~jaspervdg/+junk/aem-diffusion-curves

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
/** root finding for sbasis functions.
 * Copyright 2006 N Hurst
 * Copyright 2007 JF Barraud
 *
 * It is more efficient to find roots of f(t) = c_0, c_1, ... all at once, rather than iterating.
 *
 * Todo/think about:
 *  multi-roots using bernstein method, one approach would be:
    sort c
    take median and find roots of that
    whenever a segment lies entirely on one side of the median,
    find the median of the half and recurse.

    in essence we are implementing quicksort on a continuous function

 *  the gsl poly roots finder is faster than bernstein too, but we don't use it for 3 reasons:

 a) it requires convertion to poly, which is numerically unstable

 b) it requires gsl (which is currently not a dependency, and would bring in a whole slew of unrelated stuff)

 c) it finds all roots, even complex ones.  We don't want to accidently treat a nearly real root as a real root

From memory gsl poly roots was about 10 times faster than bernstein in the case where all the roots
are in [0,1] for polys of order 5.  I spent some time working out whether eigenvalue root finding
could be done directly in sbasis space, but the maths was too hard for me. -- njh

jfbarraud: eigenvalue root finding could be done directly in sbasis space ?

njh: I don't know, I think it should.  You would make a matrix whose characteristic polynomial was
correct, but do it by putting the sbasis terms in the right spots in the matrix.  normal eigenvalue
root finding makes a matrix that is a diagonal + a row along the top.  This matrix has the property
that its characteristic poly is just the poly whose coefficients are along the top row.

Now an sbasis function is a linear combination of the poly coeffs.  So it seems to me that you
should be able to put the sbasis coeffs directly into a matrix in the right spots so that the
characteristic poly is the sbasis.  You'll still have problems b) and c).

We might be able to lift an eigenvalue solver and include that directly into 2geom.  Eigenvalues
also allow you to find intersections of multiple curves but require solving n*m x n*m matrices.

 **/

#include <cmath>
#include <map>

#include <2geom/sbasis.h>
#include <2geom/sbasis-to-bezier.h>
#include <2geom/solver.h>

using namespace std;

namespace Geom{

/** Find the smallest interval that bounds a
 \param a sbasis function
 \returns inteval

*/

#ifdef USE_SBASIS_OF
OptInterval bounds_exact(SBasisOf<double> const &a) {
    Interval result = Interval(a.at0(), a.at1());
    SBasisOf<double> df = derivative(a);
    vector<double>extrema = roots(df);
    for (unsigned i=0; i<extrema.size(); i++){
        result.extendTo(a(extrema[i]));
    }
    return result;
}
#else
OptInterval bounds_exact(SBasis const &a) {
    Interval result = Interval(a.at0(), a.at1());
    SBasis df = derivative(a);
    vector<double>extrema = roots(df);
    for (unsigned i=0; i<extrema.size(); i++){
        result.extendTo(a(extrema[i]));
    }
    return result;
}
#endif

/** Find a small interval that bounds a
 \param a sbasis function
 \returns inteval

*/
// I have no idea how this works, some clever bounding argument by jfb.
#ifdef USE_SBASIS_OF
OptInterval bounds_fast(const SBasisOf<double> &sb, int order) {
#else
OptInterval bounds_fast(const SBasis &sb, int order) {
#endif
    Interval res(0,0); // an empty sbasis is 0.

    for(int j = sb.size()-1; j>=order; j--) {
        double a=sb[j][0];
        double b=sb[j][1];

        double v, t = 0;
        v = res[0];
        if (v<0) t = ((b-a)/v+1)*0.5;
        if (v>=0 || t<0 || t>1) {
            res[0] = std::min(a,b);
        }else{
            res[0]=lerp(t, a+v*t, b);
        }

        v = res[1];
        if (v>0) t = ((b-a)/v+1)*0.5;
        if (v<=0 || t<0 || t>1) {
            res[1] = std::max(a,b);
        }else{
            res[1]=lerp(t, a+v*t, b);
        }
    }
    if (order>0) res*=pow(.25,order);
    return res;
}

/** Find a small interval that bounds a(t) for t in i to order order
 \param sb sbasis function
 \param i domain interval
 \param order number of terms
 \return interval

