~jdpipe/ascend/trunk-old

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
(*	ASCEND modelling environment
	Copyright (C) 1998, 2006, 2007 Carnegie Mellon University

	This program is free software; you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation; either version 2, or (at your option)
	any later version.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
	GNU General Public License for more details.
	
	You should have received a copy of the GNU General Public License
	along with this program.  If not, see <http://www.gnu.org/licenses/>.
*)
REQUIRE "atoms.a4l";
PROVIDE "when_demo.a4c";
(*
	Example of use of WHEN statement, by Vicente Rico-Ramirez.
	Presented in the 'HOWTO' document 'when_model.pdf' & also in ASCEND Wiki.

	This model is intended to demonstrate the degree of flexibility
	that the use of conditional statements -when statement- provides
	to the representation of superstructures. We hope that this
	application will become clear by looking at the MODEL flowsheet,
	in which the existence/nonexistence of some of the unit operations
	is represented by when statements. A particular combination of
	user defined boolean variables -see method values, configuration2,
	configuration3- will a define a particular configuration of the
	problem.
*)

MODEL mixture;

	components         IS_A set OF symbol_constant;
	Cpi[components]    IS_A molar_heat_capacity;
	y[components]      IS_A fraction;
	P                  IS_A pressure;
	T                  IS_A temperature;
	Cp                 IS_A molar_heat_capacity;

	SUM[y[i] | i IN components] = 1.0;
	Cp = SUM[Cpi[i] * y[i] | i IN components];

METHODS
	METHOD default_self;
	END default_self;

	METHOD specify;
		FIX Cpi[components];
		FIX P;
		FIX T;
		FIX y[components];
		FREE y[CHOICE[components]];
	END specify;
END mixture;


(* ************************************************* *)


MODEL molar_stream;
	state               IS_A mixture;
	Ftot,f[components]  IS_A molar_rate;
	components          IS_A set OF symbol_constant;
	P                   IS_A pressure;
	T                   IS_A temperature;
	Cp                  IS_A molar_heat_capacity;

	components, state.components  ARE_THE_SAME;
	P, state.P                    ARE_THE_SAME;
	T, state.T                    ARE_THE_SAME;
	Cp, state.Cp                  ARE_THE_SAME;

	FOR i IN components CREATE
		f_def[i]: f[i] = Ftot*state.y[i];
	END FOR;

  METHODS

    METHOD default_self;
    END default_self;

    METHOD specify;
		RUN state.specify;
		FREE state.y[components];
		FIX f[components];
	END specify;

END molar_stream;



(* ************************************************* *)


MODEL cheap_feed;
	stream        IS_A molar_stream;
	cost_factor	  IS_A cost_per_mole;
	cost          IS_A cost_per_time;

	stream.f['A'] = 0.060 {kg_mole/s};
	stream.f['B'] = 0.025 {kg_mole/s};
	stream.f['D'] = 0.015 {kg_mole/s};
	stream.f['C'] = 0.00 {kg_mole/s};
	stream.T = 300 {K};
	stream.P = 5 {bar};

	cost = cost_factor * stream.Ftot;
METHODS

    METHOD default_self;
    END default_self;

    METHOD specify;
		RUN stream.specify;
		FREE stream.f[stream.components];
		FIX cost_factor;
		FREE stream.T;
		FREE stream.P;
    END specify;

END cheap_feed;

(* ************************************************* *)

MODEL expensive_feed;
	stream			IS_A molar_stream;
	cost_factor		IS_A cost_per_mole;
	cost			IS_A cost_per_time;

	stream.f['A'] = 0.065 {kg_mole/s};
	stream.f['B'] = 0.030 {kg_mole/s};
	stream.f['D'] = 0.05  {kg_mole/s};
	stream.f['C'] = 0.00  {kg_mole/s};
	stream.T = 320 {K};
	stream.P = 6 {bar};

	cost = 3 * cost_factor * stream.Ftot;

