name>
    <size>32</size>
    <!--omitted other tags for
        publish/subscribe
        architectures-->
  </message>
</message_set>

b)

d)

} true

} cat

} FAT

} 34

} -22.49

} 0x09

10

01

01000110 01000001 
01010100 00000000

01010101

00101011000000

00001001}
000000 10 01 01000110
01000001 01010100
00000000 01010101
00101011000000 00001001

0x2000AA3002300251905500154AC009

e)

c)

f)

a)

}

=

3

1

00100000 (ccl_id)
000000001 (<id>)
01010100
011000000  (time, 12:00 UTC)

00001

00011
0000 (flags)

Fig. 2: Example of the DCCL encoding process. The process
of encoding starts with the DCCL XML file (a). Data are
provided by the application (b). libdccl encodes these data to
binary via the algorithms given in Table II to form the header
(c) and layout (d), concatenates and zero fills the encoded
layout from most significant bit to closest byte (e) to produce
the full encoded message (f). Finally, this point the message
is encrypted (if desired).

2) “time”: create a message every <trigger_time>
seconds using on the newest available values of the
<src_var>s in the architecture’s database.

C. Publish variables

The <on_receipt> section of the XML file provides
the user a place to specify any number of formatted variables
to be published to the database of the publish/subscribe archi-
tecture once a DCCL message is received and decoded. Each
<publish> tag defines a single variable to be published
from some combination of the message fields. The children of
<publish> include:

• <format>: a format string using the boost::format
library conventions (which are a generalization of the
printf specifiers, see [18]).

• <publish_var>: a variable name for where to publish
this formatted value in the autonomy database.

• <message_var>: the <name> of one of the fields
(<int>, <float> ...), the value of which will replace
one of the specifiers in <format>. The order of these
tags map onto the order of the specifiers given in the
<format> tag.

• <all>: a shortcut for including all the fields of the mes-
sage. This is equivalent to specifying<message_var>
for every field in the message in the order declared in
<layout>.

D. User supplied algorithms

While the basic encoding expressions given in Table II
are sufficient for representing most data, occasionally the
user wants to provide a simple pre-encode and post-decode
algorithm of their own. An example of this would be to
encode a logarithmic value or wrap an angle into the range
[0, 2π]. In this case, the field tags (i.e. <int>, <float>,
<string>, <bool>, <enum>, or <hex>) all take an
optional parameter algorithm. If the algorithm param-
eter is provided, libdccl calls the user provided algorithm
corresponding to a callback provided on startup of the library.
For example, the user provides a callback function

called log_function which it passes to libdccl as
the algorithm “log”. Now, when libdccl encounters <int
algorithm="log"> it passes the value intended for
that field to the log_function. The return value of
log_function is then used to encode the corresponding
field of the message.
Similarly, the <message_var> tag used in the

<publish> sections also takes the algorithm parameter,
allowing for post-decoding algorithms to be processed.

E. MOOS Processes that use DCCL

While DCCL is an entirely standalone project from MOOS,
the MOOS processes that call libdccl are still the primary users
of the library. Thus, a brief explanation of each process is
given.
1) pGeneralCodec: This MOOS process acts as an inter-

face between libdccl and the MOOS community. It subscribes
for and publishes variables on behalf of libdccl. Given that
libdccl already has substantial features for interacting with a
publish/subscribe architecture (as detailed in other parts of this
section), pGeneralCodec is little more than a shell around
libdccl that handles the configuration and communication
details specific to MOOS.
2) pAcommsHandler: This program acts as an interface

between MOOS and the entire goby-acomms suite of li-
braries, which includes libdccl as well as libraries for handling
medium access control (MAC), buffering, and low-level serial
communication with the modem. pAcommsHandler calls
the exact same libraries that pGeneralCodec does for the
DCCL functionality, making pGeneralCodec unnecessary
when pAcommsHandler is being run. pGeneralCodec
is provided for users (such as surface vehicles) who wish a
standalone MOOS DCCL encoder / decoder.



libdccl

+add_xml_message_file()
+add_*_algorithm()
+encode()
+decode()

-messages_[1..*] : dccl::Message
DCCLCodec

+encode()
+decode()

-publishes_ : Publish
-layout_ : MessageVar

Message

+set()
+val()

-sval : string
-dval : double
-lval : long
-bval : bool

MessageVal
+var_encode()
+var_decode()

-name_
-type_
-source_var_
-source_key_
-algorithms_

MessageVar

+startElement()
+endElement()
+characters()

MessageContentHandler

#startElement()
#endElement()
#characters()

xercesc::DefaultHandler

+write_publish()

-var_
-format_
-type_
-names_
-algorithms_

Publish

+add_*_algorithm()
+algorithm()

-map_to_callbacks
AlgorithmPerformer

+parse()

xercesc::XMLParser

libdccl user (e.g. pGeneralCodec)
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(b) Sequence of using libdccl. The user initializes the DC-
CLCodec with one or more XML files and then proceeds to
use the encode/decode methods as needed.