*/
#ifdef USE_SBASIS_OF
OptInterval bounds_local(const SBasisOf<double> &sb, const OptInterval &i, int order) {
#else
OptInterval bounds_local(const SBasis &sb, const OptInterval &i, int order) {
#endif
    double t0=i->min(), t1=i->max(), lo=0., hi=0.;
    for(int j = sb.size()-1; j>=order; j--) {
        double a=sb[j][0];
        double b=sb[j][1];

        double t = 0;
        if (lo<0) t = ((b-a)/lo+1)*0.5;
        if (lo>=0 || t<t0 || t>t1) {
            lo = std::min(a*(1-t0)+b*t0+lo*t0*(1-t0),a*(1-t1)+b*t1+lo*t1*(1-t1));
        }else{
            lo = lerp(t, a+lo*t, b);
        }

        if (hi>0) t = ((b-a)/hi+1)*0.5;
        if (hi<=0 || t<t0 || t>t1) {
            hi = std::max(a*(1-t0)+b*t0+hi*t0*(1-t0),a*(1-t1)+b*t1+hi*t1*(1-t1));
        }else{
            hi = lerp(t, a+hi*t, b);
        }
    }
    Interval res = Interval(lo,hi);
    if (order>0) res*=pow(.25,order);
    return res;
}

//-- multi_roots ------------------------------------
// goal: solve f(t)=c for several c at once.
/* algo: -compute f at both ends of the given segment [a,b].
         -compute bounds m<df(t)<M for df on the segment.
         let c and C be the levels below and above f(a):
         going from f(a) down to c with slope m takes at least time (f(a)-c)/m
         going from f(a)  up  to C with slope M takes at least time (C-f(a))/M
         From this we conclude there are no roots before a'=a+min((f(a)-c)/m,(C-f(a))/M).
         Do the same for b: compute some b' such that there are no roots in (b',b].
         -if [a',b'] is not empty, repeat the process with [a',(a'+b')/2] and [(a'+b')/2,b'].
  unfortunately, extra care is needed about rounding errors, and also to avoid the repetition of roots,
  making things tricky and unpleasant...
*/
//TODO: Make sure the code is "rounding-errors proof" and take care about repetition of roots!


static int upper_level(vector<double> const &levels,double x,double tol=0.){
    return(upper_bound(levels.begin(),levels.end(),x-tol)-levels.begin());
}

#ifdef USE_SBASIS_OF
static void multi_roots_internal(SBasis const &f,
				 SBasis const &df,
#else
static void multi_roots_internal(SBasis const &f,
				 SBasis const &df,
#endif
				 std::vector<double> const &levels,
				 std::vector<std::vector<double> > &roots,
				 double htol,
				 double vtol,
				 double a,
				 double fa,
				 double b,
				 double fb){

    if (f.size()==0){
        int idx;
        idx=upper_level(levels,0,vtol);
        if (idx<(int)levels.size()&&fabs(levels.at(idx))<=vtol){
            roots[idx].push_back(a);
            roots[idx].push_back(b);
        }
        return;
    }
////usefull?
//     if (f.size()==1){
//         int idxa=upper_level(levels,fa);
//         int idxb=upper_level(levels,fb);
//         if (fa==fb){
//             if (fa==levels[idxa]){
//                 roots[a]=idxa;
//                 roots[b]=idxa;
//             }
//             return;
//         }
//         int idx_min=std::min(idxa,idxb);
//         int idx_max=std::max(idxa,idxb);
//         if (idx_max==levels.size()) idx_max-=1;
//         for(int i=idx_min;i<=idx_max; i++){
//             double t=a+(b-a)*(levels[i]-fa)/(fb-fa);
//             if(a<t&&t<b) roots[t]=i;
//         }
//         return;
//     }
    if ((b-a)<htol){
        //TODO: use different tol for t and f ?
        //TODO: unsigned idx ? (remove int casts when fixed)
        int idx=std::min(upper_level(levels,fa,vtol),upper_level(levels,fb,vtol));
        if (idx==(int)levels.size()) idx-=1;
        double c=levels.at(idx);
        if((fa-c)*(fb-c)<=0||fabs(fa-c)<vtol||fabs(fb-c)<vtol){
            roots[idx].push_back((a+b)/2);
        }
        return;
    }

    int idxa=upper_level(levels,fa,vtol);
    int idxb=upper_level(levels,fb,vtol);

    Interval bs = *bounds_local(df,Interval(a,b));

    //first times when a level (higher or lower) can be reached from a or b.
    double ta_hi,tb_hi,ta_lo,tb_lo;
    ta_hi=ta_lo=b+1;//default values => no root there.
    tb_hi=tb_lo=a-1;//default values => no root there.

    if (idxa<(int)levels.size() && fabs(fa-levels.at(idxa))<vtol){//a can be considered a root.
        //ta_hi=ta_lo=a;
        roots[idxa].push_back(a);
        ta_hi=ta_lo=a+htol;
    }else{
        if (bs.max()>0 && idxa<(int)levels.size())
            ta_hi=a+(levels.at(idxa  )-fa)/bs.max();
        if (bs.min()<0 && idxa>0)
            ta_lo=a+(levels.at(idxa-1)-fa)/bs.min();
    }
    if (idxb<(int)levels.size() && fabs(fb-levels.at(idxb))<vtol){//b can be considered a root.
        //tb_hi=tb_lo=b;
        roots[idxb].push_back(b);
        tb_hi=tb_lo=b-htol;
    }else{
        if (bs.min()<0 && idxb<(int)levels.size())
            tb_hi=b+(levels.at(idxb  )-fb)/bs.min();
        if (bs.max()>0 && idxb>0)
            tb_lo=b+(levels.at(idxb-1)-fb)/bs.max();
    }

    double t0,t1;
    t0=std::min(ta_hi,ta_lo);
    t1=std::max(tb_hi,tb_lo);
    //hum, rounding errors frighten me! so I add this +tol...
    if (t0>t1+htol) return;//no root here.