METHODS

    METHOD default_self;
    END default_self;

    METHOD specify;
		RUN stream.specify;
		FREE stream.f[stream.components];
		FIX cost_factor;
		FREE stream.T;
		FREE stream.P;
    END specify;

END expensive_feed;

(* ************************************************* *)

MODEL heater;
	input,output    IS_A molar_stream;
	heat_supplied   IS_A energy_rate;
	components      IS_A set OF symbol_constant;
	cost            IS_A cost_per_time;
	cost_factor     IS_A cost_per_energy;

	components,input.components,output.components	ARE_THE_SAME;
	FOR i IN components CREATE
		input.state.Cpi[i], output.state.Cpi[i]	ARE_THE_SAME;
	END FOR;

	FOR i IN components CREATE
		input.f[i] = output.f[i];
	END FOR;

	input.P = output.P;

	heat_supplied = input.Cp *(output.T - input.T) * input.Ftot;

	cost = cost_factor * heat_supplied;

METHODS

	METHOD default_self;
	END default_self;

	METHOD specify;
		RUN input.specify;
		FIX cost_factor;
		FIX heat_supplied;
	END specify;

	METHOD seqmod;
		FIX cost_factor;
		FIX heat_supplied;
	END seqmod;

END heater;

(* ************************************************* *)

MODEL cooler;

	input,output		IS_A molar_stream;
	heat_removed		IS_A energy_rate;
	components		IS_A set OF symbol_constant;
	cost			IS_A cost_per_time;
	cost_factor		IS_A cost_per_energy;

	components,input.components,output.components	ARE_THE_SAME;
	FOR i IN components CREATE
		input.state.Cpi[i],output.state.Cpi[i]	ARE_THE_SAME;
	END FOR;

	FOR i IN components CREATE
	   input.f[i] = output.f[i];
	END FOR;

	input.P = output.P;
	heat_removed = input.Cp *(input.T - output.T) * input.Ftot;
	cost = cost_factor * heat_removed;

METHODS

	METHOD default_self;
	END default_self;

	METHOD specify;
		RUN input.specify;
		FIX cost_factor;
		FIX heat_removed;
	END specify;

	METHOD seqmod;
		FIX cost_factor;
		FIX heat_removed;
	END seqmod;

END cooler;

(* ************************************************* *)

MODEL single_compressor; (* Adiabatic Compression *)

	input,output		IS_A molar_stream;
	components		IS_A set OF symbol_constant;
	work_supplied		IS_A energy_rate;
	pressure_rate		IS_A factor;
	R			IS_A molar_gas_constant;
	cost			IS_A cost_per_time;
	cost_factor		IS_A cost_per_energy;

	components,input.components,output.components	ARE_THE_SAME;
	FOR i IN components CREATE
		input.state.Cpi[i],output.state.Cpi[i]	ARE_THE_SAME;
	END FOR;

	FOR i IN components CREATE
		input.f[i] = output.f[i];
	END FOR;

	pressure_rate = output.P / input.P;

	output.T = input.T * (pressure_rate ^(R/input.Cp) );

	work_supplied = input.Ftot * input.Cp * (output.T - input.T);

	cost = cost_factor * work_supplied;

METHODS
	METHOD default_self;
	END default_self;

	METHOD specify;
		RUN input.specify;
		FIX cost_factor;
		FIX pressure_rate;
	END specify;

	METHOD seqmod;
		FIX cost_factor;
		FIX pressure_rate;
	END seqmod;

END single_compressor;


(* ************************************************* *)


MODEL staged_compressor;

	input,output		IS_A molar_stream;
	components		IS_A set OF symbol_constant;
	work_supplied		IS_A energy_rate;
	heat_removed		IS_A energy_rate;
	T_middle		IS_A temperature;
	n_stages		IS_A factor;
	pressure_rate		IS_A factor;
	stage_pressure_rate	IS_A factor;
	R			IS_A molar_gas_constant;
	cost			IS_A cost_per_time;
	cost_factor_work	IS_A cost_per_energy;
	cost_factor_heat	IS_A cost_per_energy;

	components,input.components,output.components	ARE_THE_SAME;
	FOR i IN components CREATE
	  input.state.Cpi[i],output.state.Cpi[i]	ARE_THE_SAME;
	END FOR;

