~iliaplatone/spacedrone.eu/inova-sis-pack

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
// Copyright (C) 2018-2019 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//

// There are some code snippets in this file.
// Original source file is avaialble here (Copyright (c) 2018 Facebook, MIT License):
// https://github.com/facebookresearch/maskrcnn-benchmark/blob/master/maskrcnn_benchmark/csrc/cpu/ROIAlign_cpu.cpp
//

#include "ext_list.hpp"
#include "ext_base.hpp"
#include <cassert>
#include <cmath>
#include <vector>
#include <string>
#include <algorithm>
#include "ie_parallel.hpp"

namespace InferenceEngine {
namespace Extensions {
namespace Cpu {

// implementation taken from Caffe2
template <typename T>
struct PreCalc {
  int pos1;
  int pos2;
  int pos3;
  int pos4;
  T w1;
  T w2;
  T w3;
  T w4;
};

template <typename T>
void pre_calc_for_bilinear_interpolate(
    const int height,
    const int width,
    const int pooled_height,
    const int pooled_width,
    const int iy_upper,
    const int ix_upper,
    T roi_start_h,
    T roi_start_w,
    T bin_size_h,
    T bin_size_w,
    int roi_bin_grid_h,
    int roi_bin_grid_w,
    std::vector<PreCalc<T>>& pre_calc) {
  int pre_calc_index = 0;
  for (int ph = 0; ph < pooled_height; ph++) {
    for (int pw = 0; pw < pooled_width; pw++) {
      for (int iy = 0; iy < iy_upper; iy++) {
        const T yy = roi_start_h + ph * bin_size_h +
            static_cast<T>(iy + .5f) * bin_size_h /
                static_cast<T>(roi_bin_grid_h);  // e.g., 0.5, 1.5
        for (int ix = 0; ix < ix_upper; ix++) {
          const T xx = roi_start_w + pw * bin_size_w +
              static_cast<T>(ix + .5f) * bin_size_w /
                  static_cast<T>(roi_bin_grid_w);

          T x = xx;
          T y = yy;
          // deal with: inverse elements are out of feature map boundary
          if (y < -1.0 || y > height || x < -1.0 || x > width) {
            // empty
            PreCalc<T> pc;
            pc.pos1 = 0;
            pc.pos2 = 0;
            pc.pos3 = 0;
            pc.pos4 = 0;
            pc.w1 = 0;
            pc.w2 = 0;
            pc.w3 = 0;
            pc.w4 = 0;
            pre_calc.at(pre_calc_index) = pc;
            pre_calc_index += 1;
            continue;
          }

          if (y <= 0) {
            y = 0;
          }
          if (x <= 0) {
            x = 0;
          }

          int y_low = static_cast<int>(y);
          int x_low = static_cast<int>(x);
          int y_high = 0;
          int x_high = 0;

          if (y_low >= height - 1) {
            y_high = y_low = height - 1;
            y = (T)y_low;
          } else {
            y_high = y_low + 1;
          }

          if (x_low >= width - 1) {
            x_high = x_low = width - 1;
            x = (T)x_low;
          } else {
            x_high = x_low + 1;
          }

          T ly = y - y_low;
          T lx = x - x_low;
          T hy = static_cast<T>(1) - ly, hx = static_cast<T>(1) - lx;
          T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;

          // save weights and indeces
          PreCalc<T> pc;
          pc.pos1 = y_low * width + x_low;
          pc.pos2 = y_low * width + x_high;
          pc.pos3 = y_high * width + x_low;
          pc.pos4 = y_high * width + x_high;
          pc.w1 = w1;
          pc.w2 = w2;
          pc.w3 = w3;
          pc.w4 = w4;
          pre_calc[pre_calc_index] = pc;

          pre_calc_index += 1;
        }
      }
    }
  }
}

template <typename T>
void ROIAlignForward_cpu_kernel(
    const int nthreads,
    const T* bottom_data,
    const T& spatial_scale,
    const int channels,
    const int height,
    const int width,
    const int pooled_height,
    const int pooled_width,
    const int sampling_ratio,
    const T* bottom_rois,
    T* top_data) {
  int roi_cols = 4;

  int n_rois = nthreads / channels / pooled_width / pooled_height;
  // (n, c, ph, pw) is an element in the pooled output
  parallel_for(n_rois, [&](size_t n) {
    int index_n = n * channels * pooled_width * pooled_height;