Fig. 3: Unified Modeling Language diagrams of libdccl. XMLParser and its dependencies handle the parsing of the XML
file(s) into Messages. Each Message has one or more MessageVars that represent each field’s structure. The MessageVal
provides mapping of C++ types onto DCCL types (e.g. std::string→ <string>) and performs casting if necessary (e.g.
double → std::string). Each Publish represents a <publish> block and the AlgorithmPerformer calls user
provided pre-encode and post-decode algorithms defined by the “algorithm” parameter to the field tags and <message_var>
tags, respectively.

3) iCommander: A number of DCCL messages are being
used as commands for changing the behavior of underwater ve-
hicles during operations. iCommander provides a terminal-
based graphical user interface (GUI) for a human to type
in the fields for a given DCCL (command) message. Since
iCommander uses libdccl, it reads the same XML files
being used to actually encode and decode messages. Thus,
any change to the XML files being used for commands is
propagated to the command software (iCommander) without
any further work.

V. EXPERIMENTAL RESULTS

We have used the Dynamic Compact Control Language
in several field trials involving autonomous surface and sub-
surface craft since its development. The acoustic communi-
cations hardware used was the WHOI Micro-Modem. Ta-
ble III summarizes the location and assets involved in each
trial. As we developed DCCL, we realized that messages
could be classified into three rough categories: commands,
collaboration, and data. Commands are messages sent from a
topside vehicle operator to change the mission or redeploy the
vehicle(s) to a different location to carry out the task at hand
(acoustic sensing and/or environmental monitoring in these
experiments). Collaboration messages are used to coordinate
autonomous tasks amongst two or more vehicles, and data
messages are sent from the vehicles to the topside operator
with some kind of measured or computed data. Table IV lists
all the messages, a total of seventeen, which we have created

and used in field experiments.

The ease of defining and redefining DCCL messages allows
for rapid prototyping of new experimental ideas during the
field trial, rather than being rigidly confined to previously
defined messages. For example, in SWAMSI09, we used
two AUVs to perform bistatic acoustic detection of mine-
like targets on the seafloor. Both AUVs traversed a circular
pattern around the potential target, maintaining a constant
bistatic angle. Entering into this collaboration and maintaining
the correct angle required handshaking and data transfer be-
tween both vehicles. We were able to command the vehicles
into this collaborative state with LAMSS_DEPLOY, and the
LAMSS_STATUS message (with additional fields added to
support this experiment) was passed between vehicles to
maintain the correct positioning autonomously.

In GLINT09, DCCL messaging made another collaborative
experiment possible. We had a mobile acoustic gateway (an au-
tonomous surface craft with a WHOI Micro-Modem) available
to stream high rate environmental and other data messages.
By virtue of the surface craft staying near the AUV (made
possible by the AUV’s LAMSS_STATUS message), the AUV
had a short acoustic propagation path to the surface craft.
From there, the surface craft relayed data to the operators
via IEEE 802.11 wireless ethernet. Also, the depth of the
modem was controlled by a winch that the surface vehicle
could command autonomously. Using the WINCH_CONTROL
message, the AUV commanded the surface craft a depth at
which to set the modem to improve communications. The



TABLE III: Summary of field trials.

Name Summary Assets Experiment
Datuma

SWAMSI09 Mine detection using bistatic acoustics. 2 Bluefin 21 AUVs, 1 WHOI Comm Buoy
30.045◦N,
85.726◦W

GLINT09 Interoperability of marine vehicles for passive
acoustic target detection

1 NURC OEX AUV, 1 OceanServer Iver2 AUV,
2 Robotic Marine Kayaks, 2 Ship-deployed
WHOI Micro-Modems

42.47◦N,
10.9◦E

DURIP09
Engineering test for collaborative autonomy and
towed array improvements

2 Bluefin 21 AUVS, 2 Robotic Marine Kayaks,
1 Ship-deployed WHOI Micro-Modem.

42.35◦N,
70.95◦W

CHAMPLAIN09 Thermocline gradient following.
1 OceanServer Iver2 AUV, 1 Ship-deployed
WHOI Micro-Modem.

42.2511◦N,
73.3612◦W

a The experiment datum is a location in the southwest corner of the operation region from which all vehicle positions are referenced using the
Universal Transverse Mercator projection with the WGS 84 ellipsoid [19].

