
A

A new approach for developing discrete adjoint models

Patrick E. Farrell, Simon W. Funke and David A. Ham, Imperial College London

Adjoint techniques provide powerful tools for computational scientists, with important applications across
the whole of science and industry. However, these techniques are not widely used, mainly due to the difficulty
of implementing adjoint models. The main tool used in the development of adjoint models has heretofore
been algorithmic differentiation (AD) tools, which are based upon the abstraction that a model is a sequence
of elemental instructions. In this paper, we investigate a new abstraction: that a model is a sequence of linear
solves. Following this viewpoint, we describe the implementation of an open-source library (libadjoint)
designed to assist in developing discrete adjoint models. The library implements the core algorithms for
implementing such models, including assembly of the adjoint equations, managing the storage of forward
and adjoint variables, and checkpointing algorithms to balance storage and recomputation costs. The library
is applicable to any discretisation or equation, and is explicitly designed to be bolted-on to an existing
forward model. This approach is compared to the alternative of writing the discrete adjoint model by hand,
and is found to have several major advantages. We demonstrate the utility of the approach by adjoining
models which are very difficult to differentiate with the AD approach.

Categories and Subject Descriptors: G.4 [Mathematical Software]: Algorithm Design and Analysis; G.1.8
[Numerical Analysis]: Partial Differential Equations; G.1.6 [Numerical Analysis]: Optimization; I.6.5
[Simulation and Modelling]: Model Development; J.2 [Computer Applications]: Physical Sciences and
Engineering; J.6 [Computer Applications]: Computer-Aided Engineering; D.2 [Software]: Software En-
gineering

General Terms: Design, Algorithms

Additional Key Words and Phrases: Adjoints, automatic differentiation, algorithmic differentiation, data
assimilation, gradient evaluation, inverse problems, optimisation

ACM Reference Format:
Farrell, P. E., Funke, S. W., Ham, D. A. 2011. A new approach for developing discrete adjoint models. ACM
Trans. Math. Softw. V, N, Article A (January YYYY), 29 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
1.1. The need for derivatives
In the past 50 years, the computational solution of partial differential equations
(PDEs) has established itself as an essential tool across the whole of the quantitative
sciences. Not only can computer models simulate the results of experiments too expen-
sive or too impractical to replicate in a laboratory, they are also crucial tools in the
solution of important problems, such as optimisation problems and inverse problems

This work is supported by EPSRC grant EP/I00405X/1, NERC grant NE/I001360/1, the Grantham Institute
for Climate Change and a Fujitsu CASE studentship. The authors would like to thank C. J. Cotter for
assistance in understanding the shallow water model presented in section 8.2. The manuscript was greatly
improved after useful discussions between P. E. Farrell and P. Heimbach.
Author’s address: Farrell, Funke and Ham: Department of Earth Science and Engineering, Imperial College
London. Funke and Ham: Grantham Institute for Climate Change, Imperial College London.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 0098-3500/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 P. E. Farrell, S. W. Funke and D. A. Ham

subject to partial differential equation constraints. While these techniques are em-
ployed today in certain fields, the ability to solve such problems across a wider range
of applications would have a massive impact across science, engineering and industry.
In Griewank [2008], the author states that “we may juxtapose the mere simulation of
a physical or social system by the repeated running of an appropriate computer model
for various input data with its optimization by a systematic adjustment of certain de-
cision variables and model parameters. The transition from the former computational
paradigm to the latter may be viewed as a central characteristic of present-day scien-
tific computing.”

While it is possible to solve optimisation/inverse problems using only the computer
model itself, the most powerful algorithms for solving these problems rely on the avail-
ability of derivative information. This leads to the need to differentiate computer mod-
els with respect to their inputs. If derivative information is not available from a given
model, then gradient-based optimisation methods may not be used, and so the model
is impractical for use in whole classes of important applications. For an excellent in-
troduction to control and optimisation with computer models, see Gunzburger [2003];
for a rigorous mathematical treatment, see Hinze et al. [2009].

