
SAMBA Developers Guide WORKING PAPER

i

SAMBA Developers Guide

SAMBA Developers Guide WORKING PAPER

ii

COLLABORATORS

TITLE :

SAMBA Developers Guide

ACTION NAME DATE SIGNATURE

WRITTEN BY October 18, 2011

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

SAMBA Developers Guide WORKING PAPER

iii

Contents

I The protocol 1

1 NetBIOS in a Unix World 2

1.1 Introduction . 2

1.2 Usernames . 2

1.3 File Ownership . 2

1.4 Passwords . 3

1.5 Locking . 3

1.6 Deny Modes . 3

1.7 Trapdoor UIDs . 4

1.8 Port numbers . 4

1.9 Protocol Complexity . 4

2 NT Domain RPC’s 5

2.1 Introduction . 5

2.1.1 Sources . 6

2.1.2 Credits . 6

2.2 Notes and Structures . 6

2.2.1 Notes . 6

2.2.2 Enumerations . 7

2.2.2.1 MSRPC Header type . 7

2.2.2.2 MSRPC Packet info . 7

2.2.3 Structures . 7

2.2.3.1 VOID * . 7

2.2.3.2 char . 7

2.2.3.3 UTIME . 7

2.2.3.4 NTTIME . 7

2.2.3.5 DOM_SID (domain SID structure) . 8

2.2.3.6 STR (string) . 8

2.2.3.7 UNIHDR (unicode string header) . 8

SAMBA Developers Guide WORKING PAPER

iv

2.2.3.8 UNIHDR2 (unicode string header plus buffer pointer) . 8

2.2.3.9 UNISTR (unicode string) . 8

2.2.3.10 NAME (length-indicated unicode string) . 8

2.2.3.11 UNISTR2 (aligned unicode string) . 8

2.2.3.12 OBJ_ATTR (object attributes) . 9

2.2.3.13 POL_HND (LSA policy handle) . 9

2.2.3.14 DOM_SID2 (domain SID structure, SIDS stored in unicode) 9

2.2.3.15 DOM_RID (domain RID structure) . 9

2.2.3.16 LOG_INFO (server, account, client structure) . 9

2.2.3.17 CLNT_SRV (server, client names structure) . 10

2.2.3.18 CREDS (credentials + time stamp) . 10

2.2.3.19 CLNT_INFO2 (server, client structure, client credentials) . 10

2.2.3.20 CLNT_INFO (server, account, client structure, client credentials) 10

2.2.3.21 ID_INFO_1 (id info structure, auth level 1) . 10

2.2.3.22 SAM_INFO (sam logon/logoff id info structure) . 11

2.2.3.23 GID (group id info) . 11

2.2.3.24 DOM_REF (domain reference info) . 11

2.2.3.25 DOM_INFO (domain info, levels 3 and 5 are the same)) . 11

2.2.3.26 USER_INFO (user logon info) . 12

2.2.3.27 SH_INFO_1_PTR (pointers to level 1 share info strings) . 13

2.2.3.28 SH_INFO_1_STR (level 1 share info strings) . 13

2.2.3.29 SHARE_INFO_1_CTR . 13

2.2.3.30 SERVER_INFO_101 . 14

2.3 MSRPC over Transact Named Pipe . 15

2.3.1 MSRPC Pipes . 15

2.3.2 Header . 15

2.3.2.1 RPC_Packet for request, response, bind and bind acknowledgement 16

2.3.2.2 Interface identification . 16

2.3.2.3 RPC_Iface RW . 16

2.3.2.4 RPC_ReqBind RW . 16

2.3.2.5 RPC_Address RW . 16

2.3.2.6 RPC_ResBind RW . 17

2.3.2.7 RPC_ReqNorm RW . 17

2.3.2.8 RPC_ResNorm RW . 17

2.3.3 Tail . 17

2.3.4 RPC Bind / Bind Ack . 18

2.3.5 NTLSA Transact Named Pipe . 18

2.3.6 LSA Open Policy . 19

2.3.6.1 Request . 19

SAMBA Developers Guide WORKING PAPER

v

2.3.6.2 Response . 19

2.3.7 LSA Query Info Policy . 19

2.3.7.1 Request . 19

2.3.7.2 Response . 19

2.3.8 LSA Enumerate Trusted Domains . 19

2.3.8.1 Request . 19

2.3.8.2 Response . 20

2.3.9 LSA Open Secret . 20

2.3.9.1 Request . 20

2.3.9.2 Response . 20

2.3.10 LSA Close . 20

2.3.10.1 Request . 20

2.3.10.2 Response . 20

2.3.11 LSA Lookup SIDS . 20

2.3.11.1 Request . 21

2.3.11.2 Response . 21

2.3.12 LSA Lookup Names . 21

2.3.12.1 Request . 21

2.3.12.2 Response . 22

2.4 NETLOGON rpc Transact Named Pipe . 22

2.4.1 LSA Request Challenge . 22

2.4.1.1 Request . 22

2.4.1.2 Response . 23

2.4.2 LSA Authenticate 2 . 23

2.4.2.1 Request . 23

2.4.2.2 Response . 23

2.4.3 LSA Server Password Set . 23

2.4.3.1 Request . 23

2.4.3.2 Response . 24

2.4.4 LSA SAM Logon . 24

2.4.4.1 Request . 24

2.4.4.2 Response . 24

2.4.5 LSA SAM Logoff . 24

2.4.5.1 Request . 24

2.4.5.2 Response . 25

2.5 \\MAILSLOT\NET\NTLOGON . 25

2.5.1 Query for PDC . 25

2.5.1.1 Request . 25

2.5.1.2 Response . 25

SAMBA Developers Guide WORKING PAPER

vi

2.5.2 SAM Logon . 26

2.5.2.1 Request . 26

2.5.2.2 Response . 26

2.6 SRVSVC Transact Named Pipe . 26

2.6.1 Net Share Enum . 27

2.6.1.1 Request . 27

2.6.1.2 Response . 27

2.6.2 Net Server Get Info . 27

2.6.2.1 Request . 27

2.6.2.2 Response . 27

2.7 Cryptographic side of NT Domain Authentication . 28

2.7.1 Definitions . 28

2.7.2 Protocol . 28

2.7.3 Comments . 29

2.8 SIDs and RIDs . 29

2.8.1 Well-known SIDs . 29

2.8.1.1 Universal well-known SIDs . 29

2.8.1.2 NT well-known SIDs . 29

2.8.2 Well-known RIDS . 30

2.8.2.1 Well-known RID users . 30

2.8.2.2 Well-known RID groups . 30

2.8.2.3 Well-known RID aliases . 30

II Samba Basics 31

3 Samba Architecture 32

3.1 Introduction . 32

3.2 Multithreading and Samba . 32

3.3 Threading smbd . 32

3.4 Threading nmbd . 33

3.5 nbmd Design . 33

4 The samba DEBUG system 34

4.1 New Output Syntax . 34

4.2 The DEBUG() Macro . 35

4.3 The DEBUGADD() Macro . 36

4.4 The DEBUGLVL() Macro . 36

4.5 New Functions . 36

4.5.1 dbgtext() . 36

4.5.2 dbghdr() . 37

4.5.3 format_debug_text() . 37

SAMBA Developers Guide WORKING PAPER

vii

5 Samba Internals 38

5.1 Character Handling . 38

5.2 The new functions . 38

5.3 Macros in byteorder.h . 39

5.3.1 CVAL(buf,pos) . 39

5.3.2 PVAL(buf,pos) . 39

5.3.3 SCVAL(buf,pos,val) . 39

5.3.4 SVAL(buf,pos) . 39

5.3.5 IVAL(buf,pos) . 39

5.3.6 SVALS(buf,pos) . 39

5.3.7 IVALS(buf,pos) . 39

5.3.8 SSVAL(buf,pos,val) . 39

5.3.9 SIVAL(buf,pos,val) . 40

5.3.10 SSVALS(buf,pos,val) . 40

5.3.11 SIVALS(buf,pos,val) . 40

5.3.12 RSVAL(buf,pos) . 40

5.3.13 RIVAL(buf,pos) . 40

5.3.14 RSSVAL(buf,pos,val) . 40

5.3.15 RSIVAL(buf,pos,val) . 40

5.4 LAN Manager Samba API . 40

5.4.1 Parameters . 40

5.4.2 Return value . 41

5.5 Code character table . 42

6 Coding Suggestions 43

7 Contributing code 45

8 Modules 46

8.1 Advantages . 46

8.2 Loading modules . 46

8.2.1 Static modules . 46

8.2.2 Shared modules . 47

8.3 Writing modules . 47

8.3.1 Static/Shared selection in configure.in . 47

III Samba Subsystems 48

9 RPC Pluggable Modules 49

9.1 About . 49

9.2 General Overview . 49

SAMBA Developers Guide WORKING PAPER

viii

10 VFS Modules 50

10.1 The Samba (Posix) VFS layer . 50

10.1.1 The general interface . 50

10.1.2 Possible VFS operation layers . 53

10.2 The Interaction between the Samba VFS subsystem and the modules . 53

10.2.1 Initialization and registration . 53

10.2.2 How the Modules handle per connection data . 54

10.3 Upgrading to the New VFS Interface . 56

10.3.1 Upgrading from 2.2.* and 3.0alpha modules . 56

10.4 Some Notes . 60

10.4.1 Implement TRANSPARENT functions . 60

10.4.2 Implement OPAQUE functions . 60

11 The smb.conf file 62

11.1 Lexical Analysis . 62

11.1.1 Handling of Whitespace . 62

11.1.2 Handling of Line Continuation . 63

11.1.3 Line Continuation Quirks . 63

11.2 Syntax . 64

11.2.1 About params.c . 64

12 Samba WINS Internals 65

12.1 WINS Failover . 65

13 LanMan and NT Password Encryption 66

13.1 Introduction . 66

13.2 How does it work? . 66

13.3 The smbpasswd file . 67

IV Debugging and tracing 68

14 Tracing samba system calls 69

15 Samba Printing Internals 71

15.1 Abstract . 71

15.2 Printing Interface to Various Back ends . 71

15.3 Print Queue TDB’s . 72

15.4 ChangeID and Client Caching of Printer Information . 73

15.5 Windows NT/2K Printer Change Notify . 73

SAMBA Developers Guide WORKING PAPER

ix

V Appendices 76

16 Notes to packagers 77

16.1 Versioning . 77

16.2 Modules . 77

Abstract

Last Update : Fri Oct 10 00:59:58 CEST 2003

This book is a collection of documents that might be useful for people developing samba or those interested in doing so.
It’s nothing more than a collection of documents written by samba developers about the internals of various parts of samba
and the SMB protocol. It’s still (and will always be) incomplete. The most recent version of this document can be found at
http://devel.samba.org/.

This documentation is distributed under the GNU General Public License (GPL) version 2. A copy of the license is included
with the Samba source distribution. A copy can be found on-line at http://www.fsf.org/licenses/gpl.txt

Warning This document is incomplete and unmaintained. It is merely a collection of development-related notes.

http://devel.samba.org/
http://www.fsf.org/licenses/gpl.txt

SAMBA Developers Guide WORKING PAPER

i

Attribution

NetBIOS in a Unix World

• Andrew Tridgell

NT Domain RPC’s

• Luke Leightonmailto:lkcl@switchboard.net

• Paul Ashtonmailto:paul@argo.demon.co.uk

• Duncan Stansfieldmailto:duncans@sco.com

Samba Architecture

• Dan Shearer

The samba DEBUG system

• Chris Hertel

Samba Internals

• David Chappellmailto:David.Chappell@mail.trincoll.edu

Coding Suggestions

• Steve French

• Simo Sorce

• Andrew Bartlett

• Tim Potter

• Martin Pool

Contributing code

• Jelmer R. Vernooijmailto:jelmer@samba.org

Modules

• Jelmer Vernooijmailto:jelmer@samba.org

RPC Pluggable Modules

mailto:lkcl@switchboard.net
mailto:paul@argo.demon.co.uk
mailto:duncans@sco.com
mailto:David.Chappell@mail.trincoll.edu
mailto:jelmer@samba.org
mailto:jelmer@samba.org

SAMBA Developers Guide WORKING PAPER

ii

• Anthony Liguorimailto:aliguor@us.ibm.com

• Jelmer Vernooijmailto:jelmer@samba.org

VFS Modules

• Alexander Bokovoymailto:ab@samba.org

• Stefan Metzmachermailto:metze@samba.org

The smb.conf file

• Chris Hertel

Samba WINS Internals

• Gerald Carter

LanMan and NT Password Encryption

• Jeremy Allisonmailto:samba@samba.org

Tracing samba system calls

• Andrew Tridgell

Samba Printing Internals

• Gerald Carter

Notes to packagers

• Jelmer Vernooij

mailto:aliguor@us.ibm.com
mailto:jelmer@samba.org
mailto:ab@samba.org
mailto:metze@samba.org
mailto:samba@samba.org

SAMBA Developers Guide WORKING PAPER

1 / 77

Part I

The protocol

SAMBA Developers Guide WORKING PAPER

2 / 77

Chapter 1

NetBIOS in a Unix World

Andrew Tridgell

1.1 Introduction

This is a short document that describes some of the issues that confront a SMB implementation on unix, and how Samba copes
with them. They may help people who are looking at unix<->PC interoperability.

It was written to help out a person who was writing a paper on unix to PC connectivity.

1.2 Usernames

The SMB protocol has only a loose username concept. Early SMB protocols (such as CORE and COREPLUS) have no username
concept at all. Even in later protocols clients often attempt operations (particularly printer operations) without first validating a
username on the server.

Unix security is based around username/password pairs. A unix box should not allow clients to do any substantive operation
without some sort of validation.

The problem mostly manifests itself when the unix server is in "share level" security mode. This is the default mode as the
alternative "user level" security mode usually forces a client to connect to the server as the same user for each connected share,
which is inconvenient in many sites.

In "share level" security the client normally gives a username in the "session setup" protocol, but does not supply an accompany-
ing password. The client then connects to resources using the "tree connect" protocol, and supplies a password. The problem is
that the user on the PC types the username and the password in different contexts, unaware that they need to go together to give
access to the server. The username is normally the one the user typed in when they "logged onto" the PC (this assumes Windows
for Workgroups). The password is the one they chose when connecting to the disk or printer.

The user often chooses a totally different username for their login as for the drive connection. Often they also want to access
different drives as different usernames. The unix server needs some way of divining the correct username to combine with each
password.

Samba tries to avoid this problem using several methods. These succeed in the vast majority of cases. The methods include
username maps, the service%user syntax, the saving of session setup usernames for later validation and the derivation of the
username from the service name (either directly or via the user= option).

1.3 File Ownership

The commonly used SMB protocols have no way of saying "you can’t do that because you don’t own the file". They have, in
fact, no concept of file ownership at all.

SAMBA Developers Guide WORKING PAPER

3 / 77

This brings up all sorts of interesting problems. For example, when you copy a file to a unix drive, and the file is world writeable
but owned by another user the file will transfer correctly but will receive the wrong date. This is because the utime() call under
unix only succeeds for the owner of the file, or root, even if the file is world writeable. For security reasons Samba does all file
operations as the validated user, not root, so the utime() fails. This can stuff up shared development diectories as programs like
"make" will not get file time comparisons right.

There are several possible solutions to this problem, including username mapping, and forcing a specific username for particular
shares.

1.4 Passwords

Many SMB clients uppercase passwords before sending them. I have no idea why they do this. Interestingly WfWg uppercases
the password only if the server is running a protocol greater than COREPLUS, so obviously it isn’t just the data entry routines
that are to blame.

Unix passwords are case sensitive. So if users use mixed case passwords they are in trouble.

Samba can try to cope with this by either using the "password level" option which causes Samba to try the offered password with
up to the specified number of case changes, or by using the "password server" option which allows Samba to do its validation via
another machine (typically a WinNT server).

Samba supports the password encryption method used by SMB clients. Note that the use of password encryption in Microsoft
networking leads to password hashes that are "plain text equivalent". This means that it is *VERY* important to ensure that the
Samba smbpasswd file containing these password hashes is only readable by the root user. See the documentation ENCRYP-
TION.txt for more details.

1.5 Locking

Since samba 2.2, samba supports other types of locking as well. This section is outdated.

The locking calls available under a DOS/Windows environment are much richer than those available in unix. This means a unix
server (like Samba) choosing to use the standard fcntl() based unix locking calls to implement SMB locking has to improvise a
bit.

One major problem is that dos locks can be in a 32 bit (unsigned) range. Unix locking calls are 32 bits, but are signed, giving
only a 31 bit range. Unfortunately OLE2 clients use the top bit to select a locking range used for OLE semaphores.

To work around this problem Samba compresses the 32 bit range into 31 bits by appropriate bit shifting. This seems to work but
is not ideal. In a future version a separate SMB lockd may be added to cope with the problem.

It also doesn’t help that many unix lockd daemons are very buggy and crash at the slightest provocation. They normally go
mostly unused in a unix environment because few unix programs use byte range locking. The stress of huge numbers of lock
requests from dos/windows clients can kill the daemon on some systems.

The second major problem is the "opportunistic locking" requested by some clients. If a client requests opportunistic locking
then it is asking the server to notify it if anyone else tries to do something on the same file, at which time the client will say if it is
willing to give up its lock. Unix has no simple way of implementing opportunistic locking, and currently Samba has no support
for it.

1.6 Deny Modes

When a SMB client opens a file it asks for a particular "deny mode" to be placed on the file. These modes (DENY_NONE,
DENY_READ, DENY_WRITE, DENY_ALL, DENY_FCB and DENY_DOS) specify what actions should be allowed by any-
one else who tries to use the file at the same time. If DENY_READ is placed on the file, for example, then any attempt to open
the file for reading should fail.

Unix has no equivalent notion. To implement this Samba uses either lock files based on the files inode and placed in a separate
lock directory or a shared memory implementation. The lock file method is clumsy and consumes processing and file resources,
the shared memory implementation is vastly prefered and is turned on by default for those systems that support it.

SAMBA Developers Guide WORKING PAPER

4 / 77

1.7 Trapdoor UIDs

A SMB session can run with several uids on the one socket. This happens when a user connects to two shares with different
usernames. To cope with this the unix server needs to switch uids within the one process. On some unixes (such as SCO) this is
not possible. This means that on those unixes the client is restricted to a single uid.

Note that you can also get the "trapdoor uid" message for other reasons. Please see the FAQ for details.

1.8 Port numbers

There is a convention that clients on sockets use high "unprivileged" port numbers (>1000) and connect to servers on low
"privilegedg" port numbers. This is enforced in Unix as non-root users can’t open a socket for listening on port numbers less
than 1000.

Most PC based SMB clients (such as WfWg and WinNT) don’t follow this convention completely. The main culprit is the netbios
nameserving on udp port 137. Name query requests come from a source port of 137. This is a problem when you combine it with
the common firewalling technique of not allowing incoming packets on low port numbers. This means that these clients can’t
query a netbios nameserver on the other side of a low port based firewall.

