~jaspervdg/+junk/aem-diffusion-curves

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
/*
 * Symmetric Power Basis - Bernstein Basis conversion routines
 *
 * Authors:
 *      Marco Cecchetti <mrcekets at gmail.com>
 *      Nathan Hurst <njh@mail.csse.monash.edu.au>
 *
 * Copyright 2007-2008  authors
 *
 * This library is free software; you can redistribute it and/or
 * modify it either under the terms of the GNU Lesser General Public
 * License version 2.1 as published by the Free Software Foundation
 * (the "LGPL") or, at your option, under the terms of the Mozilla
 * Public License Version 1.1 (the "MPL"). If you do not alter this
 * notice, a recipient may use your version of this file under either
 * the MPL or the LGPL.
 *
 * You should have received a copy of the LGPL along with this library
 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 * You should have received a copy of the MPL along with this library
 * in the file COPYING-MPL-1.1
 *
 * The contents of this file are subject to the Mozilla Public License
 * Version 1.1 (the "License"); you may not use this file except in
 * compliance with the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
 * the specific language governing rights and limitations.
 */


#include <2geom/sbasis-to-bezier.h>
#include <2geom/d2.h>
#include <2geom/choose.h>
#include <2geom/svg-path.h>
#include <2geom/exception.h>

#include <iostream>




namespace Geom
{

/*
 *  Symmetric Power Basis - Bernstein Basis conversion routines
 *
 *  some remark about precision:
 *  interval [0,1], subdivisions: 10^3
 *  - bezier_to_sbasis : up to degree ~72 precision is at least 10^-5
 *                       up to degree ~87 precision is at least 10^-3
 *  - sbasis_to_bezier : up to order ~63 precision is at least 10^-15
 *                       precision is at least 10^-14 even beyond order 200
 *
 *  interval [-1,1], subdivisions: 10^3
 *  - bezier_to_sbasis : up to degree ~21 precision is at least 10^-5
 *                       up to degree ~24 precision is at least 10^-3
 *  - sbasis_to_bezier : up to order ~11 precision is at least 10^-5
 *                       up to order ~13 precision is at least 10^-3
 *
 *  interval [-10,10], subdivisions: 10^3
 *  - bezier_to_sbasis : up to degree ~7 precision is at least 10^-5
 *                       up to degree ~8 precision is at least 10^-3
 *  - sbasis_to_bezier : up to order ~3 precision is at least 10^-5
 *                       up to order ~4 precision is at least 10^-3
 *
 *  references:
 *  this implementation is based on the following article:
 *  J.Sanchez-Reyes - The Symmetric Analogue of the Polynomial Power Basis
 */

inline
double binomial(unsigned int n, unsigned int k)
{
    return choose<double>(n, k);
}

inline
int sgn(unsigned int j, unsigned int k)
{
    assert (j >= k);
    // we are sure that j >= k
    return ((j-k) &  1u) ? -1 : 1;
}


/** Changes the basis of p to be bernstein.
 \param p the Symmetric basis polynomial
 \returns the Bernstein basis polynomial

 if the degree is even q is the order in the symmetrical power basis,
 if the degree is odd q is the order + 1
 n is always the polynomial degree, i. e. the Bezier order
 sz is the number of bezier handles.
*/
void sbasis_to_bezier (Bezier & bz, SBasis const& sb, size_t sz)
{
    if (sb.size() == 0) {
        THROW_RANGEERROR("size of sb is too small");
    }

    size_t q, n;
    bool even;
    if (sz == 0)
    {
        q = sb.size();
        if (sb[q-1][0] == sb[q-1][1])
        {
            even = true;
            --q;
            n = 2*q;
        }
        else
        {
            even = false;
            n = 2*q-1;
        }
    }
    else
    {
        q = (sz > 2*sb.size()-1) ?  sb.size() : (sz+1)/2;
        n = sz-1;
        even = false;
    }
    bz.clear();
    bz.resize(n+1);
    double Tjk;
    for (size_t k = 0; k < q; ++k)
    {
        for (size_t j = k; j < n-k; ++j) // j <= n-k-1
        {
            Tjk = binomial(n-2*k-1, j-k);
            bz[j] += (Tjk * sb[k][0]);
            bz[n-j] += (Tjk * sb[k][1]); // n-k <-> [k][1]
        }
    }
    if (even)
    {
        bz[q] += sb[q][0];
    }
    // the resulting coefficients are with respect to the scaled Bernstein
    // basis so we need to divide them by (n, j) binomial coefficient
    for (size_t j = 1; j < n; ++j)
    {
        bz[j] /= binomial(n, j);
    }
    bz[0] = sb[0][0];
    bz[n] = sb[0][1];
}