	FOR i IN components CREATE
	   input.f[i] = output.f[i];
	END FOR;

	output.T = input.T;

	pressure_rate = output.P / input.P;

	stage_pressure_rate =(pressure_rate)^(1.0/n_stages);

	T_middle = input.T * (stage_pressure_rate ^(R/input.Cp));

	work_supplied = input.Ftot * n_stages * input.Cp *
			(T_middle - input.T);

	heat_removed =  input.Ftot * (n_stages - 1.0) *
			input.Cp * (T_middle - input.T);

	cost = cost_factor_work * work_supplied +
               cost_factor_heat * heat_removed;

METHODS
	METHOD default_self;
	END default_self;

	METHOD specify;
		RUN input.specify;
		FIX n_stages;
		FIX cost_factor_heat;
		FIX cost_factor_work;
		FIX pressure_rate;
	END specify;

	METHOD seqmod;
		FIX n_stages;
		FIX cost_factor_heat;
		FIX cost_factor_work;
		FIX pressure_rate;
	END seqmod;

END staged_compressor;


(* ************************************************* *)


MODEL mixer;

	components		IS_A set OF symbol_constant;
	n_inputs		IS_A integer_constant;
	feed[1..n_inputs], out	IS_A molar_stream;
	To			IS_A temperature;

	components,feed[1..n_inputs].components,
	out.components				ARE_THE_SAME;
	FOR i IN components CREATE
	  feed[1..n_inputs].state.Cpi[i],out.state.Cpi[i]	ARE_THE_SAME;
	END FOR;

	FOR i IN components CREATE
	  cmb[i]: out.f[i] = SUM[feed[1..n_inputs].f[i]];
	END FOR;

	SUM[(feed[i].Cp *feed[i].Ftot * (feed[i].T - To))|i IN [1..n_inputs]]=
		                         out.Cp *out.Ftot * (out.T - To);

	SUM[( feed[i].Ftot * feed[i].T / feed[i].P  )|i IN [1..n_inputs]] =
		                         out.Ftot * out.T / out.P;

METHODS
	METHOD default_self;
	END default_self;

	METHOD specify;
		FIX To;
		RUN feed[1..n_inputs].specify;
	END specify;

	METHOD seqmod;
		FIX To;
	END seqmod;

END mixer;


(* ************************************************* *)


MODEL splitter;

	components		IS_A set OF symbol_constant;
	n_outputs		IS_A integer_constant;
	feed, out[1..n_outputs]	IS_A molar_stream;
	split[1..n_outputs]	IS_A fraction;

	components, feed.components,
        out[1..n_outputs].components 	ARE_THE_SAME;
	feed.state,
	out[1..n_outputs].state		ARE_THE_SAME;

	FOR j IN [1..n_outputs] CREATE
		out[j].Ftot = split[j]*feed.Ftot;
	END FOR;

	SUM[split[1..n_outputs]] = 1.0;

METHODS

	METHOD default_self;
	END default_self;

	METHOD specify;
		RUN feed.specify;
		FIX split[1..n_outputs-1];
	END specify;

	METHOD seqmod;
		FIX split[1..n_outputs-1];
	END seqmod;

END splitter;


(* ************************************************* *)


MODEL cheap_reactor;
	components			IS_A set OF symbol_constant;
	input, output			IS_A molar_stream;
	low_turnover			IS_A molar_rate;
	stoich_coef[input.components]	IS_A factor;
	cost_factor     		IS_A cost_per_mole;
	cost			        IS_A cost_per_time;

	components,input.components, output.components	ARE_THE_SAME;
	FOR i IN components CREATE
	  input.state.Cpi[i], output.state.Cpi[i]	ARE_THE_SAME;
	END FOR;

