~jaspervdg/+junk/aem-diffusion-curves

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
/*
 * Ellipse Curve
 *
 * Authors:
 *      Marco Cecchetti <mrcekets at gmail.com>
 *
 * Copyright 2008  authors
 *
 * This library is free software; you can redistribute it and/or
 * modify it either under the terms of the GNU Lesser General Public
 * License version 2.1 as published by the Free Software Foundation
 * (the "LGPL") or, at your option, under the terms of the Mozilla
 * Public License Version 1.1 (the "MPL"). If you do not alter this
 * notice, a recipient may use your version of this file under either
 * the MPL or the LGPL.
 *
 * You should have received a copy of the LGPL along with this library
 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 * You should have received a copy of the MPL along with this library
 * in the file COPYING-MPL-1.1
 *
 * The contents of this file are subject to the Mozilla Public License
 * Version 1.1 (the "License"); you may not use this file except in
 * compliance with the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
 * the specific language governing rights and limitations.
 */


#include <2geom/ellipse.h>
#include <2geom/svg-elliptical-arc.h>
#include <2geom/numeric/fitting-tool.h>
#include <2geom/numeric/fitting-model.h>


namespace Geom
{

void Ellipse::set(double A, double B, double C, double D, double E, double F)
{
    double den = 4*A*C - B*B;
    if ( den == 0 )
    {
        THROW_LOGICALERROR("den == 0, while computing ellipse centre");
    }
    m_centre[X] = (B*E - 2*C*D) / den;
    m_centre[Y] = (B*D - 2*A*E) / den;

    // evaluate the a coefficient of the ellipse equation in normal form
    // E(x,y) = a*(x-cx)^2 + b*(x-cx)*(y-cy) + c*(y-cy)^2 = 1
    // where b = a*B , c = a*C, (cx,cy) == centre
    double num =   A * sqr(m_centre[X])
                 + B * m_centre[X] * m_centre[Y]
                 + C * sqr(m_centre[Y])
                 - F;


    //evaluate ellipse rotation angle
    double rot = std::atan2( -B, -(A - C) )/2;
//      std::cerr << "rot = " << rot << std::endl;
    bool swap_axes = false;
    if ( are_near(rot, 0) ) rot = 0;
    if ( are_near(rot, M_PI/2)  || rot < 0 )
    {
        swap_axes = true;
    }

    // evaluate the length of the ellipse rays
    double cosrot = std::cos(rot);
    double sinrot = std::sin(rot);
    double cos2 = cosrot * cosrot;
    double sin2 = sinrot * sinrot;
    double cossin = cosrot * sinrot;

    den = A * cos2 + B * cossin + C * sin2;
    if ( den == 0 )
    {
        THROW_LOGICALERROR("den == 0, while computing 'rx' coefficient");
    }
    double rx2 =  num/den;
    if ( rx2 < 0 )
    {
        THROW_LOGICALERROR("rx2 < 0, while computing 'rx' coefficient");
    }
    double rx = std::sqrt(rx2);

    den = C * cos2 - B * cossin + A * sin2;
    if ( den == 0 )
    {
        THROW_LOGICALERROR("den == 0, while computing 'ry' coefficient");
    }
    double ry2 =  num/den;
    if ( ry2 < 0 )
    {
        THROW_LOGICALERROR("ry2 < 0, while computing 'rx' coefficient");
    }
    double ry = std::sqrt(ry2);

    // the solution is not unique so we choose always the ellipse
    // with a rotation angle between 0 and PI/2
    if ( swap_axes ) std::swap(rx, ry);
    if (    are_near(rot,  M_PI/2)
         || are_near(rot, -M_PI/2)
         || are_near(rx, ry)       )
    {
        rot = 0;
    }
    else if ( rot < 0 )
    {
        rot += M_PI/2;
    }

    m_ray[X] = rx;
    m_ray[Y] = ry;
    m_angle = rot;
}


std::vector<double> Ellipse::implicit_form_coefficients() const
{
    if (ray(X) == 0 || ray(Y) == 0)
    {
        THROW_LOGICALERROR("a degenerate ellipse doesn't own an implicit form");
    }

    std::vector<double> coeff(6);
    double cosrot = std::cos(rot_angle());
    double sinrot = std::sin(rot_angle());
    double cos2 = cosrot * cosrot;
    double sin2 = sinrot * sinrot;
    double cossin = cosrot * sinrot;
    double invrx2 = 1 / (ray(X) * ray(X));
    double invry2 = 1 / (ray(Y) * ray(Y));

