/** * \file * \brief Elliptical Arc - implementation of the SVGEllipticalArc path element * * Authors: * MenTaLguY * Marco Cecchetti * * Copyright 2007-2008 authors * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. */ #ifndef _2GEOM_SVG_ELLIPTICAL_ARC_H_ #define _2GEOM_SVG_ELLIPTICAL_ARC_H_ #include <2geom/curve.h> #include <2geom/angle.h> #include <2geom/utils.h> #include <2geom/bezier-curve.h> #include <2geom/sbasis-curve.h> // for non-native methods #include <2geom/numeric/vector.h> #include <2geom/numeric/fitting-tool.h> #include <2geom/numeric/fitting-model.h> #include namespace Geom { class SVGEllipticalArc : public Curve { public: SVGEllipticalArc(bool _svg_compliant = true) : m_initial_point(Point(0,0)), m_final_point(Point(0,0)), m_rx(0), m_ry(0), m_rot_angle(0), m_large_arc(true), m_sweep(true), m_svg_compliant(_svg_compliant), m_start_angle(0), m_end_angle(0), m_center(Point(0,0)) { } /** * \brief constructor * * \param _initial_point: initial arc end point; * \param _rx: ellipse x-axis ray length * \param _ry: ellipse y-axis ray length * \param _rot_angle: ellipse x-axis rotation angle in radians; * \param _large_arc: if true the largest arc is chosen, * if false the smallest arc is chosen; * \param _sweep : if true the clockwise arc is chosen, * if false the counter-clockwise arc is chosen; * \param _final_point: final arc end point; * \param _svg_compliant: if true the class behaviour follows the Standard * SVG 1.1 implementation guidelines (see Appendix F.6) * if false the class behavoiur is more strict * on input parameter * * in case the initial and the final arc end-points overlaps * a degenerate arc of zero length is generated * */ SVGEllipticalArc( Point _initial_point, double _rx, double _ry, double _rot_angle, bool _large_arc, bool _sweep, Point _final_point, bool _svg_compliant = true ) : m_initial_point(_initial_point), m_final_point(_final_point), m_rx(_rx), m_ry(_ry), m_rot_angle(_rot_angle), m_large_arc(_large_arc), m_sweep(_sweep), m_svg_compliant(_svg_compliant) { calculate_center_and_extreme_angles(); } void set( Point _initial_point, double _rx, double _ry, double _rot_angle, bool _large_arc, bool _sweep, Point _final_point ) { m_initial_point = _initial_point; m_final_point = _final_point; m_rx = _rx; m_ry = _ry; m_rot_angle = _rot_angle; m_large_arc = _large_arc; m_sweep = _sweep; calculate_center_and_extreme_angles(); } Curve* duplicate() const { return new SVGEllipticalArc(*this); } double center(unsigned int i) const { return m_center[i]; } Point center() const { return m_center; } Point initialPoint() const { return m_initial_point; } Point finalPoint() const { return m_final_point; } double start_angle() const { return m_start_angle; } double end_angle() const { return m_end_angle; } double ray(unsigned int i) const { return (i == 0) ? m_rx : m_ry; } bool large_arc_flag() const { return m_large_arc; } bool sweep_flag() const { return m_sweep; } double rotation_angle() const { return m_rot_angle; } void setInitial( const Point _point) { m_initial_point = _point; calculate_center_and_extreme_angles(); } void setFinal( const Point _point) { m_final_point = _point; calculate_center_and_extreme_angles(); } void setExtremes( const Point& _initial_point, const Point& _final_point ) { m_initial_point = _initial_point; m_final_point = _final_point; calculate_center_and_extreme_angles(); } bool isDegenerate() const { return ( are_near(ray(X), 0) || are_near(ray(Y), 0) ); } bool is_svg_compliant() const { return m_svg_compliant; } virtual OptRect boundsFast() const { return boundsExact(); } virtual OptRect boundsExact() const; // TODO: native implementation of the following methods virtual OptRect boundsLocal(OptInterval i, unsigned int deg) const { if (isDegenerate() && is_svg_compliant()) return chord().boundsLocal(i, deg); else return SBasisCurve(toSBasis()).boundsLocal(i, deg); } std::vector