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The package Ani2D is designated for generating unstructured triangular meshes, adapt-
ing them isotropically and anisotropically, discretizing systems of PDEs, solving linear and
nonlinear systems, visualizing meshes and associated solutions. It is a set of independent
libraries with different tasks. The libraries may be combined to solve a complex problem.
Extensive tutorials represent powerful capabilities of the package.

The package Ani2D has been developed by a team of researchers since 1997. The team
is headed by the two principle investigators:

• Konstantin Lipnikov1

• Yuri Vassilevski2.

Ideas and technologies, as well as packages Ani2D-MBA , Ani2D-FEM , Ani2D-LMR and
Ani2D-VIEW , have been developed by the principal investigators.

The package Ani2D-AFT has been developed by

• Alexander Danilov2

under the supervision of the principal investigators.

The packages Ani2D-ILU and Ani2D-RCB have been developed by

• Sergei Goreinov2

• Vadim Chugunov2

• Yuri Vassilevski2.

The package Ani2D-INB has been developed by

• Alexey Chernyshenko2

under the supervision of the principal investigators.

Besides the original software, the package Ani2D incorporates a number of public li-
braries such as BLAS, LAPACK, UMFPACK and AMD.

1Los Alamos National Laboratory, Theoretical Division, MS-284, Los Alamos, NM 87545, USA.
2Institute of Numerical Mathematics RAS, 8 Gubkina St., 119333 Moscow, RUSSIA.
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Ani2D-AFT version 2.2 “Forget-me-not”

Flexible Triangular Mesh Generator

Using Advanced Front Technique

User’s Guide for libaft2D-2.2.a
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1 Basic features of the library

The C package Ani2D-AFT is a part of the package Ani2D. Ani2D-AFT was developed
by Alexander Danilov under the supervision of Yuri Vassilevski. It generates triangular
meshes in arbitrary 2D domains.

The library libaft2D-2.2.a can be used in other packages. Its basic features are listed
below.

Domain type : single or multiple component, simply or multiply connected finite domains

Boundary type : piecewise smooth

Domain data input : set of linear/curvilinear intervals representing the boundary, or
the boundary mesh

Number of mesh elements : non-limited

Data format : double precision (for real values) or integer (for integer numbers) arrays.
Enumeration starts from 1.

2 Analytical representation of the boundary

If the domain boundary is given analytically, the user should provide additional routine
describing this boundary.

external userboundary

call registeruserfn( userboundary )

...

call aft2dboundary( Nbv, bv, Nbl, bl, bltail, h,

& nv, vrt,

& nt, tri, material,

& nb, bnd,

& nc, crv, iFNC )

2.1 Input

The piecewise smooth boundary is represented in terms of the union of a finite number of
intervals. Each interval is a smooth curve. It may be split into several subcurves. End
points of the intervals are called the V-points. If the domain is multi-connected, each simply
connected subdomain has a boundary composed of the given intervals. The input domain
is specified by three arrays. Array bv describes all V-points, whereas arrays bl and bltail

describe the intervals. Nbv is the number of V-points, i-th column in the array bv(2,Nbv)

has coordinates of the i-th V-point, i = 1, . . . , Nbv. Nbl is the number of intervals, i-th
column of the integer array bl(7,Nbl) describes the i-th interval, i = 1, . . . , Nbl using 7
parameters. The integers from the 7-parameter are explained below.

1. The index of the V-point at which the interval begins.
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2. The index of the V-point at which the interval terminates.

3. If the interval is linear, it is zero. Otherwise it is a positive number defining the type
of parameterization in the user defined function userboundary which is in the file
crv model.c.

4. A dummy integer.

5. The label of the interval. It does not affect the mesh generation. All the mesh edges
from the interval will inherit this number.

6. The index of the subdomain, for which the interval is a boundary part.

7. The slit marker. If the interval is the outer part of the domain boundary, it is zero.
Otherwise, it is the index of a subdomain that shares the interval with the subdomain
indicated by the 6th parameter.

The i-th column of the array bltail(2,Nbl) has two zeros when the interval is linear.
Otherwise this column contains two parameters corresponding the starting and the terminal
points of the interval. These parameters defined the Cartesian coordinates of the V-point.

The rules for interval specification are as follows:

1. When moving along the interval from the starting point to the terminal point, the
subdomain is located on the right. In other words, the intervals are given clock-wise.

2. For slit intervals, the subdomain indicated by the 6th parameter must be located on
the right.

3. For slit intervals shared by two subdomains, the order of the V-points is arbitrary.

4. Coordinates of V-points defined via parametric functions using the data in array
bltail(2,Nbl) may be different from the corresponding entries in the array bv. The
latter entries are not used in this case.

Boundary parameterization is to be defined by the user in the file crv model.c. The
name of the user routine must be registered in the library before the call of aft2dboundary:

external userboundary

call registeruserfn( userboundary )

...

call aft2dboundary( ... )

In this example, function userboundary is registered and is used in meshing the boundary.
An example of the user defined function describing the complement of a wing to the unit
square is in file crv model.c.

The generator produces a quasi-uniform mesh of the given mesh size h.
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2.2 Output

The number of mesh nodes is nv, their Cartesian coordinates are stored in the array
vrt(2,*). The number of mesh triangles is nt, the connectivity list of triangles is stored
in the array tri(3,*), the triangle materials (labels) are material(*). The number of
mesh boundary edges is nb. The first two numbers in each column of bnd(4,*) are node
indexes of the boundary edges. The third number is the parameterization identificator:
0 for non-parameterized edge (linear segment), positive for parameterized edge with pa-
rameterization data in arrays crv(*,n) and iFNC(n). The fourth number is a boundary
label/identificator. The number of curved (parameterized) boundary edges is nc, their pa-
rameterization is stored in the corresponding column of crv(2,*) and the corresponding
entry of iFNC(*). For example, the j-th parameterized edge uses parameter crv(1,j) for
its starting point and parameter crv(2,j) for its terminal point, as well as the identifica-
tor iFNC(j) of the function to be used in the computation of the Cartesian coordinates of
interior points of the edge.

3 Grid representation of the boundary

If the domain boundary is given by a set of mesh edges, the user must call the following
routine. There is no need in a user defined function for the boundary parameterization.
No dummy function need to be written and be registered in the library.

call aft2dfront(

& Nbr, brd, Nvr, vbr,

& nv, vrt,

& nt, tri, material,

& nb, bnd)

3.1 Input

The domain boundary is described by mesh edges. The total number of the boundary edges
is Nbr, the number of boundary nodes is Nvr. The i-th column of the array vbr(2,Nvr)

contains Cartesian coordinates of the i-th boundary node. The i-th column of the array
brd(2,Nbr) contains the node indexes of the starting and terminal points of the edge.

There are two methods for representing the boundary mesh.
The first method assumes that Nbr > 0. The boundary nodes and edges are stored in

an arbitrary order. While moving along an edge from the starting point to the terminal
point, the subdomain must be located on the right.

The second method assumes that Nbr = 0. Only boundary nodes are used to represent
the boundary, but their order is important. In this case, brd is not used.

The rules for the boundary mesh specification are as follows:

1. The boundary is a union of loops. The loops are stored in vbr in the sequential order.

2. In each loop, the first node and the last node must be identical. This fact is used to
distinguish different loops.
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3. When moving to the next node within one loop, the subdomain must be located on
the right.

4. Loops can overlap in any way, in this case the shared node(s) must be presented in
each loop.

The resulting mesh will have the trace at the boundary matching to the boundary grid
vbr, brd. The local mesh size depends on the distance to the boundary: the farther from
the boundary, the coarser the mesh is.

Two illustrative examples of using the initial front data may be found in directory
PackageAFT/examples.

3.2 Output

The number of mesh nodes is nv, their Cartesian coordinates are stored in the array
vrt(2,*). The number of mesh triangles is nt, the connectivity list of triangles is stored
in the array tri(3,*), the triangle materials (labels) are material(*). The number of
mesh boundary edges is nb. The first two numbers in each column of bnd(4,*) are node
indexes of the boundary edges. The third number is not used. The fourth number is the
boundary label/identificator.

4 Two examples

In this section we present two meshes generated by the package as well as data specifying
the domain.

The first example uses analytical representation of the boundary. We present the piece
of FORTRAN code src/Tutorials/PackageAFT/main boundary wing.f producing the
mesh shown in Fig.1.

C complement of a wing NACA0012 to the unit square

double precision bv(2,7),bltail(2,8)

integer Nbv,Nbl,bl(7,8)

C number of boundary nodes and number of boundary edges

data Nbv/7/,Nbl/8/

C boundary nodes

data bv/0,0, 0,1, 1,1, 1,0, .4,.5, .6,.5, 1,.5/

C outer boundary edges

data bl/1,2,0,-1,-1,1,0, 4,1,0,-1,-1,1,0,

& 2,3,0,-1,1,1,0, 7,4,0,-1,1,1,0,

& 3,7,0,-1,1,1,0,

C slit boundary edges

& 6,7,2,0,11,1,1,

C wing boundary edges

& 6,5,1,-1,2,1,0, 5,6,1,-1,2,1,0/

C curved data for each outer boundary edge

data bltail/0,0, 0,0, 0,0, 0,0, 0,0, 0,1, 0,.5, .5,1/
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integer nv,nt,nb,nc

double precision crv(2,nbmax), vrt(2,nvmax)

integer iFNC(nbmax),material(ntmax),

& tri(3,ntmax),bnd(4,nbmax)

double precision h

c to pass the name of the user function userBoundary (crv_model.c) to the library

c function in crv_model.c

external userboundary

c register the name to be used in the library

call registeruserfn( userboundary )

C mesh step of the quasi-uniform mesh to be generated

h = 0.02

C Generate quasiuniform mesh with meshstep h

call aft2dboundary(

C geomtric data

& Nbv, bv, Nbl, bl, bltail, h,

C mesh data on output

& nv, vrt, nt, tri, material, nb, bnd, nc, crv, iFNC )

Figure 1: Mesh around the wing.

The second example uses discrete representation of the boundary. We present the piece
of FORTRAN code src/Tutorials/PackageAFT/examples/main front1.f and the data
file src/Tutorials/PackageAFT/examples/front1 producing the mesh shown in Fig.2.
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c mesh generator data specifying domain via in the segment format

double precision vbr(2,nbmax)

integer Nbr,Nvr,brd(2,nbmax)

integer nv,nt,nb

double precision vrt(2,nvmax)

integer material(ntmax),tri(3,ntmax),bnd(4,nbmax)

C Read input file that contains coordinates of boundary points

open(1,file=’../src/Tutorials/PackageAFT/examples/front1’)

read(1,*) Nvr, Nbr

do i = 1, Nvr

read(1,*) (vbr(j,i),j=1,2)

end do

do i = 1, Nbr

read(1,*) (brd(3-j,i),j=1,2)

end do

close(1)

C Generate a mesh starting from boundary mesh

call aft2dfront(

C segment data

& Nbr, brd, Nbr, vbr,

C mesh data on output

& nv, vrt,

& nt, tri, material,

& nb, bnd)

The contents of file front1 is

518 518

0. 0.064933

0.002293 0.059187

0.007467 0.055733

0.01092 0.050573

....