	FOR i IN components CREATE
	    output.f[i] = input.f[i] + stoich_coef[i]*low_turnover;
	END FOR;

	input.T = output.T;
	(* ideal gas constant volume *)
	input.Ftot * input.T / input.P = output.Ftot * output.T/output.P;

	cost = cost_factor * low_turnover;

METHODS

	METHOD default_self;
	END default_self;

	METHOD specify;
		RUN input.specify;
		FIX low_turnover;
		FIX stoich_coef[input.components];
		FIX cost_factor;
	END specify;

	METHOD seqmod;
		FIX low_turnover;
		FIX stoich_coef[input.components];
		FIX cost_factor;
	END seqmod;

END cheap_reactor;


(* ************************************************* *)


MODEL expensive_reactor;

	components			IS_A set OF symbol_constant;
	input, output			IS_A molar_stream;
	high_turnover			IS_A molar_rate;
	stoich_coef[input.components]	IS_A factor;
	cost_factor     		IS_A cost_per_mole;
	cost			        IS_A cost_per_time;

	components,input.components, output.components	ARE_THE_SAME;
	FOR i IN components CREATE
	  input.state.Cpi[i], output.state.Cpi[i]	ARE_THE_SAME;
	END FOR;

	FOR i IN components CREATE
	    output.f[i] = input.f[i] + stoich_coef[i]*high_turnover;
	END FOR;

	input.T = output.T;
	(* ideal gas constant volume *)
	input.Ftot * input.T / input.P = output.Ftot * output.T/output.P;

	cost = cost_factor * high_turnover;

METHODS

	METHOD default_self;
	END default_self;

	METHOD specify;
		RUN input.specify;
		FIX high_turnover;
		FIX stoich_coef[input.components];
		FIX cost_factor;
	END specify;

	METHOD seqmod;
		FIX high_turnover;
		FIX stoich_coef[input.components];
		FIX cost_factor;
	END seqmod;

END expensive_reactor;


(* ************************************************* *)


MODEL flash;

	components		IS_A set OF symbol_constant;
	feed,vap,liq		IS_A molar_stream;
	alpha[feed.components]  IS_A factor;
	ave_alpha		IS_A factor;
	vap_to_feed_ratio	IS_A fraction;

	components,feed.components,
	vap.components,
	liq.components 		ARE_THE_SAME;
	FOR i IN components CREATE
	  feed.state.Cpi[i],
	  vap.state.Cpi[i],
          liq.state.Cpi[i]	ARE_THE_SAME;
	END FOR;

	vap_to_feed_ratio*feed.Ftot = vap.Ftot;

	FOR i IN components CREATE
		cmb[i]: feed.f[i] = vap.f[i] + liq.f[i];
		eq[i]:  vap.state.y[i]*ave_alpha = alpha[i]*liq.state.y[i];
	END FOR;

	feed.T = vap.T;
	feed.T = liq.T;
	feed.P = vap.P;
	feed.P = liq.P;

METHODS

    METHOD default_self;
    END default_self;

    METHOD specify;
		RUN feed.specify;
		FIX alpha[feed.components];
		FIX vap_to_feed_ratio;
    END specify;

    METHOD seqmod;
		FIX alpha[feed.components];
		FIX vap_to_feed_ratio;
    END seqmod;

END flash;


(* ************************************************* *)


MODEL flowsheet;

(* units *)

	f1			IS_A cheap_feed;
	f2			IS_A expensive_feed;

	c1			IS_A single_compressor;
	s1			IS_A staged_compressor;

	c2			IS_A single_compressor;
	s2			IS_A staged_compressor;

	r1			IS_A cheap_reactor;
	r2			IS_A expensive_reactor;

	co1,co2			IS_A cooler;
	h1,h2,h3		IS_A heater;
	fl1			IS_A flash;
	sp1			IS_A splitter;
	m1			IS_A mixer;

	running_cost IS_A cost_per_time;
	running_cost = compressor_cost + feed_cost + reactor_cost + compressor2_cost
		+ co1.cost + co2.cost + h1.cost + h2.cost + h3.cost;