roots(double v, Dim2 d) const; /* * find all the points on the curve portion between "from" and "to" * at the same smallest distance from the point "p" the points are returned * as their parameter t value; */ std::vector allNearestPoints( Point const& p, double from = 0, double to = 1 ) const; /* * find a point on the curve portion between "from" and "to" * at the same smallest distance from the point "p"; * the point is returned as its parameter t value; */ double nearestPoint( Point const& p, double from = 0, double to = 1 ) const { if ( are_near(ray(X), ray(Y)) && are_near(center(), p) ) { return from; } return allNearestPoints(p, from, to).front(); } // TODO: native implementation of the following methods int winding(Point p) const { if (isDegenerate() && is_svg_compliant()) return chord().winding(p); else return SBasisCurve(toSBasis()).winding(p); } int degreesOfFreedom() const { return 5;} Curve *derivative() const; Curve *transformed(Matrix const &m) const; std::vector pointAndDerivatives(Coord t, unsigned int n) const; D2 toSBasis() const; /* * return true if the angle argument (in radiants) is contained * in the range [start_angle(), end_angle() ] */ bool containsAngle(Coord angle) const; /* * return the value of the d-dimensional coordinate related to "t" * here t belongs to the [0,2PI] domain */ double valueAtAngle(Coord t, Dim2 d) const; /* * return the point related to the parameter value "t" * here t belongs to the [0,2PI] domain */ Point pointAtAngle(Coord t) const { double sin_rot_angle = std::sin(rotation_angle()); double cos_rot_angle = std::cos(rotation_angle()); Matrix m( ray(X) * cos_rot_angle, ray(X) * sin_rot_angle, -ray(Y) * sin_rot_angle, ray(Y) * cos_rot_angle, center(X), center(Y) ); Point p( std::cos(t), std::sin(t) ); return p * m; } /* * return the value of the d-dimensional coordinate related to "t" * here t belongs to the [0,1] domain */ double valueAt(Coord t, Dim2 d) const { if (isDegenerate() && is_svg_compliant()) return chord().valueAt(t, d); Coord tt = map_to_02PI(t); return valueAtAngle(tt, d); } /* * return the point related to the parameter value "t" * here t belongs to the [0,1] domain */ Point pointAt(Coord t) const { if (isDegenerate() && is_svg_compliant()) return chord().pointAt(t); Coord tt = map_to_02PI(t); return pointAtAngle(tt); } std::pair subdivide(Coord t) const { SVGEllipticalArc* arc1 = static_cast(portion(0, t)); SVGEllipticalArc* arc2 = static_cast(portion(t, 1)); assert( arc1 != NULL && arc2 != NULL); std::pair arc_pair(*arc1, *arc2); delete arc1; delete arc2; return arc_pair; } Curve* portion(double f, double t) const; // the arc is the same but traversed in the opposite direction Curve* reverse() const { SVGEllipticalArc* rarc = new SVGEllipticalArc( *this ); rarc->m_sweep = !m_sweep; rarc->m_initial_point = m_final_point; rarc->m_final_point = m_initial_point; rarc->m_start_angle = m_end_angle; rarc->m_end_angle = m_start_angle; return rarc; } double sweep_angle() const { Coord d = end_angle() - start_angle(); if ( !sweep_flag() ) d = -d; if ( d < 0 ) d += 2*M_PI; return d; } LineSegment chord() const { return LineSegment(initialPoint(), finalPoint()); } private: Coord map_to_02PI(Coord t) const; Coord map_to_01(Coord angle) const; void calculate_center_and_extreme_angles(); private: Point m_initial_point, m_final_point; double m_rx, m_ry, m_rot_angle; bool m_large_arc, m_sweep; bool m_svg_compliant; double m_start_angle, m_end_angle; Point m_center; }; // end class SVGEllipticalArc /* * useful for testing and debugging */ template< class charT > inline std::basic_ostream & operator<< (std::basic_ostream & os, const SVGEllipticalArc & ea) { os << "{ cx: " << ea.center(X) << ", cy: " << ea.center(Y) << ", rx: " << ea.ray(X) << ", ry: " << ea.ray(Y) << ", rot angle: " << decimal_round(rad_to_deg(ea.rotation_angle()),2) << ", start angle: " << decimal_round(rad_to_deg(ea.start_angle()),2) << ", end angle: " << decimal_round(rad_to_deg(ea.end_angle()),2) << " }"; return os; } // forward declation namespace detail { struct ellipse_equation; } /* * make_elliptical_arc * * convert a parametric polynomial curve given in symmetric power basis form * into an SVGEllipticalArc type; in order to be successfull the input curve * has to look like an actual elliptical arc even if a certain tolerance * is allowed through an ad-hoc parameter. * The conversion is performed through an interpolation on a certain amount of * sample points computed on the input curve; * the interpolation computes the coefficients of the general implicit equation * of an ellipse (A*X^2 + B*XY + C*Y^2 + D*X + E*Y + F = 0), then from the * implicit equation we compute the parametric form. * */ class make_elliptical_arc { public: typedef D2 curve_type; /* * constructor * * it doesn't execute the conversion but set the input and output parameters * * _ea: the output SVGEllipticalArc that will be generated; * _curve: the input curve to be converted; * _total_samples: the amount of sample points to be taken * on the input curve for performing the conversion * _tolerance: how much likelihood is required between the input curve * and the generated elliptical arc; the smaller it is the * the tolerance the higher it is the likelihood. */ make_elliptical_arc( SVGEllipticalArc& _ea, curve_type const& _curve, unsigned int _total_samples, double _tolerance ); private: bool bound_exceeded( unsigned int k, detail::ellipse_equation const & ee, double e1x, double e1y, double e2 ); bool check_bound(double A, double B, double C, double D, double E, double F); void fit(); bool make_elliptiarc(); void print_bound_error(unsigned int k) { std::cerr << "tolerance error" << std::endl << "at point: " << k << std::endl << "error value: "<< dist_err << std::endl << "bound: " << dist_bound << std::endl << "angle error: " << angle_err << " (" << angle_tol << ")" << std::endl; } public: /* * perform the actual conversion * return true if the conversion is successfull, false on the contrary */ bool operator()() { // initialize the reference const NL::Vector & coeff = fitter.result(); fit(); if ( !check_bound(1, coeff[0], coeff[1], coeff[2], coeff[3], coeff[4]) ) return false; if ( !(make_elliptiarc()) ) return false; return true; } /* * you can set a boolean parameter to tell the conversion routine * if the output elliptical arc has to be svg compliant or not; * the default value is true */ bool svg_compliant_flag() const { return svg_compliant; } void svg_compliant_flag(bool _svg_compliant) { svg_compliant = _svg_compliant; } private: SVGEllipticalArc& ea; // output elliptical arc const curve_type & curve; // input curve Piecewise > dcurve; // derivative of the input curve NL::LFMEllipse model; // model used for fitting // perform the actual fitting task NL::least_squeares_fitter fitter; // tolerance: the user-defined tolerance parameter; // tol_at_extr: the tolerance at end-points automatically computed // on the value of "tolerance", and usually more strict; // tol_at_center: tolerance at the center of the ellipse // angle_tol: tolerance for the angle btw the input curve tangent // versor and the ellipse normal versor at the sample points double tolerance, tol_at_extr, tol_at_center, angle_tol; Point initial_point, final_point; // initial and final end-points unsigned int N; // total samples unsigned int last; // N-1 double partitions; // N-1 std::vector p; // sample points double dist_err, dist_bound, angle_err; bool svg_compliant; }; } // end namespace Geom #endif /* _2GEOM_SVG_ELLIPTICAL_ARC_H_ */ /* Local Variables: mode:c++ c-file-style:"stroustrup" c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) indent-tabs-mode:nil fill-column:99 End: */ // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:encoding=utf-8:textwidth=99 :