0.648853 0.1954

3 4

4 5

5 6

....

235 236
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Figure 2: Mesh in complex domain.

12



Ani2D-RCB version 2.2 “Windflower”

Flexible Mesh Refining/Coarsening Tool

Using Marked Edge Bisection

User’s Guide for librcb2D-2.2.a
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1 Basic features of the library

The FORTRAN77 package Ani2D-RCB is a part of the package Ani2D. Ani2D-RCB was
developed by Vadim Chugunov and Yuri Vassilevski. It is designated for hierarchical refin-
ing and coarsening of arbitrary triangular meshes. Basic restriction: prior coarsening the
mesh must be refined; no coarsening is applied to an unrefined mesh.

The library contains an initialization tool, a refinement tool, and a coarsening tool. An
example of calling program is given in Tutorials/PackageRCB/main.f.

Mesh data

The mesh output is produced in place of the mesh input. A mesh is represented by the
following data. The number of mesh nodes is nv, their Cartesian coordinates are stored in
the array vrt(2,*). The number of mesh triangles is nt, the connectivity list of triangles is
stored in the array tri(3,*), the triangle materials (labels) are material(*). The number
of mesh boundary edges is nb. The first two columns of bnd(4,*) are node indexes of the
boundary edges. The third column of bnd(4,*) is dummy. It may be used for curve-linear
edges. The fourth column of bnd(4,*) is a boundary label/identificator.

2 Initialization

The initialization tool (aux.f) prepares auxiliary structure which defines how to bisect the
triangles. In InitializationRCB all input triangles are marked for bisection according to
specific rule. The rule is based on bisecting the longest edge of each triangle. No care
of mesh conformity should be taken within this rule. The user may change the rule in
InitializeMeshData. In actual refinement, the user is free to mark for refinement any
subset of triangles.

iERR = 0

call InitializeRCB (nt, ntmax, vrt, tri, MaxWi, iW, iERR)

If(iERR.GT.0) stop ’size of iW is too small’

The size of work memory iW for InitializeRCB, LocalRefine, LocalCoarse should
be at least 11*ntmax+7.

3 Refinement

The refinement tool LocalRefine (refine.f) refines the input triangulation according to
the user defined routine RefineRule. The name of the latter routine is the input parameter
of LocalRefine. The output triangulation is in place of the input triangulation. The by-
product of LocalRefine is the logical data array history(maxlevel*ntmax). It will be
used in later coarsening. The input current index of the refinement level ilevel is passed
to RefineRule.
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c ... user defined procedures

external RefineRule

...

nlevel = 5

Do ilevel = 1, nlevel

call LocalRefine (

& nv, nvmax, nb, nbmax, nt, ntmax,

& vrt, tri, bnd, material,

& RefineRule, ilevel,

& maxlevel, history,

& MaxWi, iW,

& iPrint, iERR)

If(iERR.GT.0) stop ’iERR.gt.0 in LocalRefine’

End do

The key control of the refinement process is the user defined routine RefineRule. Here,
the user defines which triangles have to be refined and how they must be refined, depending
on each triangle data and the current level of refinement. The control for refinement is the
marker verf(i), where i runs from 1 to nt. If the marker is 0, then there is no need to
refine triangle i; if the marker is 1, then the user wants to refine triangle by single bisection;
if the marker is 2, then the user wants to refine triangle by two levels of bisection into four
similar subtriangles.

Subroutine RefineRule (nt, tri, vrt, verf, ilevel)

...

If (ilevel .le. 0) then

Do i = 1, nt

verf(i) = 2 ! two levels of bisection (keep the shape)

End do

Else ! refine towards the diagonal y=x

Do i = 1, nt

xy1 = vrt(2,IPE(1,i)) - vrt(1,IPE(1,i))

xy2 = vrt(2,IPE(2,i)) - vrt(1,IPE(2,i))

xy3 = vrt(2,IPE(3,i)) - vrt(1,IPE(3,i))

xy = (xy1 **2 + xy2 **2) *

& (xy1 **2 + xy3 **2) *

& (xy2 **2 + xy3 **2)

If (xy .eq. 0) then ! at least one vertex belongs to y=x

verf(i) = 2 ! two levels of bisection (keep the shape)

else

verf(i) = 0 ! no need to refine

End if

End do

End if

End
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4 Coarsening

The coarsening tool LocalCoarse (coarse.f) coarses the input triangulation according to
the user defined routine CoarseRule. The name of the latter routine is the input parameter
of LocalCoarse. The output triangulation is in place of the input triangulation. The by-
product of LocalCoarse is the logical data array history(maxlevel*ntmax). It will be
used in later coarsening/refinement. The input current index of the refinement level ilevel
is passed to CoarseRule.

c ... user defined procedures

external CoarseRule

...

nlevel = 5

Do ilevel = nlevel, 1, -1

call LocalCoarse (

& nv, nvmax, nb, nbmax, nt, ntmax,

& vrt, tri, bnd, material,

& CoarseRule, ilevel,

& maxlevel, history,

& MaxWi, iW,

& iPrint, iERR)

If(iERR.GT.0) stop ’iERR.gt.0 in LocalCoarse’

End do

The key control of the coarsening process is the user defined routine CoarseRule. Here,
the user defines which triangles have to be merged and how they must be merged, depending
on each triangle data and the current level of coarsening. The control for coarsening is the
marker verf(i), where i runs from 1 to nt. If the marker is 0, then there is no need to
coarse triangle i; if the marker is 1, then the user wants to merge triangle with its neighbor;
if the marker is 2, then the user wants to merge triangle with its neighbor and then merge
the result one more time so that the result be similar to triangle i.

Subroutine CoarseRule (nE, IPE, XYP, verf, ilevel)

...

If (ilevel .le. 0) then

Do i = 1, nt

verf(i) = 2 ! two levels of merging (keep the shape)

End do

Else ! coarse towards the diagonal y=x

Do i = 1, nt

xy1 = vrt(2,IPE(1,i)) - vrt(1,IPE(1,i))

xy2 = vrt(2,IPE(2,i)) - vrt(1,IPE(2,i))

xy3 = vrt(2,IPE(3,i)) - vrt(1,IPE(3,i))

xy = (xy1 **2 + xy2 **2) *

& (xy1 **2 + xy3 **2) *

& (xy2 **2 + xy3 **2)
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If (xy .eq. 0) then

verf(i) = 2 ! two levels of merging (keep the shape)

else

verf(i) = 0 ! no need to coarse

End if

End do

End if

End
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Ani2D-MBA version 2.2 “Stone Flower”3

Flexible Mesh Generator Using

Metric Based Adaptation

User’s Guide for libmba2D-2.2.a

3This is our first package. It is hard to carve a flower from a stone.
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1 Introduction

The Fortran package Ani2D-MBA (2D metric based adaptation) is a part of the package Ani2D devel-
oped by Konstantin Lipnikov and Yuri Vassilevski. Ani2D is designated for the approximate solution of
2D boundary value problems on adaptive anisotropic triangular meshes. Ani2D-MBA package generates
conformal triangular meshes which are quasi-uniform in a given metric. The metric may be defined either
at every point via an analytical formula or only at mesh nodes. In the first case, the user may generate a
mesh with desirable properties. In the second case, the given metric is assumed to be piecewise linear and
the resulting mesh is adapted to it.

The library libmba2D-2.2.a can be incorporated into other packages.
The input data for our generator is an initial conformal triangulation. It may be a very coarse mesh

consisting of a few triangles (made by hands), or a very fine mesh produced by another mesh generator.
Ani2D-MBA changes the initial mesh through a sequence of local modifications. This approach provides
a stable algorithm for generating strongly anisotropic grids. Generalization of this approach to tetrahe-
dral meshes has been successfully implemented by us. The package Ani3D-MBA is freely available at
sourceforge.net/projects/ani3d.

This document describes the structure of the package, input data, and user-supplied (optional) routines.
It explains how the user can control the mesh generation process. It also presents a synthetic example
showing the mesh generation process in detail.

2 Copyright and Usage Restrictions

This software is released under the GNU GPL Licence. You may copy and use this software without any
charge, provided that the COPYRIGHT file is attached to all copies. For all other uses please contact one of
the authors.

This software is available “as is” without any assurance that it will work for your purposes. The
developers are not responsible for any damage caused by using this software.

3 For existing users

To accomodate new capabilities, we had to make a few critical changes described below.

• Routine metric2D generating a nodal metric has been moved to a separate library liblmr2D-2.2.a.
As the result, the list of input parameters in the main routines has been modified. The discrere
solution (parameter SOL) has been replaced by the Metric and parameter Lp has been removed.

• The user supplied routine calCrv has been included in the list of input paratemers, see the dummy
parameter CrvFunction. The library constains an empty routine CrvFunction ani for convience.

4 Description of Ani2D-MBA

The main goal of package Ani2D-MBA is to produce a mesh with a prescribed number of triangles which is
as much quasi-uniform in a given tensor metric as possible. For example, when the metric is isotropic and
constant, Ani2D-MBA may generate a mesh consisting of equilateral triangles unless the domain boundary
has very small angles. A measure of quasi-uniformity is a positive number less or equal to 1 which is called
the mesh quality. The mesh with a prescribed number of equilateral triangles of the same size (measured
in the given metric) has quality 1.

4.1 Structure of the package

The main Fortran 77 subroutines of Ani2D-MBA are mbaAnalytic and mbaNodal located in files mba analytic.f

and mba nodal.f, respectively. The depending subroutines are contained in the other files in directory
src/aniMBA. The examples using these subrotuines are in directory src/Tutorials/PackageMBA. The files
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main_analytic.f main_nodal.f main_solution.f time.f

may be modified by the user. The program in the first file generates a mesh using an analytic metric. The
program in the second file does the same job using a user-defined metric at mesh nodes. The program in
the third file uses a user-supplied solution defined at mesh nodes to generate first a metric and then an
adapted mesh. A few examples of files main analytic.f and main solution.f can be found in directory
src/Tutorials/PackageMBA/examples.

In addition to that, these files contain routine CrvFunction describing a parametrization of curved
boundaries and routine MetricFunction describing the metric. Some of the models do not have curved
boundaries. In this case package routine CrvFunction ani is used.

File time.f is a wrapper for the system call etime that computes CPU time. Generally speaking, this
routine depends on the operational system.

For user convenience, package Ani2D-MBA is equipped with auxiliary files

loadM.f saveM.f

Their purpose is to facilitate loading and saving of meshes. For visualization purposes, a simple service
library libview2D-2.2.a was created. Routine draw() from libview2D-2.2.a is used in main analytic.f and
main nodal.f for generation of PostScript figures. The files

aniMBA/Makefile PackageMBA/Makefile

build the library and examples, respectively, under Linux. The executable programs are put in directory
bin. The names for compilers are defined in src/Rules.make. A few examples of input meshes may be
found in directory data. This document and other documentation related to the package Ani2D-MBA are
located in directory doc.