(* boolean variables  *)

	select_feed1		IS_A boolean_var;
	select_single1		IS_A boolean_var;
	select_cheapr1		IS_A boolean_var;
	select_single2		IS_A boolean_var;

(* define sets  *)

	m1.n_inputs :==	2;
	sp1.n_outputs :== 2;

(* wire up flowsheet *)

	f1.stream, f2.stream, c1.input, s1.input  ARE_THE_SAME;
	c1.output, s1.output, m1.feed[2]	  ARE_THE_SAME;
	m1.out,co1.input 			  ARE_THE_SAME;
	co1.output, h1.input 		          ARE_THE_SAME;
	h1.output, r1.input, r2.input		  ARE_THE_SAME;
	r1.output, r2.output,co2.input 		  ARE_THE_SAME;
	co2.output, fl1.feed			  ARE_THE_SAME;
	fl1.liq, h2.input			  ARE_THE_SAME;
	fl1.vap, sp1.feed			  ARE_THE_SAME;
	sp1.out[1], h3.input			  ARE_THE_SAME;
	sp1.out[2],c2.input, s2.input	          ARE_THE_SAME;
        c2.output, s2.output,m1.feed[1]	          ARE_THE_SAME;


(* Conditional statements *)

	feed_cost IS_A cost_per_time;
	fc1: feed_cost = f1.cost;
	fc2: feed_cost = f2.cost;

	WHEN (select_feed1)
	  CASE TRUE:
		USE f1;
		USE fc1;
	  CASE FALSE:
		USE f2;
		USE fc2;
	END WHEN;

	compressor_cost IS_A cost_per_time;
	c1c1: compressor_cost = c1.cost;
	c1s1: compressor_cost = s1.cost;
	WHEN (select_single1)
	  CASE TRUE:
		USE c1;
		USE c1c1;
	  CASE FALSE:
		USE s1;
		USE c1s1;
	END WHEN;

	reactor_cost IS_A cost_per_time;
	rc1: reactor_cost = r1.cost;
	rc2: reactor_cost = r2.cost;
	WHEN (select_cheapr1)
	  CASE TRUE:
		USE r1;
		USE rc1;
	  CASE FALSE:
		USE r2;
		USE rc2;
	END WHEN;

	compressor2_cost IS_A cost_per_time;
	c2c2: compressor2_cost = c2.cost;
	c2s2: compressor2_cost = s2.cost;
	WHEN (select_single2)
	  CASE TRUE:
		USE c2;
		USE c2c2;
	  CASE FALSE:
		USE s2;
		USE c2s2;
	END WHEN;


METHODS

    METHOD default_self;
    END default_self;

    METHOD seqmod;
		RUN c1.seqmod;
		RUN c2.seqmod;
		RUN s1.seqmod;
		RUN s2.seqmod;
		RUN co1.seqmod;
		RUN co2.seqmod;
		RUN h1.seqmod;
		RUN h2.seqmod;
		RUN h3.seqmod;
		RUN r1.seqmod;
		RUN r2.seqmod;
		RUN fl1.seqmod;
		RUN sp1.seqmod;
		RUN m1.seqmod;
    END seqmod;

    METHOD specify;
		RUN seqmod;
		RUN f1.specify;
		RUN f2.specify;
    END specify;

END flowsheet;


(* ************************************************* *)


MODEL test_flowsheet REFINES flowsheet;

	f1.stream.components :== ['A','B','C','D'];

METHODS

	METHOD default_self;
		RUN reset;
		RUN values;
	END default_self;

	METHOD values;