1.2. Algorithmic differentiation
The main tool used in the differentiation of models has heretofore been algorithmic
differentiation tools, also known as automatic differentiation or AD tools [Rall and
Corliss 1996; Griewank 2003; 2008]. The fundamental abstraction of algorithmic dif-
ferentiation is that a model is a sequence of elemental instructions (such as additions,
subtractions, cos, sin, etc.). Each elemental instruction may be differentiated individu-
ally, and these derivatives are then composed using the chain rule. A typical source-to-
source AD tool takes in the source code for a given function f and returns source code
that computes the action of the Jacobian ∇f on a given vector (the so-called forward
mode), or the action of the transpose of the Jacobian on a given vector (the so-called re-
verse or adjoint mode). Griewank [2008] gives an authoritative survey of the field. The
forward mode computes how a perturbation in one input affects all outputs, whereas
the adjoint model computes how one output is affected by a perturbation in any of the
inputs [Heimbach et al. 2010]. In the typical case of optimisation, there is only one
functional (output) to be optimised, but many possible inputs; therefore, attention is
now restricted to adjoint calculations.

Algorithmic differentiation tools have successfully differentiated complex models
such as the MITgcm general circulation model [Heimbach et al. 2005], the FLUENT
CFD code [Bischof et al. 2007], the CICE sea-ice model [Kim et al. 2006], and the
WRF weather forecasting model [Xiao et al. 2008]. However, applying algorithmic dif-
ferentiation to large complex models is a nontrivial endeavour; this is the reason why
several authors prefer alternative terms to automatic differentiation. For example,
Griewank [2003] states that “on the kind of real-life model indicated above, nothing
can be achieved in an entirely automatic fashion. Therefore, the author much prefers
the term algorithmic differentiation”. Heimbach et al. [2010] states that “work is thus
required initially to make the model amenable to efficient adjoint code generation for
a given AD tool. This part of the adjoint code generation is not automatic (we some-
times refer to it as semi-automatic) and can be substantial for legacy code, in particu-
lar if the code is badly modularized and contains many irreducible control flows.” (Of
course, once that initial investment is made, the process becomes routine and auto-
matic.) In discussing the possibility of automatically differentiating the NEMO ocean
model, Vidard et al. [2008] states that “Even for this simplified configuration, however,
substantial human intervention and additional work was required to obtain a useable
product from the raw [AD]-generated code . . . [The] memory management and CPU

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A new approach for developing discrete adjoint models A:3

performance of the raw code were rather poor. . . . From that experience it has been
decided to go toward the hand-coding approach.”

The efficient application of AD requires significant expertise and intimate familiar-
ity with both the AD (algorithmic differentiation) tool and the model concerned. Firstly,
the code must be modified to remove the use of language features that the tool does
not support. Often, an AD tool only supports a subset of the programming language,
requiring the model developer to rewrite portions of the code and forego the use of ad-
vanced language features. The model must be annotated with tool-specific directives to
supply enough information to the AD tool so that it can generate an efficient adjoint;
this requires intimate knowledge of how the AD tool works to do correctly. Models em-
ploying external numerical libraries or multiple programming languages need man-
ual intervention to organise the differentiation. Furthermore, many AD tools are pro-
prietary, sometimes limiting the availability of the adjoint models they create. These
issues, while superable, motivate the search for new approaches: anything which re-
duces the time, money and expertise required to differentiate models will have a large
impact in transferring these techniques to real-world applications.

1.3. An example: MITgcm and Fluidity
To consider the current domain of applicability of AD, we shall compare and contrast
two large, complex models: MITgcm, a leading ocean/climate model [Marshall et al.
1997], and Fluidity, a computational/geophysical fluid dynamics framework currently
under development [Piggott et al. 2008].

MITgcm is the flagship application for both the TAF [Giering and Kaminski 2003]
and OpenAD [Utke et al. 2008] AD tools. Its adjoint has had a large scientific impact:
it has been used in oceanographic and glaciological parameter estimation, sensitiv-
ity studies, and large scale data assimilation. Several features of MITgcm make it
amenable for the use of AD. Firstly, it is written in Fortran 77, which is fairly straight-
forward to parse. The numerics are mostly explicit; the implicit step is self-adjoint
[Heimbach et al. 2005], which means that no derivative code needs to be generated for
the linear solve. The model has no hard dependencies on any external libraries; all of
the core numerical calculations are performed within the model itself. The model has
been co-developed with TAF, and so the model developers write the model within the
language supported by the AD tool in mind; the MITgcm group is a centre of exper-
tise in algorithmic differentiation. All of these factors combine to make the use of AD
tractable.