4.2 Basic things the user should know

The package provides two methods to control the mesh generation. The first method is based on an
analytic metric. The second method is based on a piecewise linear interpolant of the user-defined metric.
This discrete metric is defined at mesh nodes. The package contains a few routines for accurate interpolation
of functions defined on edges or over triangles to mesh nodes (see Sec. 10).

The package is encapsulated in the two basic routines mbaAnalytic and mbaNodal corresponding to
the above methods. The comments in file src/aniMBA/mbaNodal.f are worth to read! After understand-
ing what are input and output data for each of the methods, the user may find more details in files
main analytic *.f and main nodal *.f located in directory src/Tutorials/PackageMBA/examples.

4.3 Input data

The input data may be split into three types: data files, Fortran routines and control parameters.

• The input data files are the files containing coordinates of mesh nodes, connectivity tables for
triangles and boundary edges, a parametrization of curved boundary edges, a list of fixed mesh
nodes, a list of fixed mesh edges, and a list of fixed elements. The lists of fixed points, edges and
elements may be empty. The list of boundary edges may be also empty. In this case, the boundary
edges will be recovered by package routines. A good example illustrating format of the data file is
data/star.ani (see Section 5 for a more complicated example). A data file can be accessed via
routine loadMani.

The mesh loader loadMani understands the format of input data files located in directory data. For
other formats, a new mesh loader has to be written.

• The input routines are the Fortran 77 routines used by the package in the process of mesh generation.
They are located in files main analytic.f and main nodal.f.

An analytical metric has to be supplied for routine mbaAnalytic. The user should change function
MetricFunction user located in file PackageMBA/main analytic.f. For more detail, we refer to
comments in this file.
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A routine CrvFunction has to be supplied for both routines mbaAnalytic and mbaNodal if the user
model has curved boundaries. If the user model does not have curved boundaries, the empty rou-
tine CrvFunction ani may be used. CrvFunction describes parameterizations of curved boundaries.
There is a way to avoid writing this routine. The user may fix the boundary points of the initial mesh
provided that they give accurate representation of the boundary. Then, the final mesh approximates
curved boundaries with the same accuracy as the initial mesh does.

• The input control parameters are the numbers that control the mesh generation. They are defined in
files main analytic.f and main nodal.f. The input control parameters are the following variables:

nEstar - [integer] the desired number of triangles

MaxQItr - [integer] the maximal number of local grid modifications

Quality - [real*8] the target quality for the final grid

(a positive number between 0 and 1)

MaxSkipE - [integer] the maximal number of skipped triangles

The mesh generation is an iterative process every step of which is a local modification of the current
mesh. The stopping criterion for the iterative process is either the user requested final mesh quality
(Quality) or the allowed number of local modifications (MaxQItr). We recommend to set Quality
to a value between 0.5 and 0.8 and to choose MaxQItr to be several times bigger than nEstar. We
also recommend to set MaxSkipE (an interior parameter for the iterative process) to the default value
which is about 100.

4.3.1 Mesh representation

Understaning details of the mesh format is one of the first steps in discovering capabilities of Ani2D-MBA .
The mesh presentation includes:

nP - [integer] the number of points

nF - [integer] the number of boundary and interface edges

nE - [integer] the number of triangles

XYP(2, *) - [real*8] the Cartesian coordinates of mesh points

IPE(3, *) - [integer] connectivity list of triangles

lbE(*) - [integer] material indentificator (a positive number)

IPF(4, *) - [integer] column 1 & 2 - connectivity list of boundary edges

column 3 - number in the parametrization list ParCrv:

0 : this edge is a linear segment

n>0 : ParCrv(*, n) gives a parametrization

of this edge and iFnc(n) gives

a function number for computing the

Cartesian coordinates (see calCRv())

column 4 - boundary identificator

(example: unit square has 4 boundaries which

may have different identificators)

nPv - [integer] the number of fixed points

nFv - [integer] the number of fixed edges

nEv - [integer] the number of fixed triangles

IPV(*) - [integer] list of fixed points

IFV(*) - [integer] list of fixed edges

IEV(*) - [integer] list of fixed triangles

CrvFunction(tc, xyc, iFnc) - user-created routine:

tc - [input] parametric coordinate of point xyc

21



xyc(2) - [output] Cartesian coordinate of the same point

iFnc - [input] function number associated with a boundary

ParCrv(2, *) - [real*8] linear parameterization of curvilinear edges

column 1 - parameter for the starting point

column 2 - parameter for the terminal point

parameters for interior points of the edge are computed by

linear interpolation between parameters at edge ends

Cartesian coordinates are computed by user-given

formulas defined in calCrv().

iFnc(*) - [integer] function number for computing the Cartesian coordinates

Since some of the mesh data may be empty lists, the minimal mesh representation may contain only
nP, nE, XYP, IPE and lbE.

5 Getting started

After package installation, the user will get the following subdirectories

bin/ data/ doc/ lib/ src/

By default, the executable files are stored in bin/. A few example of input files are located in data/. A
documentation for the package may be found in doc/. The source code is stored in src/aniMBA/. In order
to compile the code, the user has to set up the compilers names in scr/Rules.make and then to execute
the following commands:

$make libs

$cd src/Tutorials/PackageMBA

$make help

The user may change the names and options for compilers in file src/Rules.make. After the successful
compilation, the user may run one of the executables in bin/. The same task can be accomplished with
make run-ana or make run-nod. The output may look like:

$ cd bin; ./mbaAnalytic.exe

Loading mesh ../data/wing.ani

STONE FLOWER! (1997-2009), version 2.2

Target: Quality 0.70 with 2000 triangles for at most 15000 iterations

status.fd: +1 [ANIForbidBoundaryElements] [user]

status.fd: +2 [ANIUse2ArmRule] [system]

status.fd: +8 [ANIDeleteTemporaryEdges] [system]

Maximal R/r = 0.193E+03 (R/r = 2 for equilateral triangle), status.fd: 11

ITRs: 0 Q=0.7635E-03 #P #F #E: 596 178 1037 tm= 0.01s

ITRs: 3486 Q=0.7000E+00 #P #F #E: 989 120 1874 tm= 0.41s

Maximal R/r = 0.397E+01 (R/r = 2 for equilateral triangle), status.fd: 11

Saving mesh save.ani

22



First, some of the input control parameters are printed out. Then, the quality of the current mesh and
the numbers of vertices, edges and triangles are printed. Additional output goes into Postscript files
mesh initial.ps and mesh final.ps containing figures of initial and final meshes, respectively. The files
are located in directory bin. One way to check the contents of these files is to run

$ make gs-ini gs-fin

The program loads the input file ../data/wing.ani. The user may either to change the name of the
input file in the mesh loader:

Call loadMani(

& nP, MaxP, nF, MaxF, nE, MaxE,

& nPv, MaxPV, nFv, MaxFV, nEv, MaxEV,

& XYP, IPF, IPE, IPV, IFV, IEV, lbE,

& ParCrv, iFnc,

& "../data/wing")

or to use one the examples from directory PackageMBA/examples. The user may play with the input
control parameters in file PackageMBA/main analytic.f and with the metric defined in routine Metric-

Function user. For instance, changing the metric

M(x, y) ≡

[

F (x, y) H(x, y)

H(x, y) G(x, y)

]

the user will learn how to control the shape of triangles.

6 A synthetic example

In this section, we describe in detail a process of creating a new model and generating a quasi-uniform
mesh.

Let us assume that the user wishes to generate a quasi-uniform triangulation of a domain that is the
union of two circles with the radius 0.2 and centers (0.2,0.5), (0.8,0.5), respectively, and the rectangle
defined by vertices (0.2,0.45), (0.2,0.55), (0.8,0.55), and (0.8,0.45). The domain is shown in Fig. 3.

Figure 3: The domain to be meshed.

The user has to write routine CrvFunction user. If the user wishes to use mesh loader loadMani, he has to
create an input data file. Below, we explain how to produce all these data from scratch.

Step 1. First, we chose a parameterization model. The shape of the domain dictates a natural choice
for the parameterization of curvilinear parts of the boundary: each circle is parametrized by trigonometric
functions. The input routine CrvFunction user may be as follows:
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Subroutine CrvFunction_user(tc, xyc, iFnc)

C ==========================================================

C The routine computes the Cartesian coordinates of point

C xyc from its parametric coordinate tc.

C

C tc - the given parametric coordinate of point

C xyc(2) - the Cartesian coordinate of the same point

C iFnc - the function number for computing

C

C On input : tc, iFnc

C On output: xyc(2)

C ==========================================================

Real*8 tc, xyc(2), L, H, R

L = 0.3D0

H = 0.1D0

R = 0.2D0

If(iFnc.EQ.1) Then

xyc(1) = 5D-1 + L - R * dcos(tc)

xyc(2) = 5D-1 + R * dsin(tc)

Else If(iFnc.EQ.2) Then

xyc(1) = 5D-1 - L + R * dcos(tc)

xyc(2) = 5D-1 - R * dsin(tc)

Else

Write(*,’(A,I5)’) ’Undefined function =’, iFnc

Stop

End if

Return

End

This code can be found in PackageMBA/example/main analytic sport.f.

Step 2. Second, we create input data file containing an initial coarse mesh. It is easy to observe that a
simple mesh consisting of 12 triangles will be sufficient, see Fig. 4.

Figure 4: The initial coarse mesh.

The file data/sport.ani has a header (9 lines), followed by the list of points (11 points), list of egdes
(8 edges), list of triangles (12 edges) and the list of curved edges (6 edges):

T points: 11 (lines 10 - 20)

T edges: 8 (lines 23 - 30)

T elements: 12 (lines 33 - 44)

T curved edges: 6 (lines 47 - 52)
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T fixed points: 0

T fixed edges: 0

T fixed elements: 0

11 # of points

0.500000000000000 0.500000000000000

0.800000000000000 0.500000000000000

0.200000000000000 0.500000000000000

0.606350832689630 0.550000000000000

0.941421356237310 0.641421356237310

0.941421356237310 0.358578643762690

0.606350832689630 0.450000000000000

0.393649167310370 0.450000000000000

5.857864376269000E-002 0.358578643762690

5.857864376269000E-002 0.641421356237310

0.393649167310370 0.550000000000000

8 # of edges

4 5 1 0 1

5 6 2 0 1

6 7 3 0 1

7 8 0 0 2

11 4 0 0 2

8 9 4 0 3

9 10 5 0 3

10 11 6 0 3

12 # of elements

2 4 5 1

2 5 6 1

2 6 7 1

2 7 4 1

1 7 8 1

1 8 11 1

1 11 4 1

1 4 7 1

3 8 11 1

3 11 10 1

3 10 9 1

3 9 8 1

6 # of curved edges

0.252680255142080 2.35619449019230 1

2.35619449019230 3.92699081698720 1

3.92699081698720 6.03050505203750 1

0.252680255142080 2.35619449019230 2

2.35619449019230 3.92699081698720 2

3.92699081698720 6.03050505203750 2

0 # number of fixed points

0 # number of fixed edges

0 # number of fixed elements

• Some of the mesh nodes may be relocated or destroyed in a process of the mesh generation. However,
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the domain boundary requires that four nodes (intersections of the rectangle with the circles) remain
untouched. In order to provide this information, we need the list of fixed points. This list may be
replaced by proper coloring of boundary edges. If a point is shared by two edges with different color,
it will be automatically added to the list of fixed points.