/** Changes the basis of p to be Bernstein.
 \param p the D2 Symmetric basis polynomial
 \returns the D2 Bernstein basis polynomial

 sz is always the polynomial degree, i. e. the Bezier order
*/
void sbasis_to_bezier (std::vector<Point> & bz, D2<SBasis> const& sb, size_t sz)
{
    Bezier bzx, bzy;
    if(sz == 0) {
        sz = std::max(sb[X].size(), sb[Y].size())*2;
    }
    sbasis_to_bezier(bzx, sb[X], sz);
    sbasis_to_bezier(bzy, sb[Y], sz);
    assert(bzx.size() == bzy.size());
    size_t n = (bzx.size() >= bzy.size()) ? bzx.size() : bzy.size();

    bz.resize(n, Point(0,0));
    for (size_t i = 0; i < bzx.size(); ++i)
    {
        bz[i][X] = bzx[i];
    }
    for (size_t i = 0; i < bzy.size(); ++i)
    {
        bz[i][Y] = bzy[i];
    }
}


/** Changes the basis of p to be sbasis.
 \param p the Bernstein basis polynomial
 \returns the Symmetric basis polynomial

 if the degree is even q is the order in the symmetrical power basis,
 if the degree is odd q is the order + 1
 n is always the polynomial degree, i. e. the Bezier order
*/
void bezier_to_sbasis (SBasis & sb, Bezier const& bz)
{
    size_t n = bz.order();
    size_t q = (n+1) / 2;
    size_t even = (n & 1u) ? 0 : 1;
    sb.clear();
    sb.resize(q + even, Linear(0, 0));
    double Tjk;
    for (size_t k = 0; k < q; ++k)
    {
        for (size_t j = k; j < q; ++j)
        {
            Tjk = sgn(j, k) * binomial(n-j-k, j-k) * binomial(n, k);
            sb[j][0] += (Tjk * bz[k]);
            sb[j][1] += (Tjk * bz[n-k]); // n-j <-> [j][1]
        }
        for (size_t j = k+1; j < q; ++j)
        {
            Tjk = sgn(j, k) * binomial(n-j-k-1, j-k-1) * binomial(n, k);
            sb[j][0] += (Tjk * bz[n-k]);
            sb[j][1] += (Tjk * bz[k]);   // n-j <-> [j][1]
        }
    }
    if (even)
    {
        for (size_t k = 0; k < q; ++k)
        {
            Tjk = sgn(q,k) * binomial(n, k);
            sb[q][0] += (Tjk * (bz[k] + bz[n-k]));
        }
        sb[q][0] += (binomial(n, q) * bz[q]);
        sb[q][1] = sb[q][0];
    }
    sb[0][0] = bz[0];
    sb[0][1] = bz[n];
}


/** Changes the basis of d2 p to be sbasis.
 \param p the d2 Bernstein basis polynomial
 \returns the d2 Symmetric basis polynomial

 if the degree is even q is the order in the symmetrical power basis,
 if the degree is odd q is the order + 1
 n is always the polynomial degree, i. e. the Bezier order
*/
void bezier_to_sbasis (D2<SBasis> & sb, std::vector<Point> const& bz)
{
    size_t n = bz.size() - 1;
    size_t q = (n+1) / 2;
    size_t even = (n & 1u) ? 0 : 1;
    sb[X].clear();
    sb[Y].clear();
    sb[X].resize(q + even, Linear(0, 0));
    sb[Y].resize(q + even, Linear(0, 0));
    double Tjk;
    for (size_t k = 0; k < q; ++k)
    {
        for (size_t j = k; j < q; ++j)
        {
            Tjk = sgn(j, k) * binomial(n-j-k, j-k) * binomial(n, k);
            sb[X][j][0] += (Tjk * bz[k][X]);
            sb[X][j][1] += (Tjk * bz[n-k][X]);
            sb[Y][j][0] += (Tjk * bz[k][Y]);
            sb[Y][j][1] += (Tjk * bz[n-k][Y]);
        }
        for (size_t j = k+1; j < q; ++j)
        {
            Tjk = sgn(j, k) * binomial(n-j-k-1, j-k-1) * binomial(n, k);
            sb[X][j][0] += (Tjk * bz[n-k][X]);
            sb[X][j][1] += (Tjk * bz[k][X]);
            sb[Y][j][0] += (Tjk * bz[n-k][Y]);
            sb[Y][j][1] += (Tjk * bz[k][Y]);
        }
    }
    if (even)
    {
        for (size_t k = 0; k < q; ++k)
        {
            Tjk = sgn(q,k) * binomial(n, k);
            sb[X][q][0] += (Tjk * (bz[k][X] + bz[n-k][X]));
            sb[Y][q][0] += (Tjk * (bz[k][Y] + bz[n-k][Y]));
        }
        sb[X][q][0] += (binomial(n, q) * bz[q][X]);
        sb[X][q][1] = sb[X][q][0];
        sb[Y][q][0] += (binomial(n, q) * bz[q][Y]);
        sb[Y][q][1] = sb[Y][q][0];
    }
    sb[X][0][0] = bz[0][X];
    sb[X][0][1] = bz[n][X];
    sb[Y][0][0] = bz[0][Y];
    sb[Y][0][1] = bz[n][Y];
}