By contrast, Fluidity enjoys none of these factors. The model is written in modern
Fortran, and makes extensive use of advanced language features (dynamic memory
allocation, pointers, derived data types, function overloading, the C binding support of
Fortran 2003) that make life very difficult for the parser of an AD tool (indeed, for the
parser of a compiler; the model developers have reported tens of compiler bugs to the
Sun, Intel and gfortran developer teams). The model is semi-implicit, which necessi-
tates the solution of non-self-adjoint linear systems; for this, it has a hard dependency
on PETSc [Balay et al. 1997], for which no differentiated version is available. Indeed,
in some configurations Fluidity depends on the matrix-free solvers available in PETSc
[Davies et al. 2011]; an AD tool capable of differentiating through this process would
have to be extremely sophisticated. The model has undergone years of development
with no consideration for the constraints of an AD tool. Some parts of the model are
written in C or C++. The model embeds the Python interpreter [van Rossum et al.
2008] for dynamic runtime functionality; for example, users can specify initial condi-
tions, boundary conditions, source terms, and diagnostics entirely in Python. In fact,
some of the model itself is implemented in Python. All of these factors combine to make
applying currently available AD tools to the whole model intractable.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 P. E. Farrell, S. W. Funke and D. A. Ham

Fig. 1: The adjoint system can be derived after any stage of the forward system devel-
opment. libadjoint facilitates the development of the discrete adjoint.

If the application of an AD tool is tractable, and gives acceptably efficient results,
then that is almost certainly the best approach to differentiating the model, as it allows
the adjoint to be effortlessly maintained. However, the question arises: what strategy
should we adopt to differentiate Fluidity, and models like it, where the application of
AD is not tractable?

1.4. An alternative: assembling the discrete adjoint equations
While AD has become the central tool in supplying derivatives of models, it is not
the only possible approach. As observed in [Giering and Kaminski 1998]: “Suppose we
want to simulate a dynamical system numerically. The development of a numerical
simulation program is usually done in three steps. First, the analytical differential
equations are formulated. Then a discretization scheme is chosen, and the discrete
difference equations are constructed. The last step is to implement an algorithm that
solves the discrete equations in a programming language. The construction of the ad-
joint model code may be implemented after any of these three steps”, see figure 1.

The first choice of Giering’s taxonomy consists of formulating the continuous adjoint
equations and discretising them, possibly in a different manner to the discretisation of
the forward system. This approach is often disfavoured, as the gradients produced are
in general not consistent with the discrete forward system, complicating the optimi-
sation loop [Gunzburger 2003, §4.1.2]. Furthermore, the discretisation of continuous
adjoint equations can involve a significant development effort, comparable to develop-
ing the original forward model.

The third choice consists of applying algorithmic differentiation to the whole compu-
tational model, as discussed above.

The second choice of Giering’s taxonomy is to assemble the discrete adjoint equations
and use these to compute the necessary gradients [Gunzburger 2003]. Such an ap-
proach requires only the selective application of an AD tool to the nonlinear assembly
operators [Giles et al. 2005], not the whole model. This is much more manageable than
applying the AD tool to the whole model: they are typically small, self-contained, can
be re-written to suit an AD tool if necessary, and the AD tool only needs to be re-applied
if these sections are changed, which may be rare. Furthermore, some authors report
that this discrete adjoint approach yields faster adjoint models than applying AD to the
whole model: Coleman et al. [1998] reports that “performance gains of several orders
of magnitude can sometimes be achieved by using AD in a selective manner”, while
Marta et al. [2007] reports that “while [the discrete adjoint approach] does not consti-
tute a fully automatic way of obtaining sensitivities like pure AD, it is much faster in
terms of execution time and drastically reduces the memory requirements”. Müller and
Cusdin [2005] show that unoptimised reverse-mode AD can be much slower than hand-
written adjoints, but manual intervention to remove difficult constructs may dramat-
ically improve the output of the AD tool. This intervention is practical when the code
to be differentiated is small, but impractical if the entire model must be differentiated.
However, despite the speed advantage of the discrete adjoint approach, the connect-
ing and arrangement of these differentiated routines to compute the discrete adjoint