• It is clear that there are eight boundary edges, six of them are part of the curvilinear boundary. It
is reasonable to mark the edges with three labels associated with the rectangle and two circles. In
each row, the first two entries are the node indices, the third entry is a reference to a list of curved
edges, the fourth is dummy, and the fifth is a label (color) of the edge.

• The list of curved edges contains the starting and ending parameter values and a positive number
corresponding to a function in routine CrvFunction user. It is very important to guarantee that
evaluation of CrvFunction user gives exactly the same mesh coordinates as in the input file. For
example, let us take tc and iFnc from the first row, i.e. tc = 0.252680255142080 and iFnc = 1.
Then, the routine should give the Cartesian coordinates of the 4th mesh node. The acceptable error
is 10−8.

Step 3. Third, we have to choose an analytic metric in which the final mesh be quasi-uniform. In other
words, we have to write routine MetricFunction user.

Step 4. Fourth, we set up the control parameters:

Integer nEStar

Parameter(nEStar = 1000)

Real*8 Quality

Parameter(Quality = 8D-1)

Thus, we plan to generate a mesh with approximately 1000 triangles. Each of the triangles will be very
close to an equilateral triangle.

Step 5. The final step is to collect all routines in a single file PackageMBA/example/main analytic sport.f,
copy it to file PackageMBA/main analytic.f, compile the package and execute the code (# make exe

run-ana). We get the mesh shown in Fig. 5.

Figure 5: The final mesh.

7 Two more examples

The first geometric model is shown in Fig.6 (left picture). The left side of the model is partly curved. This
part is parametrized as follows:

x = 0.2 − 2 t (0.3 − t), y = t, t ∈ [0, 0.3].
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The curved part of the right side of the model is parametrized in a similar way:

x = 1 − 2 (1 − t) (t − 0.7), y = t, t ∈ [0.7, 1].

The file PackageMBA/examples/main analytic square.f demonstrates how to modify the input mesh
data data/square.ani according to the solution data/square.sol.

Figure 6: Two models: the square with curved sides and the wing.

Figure 7: The initial and final meshes of the model data/wing.ani.

The second model is shown in Fig.6 (right picture). We use one parametrization for the wing and the
other parametrization for the slit behind the tail. The file PackageMBA/main analytic wing.f defines a
metric such that the final mesh refines isotropically towards the leading and trailing edges of the wing, see
Fig.7.

8 Useful features of Ani2D-MBA , version 2.2

We improve continuously robustness and efficiency of the code, make it more user friendly and add a few
new features in each release. The most important features are listed below:

1. The initial mesh may be tangled. In this case, the user may add ANIUntangleMesh defined in
src/aniMBA/status.fd to the input parameter status to untangle the input mesh.

2. Using two packages Ani2D-MBA and Ani2D-LMR , it is possible to produce meshes minimizing
different maximum and Lp-norms of the interpolation error, p > 0.

3. The complete list of available features is in file src/aniMBA/status.fd. Here are the most important
features:
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• The user may freeze boundary points. This allows to preserve important geometric features
for both isotropic and anisotropic metrics. Fig.8 illustrates this feature. The fixed boundary
points (red dots) prevent sharp boundary from smearing. (The initial mesh was found on the

webcite of Jonathan Shewchuk.)

• The user may freeze boundary edges and/or mesh elements. This allows to preserve mesh
structure in important regions (e.g., in boundary layers).

• The interfaces between materials with different labels (lbE) are recovered and preserved au-
tomatically.

• The vertices of corners smaller than 30◦ are marked automatically as fixed points.

Figure 8: The initial and final meshes of the model data/country.ani.

4. The library libmba2D-2.2.a contains routine DG2P1 which maps a discontinuous piece-wise linear
function defined on mesh edges onto a continuous piece-wise linear function defined at mesh points
(see src/aniMBA/ZZ.f for more detail).

The same library contains a few rotines listX2Y which create connectivity lists X → Y for mesh
objects X and Y such as elements, edges, bounary edges, and points (see src/aniMBA/utils.f for
more detail).

5. Miscalenious code cleaning, documenting and improving. For example, we replaced Linpack routines
by similar routines from package Lapack which is now a part of most Linux distributions. If the
user have not installed this package, the neccessary routines are in directories src/lapack and
src/blas. Double precision libraries liblapack-3.0.a, libblas-3.0.a are generated with the
command ”make lib” typed in src/lapack and src/blas, respectively.

9 How to use library libmba2D-2.2

Here we describe one of the main modules, mbaNodal, from the library libmba2D-2.2.a. The other module,
mbaAnalytic, uses parameter MetricFunction user (analytic metric) in place of parameter Metric user

in routine mbaNodal.

Call mbaNodal(

& nP, MaxP, nF, MaxF, nE, MaxE, nPv,

& XYP, IPF, IPE, IPV,

& CrvFunction_user, ParCrv, iFnc,

& nEStar,

& nFv, nEv, IFV, IEV, lbE,

& flagAuto, status,

& MaxSkipE, MaxQItr,

& Metric_user, Quality, rQuality,

& MaxWr, MaxWi, rW, iW,

& iPrint, iERR)
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Most of the parameters were described in Section 3 (see file src/aniMBA/mba nodal.f for more detail).
The details on the other input parameters are below:

I MaxP - [integer] maximal number of points

N MaxF - [integer] maximal number of boundary and interface edges

P MaxE - [integer] maximal number of triangles

U

T nFv - [integer] the number of fixed edges

nEv - [integer] the number of fixed triangles

P IFV(nFv) - [integer] list of fixed edges

A IEV(nEv) - [integer] list of fixed triangles

R

A nEstar - [integer] the desired number of triangles

M

E flagAuto - [logical] flag controling mesh generation:

T TRUE - recover missing mesh elements

E FALSE - check that input data are complete

R

s MaxSkipE - [integer] maximal number of skipped triangles

MaxQItr - [integer] maximal number of mesh modifications

Quality - [real*8] desired quality of the final mesh

MaxWr - [integer] maximal memory allocation for rW

MaxWi - [integer] maximal memory allocation for iW

iPrint - [integer] level of output information (0 - nothing)

Here we collect parameters which are both input and output:

I nP - [integer] the number of points

N nF - [integer] the number of boundary and interface edges

P nE - [integer] the number of triangles

U

T XYP(2, MaxP) - [integer] list of points

/ IPE(3, MaxE) - [integer] list of triangles

O lbE(MaxE) - [integer] material indentificator

U

T IPF(4, MaxF) - [integer] list of boundary and interface edges

P ParCrv(2, MaxF) - [real*8] parametrizations of curved edges

U iFnc(MaxF) - [integer] list of corresponding functions

T

nPv - [integer] the number of fixed points

IPV(nPv) - [integer] list of fixed points

P

A Metric_user(3,MaxP) - Real*8 array containing the metric defined

R at mesh points. The metric is a 2x2 positive definite

A symmetric tensor:

M

E M11 M12

T M12 M22

E

R Each column of this array stores the upper triangular

s entries in the following order: M11, M22, and M12.
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rQuality - [real*8] quality of the final mesh

status - [integer] sum of positive numbers corresponding

to desired mesh properties (see status.fd)

Sol(MaxP) - [real*8] mesh function defined at points;

on output it is interpolated linearly

at new mesh points.

rW(MaxWr) - [real*8] working array

iW(MaxWi) - [integer] another working array

10 Useful routines

The library libmba2D-2.2.a has a few routines that can be useful in many other projects. Most of the input
parameters in these routines are explained above.

• Uniform mesh refinement and linear interpolation of nodal function F(LDF, *). The size of working
integer array iW is at least 3 nE + nP where nP,nE are input values.

Subroutine uniformRefinement(

& nP, MaxP, nF, MaxF, nE, MaxE,

& XYP, IPF, IPE, lbE,

& CrvFunction_user, ParCrv, iFnc, IFE,

& F, LDF, iW, MaxWi)

• Delaunay builds the Delaunay triangulation from the existing triangution by swapping edges in
pairs of triangles. The size of working integer array iW is 6 nE + nP. The working double precision
array rW is not used at the moment.

Subroutine Delaunay(

& nP, nE, XYP, IPE,

& MaxWr, MaxWi, rW, iW)

• orientBoundary orients the external boundary of the input mesh in such a way that the computa-
tional domain is located on the left when we move from the first edge point to the second one. In
other words IPF(1, *) and IPF(2, *) are flipped if neccessary. The size of working integer array
iW is 3 nE + 2 nF + nP.

Subroutine orientBoundary(

& nP, nF, nE, XYP, IPF, IPE, iW, MaxWi)

• DG2P1 maps a discontinuous piece-wise linear function defined on edges onto a continuous piece-wise
linear function defined at vertices. We use the ZZ method for interpolation. We assume that each
boundary node can be connected with an interior note by at most two mesh edges. The size of
working integer array iW is 3 nE + 3 nP. The size of working double precision array rW is nP.

Subroutine DG2P1(

& nP, nF, nR, nE, XYP, IPF, IPE, IRE,

& fDG, fP1,

& MaxWr, MaxWi, rW, iW)
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• listE2R creates a connectivity list IRE for mesh edges. The routine counts mesh edges. For an
element E, IRE([1:3], E) give indexes of three edges in the order defined by IPE. For example, the
first edge is [IPE(1,E), IPE(2,E)]. The working integer arrays are nEP(nP) and IEP(3 nE) (see
src/aniMBA/utils.f for more detail).

Subroutine listE2R(

& nP, nR, nE, IPE, IRE, nEP, IEP)

• listR2R creates connectivity lists nRR and IRR for mesh edges. The routine counts the number of
mesh edges, nR. Then, nRR(i) - nRR(i-1) (nRR(1) when i=1) gives the total number of edges in
triangles sharing the edge i. The corresponding edge numbers are saved in array IRR in positions
nRR(i-1) + 1 to nRR(i). The size of working integer array iW is 9 nE (see src/aniMBA/utils.f

for more detail).

Subroutine listR2R(

& nP, nR, nE, MaxL, IPE, nRR, IRR, iW)

• File src/aniMBA/utils.f contains more routines for creating other connectivity lists such as edges
to points, points to points, elements to boundary edges, elements to elements, etc. The routine
listConv colvolutes two given connectivity lists. The routines backReferences and reverseMap create
reverse connetivity lists for a given structured and unstructured connectivity list, respectively. For
instance, backReferences takes the structured connectivity list IPE from elements to points and
creates the unstructured connectivity lists nEP and IEP from points to elements.

• smoothingMesh applies the Laplacian smoothing to the mesh. For each mesh vertex, a new position
is chosen based on local information (the position of its neighbors) and the vertex is moved there.
The size of the working integer array iW is 2 nP + 3 nE + 90.

