1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
|
// Copyright (C) 2018-2019 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
#include "ext_list.hpp"
#include "ext_base.hpp"
#include <cfloat>
#include <vector>
#include <cmath>
#include <string>
#include <utility>
#include <algorithm>
#include "ie_parallel.hpp"
namespace InferenceEngine {
namespace Extensions {
namespace Cpu {
template <typename T>
static bool SortScorePairDescend(const std::pair<float, T>& pair1,
const std::pair<float, T>& pair2) {
return pair1.first > pair2.first;
}
class DetectionOutputImpl: public ExtLayerBase {
public:
explicit DetectionOutputImpl(const CNNLayer* layer) {
try {
if (layer->insData.size() != 3)
THROW_IE_EXCEPTION << "Incorrect number of input edges for layer " << layer->name;
if (layer->outData.empty())
THROW_IE_EXCEPTION << "Incorrect number of output edges for layer " << layer->name;
_num_classes = layer->GetParamAsInt("num_classes");
_background_label_id = layer->GetParamAsInt("background_label_id", 0);
_top_k = layer->GetParamAsInt("top_k", -1);
_variance_encoded_in_target = layer->GetParamAsBool("variance_encoded_in_target", false);
_keep_top_k = layer->GetParamAsInt("keep_top_k", -1);
_nms_threshold = layer->GetParamAsFloat("nms_threshold");
_confidence_threshold = layer->GetParamAsFloat("confidence_threshold", -FLT_MAX);
_share_location = layer->GetParamAsBool("share_location", true);
_clip_before_nms = layer->GetParamAsBool("clip_before_nms", false) ||
layer->GetParamAsBool("clip", false); // for backward compatibility
_clip_after_nms = layer->GetParamAsBool("clip_after_nms", false);
_decrease_label_id = layer->GetParamAsBool("decrease_label_id", false);
_normalized = layer->GetParamAsBool("normalized", true);
_image_height = layer->GetParamAsInt("input_height", 1);
_image_width = layer->GetParamAsInt("input_width", 1);
_prior_size = _normalized ? 4 : 5;
_offset = _normalized ? 0 : 1;
_num_loc_classes = _share_location ? 1 : _num_classes;
std::string code_type_str = layer->GetParamAsString("code_type", "caffe.PriorBoxParameter.CORNER");
_code_type = (code_type_str == "caffe.PriorBoxParameter.CENTER_SIZE" ? CodeType::CENTER_SIZE
: CodeType::CORNER);
_num_priors = static_cast<int>(layer->insData[idx_priors].lock()->getDims().back() / _prior_size);
_priors_batches = layer->insData[idx_priors].lock()->getDims().front() != 1;
if (_num_priors * _num_loc_classes * 4 != static_cast<int>(layer->insData[idx_location].lock()->getDims()[1]))
THROW_IE_EXCEPTION << "Number of priors must match number of location predictions ("
<< _num_priors * _num_loc_classes * 4 << " vs "
<< layer->insData[idx_location].lock()->getDims()[1] << ")";
if (_num_priors * _num_classes != static_cast<int>(layer->insData[idx_confidence].lock()->getTensorDesc().getDims().back()))
THROW_IE_EXCEPTION << "Number of priors must match number of confidence predictions.";
if (_decrease_label_id && _background_label_id != 0)
THROW_IE_EXCEPTION << "Cannot use decrease_label_id and background_label_id parameter simultaneously.";
_num = static_cast<int>(layer->insData[idx_confidence].lock()->getTensorDesc().getDims()[0]);
InferenceEngine::SizeVector bboxes_size{static_cast<size_t>(_num),
static_cast<size_t>(_num_classes),
static_cast<size_t>(_num_priors),
4};
_decoded_bboxes = InferenceEngine::make_shared_blob<float>({Precision::FP32, bboxes_size, NCHW});
_decoded_bboxes->allocate();