TABLE IV: Summary of DCCL Messages used in field experiments

Message Name Category
Experiments
Useda

Size
(bytes)

Field
Count Description

SENSOR DEPLOY Command SWAMSI09 28 17 DCCL Mimic of CCL Sensor Command - Deploy

SENSOR PROSECUTE Command SWAMSI09 32 22 DCCL Mimic of CCL Sensor Command - Prosecute

SENSOR STATUS
Data / Collabo-
ration SWAMSI09 32 24 DCCL Mimic of CCL Sensor Report - Status

SENSOR CONTACT Data SWAMSI09 32 24 DCCL Mimic of CCL Sensor Report - Contact

SENSOR TRACK Data SWAMSI09 31 24 DCCL Mimic of CCL Sensor Report - Track

ACTIVE CONTACTS Data SWAMSI09 32 22 Active acoustic contact report message.

ACTIVE TRACKS Data SWAMSI09 32 20 Active acoustic tracking message.

LAMSS DEPLOYb Command All 31 22 Underwater vehicle command message.

LAMSS STATUSb
Data / Collabo-
ration All 26 20

Vehicle Status message (position, speed, Euler angles,
autonomy state)

LAMSS CONTACT Data GLINT09 29 24 Passive acoustic contact report message.

SURFACE DEPLOY Command GLINT09,
DURIP09 13 10 Command message for surface vehicles.

ACOUSTIC MOOS POKE Command
GLINT09,
DURIP09 32 3 Underwater debugging / safety message.

SOURCE ACTIVATION Collaboration GLINT09 5 2 Vehicle to buoy source command message.

WINCH CONTROL Collaboration GLINT09 3 1 Underwater vehicle to surface vehicle command message.

BTRCODEC Data
GLINT09,
DURIP09 256 Varies

Beam-Time Record Data from a towed passive acoustic
array.

CTDCODEC Data All 256 Varies
Salinity, temperature, depth data from a CTD instrument
(delta-encoded).

a See Table III for a list of the experiments.
b See the appendix for the full XML definition of these messages.

AUV was performing a bistatic acoustic detection of a mid-
water column depth target. The source, mounted on a buoy,
was autonomously turned on and off by the AUV using
the SOURCE_ACTIVATION message. The AUV, which was
towing an acoustic array, was the receiver. None of this multi-
robot collaboration would have been possible without the
ability to define new messages quickly and with a high degree
of confidence in their syntactical correctness.

The third case study is the CHAMPLAIN09 adaptive en-
vironmental experiment. In this experiment, a small AUV
outfitted with a Conductivity-Temperature-Depth (CTD) in-
strument was deployed to study the thermocline structure of
Lake Champlain. The AUV was commanded, using a updated
LAMSS_DEPLOY message, on the task of adaptively survey-
ing the thermocline. The vehicle accomplished this task by

performing series of sinusoidal (“yoyo”) depth maneuvers and
streamed its samples back using the delta-encoded CTDCODEC
message. In this manner, the environmental data was made
available in near realtime (i.e. delayed by no more than a
few minutes) to the AUV operator (see Fig. 4). Currently, the
delta encoding was provided by a separate assistant process
to libdccl, but this feature will shortly be incorporated into
libdccl itself.

VI. CONCLUSION

Dynamic Compact Control Language (DCCL) provides a
framework for defining messages in a reconfigurable manner
using XML and encoding them consistently. The language
can be used to make efficient short messages suitable for
sending through presently available acoustic modem hardware,
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Fig. 4: Temperature data available to the AUV topside op-
erator in near realtime from the CTDCODEC message at the
CHAMPLAIN09 experiment. The “time since display start” is
October 05, 2009 at 16:26:03 UTC.

or through other bandwidth restricted channels.
Using DCCL, we have developed a set of messages to

support our operations, using MOOS as the autonomy ar-
chitecture, the WHOI Micro-Modem as our communications
hardware, and a variety of different subsea and surface robots.
From these case studies, we hope that others will find in-
spiration to use DCCL, and we encourage those who are
interested in using or improving DCCL to contact us or visit
the goby-acomms project website at <http://launchpad.net/
goby>.