Subroutine smoothingMesh(

& nP, nE, XYP, IPE, MaxWi, iW)

11 FAQ

• Q. The mesh generator does not refine the input mesh.
A. There are two cases when the code may do nothing. First, the number of mesh elements whose
quality is limited by model geometry (e.g. thin layers) is bigger then the control parameter MaxSkipE.
The remedy is to increase this parameter. Second, a severe anisotropic input metric does not allow
to insert new mesh points in a very coarse mesh. The simple remedy is to refine mesh using an
isotropic metric and then switch to the anisotropic metric.

• Q. The mesh generator uses the same input data but produces different grids on different computers.
A. The output of the mesh generator may depend on a computer arithmetics. The order of local
mesh modifications depends on round-off errors and may be computer-dependent.

• Q. The final mesh quality is very small.
A. The mesh quality equals to a quality of the worst triangle in the mesh. In some cases, the shape
of near-boundary triangles is driven mainly by the geometry. A possible remedy is either to increase
the number nEStar of desired triangles or to fix a possible contradiction between the boundary and
the metric. An example of such a contradiction is a quasi-uniform mesh in data/Dam.*. Another
reason for low mesh quality may be strong jumps in the metric. If the metric is isotropic, the
optimal triangles are equilateral ones. The triangle size is defined by the metric value. Therefore,
the optimal size is changed strongly across lines of metric discontinuity. This property is hardly can
be satisfied on a conformal mesh.
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• Q. The mesh generator is stopped immediately with diagnostics saying that the parametrization is
wrong.
A. There is a contradiction between input data in arrays ParCrv, iFnc and XYP.

• Q. The number of triangles in the final mesh is never equal to nEStar.
A. The equality is achieved if and only if Quality = 1 and the computational domain may be
covered by equilateral (in the user given metric) triangles. Apparently, it is possible only in very
special cases.

• Q. Why mba analytic and mba nodal have so many input parameters?
A. Next release of the package will have routines mba analytic short and mba nodal short with func-
tionality close to that of main routines mba analytic and mba nodal, respectively, but with smaller
number of input parameters. For example, lists of fix points and boundary triangles will be omitted.

• Q. Is it possible to use libmba2D-2.2.a in an adaptive loop?
A. Yes. Use make libs to generate the library libmba2D-2.2.a which may be linked with other
codes. Depending on the user goals, he or she may call either mbaAnalytic or mbaNodal. The
package contains a few examples of solving partial differential equations on adaptive grids (see
src/Tutorials/* for more detail).

• Q. Why does libmba2D-2.2.a fail to untangle the mesh?
A. This may happen when the initial mesh is either topologically incorrect or extremely tangled.
The second case is curable. Try to run the code with the identity metric or/and change significantly
the desired number of mesh elements.

• Q. I do not understand why libmba2D-2.2.a fails to generate a mesh.
A. The authors are interested in any feedback from users. To report a problem, please email
to either lipnikov@hotmail.com or vasilevs@dodo.inm.ras.ru. To help us to fix the problem,
please attach file main analytic.f or main nodal.f and files containing the input mesh.
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1 Introduction

The Fortran package Ani2D-FEM is developed by Konstantin Lipnikov and Yuri Vassilevski. It is desig-
nated for generating finite element matrices on triangular meshes. The package allows to build elemental
matrices for variety of finite elements, modify these matrices, assemble them, and impose boundary condi-
tions.

The package Ani2D-FEM differs from other similar packages by providing a very flexible interface for
incorporating problem coefficients in elemental matrices. In addition, the elemental matrices are understood
in a very broad sense. They may involve different types of finite elements.

The library libfem2D-2.2.a can be incorporated into other packages.
This document describes the structure of the package, input data, and user-supplied routines. It

presents a few examples illustrating details of the package.

2 Copyright and Usage Restrictions

The software is made available for nonprofit use only. You may copy and use this software without any
charge, provided that the COPYRIGHT file is attached to all copies. For all other uses please contact one of
the authors.

The software is made available “as is” without any assurance that it will work for your purposes. The
authors are not responsible for any damages caused by using this software.

3 Description of Ani2D-FEM

3.1 Elemental finite element matrix

The core of the package is routine fem2Dtri which computes elemental matrix corresponding to the bilinear
form

< D OpA(u), OpB(v) > (1)

where D is a tensor, OpA and OpB are linear first-order or zero-order differential operators, and u and v

are finite element basis functions. Here is the list of implemented finite elements (see file fem2Dtri.f for
more detail):

FEM P0 piecewise constant, P0

FEM P1 continuous piecewise linear, P1

FEM P2 continuous piecewise quadratic, P2

FEM P1vector vector continuous piecewise linear, P1 × P1. The unknowns are
ordered first by vertices and then by the space directions (x and
y)

FEM P2vector vector continuous piecewise quadratic, P2×P2. The unknown are
ordered first by vertices, then by edges, and then by the space
directions (x and y)

FEM RT0 the lowest order Raviart-Thomas finite elements
FEM CR1 the Crouzeix-Raviart finite element

Here is the list of available operators (see file fem2Dtri.f for more detail):

IDEN identity operator
GRAD gradient operator
DIV divergence operator
CURL rotor operator
DUDX partial derivative d/dx

The package allows a few types of tensor D to make computations more efficient. Here is the list of
supported tensors:
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TENSOR NULL identity tensor
TENSOR SCALAR scalar tensor
TENSOR SYMMETRIC symmetric 2x2 tensor
TENSOR GENERAL general 2x2 tensor

The package uses several quadrature formulae:

order = 1 quadrature formula with one center point
order = 2 quadrature formula with 3 points on triangle edges
order = 5 quadrature formula with 7 points inside triangle

A solution of non-linear problems is usually based on a Newton-type iterative method. In this case
the tensor D may depend on a discrete function (e.g. approximation from the previous iterative step). If
so, evaluation of D may be a complex procedure and may require additional data. We provide the flexible
machinery for incorporating additional data into the user written function for calculating D. Let Dcoef

be the name of this function. It has the following format:

Integer Function Dcoef(x, y, label, DATA, iSYS, Coef)

C The function returns type of the tensor Coef (see the table above).

C

C (x, y) - [input] Real*8 Cartesian coordinates of a 2D

C point where tensor Coef should be evaluated

C

C label - [input] Integer label of a mesh element

C

C DATA - [input] Real*8 user given data (a number or an array)

C

C iSYS - [input/output] integer buffer for information exchange:

C iSYS(1) [input] triangle number

C iSYS(2) [input] 1st vertex number

C iSYS(3) [input] 2nd vertex number

C iSYS(4) [input] 3rd vertex number

C

C iSYS(1) = iD [output] number of rows in Coef

C iSYS(2) = jD [output] number of columns in Coef

C

C Coef(4,jD) - [output] Real*8 matrix with the leading dimension 4

To compute entries of the tensor Coef, the user may use the triangle number iSYS(1) and array DATA.
Here are a few examples.

• isotropic diffusion coefficient. The user has to set iD = jD = 1, Dcoef = TENSOR SCALAR and
to return the diffusion value Coef(1,1) at the point (x, y).

• anisotropic diffusion coefficient. The user has to set iD = jD = 2, Dcoef = TENSOR SYMMETRIC,
and to return diffusion tensor (2x2 matrix with entries Coef(1,1), Coef(1,2), Coef(2,1), Coef(2,2))
at the point (x, y).

• convection coefficient. The user has to set iD = 1, jD = 2, Dcoef = TENSOR GENERAL, and to
return the velocity transposed vector values Coef(1,1), Coef(1,2) at the point (x, y).
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Now we are ready to call routine fem2Dtri which computes elemental matrix A:

Call FEM2Dtri(

& XY1, XY2, XY3,

& OpA, FemA, OpB, FemB,

& label, Dcoef, DATA, iSYS, order,

& LDA, A, nRow, nCol)

C XYi(2) - [input] Real*8 Cartesian coordinates of i-th vertex

C OpA, OpB - [input] operators in (1), integers

C FemA, FemB - [input] type of finite elements from (1), integers

C

C Dcoef - [input] external integer function using label and DATA

C order - [input] order of the numeric quadrature, integer

C

C LDA - [input] leading dimension of matrix A(LDA, LDA)

C A(LDA,LDA) - [output] Real*8 finite element matrix A

C nRow - [output] the number of rows of A

C nCol - [output] the number of columns of A

The following rules are applied for numbering unknowns within the elemental matrix:

• First, basis functions associated with vertices (if any) are numerated in the same order as the vertices
ri, i = 1, 2, 3 (input parameters XY1, XY2, XY3).

• Second, basis functions associated with edges (if any) are numerated in the order of edges r12, r23

and r13.

• Third, basis functions associated with element (if any) are numbered.

• The vector basis functions with 2 degrees of freedom per a mesh object (vertex, edge) are enumerated
first by the corresponding mesh objects and then by the space coordinates, first x and then y.

In order to compute a linear form representing an elemental right hand side, we can use the following
trick:

f(v) =< Drhs FEM P0, v > (2)

where Drhs represents the right hand side function f :

Call FEM2Dtri(

& XY1, XY2, XY3,

& IDEN, FEM_P0, IDEN, FemB,

& label, Drhs, DATA, iSYS, order,

& LDA, F, nRow, nCol)

3.2 Extended elemental finite element matrix

Now we describe an alternative way to create and assemble elemental matrices. Each elemental matrix
may be a combination of a few fem2Dtri calls reflecting the fact that the bilinear form (1) may consist
of a few simple forms. One of the examples is the Stokes problem. degrees of freedom in the extended
elemental matrix are characterized by arrays templateR and templateC:

Subroutine FEM2Dext(

& XY1, XY2, XY3,

& lbE, lbF, lbP, DATA, iSYS,

& LDA, A, F, nRow, nCol,

& templateR, templateC)

C XYi(2) - [input] Real*8 Cartesian coordinates of i-th point
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C

C lbE - [input] Integer ID of the triangle (material label)

C inherited from global material labels

C lbF(3) - [input] Integer IDs of triangle edges (boundary labels)

C lbF(i) = 0 for internal edges, otherwise it is the copy

C of IFP(4,k) where k is the global boundary edge

C lbP(3) - [input] Integer IDs of triangle nodes inherited

C from global nodal labels

C

C DATA - [input] Real*8 user given data (a number or an array)

C iSYS - [input] integer buffer for providing triangle information:

C iSYS(1) triangle number

C iSYS(2) 1st vertex number

C iSYS(3) 2nd vertex number

C iSYS(4) 3rd vertex number

C

C LDA - [input] leading dimension of matrix A

C A(LDA, *) - [output] Real*8 elemental matrix, degrees of freedom

C are ordered according to templateR and templateC

C F(nRow) - [input] Real*8 vector of the right-hand side

C

C nRow - [output] the number of rows in A

C nCol - [output] the number of columns in A

C

C templateR(nRow) - [output] Integer array of degrees of freedom

C for rows. We recommend to group them, e.g.