InferenceEngine::SizeVector buf_size{static_cast<size_t>(_num),
static_cast<size_t>(_num_classes),
static_cast<size_t>(_num_priors)};
_buffer = InferenceEngine::make_shared_blob<int>({Precision::I32, buf_size, {buf_size, {0, 1, 2}}});
_buffer->allocate();
InferenceEngine::SizeVector indices_size{static_cast<size_t>(_num),
static_cast<size_t>(_num_classes),
static_cast<size_t>(_num_priors)};
_indices = InferenceEngine::make_shared_blob<int>(
{Precision::I32, indices_size, {indices_size, {0, 1, 2}}});
_indices->allocate();
InferenceEngine::SizeVector detections_size{static_cast<size_t>(_num * _num_classes)};
_detections_count = InferenceEngine::make_shared_blob<int>({Precision::I32, detections_size, C});
_detections_count->allocate();
const InferenceEngine::SizeVector &conf_size = layer->insData[idx_confidence].lock()->getTensorDesc().getDims();
_reordered_conf = InferenceEngine::make_shared_blob<float>({Precision::FP32, conf_size, ANY});
_reordered_conf->allocate();
InferenceEngine::SizeVector decoded_bboxes_size{static_cast<size_t>(_num),
static_cast<size_t>(_num_priors),
static_cast<size_t>(_num_classes)};
_bbox_sizes = InferenceEngine::make_shared_blob<float>(
{Precision::FP32, decoded_bboxes_size, {decoded_bboxes_size, {0, 1, 2}}});
_bbox_sizes->allocate();
InferenceEngine::SizeVector num_priors_actual_size{static_cast<size_t>(_num)};
_num_priors_actual = InferenceEngine::make_shared_blob<int>({Precision::I32, num_priors_actual_size, C});
_num_priors_actual->allocate();
addConfig(layer, {DataConfigurator(ConfLayout::PLN),
DataConfigurator(ConfLayout::PLN),
DataConfigurator(ConfLayout::PLN)}, {DataConfigurator(ConfLayout::PLN)});
} catch (InferenceEngine::details::InferenceEngineException &ex) {
errorMsg = ex.what();
}
}
StatusCode execute(std::vector<Blob::Ptr>& inputs, std::vector<Blob::Ptr>& outputs,
ResponseDesc *resp) noexcept override {
float *dst_data = outputs[0]->buffer();
const float *loc_data = inputs[idx_location]->buffer();
const float *conf_data = inputs[idx_confidence]->buffer();
const float *prior_data = inputs[idx_priors]->buffer();
const int N = inputs[idx_confidence]->getTensorDesc().getDims()[0];
float *decoded_bboxes_data = _decoded_bboxes->buffer();
float *reordered_conf_data = _reordered_conf->buffer();
float *bbox_sizes_data = _bbox_sizes->buffer();
int *detections_data = _detections_count->buffer();
int *buffer_data = _buffer->buffer();
int *indices_data = _indices->buffer();
int *num_priors_actual = _num_priors_actual->buffer();
for (int n = 0; n < N; ++n) {
const float *ppriors = prior_data;
const float *prior_variances = prior_data + _num_priors*_prior_size;
if (_priors_batches) {
ppriors += _variance_encoded_in_target ? n*_num_priors*_prior_size : 2*n*_num_priors*_prior_size;
prior_variances += _variance_encoded_in_target ? 0 : n*_num_priors*_prior_size;
}
if (_share_location) {
const float *ploc = loc_data + n*4*_num_priors;
float *pboxes = decoded_bboxes_data + n*4*_num_priors;
float *psizes = bbox_sizes_data + n*_num_priors;
decodeBBoxes(ppriors, ploc, prior_variances, pboxes, psizes, num_priors_actual, n);
} else {
for (int c = 0; c < _num_loc_classes; ++c) {
if (c == _background_label_id) {
continue;
}
const float *ploc = loc_data + n*4*_num_loc_classes*_num_priors + c*4;
float *pboxes = decoded_bboxes_data + n*4*_num_loc_classes*_num_priors + c*4*_num_priors;