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A new approach for developing discrete adjoint models A:5

equations correctly is still very complex for large models, especially models which per-
form temporal integration, offer multiple discretisations, or optional packages. Expert
knowledge is required to determine what operators should be differentiated when, and
to determine when each forward variable is no longer necessary through the adjoint
temporal calculation. Manually implementing essential checkpointing strategies such
as the algorithms of Griewank and Walther [2000] and Wang et al. [2009] is invasive,
difficult and error-prone; many hand-written adjoints do not implement a checkpoint-
ing strategy, as it is too complicated to do by hand. Heimbach et al. [2010] states: “The
burden of developing “by hand” an adjoint model in general matches that of the forward
model development. The substantial extra investment often prevents serious attempts
at making available adjoint components of sophisticated models.” As it stands, this ap-
proach is more complex and time-consuming than applying algorithmic differentiation
to the whole model, which is why many model developers prefer the AD approach.

We propose a new abstraction for developing discrete adjoint models. Where algo-
rithmic differentiation treats the model as a sequence of elemental instructions, we
instead treat the model as a sequence of linear solves. As explained later, this abstrac-
tion is applicable to any computational model: it applies to any type of discretisation,
linear or nonlinear models, and steady or time-dependent calculations (both implicit
and explicit). We have written an open-source library, libadjoint, which implements
this abstraction. The model developer annotates each linear solve the model performs
to record details such as for what variable the equation is solving, what operators fea-
ture, and what dependencies these operators have. This builds a “tape” analogous to
the concept of a tape in reverse-mode AD; but here, the units on the tape are much
larger (the assembly and solution of one linear system could involve billions or tril-
lions of elemental operations). Furthermore, the model developer supplies callbacks
to libadjoint, so that the library may assemble or use the operators as necessary.
With this information supplied, libadjoint can symbolically manipulate the forward
annotation to automatically assemble the discrete adjoint equations, thus yielding the
necessary model derivatives.

This approach has several advantages. It requires the differentiation only of much
smaller pieces of code, and is agnostic about how that differentiation is achieved. One
may use an AD tool; since it must be applied only to small pieces of code, the use of
algorithmic differentiation is much more tractable and straightforward. An alterna-
tive approach to differentiation could be to use a finite difference approximation to
the derivatives, like the independent set perturbation method of Fang et al. [2010], or
to use the complex-step derivative approximation [Martins et al. 2003]. The process
of annotating the forward model is very systematic; the library provides powerful de-
bugging features that make the process straightforward. As libadjoint derives the
adjoint equations, the expertise required to develop an adjoint model is greatly di-
minished. The model developer is freed from concerns such as managing the lifecycle
of forward and adjoint variables: libadjoint can compute when each variable is no
longer necessary and deallocate it appropriately. Furthermore, the model developer is
freed from implementing checkpointing strategies; libadjoint has enough informa-
tion about the forward model to re-play the forward solve when necessary, and thus
the checkpointing strategy can be implemented entirely within the library itself.

Firstly, we discuss how to cast computational models into a standard canonical form.

2. REPRESENTING THE SYSTEM OF FORWARD DISCRETE EQUATIONS
As mentioned above, libadjoint views the computational model as a sequence of lin-
ear solves. That means that the model is cast in the form

A(u)u = b(u), (1)

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 P. E. Farrell, S. W. Funke and D. A. Ham

where u is the vector of all unknowns in space and time, b(u) is the source term for
all time levels, and A(u) the entire discretisation matrix. Before we derive the adjoint
equations for this possibly unfamiliar system, we give several examples of how to rep-
resent common problems in this form.

2.1. Steady diffusion equation
Suppose the model approximately solves the steady-state diffusion equation

−∇2u = f, (2)

subject to appropriate boundary conditions. Discretising with the Galerkin finite ele-
ment method (or any other approach) results in a linear system

Du = f, (3)

where D is the discretised diffusion operator, and u and f are vectors of coefficients for
the solution and source term respectively. We may trivially identify A ≡ D and b ≡ f
to cast equation (3) in the form of equation (1).