C three for points, three for edges, etc.

C templateC(nCol) - [output] Integer array of degrees of freedom

C for columns.

In general, different order of unknowns is allowed. However, in the assembled matrix, they will be
grouped according to their geometric location. For instance, the first three unknowns associated with
points will go to the first group of point-based unknowns. Next three point-based unknowns will go to
the second group. After point-based unknowns we group the edge-based unknowns. The element-based
unknowns are grouped the last.

Admissible values for arrays templateR and templateC are defined in file fem2Dtri.fd. Including this
header file, the user may indicate a velocity degree of freedom as follow

templateR(i) = Vdof

The degrees of freedom on edges are indicated either by Rdof or RdofOrient. The former corresponds to
a scalar unknown (e.g. a Lagrange multiplier in a hybrid mixed finite element) that has no orientation.
The latter correponds to a vector unknown (e.g. the Raviart-Thomas finite element basis function) that
has orientation. Finally, s degree of freedom associated with a mesh element is indicated by Edof.

Here are a few examples where this routine may be useful.

• For the diffusion reaction equation we sum elemental matrices corresponding to diffusion and reac-
tion.

• For the diffusion equation written in a mixed form using Lagrange multipliers, we use hybridization
algorithm inside FEM2Dext.

• We may also incorporate boundary conditions in the elemental matrix A.

3.3 Assembling utilities

The package provides a few utilities for assembling elemental matrices and right hand sides. The assemble
routine returns a sparse matrix is the format required by the AMG solver (CSR format with diagonal

39



entries in the beginning of each row). Other formats will be supported in the nearest future or by request
(see converters in file algebra.f). Here is the header of the assembling routine. We describe only the new
parameters.

Subroutine BilinearFormVolume(

& nP, nE, XYP, IPE, lbE,

& OpA, FemA, OpB, FemB,

& Dcoef, DATA, order,

& assembleStatus, MaxIA, MaxA,

& IA, JA, DA, A, nRow, nCol,

& MaxWi, iW)

C nP - [input] the number of points (P)

C nF - [input] the number of edges (F)

C nE - [input] the number of elements (E)

C

C XYP(2, nP) - [input] Real*8 Cartesian coordinates of mesh points

C IPF(4, nF) - [input] connectivity list of boundary faces (see

C documentation for package Ani2D-MBA)

C IPE(3, nE) - [input/output] connectivity list of elements.

C On output, the nodal indexes in each traingle are reordered

C by index increasing.

C

C lbF(nF) - [input] boundary label

C lbE(nE) - [input] element label

C

C assembleStatus - [input] a priory information about matrix A.

C The logical sum of constants defined in assemble.fd.

C MATRIX_SYMMETRIC - symmetric matrix

C MATRIX_GENERAL - general matrix

C

C FORMAT_AMG - format used in AMG (CSR with

C rows starting by diagonal entry)

C FORMAT_ROW - diagonal of A is saved only in DA

C

C MaxIA - [input] the maximal number of equations plus one

C MaxA - [input] the maximal number of nonzero entries in A

C IA,JA,DA,A - [output] sparsity structure of matrix A:

C

C IA(nRow+1)- number IA(k + 1) equals to the number of

C nonzero entries in first k rows plus 1

C JA(M) - column indexes of non-zero entries ordered

C by rows, M = IA(nRow + 1) - 1

C

C A(M) - non-zero entries ordered as in JA

C DA(nRow) - main diagonal of A

C

C nRow - [output] the number of rows in A

C nCol - [output] the number of columns in A

C

C MaxWi - [input] size of the working integer array

C

C iW(MaxWi) - integer working array.

Here is an example of assembling the right-hand side vector F(nRow) for the linear form (2).
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Subroutine LinearFormVolume(

& nP, nE, XYP, IPE, lbE,

& FemA,

& Drhs, DATA, order,

& F, nRow,

& MaxWi, iW)

In the next version, the above routines will be replaced by a single routine described below. This new
assembling routine must be used for the extended elemental matrices described in Section 3.2. All but one
parameters were described above. The new parameter lbP is optional labels of mesh points. They may be
useful for assigning Dirichlet boundary conditions.

Subroutine BilinearFormTemplate(

& nP, nF, nE, XYP, lbP, IPF, IPE, lbE,

& FEM2Dext, DATA, assembleStatus,

& MaxIA, MaxA, IA, JA, A, F, nRow, nCol,

& MaxWi, iW)

The matrix A is in one of the sparse row formats. The unknowns are ordered in groups as explained in
Section 3.2.

4 Examples

4.1 Diffusion problem

The program Tutorials/PackageFEM/mainSimple.fdemonstrates the approximate solution of the bound-
ary value problem with continuous piecewise linear finite elements P1:

−div(D gradu) = 1 in Ω,

u = 0 on ∂ΩD,

∂u

∂n
= 0 on ∂ΩN ,

where Ω = (0, 1)2, ∂ΩN = {(x, y) : x = 1, 0 < y < 1}, ∂ΩD = ∂Ω \ ∂ΩN . The diffusion coefficient D is
the diagonal piecewise constant tensor given by

D = diag{10, 10} for x − y < 0,

D = diag{1, 100} for x − y > 0.

First, the program refines an initial coarse triangulation consisting of two triangles. and creates
a quasi-uniform mesh with 4000 elements. This is accomplished with routine mbaAnalytic from the
library libmba2D-2.2.a. Second, the program generates the finite element system using the routines
BilinearFormVolume, LinearFormVolume and BoundaryConditions from the library libfem2D-2.2.a.

4.2 Stokes problem

The program Tutorials/PackageFEM/mainTemplate.f demonstrates the approximate solution of the
Stokes problem with P2 × P1 pair of finite elements:

−div gradu + ∇p = 0 in Ω,

−divu = 0 in Ω,

u = u0 on ∂Ω1,

u = 0 on ∂Ω2,

∂u

∂n
− p = 0 on ∂Ω3,
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where Ω = (0, 1)2, ∂Ω1 = {(x, y) : x = 0, 0 < y < 1}, ∂Ω3 = {(x, y) : x = 1, 0 < y < 1},
∂Ω2 = ∂Ω \ (∂Ω1 ∪ ∂Ω3), and u0 = (4y(1 − y), 0)T .

First, the program refines an initial coarse triangulation (consisting of two triangles) and creates a
quasi-uniform mesh with 4000 elements. This is accomplished with routine mbaAnalytic from the library
libmba2D-2.2.a. Second, the program generates the finite element system using routine BilinearFormTemplate
from the library libfem2D-2.2.a.
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Ani2D-LU “Twinflower”

LU Factorization Solver
for Sparse Systems

User’s Guide for liblu-2.2.a

The C package Ani2D-LU is a simplified version of UMFPACK-4.1 and AMD packages developed by
Timothy A. Davis, Patrick R. Amestoy, and Iain S. Duff. It is designated for the direct solution of sparse
linear systems. Ani2D-LU is an independent part of the package Ani2D .

Examples of using Ani2D-LU in FORTRAN programs are given in files src/aniLU/main.f,
src/Tutorials/PackageLU/mainSolFemSys.f. For detailed documentation, see doc/lu guide.pdf.
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Ani2D-ILU Version 2.2 ”Bellflower”

Flexible Iterative Solver Using

Incomplete LU Factorization

User’s Guide for libilu-2.2.a
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1 Basic features of the library

The FORTRAN package Ani2D-ILU is an independent part of the package Ani2D . Ani2D-ILU was devel-
oped by Yuri Vassilevski, Sergey Goreinov and Vadim Chugunov. It is designated for the iterative solution
of sparse linear systems. Ani2D-ILU may be easily incorporated into any other software.

The basic features of library libilu-2.2.a are listed below.

Iterative method : BiConjugate Gradient Stabilized, BiCGStab, and Conjugate Gradient, PCG

Preconditioners : ILU0 and ILU2, the second order accurate ILU

Matrix storage format : Compressed Sparse Row-wise, CSR

Data format : double precision or integer arrays. Enumeration starts from 1.

Typical memory requests : for systems with N equations and NZ non-zero matrix elements, BiCGStab
(resp., PCG) needs 8 (resp., 4) work vectors of dimension N , right-hand side and solution vectors.
ILU0 requires the same storage as the CSR matrix representation. ILU2 requires upto 2-5-fold
memory for the CSR matrix representation.

2 Iterative solution

The default iterative solver is BiConjugate Gradient Stabilized method (BiCGStab). This is the Krylov
subspace method applicable to non-singular non-symmetric matrices. Therefore, it requires two procedures:
matrix-vector multiplication and precondition-vector evaluation. If the user is not confident that the matrix
is symmetric positive definite, he or she is advised to choose the default method. The call of the method is

call slpbcgs(

& prevec, IPREVEC, iW,rW,

& matvec, IMATVEC, ia,ja,a,

& WORK, MW, NW,

& N, RHS, SOL,

& ITER, RESID,

& INFO, NUNIT )

• prevec is the name of a precondition-vector multiply routine and IPREVEC is an integer array of user’s
data which may be passed to prevec and used there. In the presented examples of precondtioners
IPREVEC contains single entry equal to the system order. The format of prevec is:

Subroutine prevec(IPREVEC, ICHANGE, X, Y, iW, rW)

c Input

Integer IPREVEC(*), ICHANGE, iW(*)

Real*8 X(*), rW(*)

c Output

Real*8 Y(*)

This routine solves the system (LU)Y = X with L low triangular and U upper triangular factors
stored in arrays iW,rW. ICHANGE is the flag controlling the change of the preconditioner (useful when
convergence stagnation occurs). The user is given two examples of prevec corresponding to two
preconditioners, prevec0 (ilu0.f) and prevec2 (iluoo.f).

• iW, rW are Integer and Real*8 arrays which store the preconditioner.

• matvec is the name of generalized matrix-vector multiply routine and IMATVEC is an integer array
of user’s data which may be passed to matvec and used there. In the presented example IMATVEC

contains single entry equal to the system order. The format of matvec is:
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Subroutine matvec(IMATVEC, ALPHA, X, BETA, Y, ia, ja, a)

c Input

Integer IMATVEC(*), ia(*), ja(*)

Real*8 X(*), Y(*), a(*), ALPHA, BETA

c Output

Real*8 Y(*)

This routine calculates matrix-vector product AX and adds the vector βY :

Y := αAX + βY.

For example, for α = 1, β = 0 matvec returns Y = AX . The example of a matvec routine is in file
bcg.f. It uses the compressed sparse row (CSR) representation of matrix A stored in arrays ia,

ja, a.

• ia,ja,a are two Integer and one Real*8 arrays containing matrix in the CSR format.

• WORK(MW,NW) is Real*8 working two-dimensional array which stores at least 8 Krylov vectors.

• MW*NW the total length of WORK which must be not less than 8N.

• N is order of system and length of vectors.

• RHS is the right hand side vector (Real*8).

• SOL is the initial guess and the iterated solution (Real*8).

• ITER is the maximal number of iterations on input and the actual number of iterations on output.

• RESID is the convergence criterion on input and norm of the final residual on output.