    // roi could have 4 or 5 columns
    const T* offset_bottom_rois = bottom_rois + n * roi_cols;
    int roi_batch_ind = 0;
    if (roi_cols == 5) {
      roi_batch_ind = static_cast<int>(offset_bottom_rois[0]);
      offset_bottom_rois++;
    }

    // Do not using rounding; this implementation detail is critical
    T roi_start_w = offset_bottom_rois[0] * spatial_scale;
    T roi_start_h = offset_bottom_rois[1] * spatial_scale;
    T roi_end_w = offset_bottom_rois[2] * spatial_scale;
    T roi_end_h = offset_bottom_rois[3] * spatial_scale;

    // Force malformed ROIs to be 1x1
    T roi_width = std::max(roi_end_w - roi_start_w, (T)1.);
    T roi_height = std::max(roi_end_h - roi_start_h, (T)1.);
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    // We use roi_bin_grid to sample the grid and mimic integral
    int roi_bin_grid_h = (sampling_ratio > 0)
        ? sampling_ratio
        : static_cast<int>(ceil(roi_height / pooled_height));  // e.g., = 2
    int roi_bin_grid_w =
        (sampling_ratio > 0) ? sampling_ratio : static_cast<int>(ceil(roi_width / pooled_width));

    // We do average (integral) pooling inside a bin
    const T count = static_cast<T>(roi_bin_grid_h * roi_bin_grid_w);  // e.g. = 4

    // we want to precalculate indeces and weights shared by all chanels,
    // this is the key point of optimiation
    std::vector<PreCalc<T>> pre_calc(
        roi_bin_grid_h * roi_bin_grid_w * pooled_width * pooled_height);
    pre_calc_for_bilinear_interpolate(
        height,
        width,
        pooled_height,
        pooled_width,
        roi_bin_grid_h,
        roi_bin_grid_w,
        roi_start_h,
        roi_start_w,
        bin_size_h,
        bin_size_w,
        roi_bin_grid_h,
        roi_bin_grid_w,
        pre_calc);

    for (int c = 0; c < channels; c++) {
      int index_n_c = index_n + c * pooled_width * pooled_height;
      const T* offset_bottom_data =
          bottom_data + (roi_batch_ind * channels + c) * height * width;
      int pre_calc_index = 0;

      for (int ph = 0; ph < pooled_height; ph++) {
        for (int pw = 0; pw < pooled_width; pw++) {
          int index = index_n_c + ph * pooled_width + pw;

          T output_val = 0.;
          for (int iy = 0; iy < roi_bin_grid_h; iy++) {
            for (int ix = 0; ix < roi_bin_grid_w; ix++) {
              PreCalc<T> pc = pre_calc[pre_calc_index];
              output_val += pc.w1 * offset_bottom_data[pc.pos1] +
                  pc.w2 * offset_bottom_data[pc.pos2] +
                  pc.w3 * offset_bottom_data[pc.pos3] +
                  pc.w4 * offset_bottom_data[pc.pos4];

              pre_calc_index += 1;
            }
          }
          output_val /= count;

          top_data[index] = output_val;
        }  // for pw
      }  // for ph
    }  // for c
  });
}


void redistribute_rois(const float* rois, int* level_ids,
                       const int num_rois, const int levels_num) {
    const float canonical_scale = 224.0f;
    const int canonical_level = 2;