2.2. Time-dependent diffusion equation
Now suppose the model approximately solves the time-dependent diffusion equation

∂u

∂t
−∇2u = f, (4)

subject to some suitable boundary conditions and supplied initial condition u(t = 0) ≡
g. Discretising with the Galerkin finite element method in space as above and the
forward Euler method in time yields an iteration

u0 ←g
Mun+1 ←(M −∆tD)un + ∆tfn, (5)

where subscripts denote time levels, ∆t is the timestep, M is the mass matrix and D
is the discretised diffusion operator as before. At first glance, equation (5) does not
appear to be in the same form as equation (1). However, if we rewrite the equations as

I
(∆tD −M) M

(∆tD −M) M
.



u0
u1
u2
...

 =


g

∆tf0
∆tf1

...

 , (6)

then we recover the form of equation (1). In general, for time-dependent simulations,
u is a block-structured vector containing all the values of the unknowns at all the
time levels, A is a matrix with a lower-triangular block structure containing all of the
operators featuring in the iteration, and b is a block-structured vector containing all of
the right-hand side terms for all of the equations solved in the iteration.

The lower-triangular form of the matrix encodes the forward temporal flow of in-
formation in the equations: the solutions at later time levels depend on the solutions
at earlier time levels, but not vice-versa. This is why the system usually solved by a
computational model is herein referred to as the forward system. As we will see, the
discrete adjoint equations involve taking the transpose of the forward system, and so
the adjoint system is upper-triangular: therefore the temporal flow of information in
the adjoint system is reversed, and the solutions at earlier time levels depend on the
solutions at later time levels.

Note that writing a time-dependent model in this format does not imply that the
whole of A is assembled at once. Typically, the model will assemble one row to compute

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A new approach for developing discrete adjoint models A:7

one variable, forget as much as possible, and timestep forward. However, writing it
in this format is a useful abstraction, as it allows us to derive the discrete adjoint
equations in a general manner. For time-dependent problems, libadjoint does not
demand the assembly of the whole of A or A∗ at any time.

2.3. Time-dependent Burgers’ equation
Now suppose the model approximately solves the time-dependent viscous Burgers’
equation

∂u

∂t
+ u · ∇u−∇2u = f, (7)

subject to some suitable boundary conditions and supplied initial condition u(t = 0) =
g. Discretising with the Galerkin finite element method in space and the forward Euler
method in time as above, and applying two Picard iterations per timestep to deal with
the nonlinear advective term yields the iteration

u0 ←g
Mu0n+1 ←(M −∆tV (un)−∆tD)un + ∆tfn

Mun+1 ←(M −∆tV

(
1

2
un +

1

2
u0n+1

)
−∆tD)un + ∆tfn, (8)

where V (u) is the advection matrix assembled at a given velocity u, and the superscript
u
(k)
n+1 denotes the kth intermediate guess for un+1. For brevity, define

T (·) ≡ ∆tV (·) + ∆tD −M. (9)

As before, equation (8) can be cast into the form of equation (1) by writing the iteration
as 

I
T (u0) M

T
(
1
2u0 + 1

2u
0
1

)
M
.



u0
u01
u1
...

 =


g

∆tf0
∆tf1

...

 . (10)

In general, any PDE solver may be cast in this form. This is useful because if we
can derive the discrete adjoint equations for the abstract system of equation (1), then
a general strategy for assembling discrete adjoint equations may be formulated.

2.4. Contrasting AD and the discrete adjoint equation approaches
To illustrate the contrast between the approach of applying AD to the whole model
and using AD to assemble the discrete adjoint equations, we provide a cartoon of what
pieces of the code must be differentiated for both approaches. Let J be the functional
of interest, i.e. J maps the solution vector u to the value of interest J(u) ∈ R.