• INFO is the performance information, 0 - converged, 1 - did not converge, etc.

• NUNIT is the channel number for output (0 - no output).

If the user is confident that the matrix is symmetric and positive definite, he or she can save 4 work
vectors and probably 10-30% of the CPU time by calling the Preconditioned Conjugate Gradient method
(PCG):

call slpcg(

& prevec, IPREVEC, iW,rW,

& matvec, IMATVEC, ia,ja,a,

& WORK, MW, NW,

& N, RHS, SOL,

& ITER, RESID,

& INFO, NUNIT )

The parameters of this routine are the same, except that MW*NW must be not less than 4N .

3 ILU0 preconditioner

ILU0 preconditioner is the simplest and the most popular ILU preconditioner. It is characterized by very
fast and economical factorization. The drawbacks of the method are slow convergence and danger to get
zero pivot. Nevertheless, for simple non-stiff problems it works well. The application of the preconditioner
has two stages: initialization and evaluation. The evaluation must be performed at each step of the iterative
method. It is provided by the routine prevec0 accompanying the initialization routine ilu0. The user
should only put the name prevec0 as the input parameter in the iterative solver:
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external prevec0

....

call slpbcgs(

& prevec0, IPREVEC, iW,rW,

& matvec, IMATVEC, ia,ja,a,

& WORK, MW, NW,

& N, RHS, SOL,

& ITER, RESID,

& INFO, NUNIT )

The initialization routine has the following parameters

call ilu0(n, a, ja, ia, alu, jlu, ju, iw, ierr)

where

• n is matrix order,

• ja,ia,a are two Integer and one Real*8 arrays containing the matrix in the CSR format,

• alu,jlu,ju are one Real*8 and two Integer arrays containing the L and U factors together,

• ierr is the integer error code (0 - successful factorization, k - zero pivot at step k),

• iw is the integer working array of length n.

Below we present the basic blocks of a program solving a system with matrix a, ia, ja and a right
hand side vector f by the BiCGstab method with the ILU0 preconditioner.

First we define all necessary arrays and variables:

C Arrays for matrix kept in CSR format

Integer ia(maxn+1), ja(maxnz)

Real*8 a(maxnz), f(maxn), u(maxn)

C Work arrays keeping ILU factors and 8 BCG vectors

Integer MaxWr,MaxWi

Parameter(MaxWr=maxnz+8*maxn, MaxWi=maxnz+2*maxn+1)

Real*8 rW(MaxWr)

Integer iW(MaxWi)

C BiCGStab data

External matvec, prevec0

Integer ITER, INFO, NUNIT

Real*8 RESID

C ILU0 data

Integer ierr, ipaLU, ipjLU, ipjU, ipiw

C Local variables

Integer ipBCG

When the matrix is stored in the CSR format, we initialize the preconditioner by computing L and U

factors and saving them in rW, iW:
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ipaLU=1

ipBCG=ipaLU+nz

ipjU =1

ipjLU=ipjU+n+1

ipiw =ipjLU+nz !work array of length n

call ilu0(n,a,ja,ia, rW(ipaLU),iW(ipjLU),iW(ipjU),iW(ipiw),ierr)

if (ierr.ne.0) then

write(*,*)’initialization of ilu0 failed, zero pivot=’,ierr

stop

end if

c Keep data in rW and iW up to rW(nz) and iW(nz+n+1) !

Once the preconditioner is initialized, we can call the iterative solution:

ITER = 1000 ! max number of iterations

RESID = 1d-8 ! threshold for \|RESID\|

INFO = 0 ! no troubles on input

NUNIT = 6 ! output channel

call slpbcgs(

> prevec0, n, iW,rW,

> matvec, n, ia,ja,a,

> rW(ipBCG), n, 8,

> n, f, u,

> ITER, RESID,

> INFO, NUNIT )

if (INFO.ne.0) stop ’BiCGStab failed’

An example of calling program is in file src/Tutorials/PackageILU/main ilu0.f.

4 ILU2 preconditioner

The ILU2 preconditioner is an ILU factorization with two thresholds proposed by I.Kaporin in 1998. For
symmetric positive definite stiff systems it is shown to be robust and to give better convergence rates
compared to other factorizations. It can be applied for non-symmetric matrices as well. The factorization
of the input matrix A satisfies the formula

A = LU + TU + LR − S

where L, U are the first order factors, T, R are the second order factors (kept and used in calculation,
neglected after calculation), S is the residual matrix (neglected during the calculation). The method
seems to be a very flexible and powerful tool to construct efficient preconditioners for stiff matrices. The
application of the preconditioner has two stages: initialization and evaluation. The evaluation must be
performed at each step of an iterative method. It is provided by the routine prevec2 accompanying the
initialization routine iluoo. The user should only put the name prevec2 as an input parameter in the
iterative solver:
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external prevec2

....

call slpbcgs(

& prevec2, IPREVEC, iW,rW,

& matvec, IMATVEC, ia,ja,a,

& WORK, MW, NW,

& N, RHS, SOL,

& ITER, RESID,

& INFO, NUNIT )

The initialization routine has the following parameters

call iluoo (n, ia, ja, a, tau1, tau2, verb,

& work, iwork, lendwork, leniwork,

& partlur, partlurout,

& lendworkout, leniworkout, ierr)

• n is the order of the square matrix A;

• ia,ja,a are two Integer and one Real*8 arrays containing matrix in the CSR format;

• tau1 is the absolute threshold for entries of L and U (elements of L and U greater than τ1 will enter
L and U ; recommended values lie in the interval [0.01; 0.1]);

• tau2 is the absolute threshold for entries of T and R (elements not included in L and U but greater
than τ2 will enter T and R; recommended value lie in the interval τ2

1 or 5τ2
1 − 0.1τ1);

• verb sets up the verbocity level: 0 means no output, positive means verbose output;

• work,iwork,lendwork,leniwork are working Real*8 and Integer arrays and their sizes;

• partlur is user defined partition of the available memory work,iwork, L, U occupy (1-partlur)*

lendwork and R occupies partlur*lendwork);

• partlurout is the optimal partition computed during factorization (may be useful for the next
factorization);

• lendworkout,leniworkout are the actual memory demands;

• ierr is the integer error code (0 - successful factorization).

Below we present the basic blocks of a program solving a system with matrix a, ia, ja and a right
hand side vector f by the BiCGstab method with the ILU2 preconditioner. First we define all necessary
arrays and variables:

C Arrays for matrix kept in CSR format

Integer ia(maxn+1), ja(maxnz)

Real*8 a(maxnz), f(maxn), u(maxn)

C Work arrays

Integer MaxWr,MaxWi

Parameter(MaxWr=5*maxnz, MaxWi=6*maxnz)

Real*8 rW(MaxWr)

Integer iW(MaxWi)

C BiCGStab data
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External matvec, prevec2

Integer ITER, INFO, NUNIT

Real*8 RESID

C ILU data

Real*8 tau1,tau2,partlur,partlurout

Integer verb, ierr, UsedWr, UsedWi

C Local variables

Integer ipBCG, ipIFREE

When the matrix is stored in the CSR format, we initialize the preconditioner by computing L and U

factors and saving them in rW, iW:

verb = 0 ! verbose no

tau1 = 1d-2

tau2 = 1d-3

partlur = 0.5

ierr = 0

call iluoo (n, ia, ja, a, tau1, tau2, verb,

& rW, iW, MaxWr, MaxWi, partlur, partlurout,

& UsedWr, UsedWi, ierr)

if (ierr.ne.0) then

write(*,*)’initialization of iluoo failed, ierr=’,ierr

stop

end if

if (UsedWr+8*n.gt.MaxWr) then

write(*,*) ’Increase MaxWr to ’,UsedWr+8*n

stop

end if

ipBCG = UsedWr + 1

Once the preconditioner is initialized, we can call the iterative solution:

ITER = 1000 ! max number of iterations

RESID = 1d-8 ! threshold for \|RESID\|

INFO = 0 ! no troubles on imput

NUNIT = 6 ! output channel

call slpbcgs(

> prevec2, n, iW,rW,

> matvec, n, ia,ja,a,

> rW(ipBCG), n, 8,

> n, f, u,

> ITER, RESID,

> INFO, NUNIT )

if (INFO.ne.0) stop ’BiCGStab failed’

An example is given in file src/Tutorials/PackageILU/main ilu2.f.
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Ani2D-INB Version 2.2 ”Starflower”

Flexible Iterative Solver Using

Inexact Newton-Krylov Backtracking

User’s Guide for libinb-2.2.a
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1 Basic features of the library

The FORTRAN package Ani2D-INB is an independent part of the package Ani2D . Ani2D-INB was
developed by Alexey Chernyshenko under the supervision of Yuri Vassilevski. It is designated for the
iterative solution of nonlinear systems. Ani2D-INB may be easily incorporated into any other software.
The package interfaces the ILU precondtioners provided by the Ani2D-ILU package. The package Ani2D-
INB is a deeply processed and essentially simplified version of the NITSOL package by Homer F. Walker.

The basic features of library libinb-2.2.a are listed below.

Iterative method : Inexact Newton-Krylov Backtracking (INB), with BiConjugate Gradient Stabilized
(BiCGStab) iteration as the interior Krylov subspace solver

Preconditioners : Common interface with ILU0 and ILU2, the second order accurate ILU (provided by
the Ani2D-ILU package).

Problem setting : User defined routine computing the nonlinear residual.

Data format : double precision or integer arrays. Enumeration starts from 1.

Typical memory requests : for systems with N equations INB needs 11 work vectors of dimension
N , one solution vector and a room for preconditioner data. If the preconditioner is built by the
Ani2D-ILU package, ILU0 requires the same storage as the CSR representation of the jacobian,
ILU2 requires 2-5-fold storage.

2 Iterative solution

The iterative solver is Inexact Newton-Krylov Backtracking (INB) method with inner linear solve BiConju-
gate Gradient Stabilized method (BiCGStab). This is the Newton type method applicable to non-singular
nonlinear systems. It requires two procedures: evaluation of the nonlinear residual function and (op-
tional) precondition-vector evaluation. The preconditioner should be an approximation of the inverse
jacobian matrix. The jacobian matrix is not required explicitly due to the finite-difference evaluation of
the jacobian-vector product. The call of the method is

external prevec, funvec

....

call slInexactNewton(

& prevec, IPREVEC, iWprevec, rWprevec,

& funvec, rpar, ipar,

& N, SOL,

& RESID, STPTOL,

& rWORK, LenrWORK,

& INFO)

• prevec is the name of a precondition-vector multiplication routine. IPREVEC, iWprevec, rWprevec

are arrays (Integer, Integer, Real*8, respectively) of user’s data which may be passed to prevec and
used there. Arrays iWprevec, rWprevec are recommended to keep the preconditioner bulk data
(triangular factors, for instance). Array IPREVEC may contain control parameters or basic user
data such as the system order and useful pointers. In the presented example, IPREVEC contains a
single entry equal to the system order. The format of prevec coincides with that from the package
Ani2D-ILU :

Subroutine prevec(IPREVEC, ICHANGE, X, Y, iW, rW)

c Input

Integer IPREVEC(*), ICHANGE, iW(*)

Real*8 X(*), rW(*)
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c Output

Real*8 Y(*)

where X is the input vector and Y is the output vector. ICHANGE is the flag controlling the change
of the preconditioner. It is useful when convergence stagnation occurs. iW, rW are Integer and
Real*8 arrays, respectively, which store the preconditioner data. The package Ani2D-ILU provides
two examples of routine prevec corresponding to two ILU preconditioners, prevec0 (ilu0.f) and
prevec2 (iluoo.f). The details may be found in the user guide for Ani2D-ILU .