    for (int i = 0; i < num_rois; ++i) {
        const float x0 = rois[4 * i + 0];
        const float y0 = rois[4 * i + 1];
        const float x1 = rois[4 * i + 2];
        const float y1 = rois[4 * i + 3];

        int target_level = levels_num;
        float area = (x1 - x0) * (y1 - y0);
        if (area > 0) {
            area = std::sqrt(area) / canonical_scale;
            area = std::log2(area + 1e-6f);
            target_level = static_cast<int>(std::floor(area + canonical_level));
            target_level = std::max<int>(0, std::min<int>(levels_num - 1, target_level));
        }

        level_ids[i] = target_level;
    }
}


void reorder(const float* src_data, const int* ranks, const int n, const int step, float* dst_data,
             int* dst_mapping) {
    std::iota(dst_mapping, dst_mapping + n, 0);
    std::sort(dst_mapping, dst_mapping + n, [&ranks](size_t i1, size_t i2) {return ranks[i1] < ranks[i2];});
    for (int i = 0; i < n; ++i) {
        const int j = dst_mapping[i];
        assert(0 <= j && j < n);
        std::memcpy(dst_data + i * step, src_data + j * step, sizeof(float) * step);
    }
}

void split_points(const std::vector<int>& ids, std::vector<int>& rois_per_level, const int levels_num) {
    rois_per_level.clear();
    rois_per_level.resize(levels_num, 0);
    for (size_t i = 0; i < ids.size(); ++i) {
        assert(0 <= ids[i] && ids[i] < levels_num);
        rois_per_level[ids[i]]++;
    }
    for (int i = 1; i < levels_num; ++i) {
        rois_per_level[i] += rois_per_level[i - 1];
    }
    rois_per_level.insert(rois_per_level.begin(), 0);
}


void reorder_rois(const float *rois, const int* ids, int* mapping, const int rois_num,
                  float * reordered_rois, std::vector<int>& rois_per_level, const int levels_num) {
    rois_per_level.clear();
    rois_per_level.resize(levels_num, 0);
    for (int i = 0; i < rois_num; ++i) {
        assert(0 <= ids[i] && ids[i] < levels_num);
        rois_per_level[ids[i]]++;
    }
    for (int i = 1; i < levels_num; ++i) {
        rois_per_level[i] += rois_per_level[i - 1];
    }
    rois_per_level.insert(rois_per_level.begin(), 0);

    std::vector<int> level_counter = rois_per_level;

    for (int i = 0; i < rois_num; ++i) {
        const int level = ids[i];
        assert(level < levels_num);
        const int j = level_counter[level];
        assert(0 <= j && j < rois_num);
        reordered_rois[j * 4 + 0] = rois[i * 4 + 0];
        reordered_rois[j * 4 + 1] = rois[i * 4 + 1];
        reordered_rois[j * 4 + 2] = rois[i * 4 + 2];
        reordered_rois[j * 4 + 3] = rois[i * 4 + 3];
        level_counter[level]++;
    }
}

class ExperimentalDetectronROIFeatureExtractorImpl: public ExtLayerBase {
private:
    const int INPUT_ROIS {0};
    const int INPUT_FEATURES_START {1};

    const int OUTPUT_ROI_FEATURES {0};
    const int OUTPUT_ROIS {1};

public:
    explicit ExperimentalDetectronROIFeatureExtractorImpl(const CNNLayer* layer) {
        try {
            output_dim_ = layer->GetParamAsInt("output_size");
            pyramid_scales_ = layer->GetParamAsInts("pyramid_scales");
            sampling_ratio_ = layer->GetParamAsInt("sampling_ratio");
            pooled_height_ = output_dim_;
            pooled_width_ = output_dim_;

            std::vector<DataConfigurator> inputs_layouts(layer->insData.size(), DataConfigurator(ConfLayout::PLN));
            std::vector<DataConfigurator> outputs_layouts(layer->outData.size(), DataConfigurator(ConfLayout::PLN));
            addConfig(layer, inputs_layouts, outputs_layouts);
        } catch (InferenceEngine::details::InferenceEngineException &ex) {
            errorMsg = ex.what();
        }
    }