float *psizes = bbox_sizes_data + n*_num_loc_classes*_num_priors + c*_num_priors;
decodeBBoxes(ppriors, ploc, prior_variances, pboxes, psizes, num_priors_actual, n);
}
}
}
for (int n = 0; n < N; ++n) {
for (int c = 0; c < _num_classes; ++c) {
for (int p = 0; p < _num_priors; ++p) {
reordered_conf_data[n*_num_priors*_num_classes + c*_num_priors + p] = conf_data[n*_num_priors*_num_classes + p*_num_classes + c];
}
}
}
memset(detections_data, 0, N*_num_classes*sizeof(int));
for (int n = 0; n < N; ++n) {
int detections_total = 0;
if (!_decrease_label_id) {
// Caffe style
parallel_for(_num_classes, [&](int c) {
if (c != _background_label_id) { // Ignore background class
int *pindices = indices_data + n*_num_classes*_num_priors + c*_num_priors;
int *pbuffer = buffer_data + c*_num_priors;
int *pdetections = detections_data + n*_num_classes + c;
const float *pconf = reordered_conf_data + n*_num_classes*_num_priors + c*_num_priors;
const float *pboxes;
const float *psizes;
if (_share_location) {
pboxes = decoded_bboxes_data + n*4*_num_priors;
psizes = bbox_sizes_data + n*_num_priors;
} else {
pboxes = decoded_bboxes_data + n*4*_num_classes*_num_priors + c*4*_num_priors;
psizes = bbox_sizes_data + n*_num_classes*_num_priors + c*_num_priors;
}
nms_cf(pconf, pboxes, psizes, pbuffer, pindices, *pdetections, num_priors_actual[n]);
}
});
} else {
// MXNet style
int *pindices = indices_data + n*_num_classes*_num_priors;
int *pbuffer = buffer_data;
int *pdetections = detections_data + n*_num_classes;
const float *pconf = reordered_conf_data + n*_num_classes*_num_priors;
const float *pboxes = decoded_bboxes_data + n*4*_num_priors;
const float *psizes = bbox_sizes_data + n*_num_priors;
nms_mx(pconf, pboxes, psizes, pbuffer, pindices, pdetections, _num_priors);
}
for (int c = 0; c < _num_classes; ++c) {
detections_total += detections_data[n*_num_classes + c];
}
if (_keep_top_k > -1 && detections_total > _keep_top_k) {
std::vector<std::pair<float, std::pair<int, int>>> conf_index_class_map;
for (int c = 0; c < _num_classes; ++c) {
int detections = detections_data[n*_num_classes + c];
int *pindices = indices_data + n*_num_classes*_num_priors + c*_num_priors;
float *pconf = reordered_conf_data + n*_num_classes*_num_priors + c*_num_priors;
for (int i = 0; i < detections; ++i) {
int idx = pindices[i];
conf_index_class_map.push_back(std::make_pair(pconf[idx], std::make_pair(c, idx)));
}
}
std::sort(conf_index_class_map.begin(), conf_index_class_map.end(),
SortScorePairDescend<std::pair<int, int>>);
conf_index_class_map.resize(_keep_top_k);
// Store the new indices.
memset(detections_data + n*_num_classes, 0, _num_classes * sizeof(int));
for (size_t j = 0; j < conf_index_class_map.size(); ++j) {
int label = conf_index_class_map[j].second.first;
int idx = conf_index_class_map[j].second.second;
int *pindices = indices_data + n * _num_classes * _num_priors + label * _num_priors;
pindices[detections_data[n*_num_classes + label]] = idx;
detections_data[n*_num_classes + label]++;
}
}
}
const int DETECTION_SIZE = outputs[0]->getTensorDesc().getDims()[3];
if (DETECTION_SIZE != 7) {
return NOT_IMPLEMENTED;
}
auto dst_data_size = N * _keep_top_k * DETECTION_SIZE * sizeof(float);
if (dst_data_size > outputs[0]->byteSize()) {
return OUT_OF_BOUNDS;
}
memset(dst_data, 0, dst_data_size);
int count = 0;
for (int n = 0; n < N; ++n) {
const float *pconf = reordered_conf_data + n * _num_priors * _num_classes;