The problem is more severe with netbios node status queries. I’ve found that WfWg, Win95 and WinNT3.5 all respond to netbios
node status queries on port 137 no matter what the source port was in the request. This works between machines that are both
using port 137, but it means it’s not possible for a unix user to do a node status request to any of these OSes unless they are
running as root. The answer comes back, but it goes to port 137 which the unix user can’t listen on. Interestingly WinNT3.1 got
this right - it sends node status responses back to the source port in the request.

1.9 Protocol Complexity

There are many "protocol levels" in the SMB protocol. It seems that each time new functionality was added to a Microsoft
operating system, they added the equivalent functions in a new protocol level of the SMB protocol to "externalise" the new
capabilities.

This means the protocol is very "rich", offering many ways of doing each file operation. This means SMB servers need to be
complex and large. It also means it is very difficult to make them bug free. It is not just Samba that suffers from this problem,
other servers such as WinNT don’t support every variation of every call and it has almost certainly been a headache for MS
developers to support the myriad of SMB calls that are available.

There are about 65 "top level" operations in the SMB protocol (things like SMBread and SMBwrite). Some of these include
hundreds of sub-functions (SMBtrans has at least 120 sub-functions, like DosPrintQAdd and NetSessionEnum). All of them take
several options that can change the way they work. Many take dozens of possible "information levels" that change the structures
that need to be returned. Samba supports all but 2 of the "top level" functions. It supports only 8 (so far) of the SMBtrans
sub-functions. Even NT doesn’t support them all.

Samba currently supports up to the "NT LM 0.12" protocol, which is the one preferred by Win95 and WinNT3.5. Luckily this
protocol level has a "capabilities" field which specifies which super-duper new-fangled options the server suports. This helps to
make the implementation of this protocol level much easier.

There is also a problem with the SMB specications. SMB is a X/Open spec, but the X/Open book is far from ideal, and fails to
cover many important issues, leaving much to the imagination. Microsoft recently renamed the SMB protocol CIFS (Common
Internet File System) and have published new specifications. These are far superior to the old X/Open documents but there are
still undocumented calls and features. This specification is actively being worked on by a CIFS developers mailing list hosted by
Microsft.

SAMBA Developers Guide WORKING PAPER

5 / 77

Chapter 2

NT Domain RPC’s

Luke Leighton Paul Ashton Duncan Stansfield

2.1 Introduction

This document contains information to provide an NT workstation with login services, without the need for an NT server. It is
the sgml version of http://mailhost.cb1.com/~lkcl/cifsntdomain.txt, controlled by Luke.

It should be possible to select a domain instead of a workgroup (in the NT workstation’s TCP/IP settings) and after the oblig-
atory reboot, type in a username, password, select a domain and successfully log in. I would appreciate any feedback on your
experiences with this process, and any comments, corrections and additions to this document.

The packets described here can be easily derived from (and are probably better understood using) Netmon.exe. You will need to
use the version of Netmon that matches your system, in order to correctly decode the NETLOGON, lsarpc and srvsvc Transact
pipes. This document is derived from NT Service Pack 1 and its corresponding version of Netmon. It is intended that an annotated
packet trace be produced, which will likely be more instructive than this document.

Also needed, to fully implement NT Domain Login Services, is the document describing the cryptographic part of the NT
authentication. This document is available from comp.protocols.smb; from the ntsecurity.net digest and from the samba digest,
amongst other sources.

A copy is available from:

http://ntbugtraq.rc.on.ca/SCRIPTS/WA.EXE?A2=ind9708;L=ntbugtraq;O=A;P=2935

http://mailhost.cb1.com/~lkcl/crypt.html

A c-code implementation, provided by Linus Nordberg of this protocol is available from:

http://samba.org/cgi-bin/mfs/01/digest/1997/97aug/0391.html

http://mailhost.cb1.com/~lkcl/crypt.txt

Also used to provide debugging information is the Check Build version of NT workstation, and enabling full debugging in
NETLOGON. This is achieved by setting the following REG_SZ registry key to 0x1ffffff:

HKLM\SYSTEM\CurrentControlSet\Services\Netlogon\Parameters

Incorrect direct editing of the registry can cause your machine to fail. Then again, so can incorrect implementation of this
protocol. See "Liability:" above.

Bear in mind that each packet over-the-wire will have its origin in an API call. Therefore, there are likely to be structures,
enumerations and defines that are usefully documented elsewhere.

This document is by no means complete or authoritative. Missing sections include, but are not limited to:

1. Mappings of RIDs to usernames (and vice-versa).

http://mailhost.cb1.com/~lkcl/cifsntdomain.txt
http://ntbugtraq.rc.on.ca/SCRIPTS/WA.EXE?A2=ind9708;L=ntbugtraq;O=A;P=2935
http://mailhost.cb1.com/~lkcl/crypt.html
mailto:linus@incolumitas.se
http://samba.org/cgi-bin/mfs/01/digest/1997/97aug/0391.html
http://mailhost.cb1.com/~lkcl/crypt.txt

SAMBA Developers Guide WORKING PAPER

6 / 77

2. What a User ID is and what a Group ID is.

3. The exact meaning/definition of various magic constants or enumerations.

4. The reply error code and use of that error code when a workstation becomes a member of a domain (to be described later).
Failure to return this error code will make the workstation report that it is already a member of the domain.

5. the cryptographic side of the NetrServerPasswordSet command, which would allow the workstation to change its password.
This password is used to generate the long-term session key. [It is possible to reject this command, and keep the default
workstation password].

2.1.1 Sources

cket Traces from Netmonitor (Service Pack 1 and above)
ul Ashton and Luke Leighton’s other "NT Domain" doc.
FS documentation - cifs6.txt
FS documentation - cifsrap2.txt

2.1.2 Credits

Paul Ashton: loads of work with Net Monitor; understanding the NT authentication system; reference implementation of the NT domain support on which this document is originally based.
Duncan Stansfield: low-level analysis of MSRPC Pipes.
Linus Nordberg: producing c-code from Paul’s crypto spec.
Windows Sourcer development team

2.2 Notes and Structures

2.2.1 Notes

1. In the SMB Transact pipes, some "Structures", described here, appear to be 4-byte aligned with the SMB header, at their
start. Exactly which "Structures" need aligning is not precisely known or documented.

2. In the UDP NTLOGON Mailslots, some "Structures", described here, appear to be 2-byte aligned with the start of the
mailslot, at their start.

3. Domain SID is of the format S-revision-version-auth1-auth2...authN. e.g S-1-5-123-456-789-123-456. the 5 could be a
sub-revision.

4. any undocumented buffer pointers must be non-zero if the string buffer it refers to contains characters. exactly what value
they should be is unknown. 0x0000 0002 seems to do the trick to indicate that the buffer exists. a NULL buffer pointer
indicates that the string buffer is of zero length. If the buffer pointer is NULL, then it is suspected that the structure it
refers to is NOT put into (or taken out of) the SMB data stream. This is empirically derived from, for example, the LSA
SAM Logon response packet, where if the buffer pointer is NULL, the user information is not inserted into the data stream.
Exactly what happens with an array of buffer pointers is not known, although an educated guess can be made.

5. an array of structures (a container) appears to have a count and a pointer. if the count is zero, the pointer is also zero. no
further data is put into or taken out of the SMB data stream. if the count is non-zero, then the pointer is also non-zero.
immediately following the pointer is the count again, followed by an array of container sub-structures. the count appears a
third time after the last sub-structure.

SAMBA Developers Guide WORKING PAPER

7 / 77

2.2.2 Enumerations

2.2.2.1 MSRPC Header type

command number in the msrpc packet header

MSRPC_Request: 0x00

MSRPC_Response: 0x02

MSRPC_Bind: 0x0B

MSRPC_BindAck: 0x0C

2.2.2.2 MSRPC Packet info

The meaning of these flags is undocumented

FirstFrag: 0x01

LastFrag: 0x02

NotaFrag: 0x04

RecRespond: 0x08

NoMultiplex: 0x10

NotForIdemp: 0x20

NotforBcast: 0x40

NoUuid: 0x80

2.2.3 Structures

2.2.3.1 VOID *

sizeof VOID* is 32 bits.

2.2.3.2 char

sizeof char is 8 bits.

2.2.3.3 UTIME

UTIME is 32 bits, indicating time in seconds since 01jan1970. documented in cifs6.txt (section 3.5 page, page 30).

2.2.3.4 NTTIME

NTTIME is 64 bits. documented in cifs6.txt (section 3.5 page, page 30).

SAMBA Developers Guide WORKING PAPER

8 / 77

2.2.3.5 DOM_SID (domain SID structure)

UINT32 num of sub-authorities in domain SID

UINT8 SID revision number

UINT8 num of sub-authorities in domain SID

UINT8[6] 6 bytes for domain SID - Identifier Authority.

UINT16[n_subauths] domain SID sub-authorities

Note: the domain SID is documented elsewhere.

2.2.3.6 STR (string)

STR (string) is a char[] : a null-terminated string of ascii characters.

2.2.3.7 UNIHDR (unicode string header)

UINT16 length of unicode string

UINT16 max length of unicode string

UINT32 4 - undocumented.

2.2.3.8 UNIHDR2 (unicode string header plus buffer pointer)

UNIHDR unicode string header

VOID* undocumented buffer pointer

2.2.3.9 UNISTR (unicode string)

UINT16[] null-terminated string of unicode characters.

2.2.3.10 NAME (length-indicated unicode string)

UINT32 length of unicode string

UINT16[] null-terminated string of unicode characters.

2.2.3.11 UNISTR2 (aligned unicode string)

UINT8[] padding to get unicode string 4-byte aligned with the start of the SMB header.

UINT32 max length of unicode string

UINT32 0 - undocumented

UINT32 length of unicode string

UINT16[] string of uncode characters

SAMBA Developers Guide WORKING PAPER

9 / 77

2.2.3.12 OBJ_ATTR (object attributes)

UINT32 0x18 - length (in bytes) including the length field.

VOID* 0 - root directory (pointer)

VOID* 0 - object name (pointer)

UINT32 0 - attributes (undocumented)

VOID* 0 - security descriptior (pointer)

UINT32 0 - security quality of service

2.2.3.13 POL_HND (LSA policy handle)

char[20] policy handle

2.2.3.14 DOM_SID2 (domain SID structure, SIDS stored in unicode)

UINT32 5 - SID type

UINT32 0 - undocumented

UNIHDR2 domain SID unicode string header

UNISTR domain SID unicode string

Note: there is a conflict between the unicode string header and the unicode string itself as to which to use to indicate string
length. this will need to be resolved.

Note: the SID type indicates, for example, an alias; a well-known group etc. this is documented somewhere.

2.2.3.15 DOM_RID (domain RID structure)

UINT32 5 - well-known SID. 1 - user SID (see ShowACLs)

UINT32 5 - undocumented

UINT32 domain RID

UINT32 0 - domain index out of above reference domains

2.2.3.16 LOG_INFO (server, account, client structure)

Note: logon server name starts with two ’\’ characters and is upper case.

Note: account name is the logon client name from the LSA Request Challenge, with a $ on the end of it, in upper case.

VOID* undocumented buffer pointer

UNISTR2 logon server unicode string

UNISTR2 account name unicode string

UINT16 sec_chan - security channel type

UNISTR2 logon client machine unicode string

SAMBA Developers Guide WORKING PAPER

10 / 77

2.2.3.17 CLNT_SRV (server, client names structure)

Note: logon server name starts with two ’\’ characters and is upper case.

VOID* undocumented buffer pointer

UNISTR2 logon server unicode string

VOID* undocumented buffer pointer

UNISTR2 logon client machine unicode string

2.2.3.18 CREDS (credentials + time stamp)

char[8] credentials

UTIME time stamp

2.2.3.19 CLNT_INFO2 (server, client structure, client credentials)

Note: whenever this structure appears in a request, you must take a copy of the client-calculated credentials received, because
they will beused in subsequent credential checks. the presumed intention is to maintain an authenticated request/response trail.

CLNT_SRV client and server names

UINT8[] ???? padding, for 4-byte alignment with SMB header.

VOID* pointer to client credentials.

CREDS client-calculated credentials + client time

2.2.3.20 CLNT_INFO (server, account, client structure, client credentials)

Note: whenever this structure appears in a request, you must take a copy of the client-calculated credentials received, because
they will be used in subsequent credential checks. the presumed intention is to maintain an authenticated request/response trail.

LOG_INFO logon account info

CREDS client-calculated credentials + client time

2.2.3.21 ID_INFO_1 (id info structure, auth level 1)

VOID* ptr_id_info_1

UNIHDR domain name unicode header

UINT32 param control

UINT64 logon ID

UNIHDR user name unicode header

UNIHDR workgroup name unicode header

char[16] arc4 LM OWF Password

char[16] arc4 NT OWF Password

UNISTR2 domain name unicode string

UNISTR2 user name unicode string

UNISTR2 workstation name unicode string

SAMBA Developers Guide WORKING PAPER

11 / 77

2.2.3.22 SAM_INFO (sam logon/logoff id info structure)

Note: presumably, the return credentials is supposedly for the server to verify that the credential chain hasn’t been compromised.

CLNT_INFO2 client identification/authentication info

VOID* pointer to return credentials.

CRED return credentials - ignored.

UINT16 logon level

UINT16 switch value

switch (switch_value)
case 1:
{

ID_INFO_1 id_info_1;
}

2.2.3.23 GID (group id info)

UINT32 group id

UINT32 user attributes (only used by NT 3.1 and 3.51)

2.2.3.24 DOM_REF (domain reference info)

VOID* undocumented buffer pointer.

UINT32 num referenced domains?

VOID* undocumented domain name buffer pointer.

UINT32 32 - max number of entries

UINT32 4 - num referenced domains?

UNIHDR2 domain name unicode string header

UNIHDR2[num_ref_doms-1] referenced domain unicode string headers

UNISTR domain name unicode string

DOM_SID[num_ref_doms] referenced domain SIDs

2.2.3.25 DOM_INFO (domain info, levels 3 and 5 are the same))

UINT8[] ??? padding to get 4-byte alignment with start of SMB header

UINT16 domain name string length * 2

UINT16 domain name string length * 2

VOID* undocumented domain name string buffer pointer

VOID* undocumented domain SID string buffer pointer

UNISTR2 domain name (unicode string)

DOM_SID domain SID

SAMBA Developers Guide WORKING PAPER

12 / 77

2.2.3.26 USER_INFO (user logon info)

Note: it would be nice to know what the 16 byte user session key is for.

NTTIME logon time

NTTIME logoff time

NTTIME kickoff time

NTTIME password last set time

NTTIME password can change time

NTTIME password must change time

UNIHDR username unicode string header

UNIHDR user’s full name unicode string header

UNIHDR logon script unicode string header

UNIHDR profile path unicode string header

UNIHDR home directory unicode string header

UNIHDR home directory drive unicode string header

UINT16 logon count

UINT16 bad password count

UINT32 User ID

UINT32 Group ID

UINT32 num groups

VOID* undocumented buffer pointer to groups.

UINT32 user flags

char[16] user session key

UNIHDR logon server unicode string header

UNIHDR logon domain unicode string header

VOID* undocumented logon domain id pointer

char[40] 40 undocumented padding bytes. future expansion?

UINT32 0 - num_other_sids?

VOID* NULL - undocumented pointer to other domain SIDs.

UNISTR2 username unicode string

UNISTR2 user’s full name unicode string

UNISTR2 logon script unicode string

UNISTR2 profile path unicode string

UNISTR2 home directory unicode string

UNISTR2 home directory drive unicode string

SAMBA Developers Guide WORKING PAPER

13 / 77

UINT32 num groups

GID[num_groups] group info

UNISTR2 logon server unicode string

UNISTR2 logon domain unicode string

DOM_SID domain SID

DOM_SID[num_sids] other domain SIDs?

2.2.3.27 SH_INFO_1_PTR (pointers to level 1 share info strings)

Note: see cifsrap2.txt section5, page 10.

0 for shi1_type indicates a Disk.
1 for shi1_type indicates a Print Queue.
2 for shi1_type indicates a Device.
3 for shi1_type indicates an IPC pipe.
0x8000 0000 (top bit set in shi1_type) indicates a hidden share.

VOID* shi1_netname - pointer to net name

UINT32 shi1_type - type of share. 0 - undocumented.

VOID* shi1_remark - pointer to comment.

2.2.3.28 SH_INFO_1_STR (level 1 share info strings)

UNISTR2 shi1_netname - unicode string of net name

UNISTR2 shi1_remark - unicode string of comment.

2.2.3.29 SHARE_INFO_1_CTR

share container with 0 entries:

UINT32 0 - EntriesRead

UINT32 0 - Buffer

share container with > 0 entries:

UINT32 EntriesRead

UINT32 non-zero - Buffer

UINT32 EntriesRead

SH_INFO_1_PTR[EntriesRead] share entry pointers

SH_INFO_1_STR[EntriesRead] share entry strings

UINT8[] padding to get unicode string 4-byte aligned with start of the SMB header.

UINT32 EntriesRead

UINT32 0 - padding

SAMBA Developers Guide WORKING PAPER

14 / 77

2.2.3.30 SERVER_INFO_101

Note: see cifs6.txt section 6.4 - the fields described therein will be of assistance here. for example, the type listed below is the
same as fServerType, which is described in 6.4.1.

SV_TYPE_WORKSTATION 0x00000001 All workstations

SV_TYPE_SERVER 0x00000002 All servers

SV_TYPE_SQLSERVER 0x00000004 Any server running with SQL server

SV_TYPE_DOMAIN_CTRL 0x00000008 Primary domain controller

SV_TYPE_DOMAIN_BAKCTRL 0x00000010 Backup domain controller

SV_TYPE_TIME_SOURCE 0x00000020 Server running the timesource service

SV_TYPE_AFP 0x00000040 Apple File Protocol servers

SV_TYPE_NOVELL 0x00000080 Novell servers

SV_TYPE_DOMAIN_MEMBER 0x00000100 Domain Member

SV_TYPE_PRINTQ_SERVER 0x00000200 Server sharing print queue

SV_TYPE_DIALIN_SERVER 0x00000400 Server running dialin service.

SV_TYPE_XENIX_SERVER 0x00000800 Xenix server

SV_TYPE_NT 0x00001000 NT server

SV_TYPE_WFW 0x00002000 Server running Windows for

SV_TYPE_SERVER_NT 0x00008000 Windows NT non DC server

SV_TYPE_POTENTIAL_BROWSER 0x00010000 Server that can run the browser service

SV_TYPE_BACKUP_BROWSER 0x00020000 Backup browser server

SV_TYPE_MASTER_BROWSER 0x00040000 Master browser server

SV_TYPE_DOMAIN_MASTER 0x00080000 Domain Master Browser server

SV_TYPE_LOCAL_LIST_ONLY 0x40000000 Enumerate only entries marked "local"

SV_TYPE_DOMAIN_ENUM 0x80000000 Enumerate Domains. The pszServer and pszDomain parameters must be NULL.

UINT32 500 - platform_id

VOID* pointer to name

UINT32 5 - major version

UINT32 4 - minor version

UINT32 type (SV_TYPE_... bit field)

VOID* pointer to comment

UNISTR2 sv101_name - unicode string of server name

UNISTR2 sv_101_comment - unicode string of server comment.

UINT8[] padding to get unicode string 4-byte aligned with start of the SMB header.