}  // end namespace Geom


#if 0 
/*
* This version works by inverting a reasonable upper bound on the error term after subdividing the
* curve at $a$.  We keep biting off pieces until there is no more curve left.
*
* Derivation: The tail of the power series is $a_ks^k + a_{k+1}s^{k+1} + \ldots = e$.  A
* subdivision at $a$ results in a tail error of $e*A^k, A = (1-a)a$.  Let this be the desired
* tolerance tol $= e*A^k$ and invert getting $A = e^{1/k}$ and $a = 1/2 - \sqrt{1/4 - A}$
*/
void
subpath_from_sbasis_incremental(Geom::OldPathSetBuilder &pb, D2<SBasis> B, double tol, bool initial) {
    const unsigned k = 2; // cubic bezier
    double te = B.tail_error(k);
    assert(B[0].IS_FINITE());
    assert(B[1].IS_FINITE());

    //std::cout << "tol = " << tol << std::endl;
    while(1) {
        double A = std::sqrt(tol/te); // pow(te, 1./k)
        double a = A;
        if(A < 1) {
            A = std::min(A, 0.25);
            a = 0.5 - std::sqrt(0.25 - A); // quadratic formula
            if(a > 1) a = 1; // clamp to the end of the segment
        } else
            a = 1;
        assert(a > 0);
        //std::cout << "te = " << te << std::endl;
        //std::cout << "A = " << A << "; a=" << a << std::endl;
        D2<SBasis> Bs = compose(B, Linear(0, a));
        assert(Bs.tail_error(k));
        std::vector<Geom::Point> bez = sbasis_to_bezier(Bs, 2);
        reverse(bez.begin(), bez.end());
        if (initial) {
          pb.start_subpath(bez[0]);
          initial = false;
        }
        pb.push_cubic(bez[1], bez[2], bez[3]);

// move to next piece of curve
        if(a >= 1) break;
        B = compose(B, Linear(a, 1));
        te = B.tail_error(k);
    }
}

#endif

namespace Geom{

/** Make a path from a d2 sbasis.
 \param p the d2 Symmetric basis polynomial
 \returns a Path

  If only_cubicbeziers is true, the resulting path may only contain CubicBezier curves.
*/
void build_from_sbasis(Geom::PathBuilder &pb, D2<SBasis> const &B, double tol, bool only_cubicbeziers) {
    if (!B.isFinite()) {
        THROW_EXCEPTION("assertion failed: B.isFinite()");
    }
    if(tail_error(B, 2) < tol || sbasis_size(B) == 2) { // nearly cubic enough
        if( !only_cubicbeziers && (sbasis_size(B) <= 1) ) {
            pb.lineTo(B.at1());
        } else {
            std::vector<Geom::Point> bez;
            sbasis_to_bezier(bez, B, 4);
            pb.curveTo(bez[1], bez[2], bez[3]);
        }
    } else {
        build_from_sbasis(pb, compose(B, Linear(0, 0.5)), tol, only_cubicbeziers);
        build_from_sbasis(pb, compose(B, Linear(0.5, 1)), tol, only_cubicbeziers);
    }
}

/** Make a path from a d2 sbasis.
 \param p the d2 Symmetric basis polynomial
 \returns a Path

  If only_cubicbeziers is true, the resulting path may only contain CubicBezier curves.
*/
Path
path_from_sbasis(D2<SBasis> const &B, double tol, bool only_cubicbeziers) {
    PathBuilder pb;
    pb.moveTo(B.at0());
    build_from_sbasis(pb, B, tol, only_cubicbeziers);
    pb.finish();
    return pb.peek().front();
}

/** Make a path from a d2 sbasis.
 \param p the d2 Symmetric basis polynomial
 \returns a Path

  If only_cubicbeziers is true, the resulting path may only contain CubicBezier curves.
 TODO: some of this logic should be lifted into svg-path
*/
std::vector<Geom::Path>
path_from_piecewise(Geom::Piecewise<Geom::D2<Geom::SBasis> > const &B, double tol, bool only_cubicbeziers) {
    Geom::PathBuilder pb;
    if(B.size() == 0) return pb.peek();
    Geom::Point start = B[0].at0();
    pb.moveTo(start);
    for(unsigned i = 0; ; i++) {
        if(i+1 == B.size() || !are_near(B[i+1].at0(), B[i].at1(), tol)) {
            //start of a new path
            if(are_near(start, B[i].at1()) && sbasis_size(B[i]) <= 1) {
                pb.closePath();
                //last line seg already there (because of .closePath())
                goto no_add;
            }
            build_from_sbasis(pb, B[i], tol, only_cubicbeziers);
            if(are_near(start, B[i].at1())) {
                //it's closed, the last closing segment was not a straight line so it needed to be added, but still make it closed here with degenerate straight line.
                pb.closePath();
            }
          no_add:
            if(i+1 >= B.size()) break;
            start = B[i+1].at0();
            pb.moveTo(start);
        } else {
            build_from_sbasis(pb, B[i], tol, only_cubicbeziers);
        }
    }
    pb.finish();
    return pb.peek();
}

}

/*
  Local Variables:
  mode:c++
  c-file-style:"stroustrup"
  c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
  indent-tabs-mode:nil
  fill-column:99
  End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:encoding=utf-8:textwidth=99 :