For the approach of applying AD to the whole model, the boxed component of equa-
tion (11) shows the parts of the model which must be differentiated with an AD tool:

u0 ←g
Mu0n+1 ←(M −∆tV (un)−∆tD)un + ∆tfn

Mun+1 ←(M −∆tV

(
1

2
un +

1

2
u0n+1

)
−∆tD)un + ∆tfn

j ←J(u). (11)

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 P. E. Farrell, S. W. Funke and D. A. Ham

That is, all of the numerical instructions must be differentiated.
By contrast, in the discrete adjoint approach, only the nonlinear assembly routines

and the functional need be differentiated:

u0 ←g

Mu0n+1 ←(M −∆t V (un) −∆tD)un + ∆tfn

Mun+1 ←(M −∆t V
(
1
2un + 1

2u
0
n+1

)
−∆tD)un + ∆tfn

j ← J(u) . (12)

If applying AD is difficult, this reduction is a significant advantage. Of course, the
price paid is the complexity of assembling the discrete adjoint equations; this is the
task libadjoint is designed to assist.

3. THE DISCRETE ADJOINT EQUATIONS
We now proceed to derive the general discrete adjoint equations associated with equa-
tion (1). Let J(u) be a real-valued functional of interest for which we wish to derive the
adjoint equations. Following Gunzburger [2003], we form the Lagrangian

L(u, λ) = J(u)− 〈λ,A(u)u− b(u)〉, (13)

where λ is the adjoint variable corresponding to u, and 〈·〉 is the usual inner product
on Rn or Cn. In order to derive the adjoint equation, we take the Gâteaux derivative of
L with respect to u in an arbitrary direction ũ, and equate it with zero:

∂L

∂u
= lim
ε→0

L(u+ εũ, λ)− L(u, λ)

ε
= 0. (14)

Applying Taylor’s theorem to the J,A and b terms and taking the ε-limit [Gunzburger
2003, §2.2] yields:

∂L

∂u
=

〈
∂J

∂u
, ũ

〉
−
〈
λ,

(
A(u) +

[
∂A

∂u
u

]
− ∂b

∂u

)
ũ

〉
=

〈
∂J

∂u
−
(
A(u) +

[
∂A

∂u
u

]
− ∂b

∂u

)∗
λ, ũ

〉
. (15)

Here, A∗ denotes the Hermitian of A (transpose the matrix and take the complex con-
jugate). Since the perturbation ũ is arbitrary, the left-hand entry of the inner product
must be identically zero, and so we derive the general discrete adjoint equation for λ:

(A+G−R)
∗
λ =

∂J

∂u
. (16)

where

G ≡ ∂A

∂u
u, (17)

and

R ≡ ∂b

∂u
. (18)

Let us examine each term in the adjoint equation in turn.
∂J/∂u acts as the source term for the equation, indicating that the adjoint solution

λ is specific to a given functional. Typically, J is a straightforward function of u, and
so computing its derivative can usually be done by hand, or with a computer algebra

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A new approach for developing discrete adjoint models A:9

system such as SAGE [Stein and Joyner 2005; Stein et al. 2011]. In the examples pre-
sented later, the model user writes a small amount of Python code for the evaluation
of J , and an object-overloading automatic differentiation tool [Lebigot 2011] automat-
ically computes the necessary derivatives.
A∗ is the Hermitian of the forward model’s discretisation matrix. As explained in

section 2.2, this implies that the temporal propagation of information in the adjoint
equation is reversed: the adjoint solutions at earlier time levels depend on the solutions
at later time levels, as A∗ is upper-triangular. If we are to design a library which can
automatically assemble equation (16), then this shows us that we must describe the
block structure of A to that library, so that it can transpose that block structure.
R∗ is the Hermitian of the Jacobian of the right-hand side. If the right-hand side

b does not depend on u, then R ≡ 0. This term is sparse, and the sparsity is given
by considering which blocks of b depend on which blocks of u. Again, because a right-
hand side term appearing in the forward equation cannot depend on a variable com-
puted in the future, the Jacobian must be lower-triangular, and so its Hermitian is
upper-triangular, just as with the other terms on the left-hand side. In the context of
designing libadjoint, this implies that the model developer must express the depen-
dencies of each block of b on the blocks of u, so that the library knows to assemble the
appropriate derivatives when assembling each adjoint equation.
G∗ arises because of the nonlinear dependency of the operator A. If A has no depen-

dency on u, then G ≡ 0. A is a rank-2 matrix, so differentiating it with respect to u
yields a rank-3 tensor and the following contraction with u reduces the rank again to
two. Written more precisely in tensor index notation,

