~jaspervdg/+junk/aem-diffusion-curves

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
#include <2geom/poly.h>

#define HAVE_GSL
#ifdef HAVE_GSL
#include <gsl/gsl_poly.h>
#endif

namespace Geom {

Poly Poly::operator*(const Poly& p) const {
    Poly result; 
    result.resize(degree() +  p.degree()+1);
    
    for(unsigned i = 0; i < size(); i++) {
        for(unsigned j = 0; j < p.size(); j++) {
            result[i+j] += (*this)[i] * p[j];
        }
    }
    return result;
}

/*double Poly::eval(double x) const {
    return gsl_poly_eval(&coeff[0], size(), x);
    }*/

void Poly::normalize() {
    while(back() == 0)
        pop_back();
}

void Poly::monicify() {
    normalize();
    
    double scale = 1./back(); // unitize
    
    for(unsigned i = 0; i < size(); i++) {
        (*this)[i] *= scale;
    }
}


#ifdef HAVE_GSL
std::vector<std::complex<double> > solve(Poly const & pp) {
    Poly p(pp);
    p.normalize();
    gsl_poly_complex_workspace * w 
        = gsl_poly_complex_workspace_alloc (p.size());
       
    gsl_complex_packed_ptr z = new double[p.degree()*2];
    double* a = new double[p.size()];
    for(unsigned int i = 0; i < p.size(); i++)
        a[i] = p[i];
    std::vector<std::complex<double> > roots;
    //roots.resize(p.degree());
    
    gsl_poly_complex_solve (a, p.size(), w, z);
    delete[]a;
     
    gsl_poly_complex_workspace_free (w);
     
    for (unsigned int i = 0; i < p.degree(); i++) {
        roots.push_back(std::complex<double> (z[2*i] ,z[2*i+1]));
        //printf ("z%d = %+.18f %+.18f\n", i, z[2*i], z[2*i+1]);
    }    
    delete[] z;
    return roots;
}

std::vector<double > solve_reals(Poly const & p) {
    std::vector<std::complex<double> > roots = solve(p);
    std::vector<double> real_roots;
    
    for(unsigned int i = 0; i < roots.size(); i++) {
        if(roots[i].imag() == 0) // should be more lenient perhaps
            real_roots.push_back(roots[i].real());
    }
    return real_roots;
}
#endif

double polish_root(Poly const & p, double guess, double tol) {
    Poly dp = derivative(p);
    
    double fn = p(guess);
    while(fabs(fn) > tol) {
        guess -= fn/dp(guess);
        fn = p(guess);
    }
    return guess;
}

Poly integral(Poly const & p) {
    Poly result;
    
    result.reserve(p.size()+1);
    result.push_back(0); // arbitrary const
    for(unsigned i = 0; i < p.size(); i++) {
        result.push_back(p[i]/(i+1));
    }
    return result;

}

Poly derivative(Poly const & p) {
    Poly result;
    
    if(p.size() <= 1)
        return Poly(0);
    result.reserve(p.size()-1);
    for(unsigned i = 1; i < p.size(); i++) {
        result.push_back(i*p[i]);
    }
    return result;
}

Poly compose(Poly const & a, Poly const & b) {
    Poly result;
    
    for(unsigned i = a.size(); i > 0; i--) {
        result = Poly(a[i-1]) + result * b;
    }
    return result;
    
}

/* This version is backwards - dividing taylor terms
Poly divide(Poly const &a, Poly const &b, Poly &r) {
    Poly c;
    r = a; // remainder
    
    const unsigned k = a.size();
    r.resize(k, 0);
    c.resize(k, 0);

    for(unsigned i = 0; i < k; i++) {
        double ci = r[i]/b[0];
        c[i] += ci;
        Poly bb = ci*b;
        std::cout << ci <<"*" << b << ", r= " << r << std::endl;
        r -= bb.shifted(i);
    }
    
    return c;
}
*/

Poly divide(Poly const &a, Poly const &b, Poly &r) {
    Poly c;
    r = a; // remainder
    assert(b.size() > 0);
    
    const unsigned k = a.degree();
    const unsigned l = b.degree();
    c.resize(k, 0.);
    
    for(unsigned i = k; i >= l; i--) {
        //assert(i >= 0);
        double ci = r.back()/b.back();
        c[i-l] += ci;
        Poly bb = ci*b;
        //std::cout << ci <<"*(" << b.shifted(i-l) << ") = " 
        //          << bb.shifted(i-l) << "     r= " << r << std::endl;
        r -= bb.shifted(i-l);
        r.pop_back();
    }
    //std::cout << "r= " << r << std::endl;
    r.normalize();
    c.normalize();
    
    return c;
}

Poly gcd(Poly const &a, Poly const &b, const double /*tol*/) {
    if(a.size() < b.size())
        return gcd(b, a);
    if(b.size() <= 0)
        return a;
    if(b.size() == 1)
        return a;
    Poly r;
    divide(a, b, r);
    return gcd(b, r);
}



/*Poly divide_out_root(Poly const & p, double x) {
    assert(1);
    }*/

} //namespace Geom

/*
  Local Variables:
  mode:c++
  c-file-style:"stroustrup"
  c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
  indent-tabs-mode:nil
  fill-column:99
  End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:encoding=utf-8:textwidth=99 :