• funvec is the name of the user routine computing the nonlinear residual vector function and ipar,

rpar are Integer and Real*8 arrays of user’s data which may be passed to funvec and used there.
The format of funvec is as follows:

Subroutine funvec(n, xcur, fcur, rpar, ipar, itrmf)

c INPUT:

Integer n ! dimension of vectors

Real*8 xcur(*) ! current vector

Real*8 rpar(*) ! double precision user-supplied parameters

Integer ipar(*) ! integer user-supplied parameters

c OUTPUT:

Integer fcur(*) ! nonlinear residual vector (zero for the solution)

Integer itrmf ! flag for successful termination of the routine

This routine calculates the nonlinear residual F (X).

• N is order of system and length of vectors.

• SOL is the initial guess and the iterated solution (Real*8).

• RESID is the convergence criterion for the nonlinear residual.

• STPTOL is the stopping tolerance on the Newton’s steplength

• rWORK(LenrWORK) is Real*8 working array which stores at least 11 vectors of size N .

• LenrWORK is the total length of rWORK which must be not less than 11 N.

• INFO is the array of control parameters. On input: INFO(1) sets initial value for successful termina-
tion flag, INFO(2) sets the maximal number of linear iterations per Newton step, INFO(3) sets the
maximal number of nonlinear iterations, INFO(4) sets the maximal number of backtracks, INFO(5)
sets the printing level (0 none, 1 nonlinear residuals, 2 linear residuals) On output: INFO(1) is the
value of the termination flag (successful termination corresponds to 0), INFO(2) is the number of
performed linear iterations, INFO(3) is the number of performed nonlinear iterations, INFO(4) is
the number of actual backtracks, INFO(5) is the number of performed function evaluations.

Examples of calling programs are in files src/Tutorials/PackageINB/main simple.f, src/Tutorials/
PackageINB/main bratu.f, src/Tutorials/MultiPackage/StokesNavier/main.f.
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Ani2D-LMR version 2.2 “Cornflower”

Local Metric Recovery

User’s Guide for liblmr2D-2.2.a
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1 Introduction

The FORTRAN package Ani2D-LMR is developed by Konstantin Lipnikov and Yuri Vassilevski. It is
designated for generating continuous tensor metrics. The tensor components are piecewise linear functions
defined on nodes of a given triangular mesh. The generated metric may be used further in Metric Based
Adaptation package Ani2D-MBA .

The input data for metric generation is either a discrete solution defined at mesh nodes, or cell-based
or edge-based errors estimates.

The library liblmr2D-2.2.a can be incorporated into other packages.
This document describes the structure of the package, input data, and user-supplied routines. It

presents a few examples illustrating details of the package.

2 Copyright and Usage Restrictions

The software is made available for nonprofit use only. You may copy and use this software without any
charge, provided that the COPYRIGHT file is attached to all copies. For all other uses please contact one of
the authors.

The software is made available “as is” without any assurance that it will work for your purposes. The
authors are not responsible for any damages caused by using this software.

3 Description of Ani2D-LMR

3.1 General structure of package

The package Ani2D-LMR consists of five FORTRAN files and one include file

CellEst2Metric.f EdgeEst2Metric.f Func2Metric.f Func2MetricZZ.f Lp_norm.f metric.fd

The routines in this files implement one of the following basic tasks:

1. Recovery of a nodal metric from a discrete nodal function;

2. Recovery of a nodal metric from an edge-based error estimator;

3. Recovery of a nodal metric from a cell-based error estimator;

4. Modification of a metric for error minimization in the Lp norm.

These features will be discussed in subsequent sections.
In addition to the library Ani2D-LMR , package Ani2D contains a tutorial directory discribed in the

last section.

3.2 Local metric recovery from discrete function

A nodal tensor metric may be recovered from the discrete function defined at nodes of the mesh. The metric
is the spectral module of the discrete Hessian of this mesh function. A mesh that is quasi-uniform in this
metric minimizes the maximum norm of the approximation error of an underlying continuous function.
Two methods for the Hessian recovery are implemented in files Func2Metric.f and Func2MetricZZ.f.

Subroutine Func2Metric( u,

& Vrt,Nvrt, Tri,Ntri, Bnd,Nbnd, measure,

& Nrmem,rmem, Nimem,imem)
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Subroutine Func2MetricZZ(u,

& Vrt,Nvrt, Tri,Ntri, Bnd,Nbnd, measure,

& Nrmem,rmem, Nimem,imem)

C Input: u - function, the basis for the metric

C Nvrt - the number of nodes

C Vrt - coords of the nodes

C Ntri - the number of triangles

C Tri - the connecticity table

C Nbnd - the number of boundary edges

C Bnd - the list of boundary edges

C Output: measure - metric to be defined. Is the discrete

C Hessian reduced to elliptic form

C Work arrays: rmem - d.p., of length Nrmem

C imem - integer, of length Nimem

The input mesh has to satisfy the following condition. Every boundary can be connected to an interior
node with at most two mesh edges.

3.3 Local metric recovery from edge-based error estimator

Nodal tensor metric may be recovered from edge-based error estimates ηek
. The metric may be anisotropic

in this case. Two methods of nodal metric recovery are implemented.
The first method is the Least Squares solution of the local system

(M(ai)ek, ek) = ηek
.

Here M(ai) is the tensor metric to be recovered at a mesh node ai, ek are all mesh edges incident to ai,
ηek

are edge-based error estimates.

Subroutine EdgeEst2MetricLS(nP, nF, nE, XYP, IPE, IPF,

& error, metric,

& MaxWr, MaxWi, rW, iW)

c Input:

Real*8 error(3, *) ! edge error estimates data

Integer nP, nF, nE ! numbers of nodes, cells, boundary edges

Real*8 XYP(2, *) ! coordinates of mesh nodes

Integer IPE(3, *) ! connectivity table

Integer IPF(4, *) ! boundary edges data

c Output:

Real*8 metric(3, *) ! node-based metric

c Working arrays:

Integer MaxWr, MaxWi

Integer iW(MaxWi)

Real*8 rW(MaxWr)

The second method recovers cell-based tensor metric cell-wise and then for each node ai it picks the
cell metric with the maximum determinant among all within ai-superelement.

Subroutine EdgeEst2MetricMAX(nP, nF, nE, XYP, IPE, IPF,
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& error, metric,

& MaxWr, MaxWi, rW, iW)

c Input:

Integer nP, nF, nE ! numbers of nodes, cells, boundary edges

Real*8 XYP(2, *) ! coordinates of mesh nodes

Integer IPE(3, *) ! connectivity table

Integer IPF(4, *) ! boundary edges data

Real*8 error(3, *) ! edge error estimates data

c Output:

Real*8 metric(3, *) ! node-based metric

c Working arrays:

Integer MaxWr, MaxWi

Integer iW(MaxWi)

Real*8 rW(MaxWr)

Both methods are implemented in file EdgeEst2Metric.f. Being involved in an adaptive loop, the
recovered metric minimizes the estimated norm of the error.

3.4 Local metric recovery from cell-based error estimator

Nodal tensor metric may be recovered from cell-based error estimates η∆k
:

M(∆k) = η∆k
.

The metric is isotropic (scalar tensor) in this case. The nodal metric is generated by ZZ recovery to scalar
cell-based metric.

Subroutine CellEst2Metric(nP, nF, nE, XYP, IPE, IPF,

& error, metric,

& MaxWr, MaxWi, rW, iW)

c Input:

Integer nP, nF, nE ! numbers of nodes, element, boundary edges

Real*8 XYP(2, *) ! coordinates of mesh nodes

Integer IPE(3, *) ! connectivity table for elements

Integer IPF(4, *) ! boundary edges data

Real*8 error(*) ! element-based error estimates

c Output:

Real*8 metric(3, *) ! node-based metric

c Working arrays:

Integer MaxWr, MaxWi

Integer iW(MaxWi)

Real*8 rW(MaxWr)

The method is implemented in file CellEst2Metric.f. Being involved in an adaptive loop, the recov-
ered metric minimizes the estimated norm of the error provided the solution is isotropic.
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3.5 Metric modification for error minimization in Lp

The local metric recovery from discrete function targets minimization of the maximum (L∞) norm of the
error in discrete solution. If the user wants to minimize Lp norm, he should modify the metric in accordance
with value of p.

Subroutine Lp_norm(nP, Lp, Metric)

C Routine computes the metric for L_p norm using the metric

C generated for the maximum norm.

C

C Lp - norm for which the metric is to be adjusted:

C Lp > 0 means L_p norm

C Lp = 0 means maximum norm (L_infinity)

C Lp < 0 means H_1 norm (not implemented yet)

Real*8 Metric(3, *), Lp

The method is implemented in file Lp norm.f. The routine must follow the call of Func2Metric. Being
involved in an adaptive loop, the recovered and modified metric minimizes Lp norm of the error.

4 Examples

Examples of usage of the package Ani2D-LMR are located in src/Tutorials/PackageLMR.
The program mainFunc2Metric.f demonstrates the local metric recovery from discrete solution defined

at nodes of the mesh. The metric is recovered from evaluation of the discrete Hessian of the solution. The
metric depends on what Lp norm of the error the user wants to minimize in adaptive mesh generation.

The program mainEst2Metric.f builds a metric from errors defined at centers of mesh elements (cells
or edges). The errors may be substituted by user given error estimates. The current release calculates the
maximum norm of the interpolation error on cells or edges for user-defined function Func(x,y).
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Ani2D-VIEW Version 2.2 “Coneflower”

Visualization Toolkit

User’s Guide for libview-2.2.a

Ani2D-VIEW is a simple visualizing library producing PostScript-files of a mesh and isolines of a discrete
solution.

Self-instructive examples of using Ani2D-VIEW are given in src/Tutorials/PackageVIEW/main.f.
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Ani2D-C2F Version 2.2 “Fleeceflower”

C-wrapper for FORTRAN Packages

User’s Guide for libc2f-2.2.a

The C package Ani2D-C2F is a simple C-wrapper to call mesh generation routines from package Ani2D-
MBA in a C program. In future releases Ani2D-C2F will be extended by C-wrappers to Ani2D-RCB ,
Ani2D-FEM , Ani2D-ILU .

Examples of using Ani2D-C2F in C programs are given in files src/Tutorials/PackageC2F/main nodal.f,
src/Tutorials/PackageC2F/main analytic.f.
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