SAMBA Developers Guide WORKING PAPER

15 / 77

2.3 MSRPC over Transact Named Pipe

For details on the SMB Transact Named Pipe, see cifs6.txt

2.3.1 MSRPC Pipes

The MSRPC is conducted over an SMB Transact Pipe with a name of \PIPE\. You must first obtain a 16 bit file handle, by
sending a SMBopenX with the pipe name \PIPE\srvsvc for example. You can then perform an SMB Trans, and must carry
out an SMBclose on the file handle once you are finished.

Trans Requests must be sent with two setup UINT16s, no UINT16 params (none known about), and UINT8 data parameters
sufficient to contain the MSRPC header, and MSRPC data. The first UINT16 setup parameter must be either 0x0026 to indicate
an RPC, or 0x0001 to indicate Set Named Pipe Handle state. The second UINT16 parameter must be the file handle for the pipe,
obtained above.

The Data section for an API Command of 0x0026 (RPC pipe) in the Trans Request is the RPC Header, followed by the RPC
Data. The Data section for an API Command of 0x0001 (Set Named Pipe Handle state) is two bytes. The only value seen for
these two bytes is 0x00 0x43.

MSRPC Responses are sent as response data inside standard SMB Trans responses, with the MSRPC Header, MSRPC Data and
MSRPC tail.

It is suspected that the Trans Requests will need to be at least 2-byte aligned (probably 4-byte). This is standard practice for
SMBs. It is also independent of the observed 4-byte alignments with the start of the MSRPC header, including the 4-byte
alignment between the MSRPC header and the MSRPC data.

First, an SMBtconX connection is made to the IPC$ share. The connection must be made using encrypted passwords, not clear-
text. Then, an SMBopenX is made on the pipe. Then, a Set Named Pipe Handle State must be sent, after which the pipe is ready
to accept API commands. Lastly, and SMBclose is sent.

To be resolved:

lkcl/01nov97 there appear to be two additional bytes after the null-terminated \PIPE\ name for the RPC pipe. Values seen so far
are listed below:

initial SMBopenX request: RPC API command 0x26 params:
"\\PIPE\\lsarpc" 0x65 0x63; 0x72 0x70; 0x44 0x65;
"\\PIPE\\srvsvc" 0x73 0x76; 0x4E 0x00; 0x5C 0x43;

2.3.2 Header

[section to be rewritten, following receipt of work by Duncan Stansfield]

Interesting note: if you set packed data representation to 0x0100 0000 then all 4-byte and 2-byte word ordering is turned around!

The start of each of the NTLSA and NETLOGON named pipes begins with: offset: 00, Variable type: UINT8, Variable data: 5
- RPC major version
offset: 01, Variable type: UINT8, Variable data: 0 - RPC minor version
offset: 02, Variable type: UINT8, Variable data: 2 - RPC response packet
offset: 03, Variable type: UINT8, Variable data: 3 - (FirstFrag bit-wise or with LastFrag)
offset: 04, Variable type: UINT32, Variable data: 0x1000 0000 - packed data representation
offset: 08, Variable type: UINT16, Variable data: fragment length - data size (bytes) inc header and tail.
offset: 0A, Variable type: UINT16, Variable data: 0 - authentication length
offset: 0C, Variable type: UINT32, Variable data: call identifier. matches 12th UINT32 of incoming RPC data.
offset: 10, Variable type: UINT32, Variable data: allocation hint - data size (bytes) minus header and tail.
offset: 14, Variable type: UINT16, Variable data: 0 - presentation context identifier
offset: 16, Variable type: UINT8, Variable data: 0 - cancel count
offset: 17, Variable type: UINT8, Variable data: in replies: 0 - reserved; in requests: opnum - see #defines.
offset: 18, Variable type:, Variable data: start of data (goes on for allocation_hint bytes)

SAMBA Developers Guide WORKING PAPER

16 / 77

2.3.2.1 RPC_Packet for request, response, bind and bind acknowledgement

UINT8 versionmaj reply same as request (0x05)

UINT8 versionmin reply same as request (0x00)

UINT8 type one of the MSRPC_Type enums

UINT8 flags reply same as request (0x00 for Bind, 0x03 for Request)

UINT32 representation reply same as request (0x00000010)

UINT16 fraglength the length of the data section of the SMB trans packet

UINT16 authlength

UINT32 callid call identifier. (e.g. 0x00149594)

* stub USE TvPacket the remainder of the packet depending on the "type"

2.3.2.2 Interface identification

the interfaces are numbered. as yet I haven’t seen more than one interface used on the same pipe name srvsvc

abstract (0x4B324FC8, 0x01D31670, 0x475A7812, 0x88E16EBF, 0x00000003)
transfer (0x8A885D04, 0x11C91CEB, 0x0008E89F, 0x6048102B, 0x00000002)

2.3.2.3 RPC_Iface RW

UINT8 byte[16] 16 bytes of number

UINT32 version the interface number

2.3.2.4 RPC_ReqBind RW

the remainder of the packet after the header if "type" was Bind in the response header, "type" should be BindAck

UINT16 maxtsize maximum transmission fragment size (0x1630)

UINT16 maxrsize max receive fragment size (0x1630)

UINT32 assocgid associated group id (0x0)

UINT32 numelements the number of elements (0x1)

UINT16 contextid presentation context identifier (0x0)

UINT8 numsyntaxes the number of syntaxes (has always been 1?)(0x1)

UINT8[] 4-byte alignment padding, against SMB header

* abstractint USE RPC_Iface num and vers. of interface client is using

* transferint USE RPC_Iface num and vers. of interface to use for replies

2.3.2.5 RPC_Address RW

UINT16 length length of the string including null terminator

* port USE string the string above in single byte, null terminated form

SAMBA Developers Guide WORKING PAPER

17 / 77

2.3.2.6 RPC_ResBind RW

the response to place after the header in the reply packet

UINT16 maxtsize same as request

UINT16 maxrsize same as request

UINT32 assocgid zero

* secondaddr USE RPC_Address the address string, as described earlier

UINT8[] 4-byte alignment padding, against SMB header

UINT8 numresults the number of results (0x01)

UINT8[] 4-byte alignment padding, against SMB header

UINT16 result result (0x00 = accept)

UINT16 reason reason (0x00 = no reason specified)

* transfersyntax USE RPC_Iface the transfer syntax from the request

2.3.2.7 RPC_ReqNorm RW

the remainder of the packet after the header for every other other request

UINT32 allochint the size of the stub data in bytes

UINT16 prescontext presentation context identifier (0x0)

UINT16 opnum operation number (0x15)

* stub USE TvPacket a packet dependent on the pipe name (probably the interface) and the op number)

2.3.2.8 RPC_ResNorm RW

UINT32 allochint # size of the stub data in bytes

UINT16 prescontext # presentation context identifier (same as request)

UINT8 cancelcount # cancel count? (0x0)

UINT8 reserved # 0 - one byte padding

* stub USE TvPacket # the remainder of the reply

2.3.3 Tail

The end of each of the NTLSA and NETLOGON named pipes ends with:

...... end of data

UINT32 return code

SAMBA Developers Guide WORKING PAPER

18 / 77

2.3.4 RPC Bind / Bind Ack

RPC Binds are the process of associating an RPC pipe (e.g \PIPE\lsarpc) with a "transfer syntax" (see RPC_Iface structure). The
purpose for doing this is unknown.

Note: The RPC_ResBind SMB Transact request is sent with two uint16 setup parameters. The first is 0x0026; the second is the
file handle returned by the SMBopenX Transact response.

Note: The RPC_ResBind members maxtsize, maxrsize and assocgid are the same in the response as the same members in the
RPC_ReqBind. The RPC_ResBind member transfersyntax is the same in the response as the

Note: The RPC_ResBind response member secondaddr contains the name of what is presumed to be the service behind the RPC
pipe. The mapping identified so far is:

initial SMBopenX request: RPC_ResBind response:

"\\PIPE\\srvsvc" "\\PIPE\\ntsvcs"

"\\PIPE\\samr" "\\PIPE\\lsass"

"\\PIPE\\lsarpc" "\\PIPE\\lsass"

"\\PIPE\\wkssvc" "\\PIPE\\wksvcs"

"\\PIPE\\NETLOGON" "\\PIPE\\NETLOGON"

Note: The RPC_Packet fraglength member in both the Bind Request and Bind Acknowledgment must contain the length of the
entire RPC data, including the RPC_Packet header.

Request:

RPC_Packet
RPC_ReqBind

Response:

RPC_Packet
RPC_ResBind

2.3.5 NTLSA Transact Named Pipe

The sequence of actions taken on this pipe are:

Establish a connection to the IPC$ share (SMBtconX). use encrypted passwords.
Open an RPC Pipe with the name "\\PIPE\\lsarpc". Store the file handle.
Using the file handle, send a Set Named Pipe Handle state to 0x4300.
Send an LSA Open Policy request. Store the Policy Handle.
Using the Policy Handle, send LSA Query Info Policy requests, etc.
Using the Policy Handle, send an LSA Close.
Close the IPC$ share.

Defines for this pipe, identifying the query are:

LSA Open Policy: 0x2c

LSA Query Info Policy: 0x07

LSA Enumerate Trusted Domains: 0x0d

LSA Open Secret: 0xff

LSA Lookup SIDs: 0xfe

LSA Lookup Names: 0xfd

LSA Close: 0x00

SAMBA Developers Guide WORKING PAPER

19 / 77

2.3.6 LSA Open Policy

Note: The policy handle can be anything you like.

2.3.6.1 Request

VOID* buffer pointer

UNISTR2 server name - unicode string starting with two ’\’s

OBJ_ATTR object attributes

UINT32 1 - desired access

2.3.6.2 Response

POL_HND LSA policy handle

return 0 - indicates success

2.3.7 LSA Query Info Policy

Note: The info class in response must be the same as that in the request.

2.3.7.1 Request

POL_HND LSA policy handle

UINT16 info class (also a policy handle?)

2.3.7.2 Response

VOID* undocumented buffer pointer

UINT16 info class (same as info class in request).

switch (info class)
case 3:
case 5:
{
DOM_INFO domain info, levels 3 and 5 (are the same).
}

return 0 - indicates success

2.3.8 LSA Enumerate Trusted Domains

2.3.8.1 Request

no extra data

SAMBA Developers Guide WORKING PAPER

20 / 77

2.3.8.2 Response

UINT32 0 - enumeration context

UINT32 0 - entries read

UINT32 0 - trust information

return 0x8000 001a - "no trusted domains" success code

2.3.9 LSA Open Secret

2.3.9.1 Request

no extra data

2.3.9.2 Response

UINT32 0 - undocumented

UINT32 0 - undocumented

UINT32 0 - undocumented

UINT32 0 - undocumented

UINT32 0 - undocumented

return 0x0C00 0034 - "no such secret" success code

2.3.10 LSA Close

2.3.10.1 Request

POL_HND policy handle to be closed

2.3.10.2 Response

POL_HND 0s - closed policy handle (all zeros)

return 0 - indicates success

2.3.11 LSA Lookup SIDS

Note: num_entries in response must be same as num_entries in request.

SAMBA Developers Guide WORKING PAPER

21 / 77

2.3.11.1 Request

POL_HND LSA policy handle

UINT32 num_entries

VOID* undocumented domain SID buffer pointer

VOID* undocumented domain name buffer pointer

VOID*[num_entries] undocumented domain SID pointers to be looked up. DOM_SID[num_entries] domain SIDs to be looked
up.

char[16] completely undocumented 16 bytes.

2.3.11.2 Response

DOM_REF domain reference response

UINT32 num_entries (listed above)

VOID* undocumented buffer pointer

UINT32 num_entries (listed above)

DOM_SID2[num_entries] domain SIDs (from Request, listed above).

UINT32 num_entries (listed above)

return 0 - indicates success

2.3.12 LSA Lookup Names

Note: num_entries in response must be same as num_entries in request.

2.3.12.1 Request

POL_HND LSA policy handle

UINT32 num_entries

UINT32 num_entries

VOID* undocumented domain SID buffer pointer

VOID* undocumented domain name buffer pointer

NAME[num_entries] names to be looked up.

char[] undocumented bytes - falsely translated SID structure?

SAMBA Developers Guide WORKING PAPER

22 / 77

2.3.12.2 Response

DOM_REF domain reference response

UINT32 num_entries (listed above)

VOID* undocumented buffer pointer

UINT32 num_entries (listed above)

DOM_RID[num_entries] domain SIDs (from Request, listed above).

UINT32 num_entries (listed above)

return 0 - indicates success

2.4 NETLOGON rpc Transact Named Pipe

The sequence of actions taken on this pipe are:

tablish a connection to the IPC$ share (SMBtconX). use encrypted passwords.
en an RPC Pipe with the name "\\PIPE\\NETLOGON". Store the file handle.
ing the file handle, send a Set Named Pipe Handle state to 0x4300.
eate Client Challenge. Send LSA Request Challenge. Store Server Challenge.
lculate Session Key. Send an LSA Auth 2 Challenge. Store Auth2 Challenge.
lc/Verify Client Creds. Send LSA Srv PW Set. Calc/Verify Server Creds.
lc/Verify Client Creds. Send LSA SAM Logon . Calc/Verify Server Creds.
lc/Verify Client Creds. Send LSA SAM Logoff. Calc/Verify Server Creds.
ose the IPC$ share.

Defines for this pipe, identifying the query are

LSA Request Challenge: 0x04

LSA Server Password Set: 0x06

LSA SAM Logon: 0x02

LSA SAM Logoff: 0x03

LSA Auth 2: 0x0f

LSA Logon Control: 0x0e

2.4.1 LSA Request Challenge

Note: logon server name starts with two ’\’ characters and is upper case.

Note: logon client is the machine, not the user.

Note: the initial LanManager password hash, against which the challenge is issued, is the machine name itself (lower case).
there will becalls issued (LSA Server Password Set) which will change this, later. refusing these calls allows you to always deal
with the same password (i.e the LM# of the machine name in lower case).

2.4.1.1 Request

VOID* undocumented buffer pointer

UNISTR2 logon server unicode string

UNISTR2 logon client unicode string

char[8] client challenge

SAMBA Developers Guide WORKING PAPER

23 / 77

2.4.1.2 Response

char[8] server challenge

return 0 - indicates success

2.4.2 LSA Authenticate 2

Note: in between request and response, calculate the client credentials, and check them against the client-calculated credentials
(this process uses the previously received client credentials).

Note: neg_flags in the response is the same as that in the request.

Note: you must take a copy of the client-calculated credentials received here, because they will be used in subsequent authenti-
cation packets.

2.4.2.1 Request

LOG_INFO client identification info

char[8] client-calculated credentials

UINT8[] padding to 4-byte align with start of SMB header.

UINT32 neg_flags - negotiated flags (usual value is 0x0000 01ff)

2.4.2.2 Response

char[8] server credentials.

UINT32 neg_flags - same as neg_flags in request.

return 0 - indicates success. failure value unknown.

2.4.3 LSA Server Password Set

Note: the new password is suspected to be a DES encryption using the old password to generate the key.

Note: in between request and response, calculate the client credentials, and check them against the client-calculated credentials
(this process uses the previously received client credentials).

Note: the server credentials are constructed from the client-calculated credentials and the client time + 1 second.

Note: you must take a copy of the client-calculated credentials received here, because they will be used in subsequent authenti-
cation packets.

2.4.3.1 Request

CLNT_INFO client identification/authentication info

char[] new password - undocumented.

SAMBA Developers Guide WORKING PAPER

24 / 77

2.4.3.2 Response

CREDS server credentials. server time stamp appears to be ignored.

return 0 - indicates success; 0xC000 006a indicates failure

2.4.4 LSA SAM Logon

Note: valid_user is True iff the username and password hash are valid for the requested domain.

2.4.4.1 Request

SAM_INFO sam_id structure

2.4.4.2 Response

VOID* undocumented buffer pointer

CREDS server credentials. server time stamp appears to be ignored.

if (valid_user)
{

UINT16 3 - switch value indicating USER_INFO structure.
VOID* non-zero - pointer to USER_INFO structure
USER_INFO user logon information

UINT32 1 - Authoritative response; 0 - Non-Auth?

return 0 - indicates success
}
else
{

UINT16 0 - switch value. value to indicate no user presumed.
VOID* 0x0000 0000 - indicates no USER_INFO structure.

UINT32 1 - Authoritative response; 0 - Non-Auth?

return 0xC000 0064 - NT_STATUS_NO_SUCH_USER.
}

2.4.5 LSA SAM Logoff

Note: presumably, the SAM_INFO structure is validated, and a (currently undocumented) error code returned if the Logoff is
invalid.

2.4.5.1 Request

SAM_INFO sam_id structure

SAMBA Developers Guide WORKING PAPER

25 / 77

2.4.5.2 Response

VOID* undocumented buffer pointer

CREDS server credentials. server time stamp appears to be ignored.

return 0 - indicates success. undocumented failure indication.

2.5 \\MAILSLOT\NET\NTLOGON

Note: mailslots will contain a response mailslot, to which the response should be sent. the target NetBIOS name is RE-
QUEST_NAME<20>, where REQUEST_NAME is the name of the machine that sent the request.

2.5.1 Query for PDC

Note: NTversion, LMNTtoken, LM20token in response are the same as those given in the request.

2.5.1.1 Request

UINT16 0x0007 - Query for PDC

STR machine name

STR response mailslot

UINT8[] padding to 2-byte align with start of mailslot.

UNISTR machine name

UINT32 NTversion

UINT16 LMNTtoken

UINT16 LM20token

2.5.1.2 Response

UINT16 0x000A - Respose to Query for PDC

STR machine name (in uppercase)

UINT8[] padding to 2-byte align with start of mailslot.

UNISTR machine name

UNISTR domain name

UINT32 NTversion (same as received in request)

UINT16 LMNTtoken (same as received in request)

UINT16 LM20token (same as received in request)

SAMBA Developers Guide WORKING PAPER

26 / 77

2.5.2 SAM Logon

Note: machine name in response is preceded by two ’\’ characters.

Note: NTversion, LMNTtoken, LM20token in response are the same as those given in the request.

Note: user name in the response is presumably the same as that in the request.

2.5.2.1 Request

UINT16 0x0012 - SAM Logon

UINT16 request count

UNISTR machine name

UNISTR user name

STR response mailslot

UINT32 alloweable account

UINT32 domain SID size

char[sid_size] domain SID, of sid_size bytes.

UINT8[] ???? padding to 4? 2? -byte align with start of mailslot.

UINT32 NTversion

UINT16 LMNTtoken

UINT16 LM20token

2.5.2.2 Response

UINT16 0x0013 - Response to SAM Logon

UNISTR machine name

UNISTR user name - workstation trust account

UNISTR domain name

UINT32 NTversion

UINT16 LMNTtoken

UINT16 LM20token

2.6 SRVSVC Transact Named Pipe

Defines for this pipe, identifying the query are:

Net Share Enum 0x0f

Net Server Get Info 0x15

SAMBA Developers Guide WORKING PAPER

27 / 77

2.6.1 Net Share Enum

Note: share level and switch value in the response are presumably the same as those in the request.

Note: cifsrap2.txt (section 5) may be of limited assistance here.

