/** * \file * \brief D2 specialization to Rect */ /* * Copyright 2007 Michael Sloan * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, output to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. * */ /* Authors of original rect class: * Lauris Kaplinski * Nathan Hurst * bulia byak * MenTaLguY */ #include <2geom/d2.h> #ifndef _2GEOM_RECT #define _2GEOM_RECT #include <2geom/matrix.h> #include namespace Geom { /** D2 specialization to Rect */ typedef D2 Rect; class OptRect; Rect unify(const Rect &, const Rect &); /** * %Rect class. * The Rect class is actually a specialisation of D2. * */ template<> class D2 { private: Interval f[2]; public: /** Best not to use this constructor, do not rely on what it initializes the object to. *The default constructor creates a rect of default intervals. */ D2() { f[X] = f[Y] = Interval(); } public: D2(Interval const &a, Interval const &b) { f[X] = a; f[Y] = b; } D2(Point const & a, Point const & b) { f[X] = Interval(a[X], b[X]); f[Y] = Interval(a[Y], b[Y]); } inline Interval& operator[](unsigned i) { return f[i]; } inline Interval const & operator[](unsigned i) const { return f[i]; } inline Point min() const { return Point(f[X].min(), f[Y].min()); } inline Point max() const { return Point(f[X].max(), f[Y].max()); } /** Returns the four corners of the rectangle in positive order * (clockwise if +Y is up, anticlockwise if +Y is down) */ Point corner(unsigned i) const { switch(i % 4) { case 0: return Point(f[X].min(), f[Y].min()); case 1: return Point(f[X].max(), f[Y].min()); case 2: return Point(f[X].max(), f[Y].max()); default: return Point(f[X].min(), f[Y].max()); } } //We should probably remove these - they're coord sys gnostic inline double top() const { return f[Y].min(); } inline double bottom() const { return f[Y].max(); } inline double left() const { return f[X].min(); } inline double right() const { return f[X].max(); } inline double width() const { return f[X].extent(); } inline double height() const { return f[Y].extent(); } /** Returns a vector from min to max. */ inline Point dimensions() const { return Point(f[X].extent(), f[Y].extent()); } inline Point midpoint() const { return Point(f[X].middle(), f[Y].middle()); } /** * \brief Compute the area of this rectangle. * * Note that a zero area rectangle is not empty - just as the interval [0,0] contains one point, the rectangle [0,0] x [0,0] contains 1 point and no area. * \retval For a valid return value, the rect must be tested for emptyness first. */ inline double area() const { return f[X].extent() * f[Y].extent(); } inline bool hasZeroArea(double eps = EPSILON) const { return (area() <= eps); } inline double maxExtent() const { return std::max(f[X].extent(), f[Y].extent()); } inline double minExtent() const { return std::min(f[X].extent(), f[Y].extent()); } // inline bool isEmpty() const { // return f[X].isEmpty() || f[Y].isEmpty(); // } inline bool intersects(Rect const &r) const { return f[X].intersects(r[X]) && f[Y].intersects(r[Y]); } inline bool contains(Rect const &r) const { return f[X].contains(r[X]) && f[Y].contains(r[Y]); } inline bool contains(Point const &p) const { return f[X].contains(p[X]) && f[Y].contains(p[Y]); } inline void expandTo(Point p) { f[X].extendTo(p[X]); f[Y].extendTo(p[Y]); } inline void unionWith(Rect const &b) { f[X].unionWith(b[X]); f[Y].unionWith(b[Y]); } void unionWith(OptRect const &b); inline void expandBy(double amnt) { f[X].expandBy(amnt); f[Y].expandBy(amnt); } inline void expandBy(Point const p) { f[X].expandBy(p[X]); f[Y].expandBy(p[Y]); } }; inline Rect unify(Rect const & a, Rect const & b) { return Rect(unify(a[X], b[X]), unify(a[Y], b[Y])); } inline Rect union_list(std::vector const &r) { if(r.empty()) return Rect(Interval(0,0), Interval(0,0)); Rect ret = r[0]; for(unsigned i = 1; i < r.size(); i++) ret.unionWith(r[i]); return ret; } inline double distanceSq( Point const& p, Rect const& rect ) { double dx = 0, dy = 0; if ( p[X] < rect.left() ) { dx = p[X] - rect.left(); } else if ( p[X] > rect.right() ) { dx = rect.right() - p[X]; } if ( p[Y] < rect.top() ) { dy = rect.top() - p[Y]; } else if ( p[Y] > rect.bottom() ) { dy = p[Y] - rect.bottom(); } return dx*dx + dy*dy; } /** * Returns the smallest distance between p and rect. */ inline double distance( Point const& p, Rect const& rect ) { return std::sqrt(distanceSq(p, rect)); } /** * The OptRect class can represent and empty Rect and non-empty Rects. * If OptRect is not empty, it means that both X and Y intervals are not empty. * */ class OptRect : public boost::optional { public: OptRect() : boost::optional() {}; OptRect(Rect const &a) : boost::optional(a) {}; /** * Creates an empty OptRect when one of the argument intervals is empty. */ OptRect(OptInterval const &x_int, OptInterval const &y_int) { if (x_int && y_int) { *this = Rect(*x_int, *y_int); } // else, stay empty. } /** * Check whether this OptRect is empty or not. */ inline bool isEmpty() const { return (*this == false); }; /** * If \c this is empty, copy argument \c b. Otherwise, union with it (and do nothing when \c b is empty) */ inline void unionWith(OptRect const &b) { if (b) { if (*this) { // check that we are not empty (**this)[X].unionWith((*b)[X]); (**this)[Y].unionWith((*b)[Y]); } else { *this = b; } } } }; /** * Returns the smallest rectangle that encloses both rectangles. * An empty argument is assumed to be an empty rectangle */ inline OptRect unify(OptRect const & a, OptRect const & b) { if (!a) { return b; } else if (!b) { return a; } else { return unify(*a, *b); } } inline OptRect intersect(Rect const & a, Rect const & b) { return OptRect(intersect(a[X], b[X]), intersect(a[Y], b[Y])); } inline void Rect::unionWith(OptRect const &b) { if (b) { unionWith(*b); } } } // end namespace Geom #endif //_2GEOM_RECT /* Local Variables: mode:c++ c-file-style:"stroustrup" c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) indent-tabs-mode:nil fill-column:99 End: */ // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:encoding=utf-8:textwidth=99 :