APPENDIX

For reference and concrete examples of DCCL messages
that have been used in field experiments, we present two of
our more commonly used messages. In Fig. 5a, we give the
LAMSS_STATUS message, sent by a vehicle to provide the
operators and other vehicles with the current position and pose
(i.e. speed and Euler angles). Also, a simplified version of the

LAMSS_DEPLOY message, sent by the operators to command
the vehicle into another autonomy state, is presented in Fig. 5b.
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<?xml version="1.0" encoding="UTF-8"?>
<message_set>
  <message>
    <name>LAMSS_STATUS</name>
    <id>20</id>
    <size>32</size>
    <header>  
      <src_id algorithm="to_lower,name2modem_id">
        <name>Node</name>
        <src_var>VEHICLE_NAME</src_var>
      </src_id>
      <time>
        <name>Timestamp</name>
      </time>
    </header>
    <layout>
      <enum algorithm="to_lower">
        <name>Type</name>
        <src_var>VEHICLE_TYPE</src_var>
        <value>kayak</value>
        <value>asc</value>
        <value>auv</value>
        <value>ship</value>
        <value>buoy</value>
        <value>glider</value>
        <value>usv</value>
        <value>unknown</value>
      </enum>
      <int>
        <name>nav_x</name>
        <src_var>NAV_X</src_var>
        <max>100000</max>
        <min>-100000</min>
      </int>
      <int>
        <name>nav_y</name>
        <src_var>NAV_Y</src_var>
        <max>100000</max>
        <min>-100000</min>
      </int>
      <float>
        <name>Speed</name>
        <src_var>NAV_SPEED</src_var>
        <max>20</max>
        <min>-2</min>
        <precision>1</precision>
      </float>
      <float algorithm="angle_0_360">
        <name>Heading</name>
        <src_var>NAV_HEADING</src_var>
        <max>360</max>
        <min>0</min>
        <precision>2</precision>
      </float>
      <float>
        <name>Depth</name>
        <src_var>NAV_DEPTH</src_var>
        <max>5000</max>
        <min>-10</min>
        <precision>1</precision>
      </float>
      <float>
        <name>Altitude</name>
        <src_var>NAV_ALTITUDE</src_var>
        <max>5000</max>
        <min>-10</min>
        <precision>1</precision>
      </float>
      <float>
        <name>Pitch</name>
        <src_var>NAV_PITCH</src_var>
        <max>1.57</max>
        <min>-1.57</min>
        <precision>2</precision>
      </float>
      <float>
        <name>Roll</name>
        <src_var>NAV_ROLL</src_var>
        <max>1.57</max>
        <min>-1.57</min>
        <precision>2</precision>
      </float>
    </layout>
    <on_receipt>
      <publish>
        <publish_var>
          STATUS_REPORT_IN
        </publish_var>
        <all />
      </publish>
    </on_receipt>
  </message>
</message_set>

(a) LAMSS_STATUS message used to report vehicle
position and pose.

<?xml version="1.0" encoding="UTF-8"?>
<message_set>
  <message>
    <name>LAMSS_DEPLOY</name>
    <id>18</id>
    <trigger>publish</trigger>
    <trigger_var 
     mandatory_content="MessageType=LAMSS_DEPLOY">
      OUTGOING_COMMAND
    </trigger_var>
    <size>32</size>
    <header>
      <time>
        <name>Timestamp</name>
      </time>
      <src_id>
        <name>SourcePlatformId</name>
      </src_id>
      <dest_id>
        <name>DestinationPlatformId</name>
      </dest_id>
    </header>
    <layout>
      <enum>
        <name>Deploy_Mode</name>
        <value>LOWPOWER</value>
        <value>RETURN</value>
        <value>RACETRACK</value>
        <value>ZIGZAG</value>
        <value>BISTATIC</value>
        <value>TRAIL</value>
      </enum>
      <enum>
        <name>Depth_Mode</name>
        <value>SINGLE</value>
        <value>DUAL</value>
        <value>YOYO</value>
        <value>ADAPTIVE_YOYO</value>
      </enum>
      <enum>
        <name>Sonar_Control</name>
        <value>ON</value>
        <value>OFF</value>
      </enum>
      <float>
        <name>Deploy_Duration</name>
        <max>604800</max>
        <min>0</min>
        <precision>-1</precision>
      </float>
      <int>
        <name>Deploy_X</name>
        <max>100000</max>
        <min>-100000</min>
      </int>
      <int>
        <name>Deploy_Y</name>
        <max>100000</max>
        <min>-100000</min>
      </int>
      <int>
        <name>Deploy_Depth</name>
        <max>255</max>
        <min>0</min>
      </int>
      <int>
        <name>Alternate_Depth</name>
        <max>255</max>
        <min>0</min>
      </int>
      <int>
        <name>Operation_Radius</name>
        <max>262000</max>
        <min>0</min>
      </int>
      <int>
        <name>Radius_Period</name>
        <max>1023</max>
        <min>0</min>
      </int>
      <int>
        <name>Segments</name>
        <max>31</max>
        <min>0</min>
      </int>
      <int algorithm="angle_0_360">
        <name>Survey_Heading</name>
        <max>360</max>
        <min>0</min>
      </int>
      <int>
        <name>Survey_Length</name>
        <max>4095</max>
        <min>0</min>
      </int>
      <int>
        <name>Survey_Width</name>
        <max>4095</max>
        <min>0</min>
      </int>
      <bool>
        <name>Clockwise</name>
      </bool>
      <int>
        <name>Trail_Range</name>
        <max>1023</max>
        <min>0</min>
      </int>
      <int algorithm="angle_0_360">
        <name>Trail_Angle</name>
        <max>359</max>
        <min>0</min>
      </int>