    if (fabs(t1-t0)<htol){
        multi_roots_internal(f,df,levels,roots,htol,vtol,t0,f(t0),t1,f(t1));
    }else{
        double t,t_left,t_right,ft,ft_left,ft_right;
        t_left =t_right =t =(t0+t1)/2;
        ft_left=ft_right=ft=f(t);
        int idx=upper_level(levels,ft,vtol);
        if (idx<(int)levels.size() && fabs(ft-levels.at(idx))<vtol){//t can be considered a root.
            roots[idx].push_back(t);
            //we do not want to count it twice (from the left and from the right)
            t_left =t-htol/2;
            t_right=t+htol/2;
            ft_left =f(t_left);
            ft_right=f(t_right);
        }
        multi_roots_internal(f,df,levels,roots,htol,vtol,t0     ,f(t0)   ,t_left,ft_left);
        multi_roots_internal(f,df,levels,roots,htol,vtol,t_right,ft_right,t1    ,f(t1)  );
    }
}

/** Solve f(t)=c for several c at once.
    \param f sbasis function
    \param levels vector of 'y' values
    \param htol, vtol 
    \param a, b left and right bounds
    \returns a vector of vectors, one for each y giving roots

Effectively computes:
results = roots(f(y_i)) for all y_i

* algo: -compute f at both ends of the given segment [a,b].
         -compute bounds m<df(t)<M for df on the segment.
         let c and C be the levels below and above f(a):
         going from f(a) down to c with slope m takes at least time (f(a)-c)/m
         going from f(a)  up  to C with slope M takes at least time (C-f(a))/M
         From this we conclude there are no roots before a'=a+min((f(a)-c)/m,(C-f(a))/M).
         Do the same for b: compute some b' such that there are no roots in (b',b].
         -if [a',b'] is not empty, repeat the process with [a',(a'+b')/2] and [(a'+b')/2,b'].
  unfortunately, extra care is needed about rounding errors, and also to avoid the repetition of roots,
  making things tricky and unpleasant...

TODO: Make sure the code is "rounding-errors proof" and take care about repetition of roots!
*/
std::vector<std::vector<double> > multi_roots(SBasis const &f,
                                      std::vector<double> const &levels,
                                      double htol,
                                      double vtol,
                                      double a,
                                      double b){

    std::vector<std::vector<double> > roots(levels.size(), std::vector<double>());

    SBasis df=derivative(f);
    multi_roots_internal(f,df,levels,roots,htol,vtol,a,f(a),b,f(b));

    return(roots);
}
//-------------------------------------


void subdiv_sbasis(SBasis const & s,
                   std::vector<double> & roots,
                   double left, double right) {
    OptInterval bs = bounds_fast(s);
    if(!bs || bs->min() > 0 || bs->max() < 0)
        return; // no roots here
    if(s.tailError(1) < 1e-7) {
        double t = s[0][0] / (s[0][0] - s[0][1]);
        roots.push_back(left*(1-t) + t*right);
        return;
    }
    double middle = (left + right)/2;
    subdiv_sbasis(compose(s, Linear(0, 0.5)), roots, left, middle);
    subdiv_sbasis(compose(s, Linear(0.5, 1.)), roots, middle, right);
}

// It is faster to use the bernstein root finder for small degree polynomials (<100?.

std::vector<double> roots1(SBasis const & s) {
    std::vector<double> res;
    double d = s[0][0] - s[0][1];
    if(d != 0) {
        double r = s[0][0] / d;
        if(0 <= r && r <= 1)
            res.push_back(r);
    }
    return res;
}

/** Find all t s.t s(t) = 0
 \param a sbasis function
 \returns vector of zeros (roots)

*/
std::vector<double> roots(SBasis const & s) {
    switch(s.size()) {
        case 0:
            return std::vector<double>();
        case 1:
            return roots1(s);
        default:
        {
            Bezier bz;
            sbasis_to_bezier(bz, s);
            return bz.roots();
        }
    }
}

};

/*
  Local Variables:
  mode:c++
  c-file-style:"stroustrup"
  c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
  indent-tabs-mode:nil
  fill-column:99
  End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:encoding=utf-8:textwidth=99 :