2.6.1.1 Request

VOID* pointer (to server name?)

UNISTR2 server name

UINT8[] padding to get unicode string 4-byte aligned with the start of the SMB header.

UINT32 share level

UINT32 switch value

VOID* pointer to SHARE_INFO_1_CTR

SHARE_INFO_1_CTR share info with 0 entries

UINT32 preferred maximum length (0xffff ffff)

2.6.1.2 Response

UINT32 share level

UINT32 switch value

VOID* pointer to SHARE_INFO_1_CTR

SHARE_INFO_1_CTR share info (only added if share info ptr is non-zero)

return 0 - indicates success

2.6.2 Net Server Get Info

Note: level is the same value as in the request.

2.6.2.1 Request

UNISTR2 server name

UINT32 switch level

2.6.2.2 Response

UINT32 switch level

VOID* pointer to SERVER_INFO_101

SERVER_INFO_101 server info (only added if server info ptr is non-zero)

return 0 - indicates success

SAMBA Developers Guide WORKING PAPER

28 / 77

2.7 Cryptographic side of NT Domain Authentication

2.7.1 Definitions

Add(A1,A2) Intel byte ordered addition of corresponding 4 byte words in arrays A1 and A2

E(K,D) DES ECB encryption of 8 byte data D using 7 byte key K

lmowf() Lan man hash

ntowf() NT hash

PW md4(machine_password) == md4(lsadump $machine.acc) == pwdump(machine$) (initially) == md4(lmowf(unicode(machine)))

ARC4(K,Lk,D,Ld) ARC4 encryption of data D of length Ld with key K of length Lk

v[m..n(,l)] subset of v from bytes m to n, optionally padded with zeroes to length l

Cred(K,D) E(K[7..7,7],E(K[0..6],D)) computes a credential

Time() 4 byte current time

Cc,Cs 8 byte client and server challenges Rc,Rs: 8 byte client and server credentials

2.7.2 Protocol

C->S ReqChal,Cc
S->C Cs

C & S compute session key Ks = E(PW[9..15],E(PW[0..6],Add(Cc,Cs)))

C: Rc = Cred(Ks,Cc)
C->S Authenticate,Rc
S: Rs = Cred(Ks,Cs), assert(Rc == Cred(Ks,Cc))
S->C Rs
C: assert(Rs == Cred(Ks,Cs))

On joining the domain the client will optionally attempt to change its password and the domain controller may refuse to update
it depending on registry settings. This will also occur weekly afterwards.

C: Tc = Time(), Rc’ = Cred(Ks,Rc+Tc)
C->S ServerPasswordSet,Rc’,Tc,arc4(Ks[0..7,16],lmowf(randompassword())
C: Rc = Cred(Ks,Rc+Tc+1)
S: assert(Rc’ == Cred(Ks,Rc+Tc)), Ts = Time()
S: Rs’ = Cred(Ks,Rs+Tc+1)
S->C Rs’,Ts
C: assert(Rs’ == Cred(Ks,Rs+Tc+1))
S: Rs = Rs’

User: U with password P wishes to login to the domain (incidental data such as workstation and domain omitted)

C: Tc = Time(), Rc’ = Cred(Ks,Rc+Tc)
C->S NetLogonSamLogon,Rc’,Tc,U,arc4(Ks[0..7,16],16,ntowf(P),16), arc4(Ks[0..7,16],16,lmowf(←↩

P),16)
S: assert(Rc’ == Cred(Ks,Rc+Tc)) assert(passwords match those in SAM)
S: Ts = Time()

S->C Cred(Ks,Cred(Ks,Rc+Tc+1)),userinfo(logon script,UID,SIDs,etc)
C: assert(Rs == Cred(Ks,Cred(Rc+Tc+1))
C: Rc = Cred(Ks,Rc+Tc+1)

SAMBA Developers Guide WORKING PAPER

29 / 77

2.7.3 Comments

On first joining the domain the session key could be computed by anyone listening in on the network as the machine password
has a well known value. Until the machine is rebooted it will use this session key to encrypt NT and LM one way functions of
passwords which are password equivalents. Any user who logs in before the machine has been rebooted a second time will have
their password equivalent exposed. Of course the new machine password is exposed at this time anyway.

None of the returned user info such as logon script, profile path and SIDs *appear* to be protected by anything other than the
TCP checksum.

The server time stamps appear to be ignored.

The client sends a ReturnAuthenticator in the SamLogon request which I can’t find a use for. However its time is used as the
timestamp returned by the server.

The password OWFs should NOT be sent over the network reversibly encrypted. They should be sent using ARC4(Ks,md4(owf))
with the server computing the same function using the owf values in the SAM.

2.8 SIDs and RIDs

SIDs and RIDs are well documented elsewhere.

A SID is an NT Security ID (see DOM_SID structure). They are of the form:

revision-NN-SubAuth1-SubAuth2-SubAuth3...
revision-0xNNNNNNNNNNNN-SubAuth1-SubAuth2-SubAuth3...

currently, the SID revision is 1. The Sub-Authorities are known as Relative IDs (RIDs).

2.8.1 Well-known SIDs

2.8.1.1 Universal well-known SIDs

Null SID S-1-0-0

World S-1-1-0

Local S-1-2-0

Creator Owner ID S-1-3-0

Creator Group ID S-1-3-1

Creator Owner Server ID S-1-3-2

Creator Group Server ID S-1-3-3

(Non-unique IDs) S-1-4

2.8.1.2 NT well-known SIDs

NT Authority S-1-5

Dialup S-1-5-1

Network S-1-5-2

Batch S-1-5-3

Interactive S-1-5-4

SAMBA Developers Guide WORKING PAPER

30 / 77

Service S-1-5-6

AnonymousLogon(aka null logon session) S-1-5-7

Proxy S-1-5-8

ServerLogon(aka domain controller account) S-1-5-8

(Logon IDs) S-1-5-5-X-Y

(NT non-unique IDs) S-1-5-0x15-...

(Built-in domain) s-1-5-0x20

2.8.2 Well-known RIDS

A RID is a sub-authority value, as part of either a SID, or in the case of Group RIDs, part of the DOM_GID structure, in the
USER_INFO_1 structure, in the LSA SAM Logon response.

2.8.2.1 Well-known RID users

Groupname: DOMAIN_USER_RID_ADMIN, ????: 0x0000, RID: 01F4
Groupname: DOMAIN_USER_RID_GUEST, ????: 0x0000, RID: 01F5

2.8.2.2 Well-known RID groups

Groupname: DOMAIN_GROUP_RID_ADMINS, ????: 0x0000, RID: 0200
Groupname: DOMAIN_GROUP_RID_USERS, ????: 0x0000, RID: 0201
Groupname: DOMAIN_GROUP_RID_GUESTS, ????: 0x0000, RID: 0202

2.8.2.3 Well-known RID aliases

Groupname: DOMAIN_ALIAS_RID_ADMINS, ????: 0x0000, RID: 0220
Groupname: DOMAIN_ALIAS_RID_USERS, ????: 0x0000, RID: 0221
Groupname: DOMAIN_ALIAS_RID_GUESTS, ????: 0x0000, RID: 0222
Groupname: DOMAIN_ALIAS_RID_POWER_USERS, ????: 0x0000, RID: 0223
Groupname: DOMAIN_ALIAS_RID_ACCOUNT_OPS, ????: 0x0000, RID: 0224
Groupname: DOMAIN_ALIAS_RID_SYSTEM_OPS, ????: 0x0000, RID: 0225
Groupname: DOMAIN_ALIAS_RID_PRINT_OPS, ????: 0x0000, RID: 0226
Groupname: DOMAIN_ALIAS_RID_BACKUP_OPS, ????: 0x0000, RID: 0227
Groupname: DOMAIN_ALIAS_RID_REPLICATOR, ????: 0x0000, RID: 0228

SAMBA Developers Guide WORKING PAPER

31 / 77

Part II

Samba Basics

SAMBA Developers Guide WORKING PAPER

32 / 77

Chapter 3

Samba Architecture

Dan Shearer

3.1 Introduction

This document gives a general overview of how Samba works internally. The Samba Team has tried to come up with a model
which is the best possible compromise between elegance, portability, security and the constraints imposed by the very messy
SMB and CIFS protocol.

It also tries to answer some of the frequently asked questions such as:

1. Is Samba secure when running on Unix? The xyz platform? What about the root priveliges issue?

2. Pros and cons of multithreading in various parts of Samba

3. Why not have a separate process for name resolution, WINS, and browsing?

3.2 Multithreading and Samba

People sometimes tout threads as a uniformly good thing. They are very nice in their place but are quite inappropriate for smbd.
nmbd is another matter, and multi-threading it would be very nice.

The short version is that smbd is not multithreaded, and alternative servers that take this approach under Unix (such as Syntax, at
the time of writing) suffer tremendous performance penalties and are less robust. nmbd is not threaded either, but this is because
it is not possible to do it while keeping code consistent and portable across 35 or more platforms. (This drawback also applies to
threading smbd.)

The longer versions is that there are very good reasons for not making smbd multi-threaded. Multi-threading would actually
make Samba much slower, less scalable, less portable and much less robust. The fact that we use a separate process for each
connection is one of Samba’s biggest advantages.

3.3 Threading smbd

A few problems that would arise from a threaded smbd are:

1. It’s not only to create threads instead of processes, but you must care about all variables if they have to be thread specific
(currently they would be global).

2. if one thread dies (eg. a seg fault) then all threads die. We can immediately throw robustness out the window.

SAMBA Developers Guide WORKING PAPER

33 / 77

3. many of the system calls we make are blocking. Non-blocking equivalents of many calls are either not available or are
awkward (and slow) to use. So while we block in one thread all clients are waiting. Imagine if one share is a slow NFS
filesystem and the others are fast, we will end up slowing all clients to the speed of NFS.

4. you can’t run as a different uid in different threads. This means we would have to switch uid/gid on _every_ SMB packet.
It would be horrendously slow.

5. the per process file descriptor limit would mean that we could only support a limited number of clients.

6. we couldn’t use the system locking calls as the locking context of fcntl() is a process, not a thread.

3.4 Threading nmbd

This would be ideal, but gets sunk by portability requirements.

Andrew tried to write a test threads library for nmbd that used only ansi-C constructs (using setjmp and longjmp). Unfortunately
some OSes defeat this by restricting longjmp to calling addresses that are shallower than the current address on the stack (appar-
ently AIX does this). This makes a truly portable threads library impossible. So to support all our current platforms we would
have to code nmbd both with and without threads, and as the real aim of threads is to make the code clearer we would not have
gained anything. (it is a myth that threads make things faster. threading is like recursion, it can make things clear but the same
thing can always be done faster by some other method)

Chris tried to spec out a general design that would abstract threading vs separate processes (vs other methods?) and make them
accessible through some general API. This doesn’t work because of the data sharing requirements of the protocol (packets in
the future depending on packets now, etc.) At least, the code would work but would be very clumsy, and besides the fork() type
model would never work on Unix. (Is there an OS that it would work on, for nmbd?)

A fork() is cheap, but not nearly cheap enough to do on every UDP packet that arrives. Having a pool of processes is possible
but is nasty to program cleanly due to the enormous amount of shared data (in complex structures) between the processes. We
can’t rely on each platform having a shared memory system.

3.5 nbmd Design

Originally Andrew used recursion to simulate a multi-threaded environment, which use the stack enormously and made for really
confusing debugging sessions. Luke Leighton rewrote it to use a queuing system that keeps state information on each packet.
The first version used a single structure which was used by all the pending states. As the initialisation of this structure was done
by adding arguments, as the functionality developed, it got pretty messy. So, it was replaced with a higher-order function and a
pointer to a user-defined memory block. This suddenly made things much simpler: large numbers of functions could be made
static, and modularised. This is the same principle as used in NT’s kernel, and achieves the same effect as threads, but in a single
process.

Then Jeremy rewrote nmbd. The packet data in nmbd isn’t what’s on the wire. It’s a nice format that is very amenable to
processing but still keeps the idea of a distinct packet. See "struct packet_struct" in nameserv.h. It has all the detail but none of
the on-the-wire mess. This makes it ideal for using in disk or memory-based databases for browsing and WINS support.

SAMBA Developers Guide WORKING PAPER

34 / 77

Chapter 4

The samba DEBUG system

Chris Hertel

4.1 New Output Syntax

The syntax of a debugging log file is represented as:

>debugfile< :== { >debugmsg< }

>debugmsg< :== >debughdr< ’\n’ >debugtext<

>debughdr< :== ’[’ TIME ’,’ LEVEL ’]’ FILE ’:’ [FUNCTION] ’(’ LINE ’)’

>debugtext< :== { >debugline< }

>debugline< :== TEXT ’\n’

TEXT is a string of characters excluding the newline character.

LEVEL is the DEBUG level of the message (an integer in the range 0..10).

TIME is a timestamp.

FILE is the name of the file from which the debug message was generated.

FUNCTION is the function from which the debug message was generated.

LINE is the line number of the debug statement that generated the message.

Basically, what that all means is:

1. A debugging log file is made up of debug messages.

2. Each debug message is made up of a header and text. The header is separated from the text by a newline.

3. The header begins with the timestamp and debug level of the message enclosed in brackets. The filename, function, and
line number at which the message was generated follow. The filename is terminated by a colon, and the function name
is terminated by the parenthesis which contain the line number. Depending upon the compiler, the function name may be
missing (it is generated by the __FUNCTION__ macro, which is not universally implemented, dangit).

4. The message text is made up of zero or more lines, each terminated by a newline.

Here’s some example output:

SAMBA Developers Guide WORKING PAPER

35 / 77

[1998/08/03 12:55:25, 1] nmbd.c:(659)
Netbios nameserver version 1.9.19-prealpha started.
Copyright Andrew Tridgell 1994-1997

[1998/08/03 12:55:25, 3] loadparm.c:(763)
Initializing global parameters

Note that in the above example the function names are not listed on the header line. That’s because the example above was
generated on an SGI Indy, and the SGI compiler doesn’t support the __FUNCTION__ macro.

4.2 The DEBUG() Macro

Use of the DEBUG() macro is unchanged. DEBUG() takes two parameters. The first is the message level, the second is the body
of a function call to the Debug1() function.

That’s confusing.

Here’s an example which may help a bit. If you would write

printf("This is a %s message.\n", "debug");

to send the output to stdout, then you would write

DEBUG(0, ("This is a %s message.\n", "debug"));

to send the output to the debug file. All of the normal printf() formatting escapes work.

Note that in the above example the DEBUG message level is set to 0. Messages at level 0 always print. Basically, if the message
level is less than or equal to the global value DEBUGLEVEL, then the DEBUG statement is processed.

The output of the above example would be something like:

[1998/07/30 16:00:51, 0] file.c:function(128)
This is a debug message.

Each call to DEBUG() creates a new header *unless* the output produced by the previous call to DEBUG() did not end with a
’\n’. Output to the debug file is passed through a formatting buffer which is flushed every time a newline is encountered. If the
buffer is not empty when DEBUG() is called, the new input is simply appended.

...but that’s really just a Kludge. It was put in place because DEBUG() has been used to write partial lines. Here’s a simple
(dumb) example of the kind of thing I’m talking about:

DEBUG(0, ("The test returned "));
if(test())

DEBUG(0, ("True"));
else

DEBUG(0, ("False"));
DEBUG(0, (".\n"));

Without the format buffer, the output (assuming test() returned true) would look like this:

[1998/07/30 16:00:51, 0] file.c:function(256)
The test returned

[1998/07/30 16:00:51, 0] file.c:function(258)
True

[1998/07/30 16:00:51, 0] file.c:function(261)
.

Which isn’t much use. The format buffer kludge fixes this problem.

SAMBA Developers Guide WORKING PAPER

36 / 77

4.3 The DEBUGADD() Macro

In addition to the kludgey solution to the broken line problem described above, there is a clean solution. The DEBUGADD()
macro never generates a header. It will append new text to the current debug message even if the format buffer is empty. The
syntax of the DEBUGADD() macro is the same as that of the DEBUG() macro.

DEBUG(0, ("This is the first line.\n"));
DEBUGADD(0, ("This is the second line.\nThis is the third line.\n"));

Produces

[1998/07/30 16:00:51, 0] file.c:function(512)
This is the first line.
This is the second line.
This is the third line.

4.4 The DEBUGLVL() Macro

One of the problems with the DEBUG() macro was that DEBUG() lines tended to get a bit long. Consider this example from
nmbd_sendannounce.c:

DEBUG(3,("send_local_master_announcement: type %x for name %s on subnet %s for workgroup ←↩
%s\n",

type, global_myname, subrec->subnet_name, work->work_group));

One solution to this is to break it down using DEBUG() and DEBUGADD(), as follows:

DEBUG(3, ("send_local_master_announcement: "));
DEBUGADD(3, ("type %x for name %s ", type, global_myname));
DEBUGADD(3, ("on subnet %s ", subrec->subnet_name));
DEBUGADD(3, ("for workgroup %s\n", work->work_group));

A similar, but arguably nicer approach is to use the DEBUGLVL() macro. This macro returns True if the message level is less
than or equal to the global DEBUGLEVEL value, so:

if(DEBUGLVL(3))
{
dbgtext("send_local_master_announcement: ");
dbgtext("type %x for name %s ", type, global_myname);
dbgtext("on subnet %s ", subrec->subnet_name);
dbgtext("for workgroup %s\n", work->work_group);
}

(The dbgtext() function is explained below.)

There are a few advantages to this scheme:

1. The test is performed only once.

2. You can allocate variables off of the stack that will only be used within the DEBUGLVL() block.

3. Processing that is only relevant to debug output can be contained within the DEBUGLVL() block.

4.5 New Functions

4.5.1 dbgtext()

This function prints debug message text to the debug file (and possibly to syslog) via the format buffer. The function uses a
variable argument list just like printf() or Debug1(). The input is printed into a buffer using the vslprintf() function, and then
passed to format_debug_text(). If you use DEBUGLVL() you will probably print the body of the message using dbgtext().

SAMBA Developers Guide WORKING PAPER

37 / 77

4.5.2 dbghdr()

This is the function that writes a debug message header. Headers are not processed via the format buffer. Also note that if the
format buffer is not empty, a call to dbghdr() will not produce any output. See the comments in dbghdr() for more info.

It is not likely that this function will be called directly. It is used by DEBUG() and DEBUGADD().

4.5.3 format_debug_text()

This is a static function in debug.c. It stores the output text for the body of the message in a buffer until it encounters a newline.
When the newline character is found, the buffer is written to the debug file via the Debug1() function, and the buffer is reset. This
allows us to add the indentation at the beginning of each line of the message body, and also ensures that the output is written a
line at a time (which cleans up syslog output).

SAMBA Developers Guide WORKING PAPER

38 / 77

Chapter 5

Samba Internals

David Chappell

5.1 Character Handling

This section describes character set handling in Samba, as implemented in Samba 3.0 and above

In the past Samba had very ad-hoc character set handling. Scattered throughout the code were numerous calls which converted
particular strings to/from DOS codepages. The problem is that there was no way of telling if a particular char* is in dos codepage
or unix codepage. This led to a nightmare of code that tried to cope with particular cases without handlingt the general case.