const float *pboxes = decoded_bboxes_data + n*_num_priors*4*_num_loc_classes;
const int *pindices = indices_data + n*_num_classes*_num_priors;
for (int c = 0; c < _num_classes; ++c) {
for (int i = 0; i < detections_data[n*_num_classes + c]; ++i) {
int idx = pindices[c*_num_priors + i];
dst_data[count * DETECTION_SIZE + 0] = static_cast<float>(n);
dst_data[count * DETECTION_SIZE + 1] = static_cast<float>(_decrease_label_id ? c-1 : c);
dst_data[count * DETECTION_SIZE + 2] = pconf[c*_num_priors + idx];
float xmin = _share_location ? pboxes[idx*4 + 0] :
pboxes[c*4*_num_priors + idx*4 + 0];
float ymin = _share_location ? pboxes[idx*4 + 1] :
pboxes[c*4*_num_priors + idx*4 + 1];
float xmax = _share_location ? pboxes[idx*4 + 2] :
pboxes[c*4*_num_priors + idx*4 + 2];
float ymax = _share_location ? pboxes[idx*4 + 3] :
pboxes[c*4*_num_priors + idx*4 + 3];
if (_clip_after_nms) {
xmin = std::max(0.0f, std::min(1.0f, xmin));
ymin = std::max(0.0f, std::min(1.0f, ymin));
xmax = std::max(0.0f, std::min(1.0f, xmax));
ymax = std::max(0.0f, std::min(1.0f, ymax));
}
dst_data[count * DETECTION_SIZE + 3] = xmin;
dst_data[count * DETECTION_SIZE + 4] = ymin;
dst_data[count * DETECTION_SIZE + 5] = xmax;
dst_data[count * DETECTION_SIZE + 6] = ymax;
++count;
}
}
}
if (count < N*_keep_top_k) {
// marker at end of boxes list
dst_data[count * DETECTION_SIZE + 0] = -1;
}
return OK;
}
private:
const int idx_location = 0;
const int idx_confidence = 1;
const int idx_priors = 2;
int _num_classes = 0;
int _background_label_id = 0;
int _top_k = 0;
int _variance_encoded_in_target = 0;
int _keep_top_k = 0;
int _code_type = 0;
bool _share_location = false;
bool _clip_before_nms = false; // clip bounding boxes before nms step
bool _clip_after_nms = false; // clip bounding boxes after nms step
bool _decrease_label_id = false;
int _image_width = 0;
int _image_height = 0;
int _prior_size = 4;
bool _normalized = true;
int _offset = 0;
float _nms_threshold = 0.0f;
float _confidence_threshold = 0.0f;
int _num = 0;
int _num_loc_classes = 0;
int _num_priors = 0;
bool _priors_batches = false;
enum CodeType {
CORNER = 1,
CENTER_SIZE = 2,
};
void decodeBBoxes(const float *prior_data, const float *loc_data, const float *variance_data,
float *decoded_bboxes, float *decoded_bbox_sizes, int* num_priors_actual, int n);
void nms_cf(const float *conf_data, const float *bboxes, const float *sizes,
int *buffer, int *indices, int &detections, int num_priors_actual);
void nms_mx(const float *conf_data, const float *bboxes, const float *sizes,
int *buffer, int *indices, int *detections, int num_priors_actual);
InferenceEngine::Blob::Ptr _decoded_bboxes;
InferenceEngine::Blob::Ptr _buffer;
InferenceEngine::Blob::Ptr _indices;
InferenceEngine::Blob::Ptr _detections_count;
InferenceEngine::Blob::Ptr _reordered_conf;
InferenceEngine::Blob::Ptr _bbox_sizes;
InferenceEngine::Blob::Ptr _num_priors_actual;
};
struct ConfidenceComparator {
explicit ConfidenceComparator(const float* conf_data) : _conf_data(conf_data) {}
bool operator()(int idx1, int idx2) {
if (_conf_data[idx1] > _conf_data[idx2]) return true;
if (_conf_data[idx1] < _conf_data[idx2]) return false;
return idx1 < idx2;
}
const float* _conf_data;
};
static inline float JaccardOverlap(const float *decoded_bbox,
const float *bbox_sizes,
const int idx1,
const int idx2) {
float xmin1 = decoded_bbox[idx1*4 + 0];
float ymin1 = decoded_bbox[idx1*4 + 1];