		(* Initial Configuration *)
		select_feed1 := TRUE;
		select_single1 := TRUE;
		select_cheapr1 := TRUE;
		select_single2 := TRUE;

		(* Fixed Values *)

		(* Physical Properties of Components *)

		f1.stream.state.Cpi['A'] := 0.04 {BTU/mole/K};
		f1.stream.state.Cpi['B'] := 0.05 {BTU/mole/K};
		f1.stream.state.Cpi['C'] := 0.06 {BTU/mole/K};
		f1.stream.state.Cpi['D'] := 0.055 {BTU/mole/K};

		(* Feed 1 *)
		f1.cost_factor := 0.026 {USD/kg_mole};

		(* Feed 2 *)
		f2.cost_factor := 0.033 {USD/kg_mole};

		(* Cooler 1 *)
		co1.cost_factor  := 0.7e-06 {USD/kJ};
		co1.heat_removed := 100 {BTU/s};

		(* Cooler 2 *)
		co2.heat_removed := 150 {BTU/s};
		co2.cost_factor  := 0.7e-06 {USD/kJ};

		(* Heater 1 *)
		h1.heat_supplied := 200 {BTU/s};
		h1.cost_factor  := 8e-06 {USD/kJ};

		(* Heater 2 *)
		h2.heat_supplied := 180 {BTU/s};
		h2.cost_factor  := 8e-06 {USD/kJ};

		(* Heater 3 *)
		h3.heat_supplied := 190 {BTU/s};
		h3.cost_factor  := 8e-06 {USD/kJ};

		(* Flash *)
		fl1.alpha['A'] := 12.0;
		fl1.alpha['B'] := 10.0;
		fl1.alpha['C'] := 1.0;
		fl1.alpha['D'] := 6.0;
		fl1.vap_to_feed_ratio :=0.9;

		(* Splitter *)
		sp1.split[1] :=	0.05;

		(* Mixer *)
		m1.To := 298 {K};

		(* Single Compressor 1 *)
		c1.cost_factor := 8.33333e-06 {USD/kJ};
		c1.pressure_rate := 2.5;

		(* Single Compressor 2 *)
		c2.cost_factor := 8.33333e-06 {USD/kJ};
		c2.pressure_rate := 1.5;

		(* Staged Compressor 1 *)
		s1.cost_factor_work := 8.33333e-06 {USD/kJ};
		s1.cost_factor_heat := 0.7e-06 {USD/kJ};
		s1.pressure_rate := 2.5;
		s1.n_stages := 2.0;

		(* Staged Compressor 2 *)
		s2.cost_factor_work := 8.33333e-06 {USD/kJ};
		s2.cost_factor_heat := 0.7e-06 {USD/kJ};
		s2.pressure_rate := 1.5;
		s2.n_stages := 2.0;

		(* Reactor 1 *)
		r1.stoich_coef['A']:=	-1;
		r1.stoich_coef['B']:=	-1;
		r1.stoich_coef['C']:=	1;
		r1.stoich_coef['D']:=	0;
		r1.low_turnover := 0.0069 {kg_mole/s};

		(* Reactor 2 *)
		r2.stoich_coef['A']:=	-1;
		r2.stoich_coef['B']:=	-1;
		r2.stoich_coef['C']:=	1;
		r2.stoich_coef['D']:=	0;
		r2.high_turnover := 0.00828 {kg_mole/s};

		(* Initial Guess *)

		(* Flash *)
		fl1.ave_alpha	:= 5.0;

	END values;

	METHOD configuration2;
		(* alternative configuration *)
		select_feed1 := FALSE;
		select_single1 := FALSE;
		select_cheapr1 := FALSE;
		select_single2 := FALSE;
	END configuration2;

	METHOD configuration3;
		(* alternative configuration *)
		select_feed1 := FALSE;
		select_single1 := TRUE;
		select_cheapr1 := TRUE;
		select_single2 := FALSE;
	END configuration3;

END test_flowsheet;