5.2 The new functions

The new system works like this:

1. all char* strings inside Samba are "unix" strings. These are multi-byte strings that are in the charset defined by the "unix
charset" option in smb.conf.

2. there is no single fixed character set for unix strings, but any character set that is used does need the following properties:

(a) must not contain NULLs except for termination

(b) must be 7-bit compatible with C strings, so that a constant string or character in C will be byte-for-byte identical to
the equivalent string in the chosen character set.

(c) when you uppercase or lowercase a string it does not become longer than the original string

(d) must be able to correctly hold all characters that your client will throw at it

For example, UTF-8 is fine, and most multi-byte asian character sets are fine, but UCS2 could not be used for unix strings
as they contain nulls.

3. when you need to put a string into a buffer that will be sent on the wire, or you need a string in a character set format that
is compatible with the clients character set then you need to use a pull_ or push_ function. The pull_ functions pull a string
from a wire buffer into a (multi-byte) unix string. The push_ functions push a string out to a wire buffer.

4. the two main pull_ and push_ functions you need to understand are pull_string and push_string. These functions take a
base pointer that should point at the start of the SMB packet that the string is in. The functions will check the flags field
in this packet to automatically determine if the packet is marked as a unicode packet, and they will choose whether to use
unicode for this string based on that flag. You may also force this decision using the STR_UNICODE or STR_ASCII flags.
For use in smbd/ and libsmb/ there are wrapper functions clistr_ and srvstr_ that call the pull_/push_ functions with the
appropriate first argument.

SAMBA Developers Guide WORKING PAPER

39 / 77

You may also call the pull_ascii/pull_ucs2 or push_ascii/push_ucs2 functions if you know that a particular string is ascii
or unicode. There are also a number of other convenience functions in charcnv.c that call the pull_/push_ functions with
particularly common arguments, such as pull_ascii_pstring()

5. The biggest thing to remember is that internal (unix) strings in Samba may now contain multi-byte characters. This means
you cannot assume that characters are always 1 byte long. Often this means that you will have to convert strings to ucs2
and back again in order to do some (seemingly) simple task. For examples of how to do this see functions like strchr_m().
I know this is very slow, and we will eventually speed it up but right now we want this stuff correct not fast.

6. all lp_ functions now return unix strings. The magic "DOS" flag on parameters is gone.

7. all vfs functions take unix strings. Don’t convert when passing to them

5.3 Macros in byteorder.h

This section describes the macros defined in byteorder.h. These macros are used extensively in the Samba code.

5.3.1 CVAL(buf,pos)

returns the byte at offset pos within buffer buf as an unsigned character.

5.3.2 PVAL(buf,pos)

returns the value of CVAL(buf,pos) cast to type unsigned integer.

5.3.3 SCVAL(buf,pos,val)

sets the byte at offset pos within buffer buf to value val.

5.3.4 SVAL(buf,pos)

returns the value of the unsigned short (16 bit) little-endian integer at offset pos within buffer buf. An integer of this type is
sometimes refered to as "USHORT".

5.3.5 IVAL(buf,pos)

returns the value of the unsigned 32 bit little-endian integer at offset pos within buffer buf.

5.3.6 SVALS(buf,pos)

returns the value of the signed short (16 bit) little-endian integer at offset pos within buffer buf.

5.3.7 IVALS(buf,pos)

returns the value of the signed 32 bit little-endian integer at offset pos within buffer buf.

5.3.8 SSVAL(buf,pos,val)

sets the unsigned short (16 bit) little-endian integer at offset pos within buffer buf to value val.

SAMBA Developers Guide WORKING PAPER

40 / 77

5.3.9 SIVAL(buf,pos,val)

sets the unsigned 32 bit little-endian integer at offset pos within buffer buf to the value val.

5.3.10 SSVALS(buf,pos,val)

sets the short (16 bit) signed little-endian integer at offset pos within buffer buf to the value val.

5.3.11 SIVALS(buf,pos,val)

sets the signed 32 bit little-endian integer at offset pos withing buffer buf to the value val.

5.3.12 RSVAL(buf,pos)

returns the value of the unsigned short (16 bit) big-endian integer at offset pos within buffer buf.

5.3.13 RIVAL(buf,pos)

returns the value of the unsigned 32 bit big-endian integer at offset pos within buffer buf.

5.3.14 RSSVAL(buf,pos,val)

sets the value of the unsigned short (16 bit) big-endian integer at offset pos within buffer buf to value val. refered to as "USHORT".

5.3.15 RSIVAL(buf,pos,val)

sets the value of the unsigned 32 bit big-endian integer at offset pos within buffer buf to value val.

5.4 LAN Manager Samba API

This section describes the functions need to make a LAN Manager RPC call. This information had been obtained by examining
the Samba code and the LAN Manager 2.0 API documentation. It should not be considered entirely reliable.

call_api(int prcnt, int drcnt, int mprcnt, int mdrcnt,
char *param, char *data, char **rparam, char **rdata);

This function is defined in client.c. It uses an SMB transaction to call a remote api.

5.4.1 Parameters

The parameters are as follows:

1. prcnt: the number of bytes of parameters begin sent.

2. drcnt: the number of bytes of data begin sent.

3. mprcnt: the maximum number of bytes of parameters which should be returned

4. mdrcnt: the maximum number of bytes of data which should be returned

5. param: a pointer to the parameters to be sent.

SAMBA Developers Guide WORKING PAPER

41 / 77

6. data: a pointer to the data to be sent.

7. rparam: a pointer to a pointer which will be set to point to the returned parameters. The caller of call_api() must deallocate
this memory.

8. rdata: a pointer to a pointer which will be set to point to the returned data. The caller of call_api() must deallocate this
memory.

These are the parameters which you ought to send, in the order of their appearance in the parameter block:

1. An unsigned 16 bit integer API number. You should set this value with SSVAL(). I do not know where these numbers are
described.

2. An ASCIIZ string describing the parameters to the API function as defined in the LAN Manager documentation. The first
parameter, which is the server name, is ommited. This string is based uppon the API function as described in the manual,
not the data which is actually passed.

3. An ASCIIZ string describing the data structure which ought to be returned.

4. Any parameters which appear in the function call, as defined in the LAN Manager API documentation, after the "Server"
and up to and including the "uLevel" parameters.

5. An unsigned 16 bit integer which gives the size in bytes of the buffer we will use to receive the returned array of data
structures. Presumably this should be the same as mdrcnt. This value should be set with SSVAL().

6. An ASCIIZ string describing substructures which should be returned. If no substructures apply, this string is of zero length.

The code in client.c always calls call_api() with no data. It is unclear when a non-zero length data buffer would be sent.

5.4.2 Return value

The returned parameters (pointed to by rparam), in their order of appearance are:

1. An unsigned 16 bit integer which contains the API function’s return code. This value should be read with SVAL().

2. An adjustment which tells the amount by which pointers in the returned data should be adjusted. This value should be read
with SVAL(). Basically, the address of the start of the returned data buffer should have the returned pointer value added to
it and then have this value subtracted from it in order to obtain the currect offset into the returned data buffer.

3. A count of the number of elements in the array of structures returned. It is also possible that this may sometimes be the
number of bytes returned.

When call_api() returns, rparam points to the returned parameters. The first if these is the result code. It will be zero if the API
call suceeded. This value by be read with "SVAL(rparam,0)".

The second parameter may be read as "SVAL(rparam,2)". It is a 16 bit offset which indicates what the base address of the
returned data buffer was when it was built on the server. It should be used to correct pointer before use.

The returned data buffer contains the array of returned data structures. Note that all pointers must be adjusted before use. The
function fix_char_ptr() in client.c can be used for this purpose.

The third parameter (which may be read as "SVAL(rparam,4)") has something to do with indicating the amount of data returned
or possibly the amount of data which can be returned if enough buffer space is allowed.

SAMBA Developers Guide WORKING PAPER

42 / 77

5.5 Code character table

Certain data structures are described by means of ASCIIz strings containing code characters. These are the code characters:

1. W a type byte little-endian unsigned integer

2. N a count of substructures which follow

3. D a four byte little-endian unsigned integer

4. B a byte (with optional count expressed as trailing ASCII digits)

5. z a four byte offset to a NULL terminated string

6. l a four byte offset to non-string user data

7. b an offset to data (with count expressed as trailing ASCII digits)

8. r pointer to returned data buffer???

9. L length in bytes of returned data buffer???

10. h number of bytes of information available???

SAMBA Developers Guide WORKING PAPER

43 / 77

Chapter 6

Coding Suggestions

Steve French Simo Sorce Andrew Bartlett Tim Potter Martin Pool So you want to add code to Samba ...

One of the daunting tasks facing a programmer attempting to write code for Samba is understanding the various coding con-
ventions used by those most active in the project. These conventions were mostly unwritten and helped improve either the
portability, stability or consistency of the code. This document will attempt to document a few of the more important coding
practices used at this time on the Samba project. The coding practices are expected to change slightly over time, and even to grow
as more is learned about obscure portability considerations. Two existing documents samba/source/internals.doc and
samba/source/architecture.doc provide additional information.

The loosely related question of coding style is very personal and this document does not attempt to address that subject, except
to say that I have observed that eight character tabs seem to be preferred in Samba source. If you are interested in the topic of
coding style, two oft-quoted documents are:

http://lxr.linux.no/source/Documentation/CodingStyle

http://www.fsf.org/prep/standards_toc.html

But note that coding style in Samba varies due to the many different programmers who have contributed.

Following are some considerations you should use when adding new code to Samba. First and foremost remember that:

Portability is a primary consideration in adding function, as is network compatability with de facto, existing, real world CIF-
S/SMB implementations. There are lots of platforms that Samba builds on so use caution when adding a call to a library function
that is not invoked in existing Samba code. Also note that there are many quite different SMB/CIFS clients that Samba tries to
support, not all of which follow the SNIA CIFS Technical Reference (or the earlier Microsoft reference documents or the X/Open
book on the SMB Standard) perfectly.

Here are some other suggestions:

1. use d_printf instead of printf for display text reason: enable auto-substitution of translated language text

2. use SAFE_FREE instead of free reason: reduce traps due to null pointers

3. don’t use bzero use memset, or ZERO_STRUCT and ZERO_STRUCTP macros reason: not POSIX

4. don’t use strcpy and strlen (use safe_* equivalents) reason: to avoid traps due to buffer overruns

5. don’t use getopt_long, use popt functions instead reason: portability

6. explicitly add const qualifiers on parm passing in functions where parm is input only (somewhat controversial but const
can be #defined away)

7. when passing a va_list as an arg, or assigning one to another please use the VA_COPY() macro reason: on some platforms,
va_list is a struct that must be initialized in each function...can SEGV if you don’t.

8. discourage use of threads reason: portability (also see architecture.doc)

http://lxr.linux.no/source/Documentation/CodingStyle
http://www.fsf.org/prep/standards_toc.html

SAMBA Developers Guide WORKING PAPER

44 / 77

9. don’t explicitly include new header files in C files - new h files should be included by adding them once to includes.h
reason: consistency

10. don’t explicitly extern functions (they are autogenerated by "make proto" into proto.h) reason: consistency

11. use endian safe macros when unpacking SMBs (see byteorder.h and internals.doc) reason: not everyone uses Intel

12. Note Unicode implications of charset handling (see internals.doc). See pull_* and push_* and convert_string functions.
reason: Internationalization

13. Don’t assume English only reason: See above

14. Try to avoid using in/out parameters (functions that return data which overwrites input parameters) reason: Can cause
stability problems

15. Ensure copyright notices are correct, don’t append Tridge’s name to code that he didn’t write. If you did not write the
code, make sure that it can coexist with the rest of the Samba GPLed code.

16. Consider usage of DATA_BLOBs for length specified byte-data. reason: stability

17. Take advantage of tdbs for database like function reason: consistency

18. Don’t access the SAM_ACCOUNT structure directly, they should be accessed via pdb_get...() and pdb_set...() functions.
reason: stability, consistency

19. Don’t check a password directly against the passdb, always use the check_password() interface. reason: long term plugga-
bility

20. Try to use asprintf rather than pstrings and fstrings where possible

21. Use normal C comments / * instead of C++ comments // like this. Although the C++ comment format is part of the C99
standard, some older vendor C compilers do not accept it.

22. Try to write documentation for API functions and structures explaining the point of the code, the way it should be used,
and any special conditions or results. Mark these with a double-star comment start / ** so that they can be picked up by
Doxygen, as in this file.

23. Keep the scope narrow. This means making functions/variables static whenever possible. We don’t want our namespace
polluted. Each module should have a minimal number of externally visible functions or variables.

24. Use function pointers to keep knowledge about particular pieces of code isolated in one place. We don’t want a particular
piece of functionality to be spread out across lots of places - that makes for fragile, hand to maintain code. Instead, design
an interface and use tables containing function pointers to implement specific functionality. This is particularly important
for command interpreters.

25. Think carefully about what it will be like for someone else to add to and maintain your code. If it would be hard for
someone else to maintain then do it another way.

The suggestions above are simply that, suggestions, but the information may help in reducing the routine rework done on new
code. The preceeding list is expected to change routinely as new support routines and macros are added.

SAMBA Developers Guide WORKING PAPER

45 / 77

Chapter 7

Contributing code

Jelmer R. Vernooij Here are a few tips and notes that might be useful if you are interested in modifying samba source code and
getting it into samba’s main branch.

Retrieving the source In order to contribute code to samba, make sure you have the latest source. Retrieving the samba source
code from CVS is documented in the appendix of the Samba HOWTO Collection.

Discuss large modifications with team members Please discuss large modifications you are going to make with members of
the samba team. Some parts of the samba code have one or more ’owners’ - samba developers who wrote most of the code
and maintain it.

This way you can avoid spending your time and effort on something that is not going to make it into the main samba branch
because someone else was working on the same thing or because your implementation is not the correct one.

Patch format Patches to the samba tree should be in unified diff format, e.g. files generated by diff -u.

If you are modifying a copy of samba you retrieved from CVS, you can easily generate a diff file of these changes by
running cvs diff -u.

Points of attention when modifying samba source code • Don’t simply copy code from other places and modify it until it
works. Code needs to be clean and logical. Duplicate code is to be avoided.

• Test your patch. It might take a while before one of us looks at your patch so it will take longer before your patch when
your patch needs to go thru the review cycle again.

• Don’t put separate patches in one large diff file. This makes it harder to read, understand and test the patch. You might
also risk not getting a good patch committed because you mixed it with one that had issues.

• Make sure your patch complies to the samba coding style as suggested in the coding-suggestions chapter.

Sending in bugfixes Bugfixes to bugs in samba should be submitted to samba’s bugzilla system, along with a description of the
bug.

Sending in feature patches Send feature patches along with a description of what the patch is supposed to do to the Samba-
technical mailinglist and possibly to a samba team member who is (one of the) ’owners’ of the code you made modifications
to. We are all busy people so everybody tends to ’let one of the others handle it’. If nobody responded to your patch for a
week, try to send it again until you get a response from one of us.

Feedback on your patch One of the team members will look at your patch and either commit your patch or give comments why
he won’t apply it. In the latter case you can fix your patch and re-send it until your patch is approved.

https://bugzilla.samba.org/
mailto:samba-technical@samba.org
mailto:samba-technical@samba.org

SAMBA Developers Guide WORKING PAPER

46 / 77

Chapter 8

Modules

Jelmer Vernooij

8.1 Advantages

The new modules system has the following advantages:

Transparent loading of static and shared modules (no need for a subsystem to know about modules)
Simple selection between shared and static modules at configure time
"preload modules" option for increasing performance for stable modules
No nasty #define stuff anymore
All backends are available as plugin now (including pdb_ldap and pdb_tdb)

8.2 Loading modules

Some subsystems in samba use different backends. These backends can be either statically linked in to samba or available as a
plugin. A subsystem should have a function that allows a module to register itself. For example, the passdb subsystem has:

NTSTATUS smb_register_passdb(int version, const char *name, pdb_init_function init);

This function will be called by the initialisation function of the module to register itself.

8.2.1 Static modules

The modules system compiles a list of initialisation functions for the static modules of each subsystem. This is a define. For
example, it is here currently (from include/config.h):

/* Static init functions */
#define static_init_pdb { pdb_mysql_init(); pdb_ldap_init(); pdb_smbpasswd_init(); ←↩

pdb_tdbsam_init(); pdb_guest_init();}

These functions should be called before the subsystem is used. That should be done when the subsystem is initialised or first
used.

SAMBA Developers Guide WORKING PAPER

47 / 77

8.2.2 Shared modules

If a subsystem needs a certain backend, it should check if it has already been registered. If the backend hasn’t been registered
already, the subsystem should call smb_probe_module(char *subsystem, char *backend). This function tries to load the correct
module from a certain path ($LIBDIR/subsystem/backend.so). If the first character in ’backend’ is a slash, smb_probe_module()
tries to load the module from the absolute path specified in ’backend’.

After smb_probe_module() has been executed, the subsystem should check again if the module has been registered.

8.3 Writing modules

Each module has an initialisation function. For modules that are included with samba this name is ’subsystem_backend_init’.
For external modules (that will never be built-in, but only available as a module) this name is always ’init_module’. (In the
case of modules included with samba, the configure system will add a #define subsystem_backend_init() init_module()). The
prototype for these functions is:

NTSTATUS init_module(void);

This function should call one or more registration functions. The function should return NT_STATUS_OK on success and
NT_STATUS_UNSUCCESSFUL or a more useful nt error code on failure.

For example, pdb_ldap_init() contains:

NTSTATUS pdb_ldap_init(void)
{
smb_register_passdb(PASSDB_INTERFACE_VERSION, "ldapsam", pdb_init_ldapsam);
smb_register_passdb(PASSDB_INTERFACE_VERSION, "ldapsam_nua", pdb_init_ldapsam_nua);

return NT_STATUS_OK;
}

8.3.1 Static/Shared selection in configure.in

Some macros in configure.in generate the various defines and substs that are necessary for the system to work correct. All
modules that should be built by default have to be added to the variable ’default_modules’. For example, if ldap is found,
pdb_ldap is added to this variable.

On the bottom of configure.in, SMB_MODULE() should be called for each module and SMB_SUBSYSTEM() for each subsys-
tem.

Syntax:

SMB_MODULE(subsystem_backend, object files, plugin name, subsystem name, static_action, ←↩
shared_action)

SMB_SUBSYSTEM(subsystem,depfile)

The depfile for a certain subsystem is the file that calls the initialisation functions for the statically built in modules.

@SUBSYSTEM_MODULES@ in Makefile.in will be replaced with the names of the plugins to build.

You must make sure all .c files that contain defines that can be changed by ./configure are rebuilded in the ’modules_clean’ make
target. Practically, this means all c files that contain static_init_subsystem; calls need to be rebuilded.

Note
There currently also is a configure.in command called SMB_MODULE_PROVIVES(). This is used for modules that register
multiple things. It should not be used as probing will most likely disappear in the future.

SAMBA Developers Guide WORKING PAPER

48 / 77

Part III

Samba Subsystems

SAMBA Developers Guide WORKING PAPER

49 / 77

Chapter 9

RPC Pluggable Modules

Anthony Liguori Jelmer Vernooij

9.1 About

This document describes how to make use the new RPC Pluggable Modules features of Samba 3.0. This architecture was added
to increase the maintainability of Samba allowing RPC Pipes to be worked on separately from the main CVS branch. The RPM
architecture will also allow third-party vendors to add functionality to Samba through plug-ins.