float xmax1 = decoded_bbox[idx1*4 + 2];
float ymax1 = decoded_bbox[idx1*4 + 3];
float xmin2 = decoded_bbox[idx2*4 + 0];
float ymin2 = decoded_bbox[idx2*4 + 1];
float ymax2 = decoded_bbox[idx2*4 + 3];
float xmax2 = decoded_bbox[idx2*4 + 2];
if (xmin2 > xmax1 || xmax2 < xmin1 || ymin2 > ymax1 || ymax2 < ymin1) {
return 0.0f;
}
float intersect_xmin = std::max(xmin1, xmin2);
float intersect_ymin = std::max(ymin1, ymin2);
float intersect_xmax = std::min(xmax1, xmax2);
float intersect_ymax = std::min(ymax1, ymax2);
float intersect_width = intersect_xmax - intersect_xmin;
float intersect_height = intersect_ymax - intersect_ymin;
if (intersect_width <= 0 || intersect_height <= 0) {
return 0.0f;
}
float intersect_size = intersect_width * intersect_height;
float bbox1_size = bbox_sizes[idx1];
float bbox2_size = bbox_sizes[idx2];
return intersect_size / (bbox1_size + bbox2_size - intersect_size);
}
void DetectionOutputImpl::decodeBBoxes(const float *prior_data,
const float *loc_data,
const float *variance_data,
float *decoded_bboxes,
float *decoded_bbox_sizes,
int* num_priors_actual,
int n) {
num_priors_actual[n] = _num_priors;
if (!_normalized) {
int num = 0;
for (; num < _num_priors; ++num) {
float batch_id = prior_data[num * _prior_size + 0];
if (batch_id == -1.f) {
num_priors_actual[n] = num;
break;
}
}
}
parallel_for(num_priors_actual[n], [&](int p) {
float new_xmin = 0.0f;
float new_ymin = 0.0f;
float new_xmax = 0.0f;
float new_ymax = 0.0f;
float prior_xmin = prior_data[p*_prior_size + 0 + _offset];
float prior_ymin = prior_data[p*_prior_size + 1 + _offset];
float prior_xmax = prior_data[p*_prior_size + 2 + _offset];
float prior_ymax = prior_data[p*_prior_size + 3 + _offset];
float loc_xmin = loc_data[4*p*_num_loc_classes + 0];
float loc_ymin = loc_data[4*p*_num_loc_classes + 1];
float loc_xmax = loc_data[4*p*_num_loc_classes + 2];
float loc_ymax = loc_data[4*p*_num_loc_classes + 3];
if (!_normalized) {
prior_xmin /= _image_width;
prior_ymin /= _image_height;
prior_xmax /= _image_width;
prior_ymax /= _image_height;
}
if (_code_type == CodeType::CORNER) {
if (_variance_encoded_in_target) {
// variance is encoded in target, we simply need to add the offset predictions.
new_xmin = prior_xmin + loc_xmin;
new_ymin = prior_ymin + loc_ymin;
new_xmax = prior_xmax + loc_xmax;
new_ymax = prior_ymax + loc_ymax;
} else {
new_xmin = prior_xmin + variance_data[p*4 + 0] * loc_xmin;
new_ymin = prior_ymin + variance_data[p*4 + 1] * loc_ymin;
new_xmax = prior_xmax + variance_data[p*4 + 2] * loc_xmax;
new_ymax = prior_ymax + variance_data[p*4 + 3] * loc_ymax;
}
} else if (_code_type == CodeType::CENTER_SIZE) {
float prior_width = prior_xmax - prior_xmin;
float prior_height = prior_ymax - prior_ymin;
float prior_center_x = (prior_xmin + prior_xmax) / 2.0f;
float prior_center_y = (prior_ymin + prior_ymax) / 2.0f;
float decode_bbox_center_x, decode_bbox_center_y;
float decode_bbox_width, decode_bbox_height;
if (_variance_encoded_in_target) {
// variance is encoded in target, we simply need to restore the offset predictions.
decode_bbox_center_x = loc_xmin * prior_width + prior_center_x;
decode_bbox_center_y = loc_ymin * prior_height + prior_center_y;
decode_bbox_width = std::exp(loc_xmax) * prior_width;
decode_bbox_height = std::exp(loc_ymax) * prior_height;
} else {
// variance is encoded in bbox, we need to scale the offset accordingly.