    coeff[0] = invrx2 * cos2 + invry2 * sin2;
    coeff[1] = 2 * (invrx2 - invry2) * cossin;
    coeff[2] = invrx2 * sin2 + invry2 * cos2;
    coeff[3] = -(2 * coeff[0] * center(X) + coeff[1] * center(Y));
    coeff[4] = -(2 * coeff[2] * center(Y) + coeff[1] * center(X));
    coeff[5] = coeff[0] * center(X) * center(X)
             + coeff[1] * center(X) * center(Y)
             + coeff[2] * center(Y) * center(Y)
             - 1;
    return coeff;
}


void Ellipse::set(std::vector<Point> const& points)
{
    size_t sz = points.size();
    if (sz < 5)
    {
        THROW_RANGEERROR("fitting error: too few points passed");
    }
    NL::LFMEllipse model;
    NL::least_squeares_fitter<NL::LFMEllipse> fitter(model, sz);

    for (size_t i = 0; i < sz; ++i)
    {
        fitter.append(points[i]);
    }
    fitter.update();

    NL::Vector z(sz, 0.0);
    model.instance(*this, fitter.result(z));
}


SVGEllipticalArc
Ellipse::arc(Point const& initial, Point const& inner, Point const& final,
             bool _svg_compliant)
{
    Point sp_cp = initial - center();
    Point ep_cp = final   - center();
    Point ip_cp = inner   - center();

    double angle1 = angle_between(sp_cp, ep_cp);
    double angle2 = angle_between(sp_cp, ip_cp);
    double angle3 = angle_between(ip_cp, ep_cp);

    bool large_arc_flag = true;
    bool sweep_flag = true;

    if ( angle1 > 0 )
    {
        if ( angle2 > 0 && angle3 > 0 )
        {
            large_arc_flag = false;
            sweep_flag = true;
        }
        else
        {
            large_arc_flag = true;
            sweep_flag = false;
        }
    }
    else
    {
        if ( angle2 < 0 && angle3 < 0 )
        {
            large_arc_flag = false;
            sweep_flag = false;
        }
        else
        {
            large_arc_flag = true;
            sweep_flag = true;
        }
    }

    SVGEllipticalArc ea( initial, ray(X), ray(Y), rot_angle(),
                      large_arc_flag, sweep_flag, final, _svg_compliant);
    return ea;
}

Ellipse Ellipse::transformed(Matrix const& m) const
{
    double cosrot = std::cos(rot_angle());
    double sinrot = std::sin(rot_angle());
    Matrix A(  ray(X) * cosrot, ray(X) * sinrot,
              -ray(Y) * sinrot, ray(Y) * cosrot,
               0,               0                );
    Point new_center = center() * m;
    Matrix M = m.without_translation();
    Matrix AM = A * M;
    if ( are_near(AM.det(), 0) )
    {
        double angle;
        if (AM[0] != 0)
        {
            angle = std::atan2(AM[2], AM[0]);
        }
        else if (AM[1] != 0)
        {
            angle = std::atan2(AM[3], AM[1]);
        }
        else
        {
            angle = M_PI/2;
        }
        Point V(std::cos(angle), std::sin(angle));
        V *= AM;
        double rx = L2(V);
        angle = atan2(V);
        return Ellipse(new_center[X], new_center[Y], rx, 0, angle);
    }

    std::vector<double> coeff = implicit_form_coefficients();
    Matrix Q( coeff[0],   coeff[1]/2,
              coeff[1]/2, coeff[2],
              0,          0   );

    Matrix invm = M.inverse();
    Q = invm * Q ;
    std::swap( invm[1], invm[2] );
    Q *= invm;
    Ellipse e(Q[0], 2*Q[1], Q[3], 0, 0, -1);
    e.m_centre = new_center;

    return e;
}

Ellipse::Ellipse(Geom::Circle const &c)
{
    m_centre = c.center();
    m_ray[X] = m_ray[Y] = c.ray();
}

}  // end namespace Geom


/*
  Local Variables:
  mode:c++
  c-file-style:"stroustrup"
  c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
  indent-tabs-mode:nil
  fill-column:99
  End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:encoding=utf-8:textwidth=99 :