9.2 General Overview

When an RPC call is sent to smbd, smbd tries to load a shared library by the name librpc_<pipename>.so to handle the
call if it doesn’t know how to handle the call internally. For instance, LSA calls are handled by librpc_lsass.so.. These
shared libraries should be located in the <sambaroot>/lib/rpc. smbd then attempts to call the init_module function within
the shared library. Check the chapter on modules for more information.

In the init_module function, the library should call rpc_pipe_register_commands(). This function takes the following arguments:

NTSTATUS rpc_pipe_register_commands(int version, const char *clnt, const char *srv,
const struct api_struct *cmds, int size);

version Version number of the RPC interface. Use the define SMB_RPC_INTERFACE_VERSION for this argument.

clnt the Client name of the named pipe

srv the Server name of the named pipe

cmds a list of api_structs that map RPC ordinal numbers to function calls

size the number of api_structs contained in cmds

See rpc_server/srv_reg.c and rpc_server/srv_reg_nt.c for a small example of how to use this library.

SAMBA Developers Guide WORKING PAPER

50 / 77

Chapter 10

VFS Modules

Alexander Bokovoy Stefan Metzmacher

10.1 The Samba (Posix) VFS layer

While most of Samba deployments are done using POSIX-compatible operating systems, there is clearly more to a file system
than what is required by POSIX when it comes to adopting semantics of NT file system. Since Samba 2.2 all file-system related
operations go through an abstraction layer for virtual file system (VFS) that is modelled after both POSIX and additional functions
needed to transform NTFS semantics.

This abstraction layer now provides more features than a regular POSIX file system could fill in. It is not required that all of them
should be implemented by your particular file system. However, when those features are available, Samba would advertize them
to a CIFS client and they might be used by an application and in case of Windows client that might mean a client expects even
more additional functionality when it encounters those features. There is a practical reason to allow handling of this snowfall
without modifying the Samba core and it is fulfilled by providing an infrastructure to dynamically load VFS modules at run time.

Each VFS module could implement a number of VFS operations. The way it does it is irrelevant, only two things actually matter:
whether specific implementation wants to cooperate with other modules’ implementations or not, and whether module needs to
store additional information that is specific to a context it is operating in. Multiple VFS modules could be loaded at the same
time and it is even possible to load several instances of the same VFS module with different parameters.

10.1.1 The general interface

A VFS module has three major components:

• An initialization function that is called during the module load to register implemented operations.

• An operations table representing a mapping between statically defined module functions and VFS layer operations.

• Module functions that do actual work.

While this structure has been first applied to the VFS subsystem, it is now commonly used across all Samba 3 subsystems that
support loadable modules. In fact, one module could provide a number of interfaces to different subsystems by exposing different
operation tables through separate initialization functions.

An initialization function is used to register module with Samba run-time. As Samba internal structures and API are changed
over lifetime, each released version has a VFS interface version that is increased as VFS development progresses or any of
underlying Samba structures are changed in binary-incompatible way. When VFS module is compiled in, VFS interface version
of that Samba environment is embedded into the module’s binary object and is checked by the Samba core upon module load. If
VFS interface number reported by the module isn’t the same Samba core knows about, version conflict is detected and module
dropped to avoid any potential memory corruption when accessing (changed) Samba structures.

Therefore, initialization function passes three parameters to the VFS registration function, smb_register_vfs()

SAMBA Developers Guide WORKING PAPER

51 / 77

• interface version number, as constant SMB_VFS_INTERFACE_VERSION,

• module name, under which Samba core will know it, and

• an operations’ table.

The operations’ table defines which functions in the module would correspond to specific VFS operations and how those func-
tions would co-operate with the rest of VFS subsystem. Each operation could perform in a following ways:

• transparent, meaning that while operation is overriden, the module will still call a previous implementation, before or after its
own action. This mode is indicated by the constant SMB_VFS_LAYER_TRANSPARENT;

• opaque, for the implementations that are terminating sequence of actions. For example, it is used to implement POSIX
operation on top of non-POSIX file system or even not a file system at all, like a database for a personal audio collection. Use
constant SMB_VFS_LAYER_OPAQUE for this mode;

• splitter, a way when some file system activity is done in addition to the transparently calling previous implentation. This
usually involves mangling the result of that call before returning it back to the caller. This mode is selected by SMB_VFS_L-
AYER_SPLITTER constant;

• logger does not change anything or performs any additional VFS operations. When logger module acts, information about
operations is logged somewhere using an external facility (or Samba’s own debugging tools) but not the VFS layer. In order to
describe this type of activity use constant SMB_VFS_LAYER_LOGGER;

• On contrary, scanner module does call other VFS operations while processing the data that goes through the system. This type
of operation is indicated by the SMB_VFS_LAYER_SCANNER constant.

Fundamentally, there are three types: transparent, opaque, and logger. Splitter and scanner may confuse developers (and indeed
they are confused as our experience has shown) but this separation is to better expose the nature of a module’s actions. Most of
modules developed so far are either one of those three fundamental types with transparent and opaque being prevalent.

Each VFS operation has a vfs_op_type, a function pointer and a handle pointer in the struct vfs_ops and tree macros to make it
easier to call the operations. (Take a look at include/vfs.h and include/vfs_macros.h.)

typedef enum _vfs_op_type {
SMB_VFS_OP_NOOP = -1,

...

/* File operations */

SMB_VFS_OP_OPEN,
SMB_VFS_OP_CLOSE,
SMB_VFS_OP_READ,
SMB_VFS_OP_WRITE,
SMB_VFS_OP_LSEEK,
SMB_VFS_OP_SENDFILE,

...

SMB_VFS_OP_LAST
} vfs_op_type;

This struct contains the function and handle pointers for all operations.

struct vfs_ops {
struct vfs_fn_pointers {
...

/* File operations */

int (*open)(struct vfs_handle_struct *handle,

SAMBA Developers Guide WORKING PAPER

52 / 77

struct connection_struct *conn,
const char *fname, int flags, mode_t mode);

int (*close)(struct vfs_handle_struct *handle,
struct files_struct *fsp, int fd);

ssize_t (*read)(struct vfs_handle_struct *handle,
struct files_struct *fsp, int fd, void *data, size_t n);

ssize_t (*write)(struct vfs_handle_struct *handle,
struct files_struct *fsp, int fd,
const void *data, size_t n);

SMB_OFF_T (*lseek)(struct vfs_handle_struct *handle,
struct files_struct *fsp, int fd,
SMB_OFF_T offset, int whence);

ssize_t (*sendfile)(struct vfs_handle_struct *handle,
int tofd, files_struct *fsp, int fromfd,
const DATA_BLOB *header, SMB_OFF_T offset, size_t count);

...
} ops;

struct vfs_handles_pointers {
...

/* File operations */

struct vfs_handle_struct *open;
struct vfs_handle_struct *close;
struct vfs_handle_struct *read;
struct vfs_handle_struct *write;
struct vfs_handle_struct *lseek;
struct vfs_handle_struct *sendfile;

...
} handles;

};

This macros SHOULD be used to call any vfs operation. DO NOT ACCESS conn->vfs.ops.* directly !!!

...

/* File operations */
#define SMB_VFS_OPEN(conn, fname, flags, mode) \

((conn)->vfs.ops.open((conn)->vfs.handles.open,\
(conn), (fname), (flags), (mode)))

#define SMB_VFS_CLOSE(fsp, fd) \
((fsp)->conn->vfs.ops.close(\
(fsp)->conn->vfs.handles.close, (fsp), (fd)))

#define SMB_VFS_READ(fsp, fd, data, n) \
((fsp)->conn->vfs.ops.read(\
(fsp)->conn->vfs.handles.read,\
(fsp), (fd), (data), (n)))

#define SMB_VFS_WRITE(fsp, fd, data, n) \
((fsp)->conn->vfs.ops.write(\
(fsp)->conn->vfs.handles.write,\
(fsp), (fd), (data), (n)))

#define SMB_VFS_LSEEK(fsp, fd, offset, whence) \
((fsp)->conn->vfs.ops.lseek(\
(fsp)->conn->vfs.handles.lseek,\
(fsp), (fd), (offset), (whence)))

#define SMB_VFS_SENDFILE(tofd, fsp, fromfd, header, offset, count) \
((fsp)->conn->vfs.ops.sendfile(\
(fsp)->conn->vfs.handles.sendfile,\
(tofd), (fsp), (fromfd), (header), (offset), (count)))

SAMBA Developers Guide WORKING PAPER

53 / 77

...

10.1.2 Possible VFS operation layers

These values are used by the VFS subsystem when building the conn->vfs and conn->vfs_opaque structs for a connection with
multiple VFS modules. Internally, Samba differentiates only opaque and transparent layers at this process. Other types are used
for providing better diagnosing facilities.

Most modules will provide transparent layers. Opaque layer is for modules which implement actual file system calls (like DB-
based VFS). For example, default POSIX VFS which is built in into Samba is an opaque VFS module.

Other layer types (logger, splitter, scanner) were designed to provide different degree of transparency and for diagnosing VFS
module behaviour.

Each module can implement several layers at the same time provided that only one layer is used per each operation.

typedef enum _vfs_op_layer {
SMB_VFS_LAYER_NOOP = -1, /* - For using in VFS module to indicate end of array */

/* of operations description */
SMB_VFS_LAYER_OPAQUE = 0, /* - Final level, does not call anything beyond itself */
SMB_VFS_LAYER_TRANSPARENT, /* - Normal operation, calls underlying layer after */

/* possibly changing passed data */
SMB_VFS_LAYER_LOGGER, /* - Logs data, calls underlying layer, logging may not */

/* use Samba VFS */
SMB_VFS_LAYER_SPLITTER, /* - Splits operation, calls underlying layer _and_ own ←↩

facility, */
/* then combines result */

SMB_VFS_LAYER_SCANNER /* - Checks data and possibly initiates additional */
/* file activity like logging to files _inside_ samba VFS */

} vfs_op_layer;

10.2 The Interaction between the Samba VFS subsystem and the modules

10.2.1 Initialization and registration

As each Samba module a VFS module should have a

NTSTATUS vfs_example_init(void);

function if it’s staticly linked to samba or

NTSTATUS init_module(void);

function if it’s a shared module.

This should be the only non static function inside the module. Global variables should also be static!

The module should register its functions via the

NTSTATUS smb_register_vfs(int version, const char *name, vfs_op_tuple *vfs_op_tuples);

function.

version should be filled with SMB_VFS_INTERFACE_VERSION

name this is the name witch can be listed in the vfs objects parameter to use this module.

SAMBA Developers Guide WORKING PAPER

54 / 77

vfs_op_tuples this is an array of vfs_op_tuple’s. (vfs_op_tuples is descripted in details below.)

For each operation the module wants to provide it has a entry in the vfs_op_tuple array.

typedef struct _vfs_op_tuple {
void* op;
vfs_op_type type;
vfs_op_layer layer;

} vfs_op_tuple;

op the function pointer to the specified function.

type the vfs_op_type of the function to specified witch operation the function provides.

layer the vfs_op_layer in whitch the function operates.

A simple example:

static vfs_op_tuple example_op_tuples[] = {
{SMB_VFS_OP(example_connect), SMB_VFS_OP_CONNECT, SMB_VFS_LAYER_TRANSPARENT},
{SMB_VFS_OP(example_disconnect), SMB_VFS_OP_DISCONNECT, SMB_VFS_LAYER_TRANSPARENT},

{SMB_VFS_OP(example_rename), SMB_VFS_OP_RENAME, SMB_VFS_LAYER_OPAQUE},

/* This indicates the end of the array */
{SMB_VFS_OP(NULL), SMB_VFS_OP_NOOP, SMB_VFS_LAYER_NOOP}

};

NTSTATUS init_module(void)
{

return smb_register_vfs(SMB_VFS_INTERFACE_VERSION, "example", example_op_tuples);
}

10.2.2 How the Modules handle per connection data

Each VFS function has as first parameter a pointer to the modules vfs_handle_struct.

typedef struct vfs_handle_struct {
struct vfs_handle_struct *next, *prev;
const char *param;
struct vfs_ops vfs_next;
struct connection_struct *conn;
void *data;
void (*free_data)(void **data);

} vfs_handle_struct;

param this is the module parameter specified in the vfs objects parameter.

e.g. for ’vfs objects = example:test’ param would be "test".

vfs_next This vfs_ops struct contains the information for calling the next module operations. Use the SMB_VFS_NEXT_*
macros to call a next module operations and don’t access handle->vfs_next.ops.* directly!

conn This is a pointer back to the connection_struct to witch the handle belongs.

data This is a pointer for holding module private data. You can alloc data with connection life time on the handle->conn-
>mem_ctx TALLOC_CTX. But you can also manage the memory allocation yourself.

free_data This is a function pointer to a function that free’s the module private data. If you talloc your private data on the
TALLOC_CTX handle->conn->mem_ctx, you can set this function pointer to NULL.

SAMBA Developers Guide WORKING PAPER

55 / 77

Some useful MACROS for handle private data.

#define SMB_VFS_HANDLE_GET_DATA(handle, datap, type, ret) { \
if (!(handle)||((datap=(type *)(handle)->data)==NULL)) { \
DEBUG(0,("%s() failed to get vfs_handle->data!\n",FUNCTION_MACRO)); \
ret; \

} \
}

#define SMB_VFS_HANDLE_SET_DATA(handle, datap, free_fn, type, ret) { \
if (!(handle)) { \
DEBUG(0,("%s() failed to set handle->data!\n",FUNCTION_MACRO)); \
ret; \

} else { \
if ((handle)->free_data) { \

(handle)->free_data(&(handle)->data); \
} \
(handle)->data = (void *)datap; \
(handle)->free_data = free_fn; \

} \
}

#define SMB_VFS_HANDLE_FREE_DATA(handle) { \
if ((handle) && (handle)->free_data) { \
(handle)->free_data(&(handle)->data); \

} \
}

How SMB_VFS_LAYER_TRANSPARENT functions can call the SMB_VFS_LAYER_OPAQUE functions.

The easiest way to do this is to use the SMB_VFS_OPAQUE_* macros.

...
/* File operations */
#define SMB_VFS_OPAQUE_OPEN(conn, fname, flags, mode) \

((conn)->vfs_opaque.ops.open(\
(conn)->vfs_opaque.handles.open,\
(conn), (fname), (flags), (mode)))

#define SMB_VFS_OPAQUE_CLOSE(fsp, fd) \
((fsp)->conn->vfs_opaque.ops.close(\
(fsp)->conn->vfs_opaque.handles.close,\
(fsp), (fd)))

#define SMB_VFS_OPAQUE_READ(fsp, fd, data, n) \
((fsp)->conn->vfs_opaque.ops.read(\
(fsp)->conn->vfs_opaque.handles.read,\
(fsp), (fd), (data), (n)))

#define SMB_VFS_OPAQUE_WRITE(fsp, fd, data, n) \
((fsp)->conn->vfs_opaque.ops.write(\
(fsp)->conn->vfs_opaque.handles.write,\
(fsp), (fd), (data), (n)))

#define SMB_VFS_OPAQUE_LSEEK(fsp, fd, offset, whence) \
((fsp)->conn->vfs_opaque.ops.lseek(\
(fsp)->conn->vfs_opaque.handles.lseek,\
(fsp), (fd), (offset), (whence)))

#define SMB_VFS_OPAQUE_SENDFILE(tofd, fsp, fromfd, header, offset, count) \
((fsp)->conn->vfs_opaque.ops.sendfile(\
(fsp)->conn->vfs_opaque.handles.sendfile,\
(tofd), (fsp), (fromfd), (header), (offset), (count)))

...

How SMB_VFS_LAYER_TRANSPARENT functions can call the next modules functions.

The easiest way to do this is to use the SMB_VFS_NEXT_* macros.

SAMBA Developers Guide WORKING PAPER

56 / 77

...
/* File operations */
#define SMB_VFS_NEXT_OPEN(handle, conn, fname, flags, mode) \

((handle)->vfs_next.ops.open(\
(handle)->vfs_next.handles.open,\
(conn), (fname), (flags), (mode)))

#define SMB_VFS_NEXT_CLOSE(handle, fsp, fd) \
((handle)->vfs_next.ops.close(\
(handle)->vfs_next.handles.close,\
(fsp), (fd)))

#define SMB_VFS_NEXT_READ(handle, fsp, fd, data, n) \
((handle)->vfs_next.ops.read(\
(handle)->vfs_next.handles.read,\
(fsp), (fd), (data), (n)))

#define SMB_VFS_NEXT_WRITE(handle, fsp, fd, data, n) \
((handle)->vfs_next.ops.write(\
(handle)->vfs_next.handles.write,\
(fsp), (fd), (data), (n)))

#define SMB_VFS_NEXT_LSEEK(handle, fsp, fd, offset, whence) \
((handle)->vfs_next.ops.lseek(\
(handle)->vfs_next.handles.lseek,\
(fsp), (fd), (offset), (whence)))

#define SMB_VFS_NEXT_SENDFILE(handle, tofd, fsp, fromfd, header, offset, count) \
((handle)->vfs_next.ops.sendfile(\
(handle)->vfs_next.handles.sendfile,\
(tofd), (fsp), (fromfd), (header), (offset), (count)))

...