decode_bbox_center_x = variance_data[p*4 + 0] * loc_xmin * prior_width + prior_center_x;
decode_bbox_center_y = variance_data[p*4 + 1] * loc_ymin * prior_height + prior_center_y;
decode_bbox_width = std::exp(variance_data[p*4 + 2] * loc_xmax) * prior_width;
decode_bbox_height = std::exp(variance_data[p*4 + 3] * loc_ymax) * prior_height;
}
new_xmin = decode_bbox_center_x - decode_bbox_width / 2.0f;
new_ymin = decode_bbox_center_y - decode_bbox_height / 2.0f;
new_xmax = decode_bbox_center_x + decode_bbox_width / 2.0f;
new_ymax = decode_bbox_center_y + decode_bbox_height / 2.0f;
}
if (_clip_before_nms) {
new_xmin = std::max(0.0f, std::min(1.0f, new_xmin));
new_ymin = std::max(0.0f, std::min(1.0f, new_ymin));
new_xmax = std::max(0.0f, std::min(1.0f, new_xmax));
new_ymax = std::max(0.0f, std::min(1.0f, new_ymax));
}
decoded_bboxes[p*4 + 0] = new_xmin;
decoded_bboxes[p*4 + 1] = new_ymin;
decoded_bboxes[p*4 + 2] = new_xmax;
decoded_bboxes[p*4 + 3] = new_ymax;
decoded_bbox_sizes[p] = (new_xmax - new_xmin) * (new_ymax - new_ymin);
});
}
void DetectionOutputImpl::nms_cf(const float* conf_data,
const float* bboxes,
const float* sizes,
int* buffer,
int* indices,
int& detections,
int num_priors_actual) {
int count = 0;
for (int i = 0; i < num_priors_actual; ++i) {
if (conf_data[i] > _confidence_threshold) {
indices[count] = i;
count++;
}
}
int num_output_scores = (_top_k == -1 ? count : std::min<int>(_top_k, count));
std::partial_sort_copy(indices, indices + count,
buffer, buffer + num_output_scores,
ConfidenceComparator(conf_data));
for (int i = 0; i < num_output_scores; ++i) {
const int idx = buffer[i];
bool keep = true;
for (int k = 0; k < detections; ++k) {
const int kept_idx = indices[k];
float overlap = JaccardOverlap(bboxes, sizes, idx, kept_idx);
if (overlap > _nms_threshold) {
keep = false;
break;
}
}
if (keep) {
indices[detections] = idx;
detections++;
}
}
}
void DetectionOutputImpl::nms_mx(const float* conf_data,
const float* bboxes,
const float* sizes,
int* buffer,
int* indices,
int* detections,
int num_priors_actual) {
int count = 0;
for (int i = 0; i < num_priors_actual; ++i) {
float conf = -1;
int id = 0;
for (int c = 1; c < _num_classes; ++c) {
float temp = conf_data[c*_num_priors + i];
if (temp > conf) {
conf = temp;
id = c;
}
}
if (id > 0 && conf >= _confidence_threshold) {
indices[count++] = id*_num_priors + i;
}
}
int num_output_scores = (_top_k == -1 ? count : std::min<int>(_top_k, count));
std::partial_sort_copy(indices, indices + count,
buffer, buffer + num_output_scores,
ConfidenceComparator(conf_data));
for (int i = 0; i < num_output_scores; ++i) {
const int idx = buffer[i];
const int cls = idx/_num_priors;
const int prior = idx%_num_priors;
int &ndetection = detections[cls];
int *pindices = indices + cls*_num_priors;
bool keep = true;
for (int k = 0; k < ndetection; ++k) {
const int kept_idx = pindices[k];
float overlap = JaccardOverlap(bboxes, sizes, prior, kept_idx);
if (overlap > _nms_threshold) {
keep = false;
break;
}
}
if (keep) {
pindices[ndetection++] = prior;
}
}
}
REG_FACTORY_FOR(ImplFactory<DetectionOutputImpl>, DetectionOutput);
} // namespace Cpu
} // namespace Extensions
} // namespace InferenceEngine
|