    StatusCode execute(std::vector<Blob::Ptr>& inputs, std::vector<Blob::Ptr>& outputs,
                       ResponseDesc *resp) noexcept override {
        const int levels_num = inputs.size() - INPUT_FEATURES_START;
        const int num_rois = inputs[INPUT_ROIS]->getTensorDesc().getDims()[0];
        const int channels_num = inputs[INPUT_FEATURES_START]->getTensorDesc().getDims()[1];
        const int feaxels_per_roi = pooled_height_ * pooled_width_ * channels_num;

        auto *input_rois = inputs[INPUT_ROIS]->buffer().as<const float *>();
        auto *output_rois_features = outputs[OUTPUT_ROI_FEATURES]->buffer().as<float *>();
        float *output_rois = nullptr;
        if (OUTPUT_ROIS < static_cast<int>(outputs.size())) {
            output_rois = outputs[OUTPUT_ROIS]->buffer().as<float *>();
        }

        std::vector<int> level_ids(num_rois, 0);
        redistribute_rois(input_rois, reinterpret_cast<int *>(&level_ids[0]), num_rois, levels_num);

        std::vector<float> reordered_rois(4 * num_rois, 0);
        std::vector<int> original_rois_mapping(num_rois, 0);
        reorder(input_rois, &level_ids[0], num_rois, 4, &reordered_rois[0], &original_rois_mapping[0]);

        std::vector<int> rois_per_level;
        split_points(level_ids, rois_per_level, levels_num + 1);

        std::vector<float> output_rois_features_temp(feaxels_per_roi * num_rois, 0);
        for (int i = 0; i < levels_num; ++i) {
            const int level_rois_offset = rois_per_level[i];
            const int level_rois_num = rois_per_level[i + 1] - level_rois_offset;
            if (level_rois_num > 0) {
                auto *featuremap = inputs[INPUT_FEATURES_START + i]->buffer().as<const float *>();
                const int featuremap_height = inputs[INPUT_FEATURES_START + i]->getTensorDesc().getDims()[2];
                const int featuremap_width = inputs[INPUT_FEATURES_START + i]->getTensorDesc().getDims()[3];
                ROIAlignForward_cpu_kernel<float>(feaxels_per_roi * level_rois_num,
                    featuremap,
                    1.0f / pyramid_scales_[i],
                    channels_num,
                    featuremap_height,
                    featuremap_width,
                    pooled_height_,
                    pooled_width_,
                    sampling_ratio_,
                    &reordered_rois[4 * level_rois_offset],
                    &output_rois_features_temp[feaxels_per_roi * level_rois_offset]);
            }
        }

        std::vector<int> dummy_mapping(num_rois, 0);
        reorder(&output_rois_features_temp[0], &original_rois_mapping[0], num_rois, feaxels_per_roi,
                output_rois_features, &dummy_mapping[0]);
        if (output_rois != nullptr) {
            std::memcpy(output_rois, input_rois, 4 * num_rois * sizeof(float));
        }

        return OK;
    }

private:
    int output_dim_ = 0;
    int pooled_height_ = 0;
    int pooled_width_ = 0;
    std::vector<int> pyramid_scales_;
    int sampling_ratio_ = 0;

    int channels = 0;
    int height = 0;
    int width = 0;

    int nn = 0;
    int nc = 0;
    int nh = 0;
    int nw = 0;
};

REG_FACTORY_FOR(ImplFactory<ExperimentalDetectronROIFeatureExtractorImpl>, ExperimentalDetectronROIFeatureExtractor);

}  // namespace Cpu
}  // namespace Extensions
}  // namespace InferenceEngine