10.3 Upgrading to the New VFS Interface

10.3.1 Upgrading from 2.2.* and 3.0alpha modules

1. Add "vfs_handle_struct *handle, " as first parameter to all vfs operation functions. e.g. example_connect(connection_struct
*conn, const char *service, const char *user); -> example_connect(vfs_handle_struct *handle, connection_struct *conn,
const char *service, const char *user);

2. Replace "default_vfs_ops." with "smb_vfs_next_". e.g. default_vfs_ops.connect(conn, service, user); -> smb_vfs_next_connect(conn,
service, user);

3. Uppercase all "smb_vfs_next_*" functions. e.g. smb_vfs_next_connect(conn, service, user); -> SMB_VFS_NEXT_CONNECT(conn,
service, user);

4. Add "handle, " as first parameter to all SMB_VFS_NEXT_*() calls. e.g. SMB_VFS_NEXT_CONNECT(conn, service,
user); -> SMB_VFS_NEXT_CONNECT(handle, conn, service, user);

5. (Only for 2.2.* modules) Convert the old struct vfs_ops example_ops to a vfs_op_tuple example_op_tuples[] array. e.g.

struct vfs_ops example_ops = {
/* Disk operations */
example_connect, /* connect */
example_disconnect, /* disconnect */
NULL, /* disk free *
/* Directory operations */
NULL, /* opendir */
NULL, /* readdir */
NULL, /* mkdir */
NULL, /* rmdir */
NULL, /* closedir */
/* File operations */

SAMBA Developers Guide WORKING PAPER

57 / 77

NULL, /* open */
NULL, /* close */
NULL, /* read */
NULL, /* write */
NULL, /* lseek */
NULL, /* sendfile */
NULL, /* rename */
NULL, /* fsync */
example_stat, /* stat */
example_fstat, /* fstat */
example_lstat, /* lstat */
NULL, /* unlink */
NULL, /* chmod */
NULL, /* fchmod */
NULL, /* chown */
NULL, /* fchown */
NULL, /* chdir */
NULL, /* getwd */
NULL, /* utime */
NULL, /* ftruncate */
NULL, /* lock */
NULL, /* symlink */
NULL, /* readlink */
NULL, /* link */
NULL, /* mknod */
NULL, /* realpath */
NULL, /* fget_nt_acl */
NULL, /* get_nt_acl */
NULL, /* fset_nt_acl */
NULL, /* set_nt_acl */

NULL, /* chmod_acl */
NULL, /* fchmod_acl */

NULL, /* sys_acl_get_entry */
NULL, /* sys_acl_get_tag_type */
NULL, /* sys_acl_get_permset */
NULL, /* sys_acl_get_qualifier */
NULL, /* sys_acl_get_file */
NULL, /* sys_acl_get_fd */
NULL, /* sys_acl_clear_perms */
NULL, /* sys_acl_add_perm */
NULL, /* sys_acl_to_text */
NULL, /* sys_acl_init */
NULL, /* sys_acl_create_entry */
NULL, /* sys_acl_set_tag_type */
NULL, /* sys_acl_set_qualifier */
NULL, /* sys_acl_set_permset */
NULL, /* sys_acl_valid */
NULL, /* sys_acl_set_file */
NULL, /* sys_acl_set_fd */
NULL, /* sys_acl_delete_def_file */
NULL, /* sys_acl_get_perm */
NULL, /* sys_acl_free_text */
NULL, /* sys_acl_free_acl */
NULL /* sys_acl_free_qualifier */

};

->

static vfs_op_tuple example_op_tuples[] = {
{SMB_VFS_OP(example_connect), SMB_VFS_OP_CONNECT, SMB_VFS_LAYER_TRANSPARENT},

SAMBA Developers Guide WORKING PAPER

58 / 77

{SMB_VFS_OP(example_disconnect), SMB_VFS_OP_DISCONNECT, SMB_VFS_LAYER_TRANSPARENT},

{SMB_VFS_OP(example_fstat), SMB_VFS_OP_FSTAT, SMB_VFS_LAYER_TRANSPARENT},
{SMB_VFS_OP(example_stat), SMB_VFS_OP_STAT, SMB_VFS_LAYER_TRANSPARENT},
{SMB_VFS_OP(example_lstat), SMB_VFS_OP_LSTAT, SMB_VFS_LAYER_TRANSPARENT},

{SMB_VFS_OP(NULL), SMB_VFS_OP_NOOP, SMB_VFS_LAYER_NOOP}
};

6. Move the example_op_tuples[] array to the end of the file.

7. Add the init_module() function at the end of the file. e.g.

NTSTATUS init_module(void)
{
return smb_register_vfs(SMB_VFS_INTERFACE_VERSION,"example",example_op_tuples);

}

8. Check if your vfs_init() function does more then just prepare the vfs_ops structs or remember the struct smb_vfs_handle_struct.

If NOT you can remove the vfs_init() function.
If YES decide if you want to move the code to the example_connect() operation or to the init_module(). And then remove vfs_init(). e.g. a debug class registration should go into init_module() and the allocation of private data should go to example_connect().

9. (Only for 3.0alpha* modules) Check if your vfs_done() function contains needed code.

If NOT you can remove the vfs_done() function.
If YES decide if you can move the code to the example_disconnect() operation. Otherwise register a SMB_EXIT_EVENT with smb_register_exit_event(); (Described in the modules section) And then remove vfs_done(). e.g. the freeing of private data should go to example_disconnect().

10. Check if you have any global variables left. Decide if it wouldn’t be better to have this data on a connection basis.

If NOT leave them as they are. (e.g. this could be the variable for the private debug class.)
If YES pack all this data into a struct. You can use handle->data to point to such a struct on a per connection basis.

e.g. if you have such a struct:

struct example_privates {
char *some_string;
int db_connection;

};

first way of doing it:

static int example_connect(vfs_handle_struct *handle,
connection_struct *conn, const char *service,
const char* user)

{
struct example_privates *data = NULL;

/* alloc our private data */
data = (struct example_privates *)talloc_zero(conn->mem_ctx, sizeof(struct ←↩

example_privates));
if (!data) {

DEBUG(0,("talloc_zero() failed\n"));
return -1;

}

/* init out private data */
data->some_string = talloc_strdup(conn->mem_ctx,"test");
if (!data->some_string) {

DEBUG(0,("talloc_strdup() failed\n"));
return -1;

}

data->db_connection = open_db_conn();

SAMBA Developers Guide WORKING PAPER

59 / 77

/* and now store the private data pointer in handle->data

* we don’t need to specify a free_function here because

* we use the connection TALLOC context.

* (return -1 if something failed.)

*/
VFS_HANDLE_SET_DATA(handle, data, NULL, struct example_privates, return -1);

return SMB_VFS_NEXT_CONNECT(handle,conn,service,user);
}

static int example_close(vfs_handle_struct *handle, files_struct *fsp, int fd)
{
struct example_privates *data = NULL;

/* get the pointer to our private data

* return -1 if something failed

*/
SMB_VFS_HANDLE_GET_DATA(handle, data, struct example_privates, return -1);

/* do something here...*/
DEBUG(0,("some_string: %s\n",data->some_string));

return SMB_VFS_NEXT_CLOSE(handle, fsp, fd);
}

second way of doing it:

static void free_example_privates(void **datap)
{
struct example_privates *data = (struct example_privates *)*datap;

SAFE_FREE(data->some_string);
SAFE_FREE(data);

*datap = NULL;

return;
}

static int example_connect(vfs_handle_struct *handle,
connection_struct *conn, const char *service,
const char* user)

{
struct example_privates *data = NULL;

/* alloc our private data */
data = (struct example_privates *)malloc(sizeof(struct example_privates));
if (!data) {

DEBUG(0,("malloc() failed\n"));
return -1;

}

/* init out private data */
data->some_string = strdup("test");
if (!data->some_string) {

DEBUG(0,("strdup() failed\n"));
return -1;

}

data->db_connection = open_db_conn();

/* and now store the private data pointer in handle->data

SAMBA Developers Guide WORKING PAPER

60 / 77

* we need to specify a free_function because we used malloc() and strdup().

* (return -1 if something failed.)

*/
SMB_VFS_HANDLE_SET_DATA(handle, data, free_example_privates, struct example_privates, ←↩

return -1);

return SMB_VFS_NEXT_CONNECT(handle,conn,service,user);
}

static int example_close(vfs_handle_struct *handle, files_struct *fsp, int fd)
{
struct example_privates *data = NULL;

/* get the pointer to our private data

* return -1 if something failed

*/
SMB_VFS_HANDLE_GET_DATA(handle, data, struct example_privates, return -1);

/* do something here...*/
DEBUG(0,("some_string: %s\n",data->some_string));

return SMB_VFS_NEXT_CLOSE(handle, fsp, fd);
}

11. To make it easy to build 3rd party modules it would be useful to provide configure.in, (configure), install.sh and Makefile.in
with the module. (Take a look at the example in examples/VFS.)

The configure script accepts --with-samba-source to specify the path to the samba source tree. It also accept
--enable-developer which lets the compiler give you more warnings.

The idea is that you can extend this configure.in and Makefile.in scripts for your module.

12. Compiling & Testing...

./configure --enable-developer ...
make
Try to fix all compiler warnings
make
Testing, Testing, Testing ...

10.4 Some Notes

10.4.1 Implement TRANSPARENT functions

Avoid writing functions like this:

static int example_close(vfs_handle_struct *handle, files_struct *fsp, int fd)
{

return SMB_VFS_NEXT_CLOSE(handle, fsp, fd);
}

Overload only the functions you really need to!

10.4.2 Implement OPAQUE functions

If you want to just implement a better version of a default samba opaque function (e.g. like a disk_free() function for a special
filesystem) it’s ok to just overload that specific function.

If you want to implement a database filesystem or something different from a posix filesystem. Make sure that you overload
every vfs operation!!!

SAMBA Developers Guide WORKING PAPER

61 / 77

Functions your FS does not support should be overloaded by something like this: e.g. for a readonly filesystem.

static int example_rename(vfs_handle_struct *handle, connection_struct *conn,
char *oldname, char *newname)

{
DEBUG(10,("function rename() not allowed on vfs ’example’\n"));
errno = ENOSYS;
return -1;

}

SAMBA Developers Guide WORKING PAPER

62 / 77

Chapter 11

The smb.conf file

Chris Hertel

11.1 Lexical Analysis

Basically, the file is processed on a line by line basis. There are four types of lines that are recognized by the lexical analyzer
(params.c):

1. Blank lines - Lines containing only whitespace.

2. Comment lines - Lines beginning with either a semi-colon or a pound sign (’;’ or ’#’).

3. Section header lines - Lines beginning with an open square bracket (’[’).

4. Parameter lines - Lines beginning with any other character. (The default line type.)

The first two are handled exclusively by the lexical analyzer, which ignores them. The latter two line types are scanned for

1. - Section names

2. - Parameter names

3. - Parameter values

These are the only tokens passed to the parameter loader (loadparm.c). Parameter names and values are divided from one another
by an equal sign: ’=’.

11.1.1 Handling of Whitespace

Whitespace is defined as all characters recognized by the isspace() function (see ctype(3C)) except for the newline character
(’\n’) The newline is excluded because it identifies the end of the line.

1. The lexical analyzer scans past white space at the beginning of a line.

2. Section and parameter names may contain internal white space. All whitespace within a name is compressed to a single
space character.

3. Internal whitespace within a parameter value is kept verbatim with the exception of carriage return characters (’\r’), all of
which are removed.

4. Leading and trailing whitespace is removed from names and values.

SAMBA Developers Guide WORKING PAPER

63 / 77

11.1.2 Handling of Line Continuation

Long section header and parameter lines may be extended across multiple lines by use of the backslash character (’\\’). Line
continuation is ignored for blank and comment lines.

If the last (non-whitespace) character within a section header or on a parameter line is a backslash, then the next line will be
(logically) concatonated with the current line by the lexical analyzer. For example:

param name = parameter value string \
with line continuation.

Would be read as

param name = parameter value string with line continuation.

Note that there are five spaces following the word ’string’, representing the one space between ’string’ and ’\\’ in the top line,
plus the four preceeding the word ’with’ in the second line. (Yes, I’m counting the indentation.)

Line continuation characters are ignored on blank lines and at the end of comments. They are *only* recognized within section
and parameter lines.

11.1.3 Line Continuation Quirks

Note the following example:

param name = parameter value string \
\
with line continuation.

The middle line is *not* parsed as a blank line because it is first concatonated with the top line. The result is

param name = parameter value string with line continuation.

The same is true for comment lines.

param name = parameter value string \
; comment \
with a comment.

This becomes:

param name = parameter value string ; comment with a comment.

On a section header line, the closing bracket (’]’) is considered a terminating character, and the rest of the line is ignored. The
lines

[section name] garbage \
param name = value

are read as

[section name]
param name = value

SAMBA Developers Guide WORKING PAPER

64 / 77

11.2 Syntax

The syntax of the smb.conf file is as follows:

<file> :== { <section> } EOF
<section> :== <section header> { <parameter line> }
<section header> :== ’[’ NAME ’]’
<parameter line> :== NAME ’=’ VALUE NL

Basically, this means that

1. a file is made up of zero or more sections, and is terminated by an EOF (we knew that).

2. A section is made up of a section header followed by zero or more parameter lines.

3. A section header is identified by an opening bracket and terminated by the closing bracket. The enclosed NAME identifies
the section.

4. A parameter line is divided into a NAME and a VALUE. The *first* equal sign on the line separates the NAME from the
VALUE. The VALUE is terminated by a newline character (NL = ’\n’).

11.2.1 About params.c

The parsing of the config file is a bit unusual if you are used to lex, yacc, bison, etc. Both lexical analysis (scanning) and parsing
are performed by params.c. Values are loaded via callbacks to loadparm.c.

SAMBA Developers Guide WORKING PAPER

65 / 77

Chapter 12

Samba WINS Internals

Gerald Carter

12.1 WINS Failover

The current Samba codebase possesses the capability to use groups of WINS servers that share a common namespace for Net-
BIOS name registration and resolution. The formal parameter syntax is

WINS_SERVER_PARAM = SERVER [SEPARATOR SERVER_LIST]
WINS_SERVER_PARAM = "wins server"
SERVER = ADDR[:TAG]
ADDR = ip_addr | fqdn
TAG = string
SEPARATOR = comma | \s+
SERVER_LIST = SERVER [SEPARATOR SERVER_LIST]

A simple example of a valid wins server setting is

[global]
wins server = 192.168.1.2 192.168.1.3

In the event that no TAG is defined in for a SERVER in the list, smbd assigns a default TAG of "*". A TAG is used to group
servers of a shared NetBIOS namespace together. Upon startup, nmbd will attempt to register the netbios name value with one
server in each tagged group.

An example using tags to group WINS servers together is show here. Note that the use of interface names in the tags is only by
convention and is not a technical requirement.

[global]
wins server = 192.168.1.2:eth0 192.168.1.3:eth0 192.168.2.2:eth1

Using this configuration, nmbd would attempt to register the server’s NetBIOS name with one WINS server in each group.
Because the "eth0" group has two servers, the second server would only be used when a registration (or resolution) request to the
first server in that group timed out.

NetBIOS name resolution follows a similar pattern as name registration. When resolving a NetBIOS name via WINS, smbd and
other Samba programs will attempt to query a single WINS server in a tagged group until either a positive response is obtained
at least once or until a server from every tagged group has responded negatively to the name query request. If a timeout occurs
when querying a specific WINS server, that server is marked as down to prevent further timeouts and the next server in the WINS
group is contacted. Once marked as dead, Samba will not attempt to contact that server for name registration/resolution queries
for a period of 10 minutes.

SAMBA Developers Guide WORKING PAPER

66 / 77

Chapter 13

LanMan and NT Password Encryption

Jeremy Allison

13.1 Introduction

With the development of LanManager and Windows NT compatible password encryption for Samba, it is now able to validate
user connections in exactly the same way as a LanManager or Windows NT server.

This document describes how the SMB password encryption algorithm works and what issues there are in choosing whether you
want to use it. You should read it carefully, especially the part about security and the "PROS and CONS" section.

13.2 How does it work?

LanManager encryption is somewhat similar to UNIX password encryption. The server uses a file containing a hashed value of
a user’s password. This is created by taking the user’s plaintext password, capitalising it, and either truncating to 14 bytes or
padding to 14 bytes with null bytes. This 14 byte value is used as two 56 bit DES keys to encrypt a ’magic’ eight byte value,
forming a 16 byte value which is stored by the server and client. Let this value be known as the "hashed password".

Windows NT encryption is a higher quality mechanism, consisting of doing an MD4 hash on a Unicode version of the user’s
password. This also produces a 16 byte hash value that is non-reversible.

When a client (LanManager, Windows for WorkGroups, Windows 95 or Windows NT) wishes to mount a Samba drive (or use a
Samba resource), it first requests a connection and negotiates the protocol that the client and server will use. In the reply to this
request the Samba server generates and appends an 8 byte, random value - this is stored in the Samba server after the reply is
sent and is known as the "challenge". The challenge is different for every client connection.

The client then uses the hashed password (16 byte values described above), appended with 5 null bytes, as three 56 bit DES keys,
each of which is used to encrypt the challenge 8 byte value, forming a 24 byte value known as the "response".

In the SMB call SMBsessionsetupX (when user level security is selected) or the call SMBtconX (when share level security
is selected), the 24 byte response is returned by the client to the Samba server. For Windows NT protocol levels the above
calculation is done on both hashes of the user’s password and both responses are returned in the SMB call, giving two 24 byte
values.

The Samba server then reproduces the above calculation, using its own stored value of the 16 byte hashed password (read from
the smbpasswd file - described later) and the challenge value that it kept from the negotiate protocol reply. It then checks to
see if the 24 byte value it calculates matches the 24 byte value returned to it from the client.

If these values match exactly, then the client knew the correct password (or the 16 byte hashed value - see security note below)
and is thus allowed access. If not, then the client did not know the correct password and is denied access.

Note that the Samba server never knows or stores the cleartext of the user’s password - just the 16 byte hashed values derived
from it. Also note that the cleartext password or 16 byte hashed values are never transmitted over the network - thus increasing
security.

SAMBA Developers Guide WORKING PAPER

67 / 77

13.3 The smbpasswd file

In order for Samba to participate in the above protocol it must be able to look up the 16 byte hashed values given a user name.
Unfortunately, as the UNIX password value is also a one way hash function (ie. it is impossible to retrieve the cleartext of the
user’s password given the UNIX hash of it), a separate password file containing this 16 byte value must be kept. To minimise
problems with these two password files, getting out of sync, the UNIX /etc/passwd and the smbpasswd file, a utility,
mksmbpasswd.sh, is provided to generate a smbpasswd file from a UNIX /etc/passwd file.

To generate the smbpasswd file from your /etc/passwd file use the following command:

$ cat /etc/passwd | mksmbpasswd.sh > /usr/local/samba/private/smbpasswd

If you are running on a system that uses NIS, use

$ ypcat passwd | mksmbpasswd.sh > /usr/local/samba/private/smbpasswd

The mksmbpasswd.sh program is found in the Samba source directory. By default, the smbpasswd file is stored in :

/usr/local/samba/private/smbpasswd

The owner of the /usr/local/samba/private/ directory should be set to root, and the permissions on it should be set to
0500 (chmod 500 /usr/local/samba/private).

Likewise, the smbpasswd file inside the private directory should be owned by root and the permissions on is should be set to
0600 (chmod 600 smbpasswd).

The format of the smbpasswd file is (The line has been wrapped here. It should appear as one entry per line in your smbpasswd
file.)

username:uid:XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX:XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX:
[Account type]:LCT-<last-change-time>:Long name

Although only the username, uid, XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX, [Account type] and last-change-time

sections are significant and are looked at in the Samba code.

It is VITALLY important that there by 32 ’X’ characters between the two ’:’ characters in the XXX sections - the smbpasswd and
Samba code will fail to validate any entries that do not have 32 characters between ’:’ characters. The first XXX section is for
the Lanman password hash, the second is for the Windows NT version.

When the password file is created all users have password entries consisting of 32 ’X’ characters. By default this disallows any
access as this user. When a user has a password set, the ’X’ characters change to 32 ascii hexadecimal digits (0-9, A-F). These
are an ascii representation of the 16 byte hashed value of a user’s password.

To set a user to have no password (not recommended), edit the file using vi, and replace the first 11 characters with the ascii text
"NO PASSWORD" (minus the quotes).

For example, to clear the password for user bob, his smbpasswd file entry would look like :

bob:100:NO PASSWORDXXXXXXXXXXXXXXXXXXXXX:XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX:
[U]:LCT-00000000:Bob’s full name:/bobhome:/bobshell

If you are allowing users to use the smbpasswd command to set their own passwords, you may want to give users NO PASS-
WORD initially so they do not have to enter a previous password when changing to their new password (not recommended). In
order for you to allow this the smbpasswd program must be able to connect to the smbd daemon as that user with no password.
Enable this by adding the line :

null passwords = yes

to the [global] section of the smb.conf file (this is why the above scenario is not recommended). Preferably, allocate your users a
default password to begin with, so you do not have to enable this on your server.