      

      <int>
        <name>GPS_Interval</name>
        <max>4095</max>
        <min>256</min>
      </int>
    </layout>
    <on_receipt>        
      <publish>
        <publish_var>INCOMING_COMMAND</publish_var>
        <all />
      </publish>
      <publish>
        <publish_var>SONAR_CONTROL</publish_var>
        <message_var>Sonar_Control</message_var>
      </publish>
      <publish>
        <publish_var>DEPLOY_STATION</publish_var>
        <format>
          points=%1%,%2%
        </format>
        <message_var>Deploy_X</message_var>
        <message_var>Deploy_Y</message_var>
      </publish>
      <publish>
        <publish_var type="double">
          DEPLOY_RADIUS
        </publish_var>
        <message_var>Operation_Radius</message_var>
      </publish>
      <publish>
        <publish_var type="double">
          DEPLOY_DURATION
        </publish_var>
        <message_var>Deploy_Duration</message_var>
      </publish>
      <publish>
        <publish_var>ORBIT_RADIUS</publish_var>
        <message_var>Radius_Period</message_var>
      </publish>
      <publish>
        <publish_var>SENSOR_DEPLOY</publish_var>
        <format>
          polygon=radial:%1%,%2%,%3%,%4%#clockwise=%5%
        </format>
        <message_var>Deploy_X</message_var>
        <message_var>Deploy_Y</message_var>
        <message_var>Radius_Period</message_var>
        <message_var>Segments</message_var>
        <message_var>Clockwise</message_var>
      </publish>
      <publish>
        <publish_var>
          SENSOR_DEPTH_DEPLOY
        </publish_var>
        <format>depth=%1%</format>
        <message_var>Deploy_Depth</message_var>
      </publish>
      <publish>
        <publish_var>
          SENSOR_DEPTH_ALTERNATE
        </publish_var>
        <format>depth=%1%</format>
        <message_var>Alternate_Depth</message_var>
      </publish>
      <publish>
        <publish_var>GPS_CONFIGURATION</publish_var>
        <format>period=%1%</format>
        <message_var>GPS_Interval</message_var>
      </publish>
      <publish>
        <publish_var>SENSOR_YOYO</publish_var>
        <format>min_depth=%1%#max_depth=%2%</format>
        <message_var>Deploy_Depth</message_var>
        <message_var>Alternate_Depth</message_var>
      </publish>
      <publish>
        <publish_var>SURVEY_HEADING</publish_var>
        <format>heading=%1%</format>
        <message_var>Survey_Heading</message_var>
      </publish>
      <publish>
        <publish_var>ZIGZAG_CONFIG</publish_var>
        <format>
          heading=%1%#period=%2%#amplitude=%3%
        </format>
        <message_var>Survey_Heading</message_var>
        <message_var>Radius_Period</message_var>
        <message_var>Survey_Width</message_var>
      </publish>
      <publish>
        <publish_var>ZIGZAG_STATUS</publish_var>
        <format>
          points=zigzag:%1%,%2%,%3%,%4%,%5%,%6%
        </format>
        <message_var>Deploy_X</message_var>
        <message_var>Deploy_Y</message_var>
        <message_var>Survey_Heading</message_var>
        <message_var>Survey_Length</message_var>
        <message_var>Radius_Period</message_var>
        <message_var>Survey_Width</message_var>
      </publish>
      <publish>
        <publish_var>TRAIL_CONFIG</publish_var>
        <format>trail_range=%1%#trail_angle=%2%</format>
        <message_var>Trail_Range</message_var>
        <message_var>Trail_Angle</message_var>
      </publish>
      <publish>
        <publish_var>BISTATIC_CONFIG</publish_var>
        <format>desired_bistatic_angle=%1%</format>
        <message_var>Trail_Angle</message_var>
      </publish>
    </on_receipt>    
  </message>
</message_set>
      

(b) LAMSS_DEPLOY message used to command underwater vehicles.

Fig. 5: XML structure of two messages used extensively in our field exercises.