Note : This file should be protected very carefully. Anyone with access to this file can (with enough knowledge of the protocols)
gain access to your SMB server. The file is thus more sensitive than a normal unix /etc/passwd file.

SAMBA Developers Guide WORKING PAPER

68 / 77

Part IV

Debugging and tracing

SAMBA Developers Guide WORKING PAPER

69 / 77

Chapter 14

Tracing samba system calls

Andrew Tridgell This file describes how to do a system call trace on Samba to work out what its doing wrong. This is not for the
faint of heart, but if you are reading this then you are probably desperate.

Actually its not as bad as the the above makes it sound, just don’t expect the output to be very pretty :-)

Ok, down to business. One of the big advantages of unix systems is that they nearly all come with a system trace utility that
allows you to monitor all system calls that a program is making. This is extremely using for debugging and also helps when
trying to work out why something is slower than you expect. You can use system tracing without any special compilation options.

The system trace utility is called different things on different systems. On Linux systems its called strace. Under SunOS 4 its
called trace. Under SVR4 style systems (including solaris) its called truss. Under many BSD systems its called ktrace.

The first thing you should do is read the man page for your native system call tracer. In the discussion below I’ll assume its called
strace as strace is the only portable system tracer (its available for free for many unix types) and its also got some of the nicest
features.

Next, try using strace on some simple commands. For example, strace ls or strace echo hello.

You’ll notice that it produces a LOT of output. It is showing you the arguments to every system call that the program makes and
the result. Very little happens in a program without a system call so you get lots of output. You’ll also find that it produces a lot
of "preamble" stuff showing the loading of shared libraries etc. Ignore this (unless its going wrong!)

For example, the only line that really matters in the strace echo hello output is:

write(1, "hello\n", 6) = 6

all the rest is just setting up to run the program.

Ok, now you’re familiar with strace. To use it on Samba you need to strace the running smbd daemon. The way I tend ot use it
is to first login from my Windows PC to the Samba server, then use smbstatus to find which process ID that client is attached to,
then as root I do strace -p PID to attach to that process. I normally redirect the stderr output from this command to a file for later
perusal. For example, if I’m using a csh style shell:

strace -f -p 3872 >& strace.out

or with a sh style shell:

strace -f -p 3872 > strace.out 2>&1

Note the "-f" option. This is only available on some systems, and allows you to trace not just the current process, but any children
it forks. This is great for finding printing problems caused by the "print command" being wrong.

Once you are attached you then can do whatever it is on the client that is causing problems and you will capture all the system
calls that smbd makes.

So how do you interpret the results? Generally I search through the output for strings that I know will appear when the problem
happens. For example, if I am having touble with permissions on a file I would search for that files name in the strace output

SAMBA Developers Guide WORKING PAPER

70 / 77

and look at the surrounding lines. Another trick is to match up file descriptor numbers and "follow" what happens to an open file
until it is closed.

Beyond this you will have to use your initiative. To give you an idea of what you are looking for here is a piece of strace output
that shows that /dev/null is not world writeable, which causes printing to fail with Samba:

[pid 28268] open("/dev/null", O_RDWR) = -1 EACCES (Permission denied)
[pid 28268] open("/dev/null", O_WRONLY) = -1 EACCES (Permission denied)

The process is trying to first open /dev/null read-write then read-only. Both fail. This means /dev/null has incorrect
permissions.

SAMBA Developers Guide WORKING PAPER

71 / 77

Chapter 15

Samba Printing Internals

Gerald Carter

15.1 Abstract

The purpose of this document is to provide some insight into Samba’s printing functionality and also to describe the semantics
of certain features of Windows client printing.

15.2 Printing Interface to Various Back ends

Samba uses a table of function pointers to seven functions. The function prototypes are defined in the printif structure
declared in printing.h.

• retrieve the contents of a print queue

• pause the print queue

• resume a paused print queue

• delete a job from the queue

• pause a job in the print queue

• result a paused print job in the queue

• submit a job to the print queue

Currently there are only two printing back end implementations defined.

• a generic set of functions for working with standard UNIX printing subsystems

• a set of CUPS specific functions (this is only enabled if the CUPS libraries were located at compile time).

SAMBA Developers Guide WORKING PAPER

72 / 77

15.3 Print Queue TDB’s

Samba provides periodic caching of the output from the "lpq command" for performance reasons. This cache time is configurable
in seconds. Obviously the longer the cache time the less often smbd will be required to exec a copy of lpq. However, the accuracy
of the print queue contents displayed to clients will be diminished as well.

The list of currently opened print queue TDB’s can be found be examining the list of tdb_print_db structures (see print_db_head
in printing.c). A queue TDB is opened using the wrapper function printing.c:get_print_db_byname(). The function ensures
that smbd does not open more than MAX_PRINT_DBS_OPEN in an effort to prevent a large print server from exhausting all
available file descriptors. If the number of open queue TDB’s exceeds the MAX_PRINT_DBS_OPEN limit, smbd falls back to
a most recently used algorithm for maintaining a list of open TDB’s.

There are two ways in which a a print job can be entered into a print queue’s TDB. The first is to submit the job from a Windows
client which will insert the job information directly into the TDB. The second method is to have the print job picked up by
executing the "lpq command".

/* included from printing.h */
struct printjob {

pid_t pid; /* which process launched the job */
int sysjob; /* the system (lp) job number */
int fd; /* file descriptor of open file if open */
time_t starttime; /* when the job started spooling */
int status; /* the status of this job */
size_t size; /* the size of the job so far */
int page_count; /* then number of pages so far */
BOOL spooled; /* has it been sent to the spooler yet? */
BOOL smbjob; /* set if the job is a SMB job */
fstring filename; /* the filename used to spool the file */
fstring jobname; /* the job name given to us by the client */
fstring user; /* the user who started the job */
fstring queuename; /* service number of printer for this job */
NT_DEVICEMODE *nt_devmode;

};

The current manifestation of the printjob structure contains a field for the UNIX job id returned from the "lpq command" and
a Windows job ID (32-bit bounded by PRINT_MAX_JOBID). When a print job is returned by the "lpq command" that does
not match an existing job in the queue’s TDB, a 32-bit job ID above the <*vance doesn’t know what word is missing here*> is
generating by adding UNIX_JOB_START to the id reported by lpq.

In order to match a 32-bit Windows jobid onto a 16-bit lanman print job id, smbd uses an in memory TDB to match the former
to a number appropriate for old lanman clients.

When updating a print queue, smbd will perform the following steps (refer to print.c:print_queue_update()):

1. Check to see if another smbd is currently in the process of updating the queue contents by checking the pid stored in
LOCK/printer_name. If so, then do not update the TDB.

2. Lock the mutex entry in the TDB and store our own pid. Check that this succeeded, else fail.

3. Store the updated time stamp for the new cache listing

4. Retrieve the queue listing via "lpq command"
5.

foreach job in the queue
{

if the job is a UNIX job, create a new entry;
if the job has a Windows based jobid, then
{
Lookup the record by the jobid;
if the lookup failed, then

treat it as a UNIX job;

SAMBA Developers Guide WORKING PAPER

73 / 77

else
update the job status only

}
}

6. Delete any jobs in the TDB that are not in the in the lpq listing

7. Store the print queue status in the TDB

8. update the cache time stamp again

Note that it is the contents of this TDB that is returned to Windows clients and not the actual listing from the "lpq command".

The NT_DEVICEMODE stored as part of the printjob structure is used to store a pointer to a non-default DeviceMode associated
with the print job. The pointer will be non-null when the client included a Device Mode in the OpenPrinterEx() call and
subsequently submitted a job for printing on that same handle. If the client did not include a Device Mode in the OpenPrinterEx()
request, the nt_devmode field is NULL and the job has the printer’s device mode associated with it by default.

Only non-default Device Mode are stored with print jobs in the print queue TDB. Otherwise, the Device Mode is obtained from
the printer object when the client issues a GetJob(level == 2) request.

15.4 ChangeID and Client Caching of Printer Information

[To be filled in later]

15.5 Windows NT/2K Printer Change Notify

When working with Windows NT+ clients, it is possible for a print server to use RPC to send asynchronous change notification
events to clients for certain printer and print job attributes. This can be useful when the client needs to know that a new job
has been added to the queue for a given printer or that the driver for a printer has been changed. Note that this is done entirely
orthogonal to cache updates based on a new ChangeID for a printer object.

The basic set of RPC’s used to implement change notification are

• RemoteFindFirstPrinterChangeNotifyEx (RFFPCN)

• RemoteFindNextPrinterChangeNotifyEx (RFNPCN)

• FindClosePrinterChangeNotify(FCPCN)

• ReplyOpenPrinter

• ReplyClosePrinter

• RouteRefreshPrinterChangeNotify (RRPCN)

One additional RPC is available to a server, but is never used by the Windows spooler service:

• RouteReplyPrinter()

The opnum for all of these RPC’s are defined in include/rpc_spoolss.h

Windows NT print servers use a bizarre method of sending print notification event to clients. The process of registering a new
change notification handle is as follows. The ’C’ is for client and the ’S’ is for server. All error conditions have been eliminated.

SAMBA Developers Guide WORKING PAPER

74 / 77

C: Obtain handle to printer or to the printer
server via the standard OpenPrinterEx() call.

S: Respond with a valid handle to object

C: Send a RFFPCN request with the previously obtained
handle with either (a) set of flags for change events
to monitor, or (b) a PRINTER_NOTIFY_OPTIONS structure
containing the event information to monitor. The windows
spooler has only been observed to use (b).

S: The <* another missing word*> opens a new TCP session to the client (thus requiring
all print clients to be CIFS servers as well) and sends
a ReplyOpenPrinter() request to the client.

C: The client responds with a printer handle that can be used to
send event notification messages.

S: The server replies success to the RFFPCN request.

C: The windows spooler follows the RFFPCN with a RFNPCN
request to fetch the current values of all monitored
attributes.

S: The server replies with an array SPOOL_NOTIFY_INFO_DATA
structures (contained in a SPOOL_NOTIFY_INFO structure).

C: If the change notification handle is ever released by the
client via a FCPCN request, the server sends a ReplyClosePrinter()
request back to the client first. However a request of this
nature from the client is often an indication that the previous
notification event was not marshalled correctly by the server
or a piece of data was wrong.

S: The server closes the internal change notification handle
(POLICY_HND) and does not send any further change notification
events to the client for that printer or job.

The current list of notification events supported by Samba can be found by examining the internal tables in srv_spoolss_nt.c

• printer_notify_table[]

• job_notify_table[]

When an event occurs that could be monitored, smbd sends a message to itself about the change. The list of events to be transmit-
ted are queued by the smbd process sending the message to prevent an overload of TDB usage and the internal message is sent dur-
ing smbd’s idle loop (refer to printing/notify.c and the functions send_spoolss_notify2_msg() and print_notify_send_messages()
).

The decision of whether or not the change is to be sent to connected clients is made by the routine which actually sends the
notification. (refer to srv_spoolss_nt.c:recieve_notify2_message()).

Because it possible to receive a listing of multiple changes for multiple printers, the notification events must be split into cate-
gories by the printer name. This makes it possible to group multiple change events to be sent in a single RPC according to the
printer handle obtained via a ReplyOpenPrinter().

The actual change notification is performed using the RRPCN request RPC. This packet contains

• the printer handle registered with the client’s spooler on which the change occurred

• The change_low value which was sent as part of the last RFNPCN request from the client

• The SPOOL_NOTIFY_INFO container with the event information

A SPOOL_NOTIFY_INFO contains:

SAMBA Developers Guide WORKING PAPER

75 / 77

• the version and flags field are predefined and should not be changed

• The count field is the number of entries in the SPOOL_NOTIFY_INFO_DATA array

The SPOOL_NOTIFY_INFO_DATA entries contain:

• The type defines whether or not this event is for a printer or a print job

• The field is the flag identifying the event

• the notify_data union contains the new valuie of the attribute

• The enc_type defines the size of the structure for marshalling and unmarshalling

• (a) the id must be 0 for a printer event on a printer handle. (b) the id must be the job id for an event on a printer job (c) the id
must be the matching number of the printer index used in the response packet to the RFNPCN when using a print server handle
for notification. Samba currently uses the snum of the printer for this which can break if the list of services has been modified
since the notification handle was registered.

• The size is either (a) the string length in UNICODE for strings, (b) the size in bytes of the security descriptor, or (c) 0 for data
values.

SAMBA Developers Guide WORKING PAPER

76 / 77

Part V

Appendices

SAMBA Developers Guide WORKING PAPER

77 / 77

Chapter 16

Notes to packagers

Jelmer Vernooij

16.1 Versioning

Please, please set the vendor version suffix and number in source/VERSION and call source/script/mkvesion.sh to
include the versioning of your package. There is also the possibility to set a function to create the vendor version. This makes it
easier to distinguish standard samba builds from custom-build samba builds (distributions often patch packages). For example, a
good version would be:

Version 2.999+3.0.alpha21-5 for Debian

16.2 Modules

Samba3 has support for building parts of samba as plugins. This makes it possible to, for example, put ldap or mysql support in
a separate package, thus making it possible to have a normal samba package not depending on ldap or mysql. To build as much
parts of samba as a plugin, run:

The option --with-shared-modules is maintained to support specific modules such as idmap_XXX and vfs_XXX. For
example, --with-shared-modules=idmap_ad. Use of this parameter to the configure command as not been supported
in official releases.

./configure --with-shared-modules=rpc,vfs,auth,pdb,charset

	I The protocol
	NetBIOS in a Unix World
	Introduction
	Usernames
	File Ownership
	Passwords
	Locking
	Deny Modes
	Trapdoor UIDs
	Port numbers
	Protocol Complexity

	NT Domain RPC's
	Introduction
	Sources
	Credits

	Notes and Structures
	Notes
	Enumerations
	MSRPC Header type
	MSRPC Packet info

	Structures
	VOID *
	char
	UTIME
	NTTIME
	DOM_SID (domain SID structure)
	STR (string)
	UNIHDR (unicode string header)
	UNIHDR2 (unicode string header plus buffer pointer)
	UNISTR (unicode string)
	NAME (length-indicated unicode string)
	UNISTR2 (aligned unicode string)
	OBJ_ATTR (object attributes)
	POL_HND (LSA policy handle)
	DOM_SID2 (domain SID structure, SIDS stored in unicode)
	DOM_RID (domain RID structure)
	LOG_INFO (server, account, client structure)
	CLNT_SRV (server, client names structure)
	CREDS (credentials + time stamp)
	CLNT_INFO2 (server, client structure, client credentials)
	CLNT_INFO (server, account, client structure, client credentials)
	ID_INFO_1 (id info structure, auth level 1)
	SAM_INFO (sam logon/logoff id info structure)
	GID (group id info)
	DOM_REF (domain reference info)
	DOM_INFO (domain info, levels 3 and 5 are the same))
	USER_INFO (user logon info)
	SH_INFO_1_PTR (pointers to level 1 share info strings)
	SH_INFO_1_STR (level 1 share info strings)
	SHARE_INFO_1_CTR
	SERVER_INFO_101

	MSRPC over Transact Named Pipe
	MSRPC Pipes
	Header
	RPC_Packet for request, response, bind and bind acknowledgement
	Interface identification
	RPC_Iface RW
	RPC_ReqBind RW
	RPC_Address RW
	RPC_ResBind RW
	RPC_ReqNorm RW
	RPC_ResNorm RW

	Tail
	RPC Bind / Bind Ack
	NTLSA Transact Named Pipe
	LSA Open Policy
	Request
	Response

	LSA Query Info Policy
	Request
	Response

	LSA Enumerate Trusted Domains
	Request
	Response

	LSA Open Secret
	Request
	Response

	LSA Close
	Request
	Response

	LSA Lookup SIDS
	Request
	Response

	LSA Lookup Names
	Request
	Response

	NETLOGON rpc Transact Named Pipe
	LSA Request Challenge
	Request
	Response

	LSA Authenticate 2
	Request
	Response

	LSA Server Password Set
	Request
	Response

	LSA SAM Logon
	Request
	Response

	LSA SAM Logoff
	Request
	Response

	\\MAILSLOT\NET\NTLOGON
	Query for PDC
	Request
	Response

	SAM Logon
	Request
	Response

	SRVSVC Transact Named Pipe
	Net Share Enum
	Request
	Response

	Net Server Get Info
	Request
	Response

	Cryptographic side of NT Domain Authentication
	Definitions
	Protocol
	Comments

	SIDs and RIDs
	Well-known SIDs
	Universal well-known SIDs
	NT well-known SIDs

	Well-known RIDS
	Well-known RID users
	Well-known RID groups
	Well-known RID aliases

	II Samba Basics
	Samba Architecture
	Introduction
	Multithreading and Samba
	Threading smbd
	Threading nmbd
	nbmd Design

	The samba DEBUG system
	New Output Syntax
	The DEBUG() Macro
	The DEBUGADD() Macro
	The DEBUGLVL() Macro
	New Functions
	dbgtext()
	dbghdr()
	format_debug_text()

	Samba Internals
	Character Handling
	The new functions
	Macros in byteorder.h
	CVAL(buf,pos)
	PVAL(buf,pos)
	SCVAL(buf,pos,val)
	SVAL(buf,pos)
	IVAL(buf,pos)
	SVALS(buf,pos)
	IVALS(buf,pos)
	SSVAL(buf,pos,val)
	SIVAL(buf,pos,val)
	SSVALS(buf,pos,val)
	SIVALS(buf,pos,val)
	RSVAL(buf,pos)
	RIVAL(buf,pos)
	RSSVAL(buf,pos,val)
	RSIVAL(buf,pos,val)

	LAN Manager Samba API
	Parameters
	Return value

	Code character table

	Coding Suggestions
	Contributing code
	Modules
	Advantages
	Loading modules
	Static modules
	Shared modules

	Writing modules
	Static/Shared selection in configure.in

	III Samba Subsystems
	RPC Pluggable Modules
	About
	General Overview

	VFS Modules
	The Samba (Posix) VFS layer
	The general interface
	Possible VFS operation layers

	The Interaction between the Samba VFS subsystem and the modules
	Initialization and registration
	How the Modules handle per connection data

	Upgrading to the New VFS Interface
	Upgrading from 2.2.* and 3.0alpha modules

	Some Notes
	Implement TRANSPARENT functions
	Implement OPAQUE functions

	The smb.conf file
	Lexical Analysis
	Handling of Whitespace
	Handling of Line Continuation
	Line Continuation Quirks

	Syntax
	About params.c

	Samba WINS Internals
	WINS Failover

	LanMan and NT Password Encryption
	Introduction
	How does it work?
	The smbpasswd file

	IV Debugging and tracing
	Tracing samba system calls
	Samba Printing Internals
	Abstract
	 Printing Interface to Various Back ends
	 Print Queue TDB's
	 ChangeID and Client Caching of Printer Information
	 Windows NT/2K Printer Change Notify

	V Appendices
	Notes to packagers
	Versioning
	Modules