Gik ≡
(
∂A

∂u

)
ijk

uj , (19)

i.e. the derivative ∂A/∂u is contracted with u over the middle index. For clarity, it
may be helpful to reduce the rank of the objects considered by imagining we wish to
compute G column-by-column. Equivalently, each column gl of G is given by

gl ≡
∂A

∂ul
u, (20)

where the operation here is just normal matrix multiplication: as ul is a scalar, taking
the derivative with respect to ul does not increase rank. In the context of designing
libadjoint, this implies that the model developer must express the dependencies of
each block of A, so that the library knows to assemble the appropriate derivatives
when assembling each adjoint equation.

3.1. A worked example: the adjoint Burgers’ equation
Consider again the discrete viscous Burgers system as shown in equation (10). For this
example, the calculation of A∗ is trivial, R ≡ 0 as b does not depend on u, and ∂J/∂u
depends on the specific functional of interest. Therefore, we confine our attention to
the calculation of G. (Once G is calculated, the calculation of G∗ is trivial.)

From the column-wise definition of G (equation (20)), the block-structure of G can be
derived:

Gij 6= 0 ⇐⇒ row i of A depends on variable j. (21)

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 P. E. Farrell, S. W. Funke and D. A. Ham

Therefore, the block-sparsity pattern of the G matrix for equation (10) is given by

0
X 0
X X 0

X 0
X X 0

.

 , (22)

where X denotes a non-zero block. As an example, let us calculate the top-left nonzero
block, G21. G21 records the dependency of row 2 of A on variable 1, i.e. the dependency
of the equation for u01 on u0. Differentiating every block of row 2 with respect to u0 and
contracting with the vector u of all time levels yields

G21 =
(

∆t∂V (u0)
∂u0

0 0 . . .
)
·


u0
u01
u1
...


= ∆t

∂V (u0)

∂u0
u0. (23)

For this simple example, the derivation of G is not particularly complicated. But from
the perspective of an adjoint model developer, it becomes very difficult as the model
becomes more complex. As a simple example, suppose the model is extended so that
the temporal discretisation is configurable at runtime. If backward Euler or Crank-
Nicolson were used, the G-matrix would look very different; and so the adjoint assem-
bly would have to take this into account, and thus this information must be made avail-
able somehow. Or suppose the model is extended so that it may solve the advection-
diffusion equation for an arbitrary number of passive tracers. Each of these equations
introduce rows in A which have nonlinear dependencies on the advecting velocity; and
so each of these equations will contribute G∗ terms which must be assembled when
solving for the corresponding adjoint advecting velocity. Again, the adjoint assembly
must have intimate knowledge of exactly the structure of the equations solved, and so
this information must be recorded so that the adjoint assembly can execute. Even when
this information is readily available, the derivation of the structure of the G-matrix is
laborious and easy to get wrong.

The sensitive dependence of the discrete adjoint equations on precise details of the
discretisation of the forward equations presents a software engineering problem for
model developers. One strategy would be to duplicate the logic that decides upon the
sequence and manner of the discretisation from the user input; however, that solution
imposes a large maintenance burden on the developer, for now two separate imple-
mentations of that logic must be kept consistent. Instead, we suggest that a “tape” of
model execution be recorded in a systematic and rigorous way, analogous to the tape
concept of AD. With libadjoint, the model developer annotates each solve to record
what it is solving for, what blocks feature in the equation, and upon what these blocks
depend. With this information, the library can derive the structure of the G-matrix via
symbolic manipulation, and correctly assemble the adjoint equation.

Having derived the discrete adjoint equations for the standard canonical form, we
now examine how this is achieved in code.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A new approach for developing discrete adjoint models A:11

4. A CODE EXAMPLE
Suppose we have a pre-existing code that solves the Burgers’ equation example (equa-
tion (10)). Of course, it will not assemble the whole of A at once, pass it over to the
linear solver, and finish. Instead, the model will solve one equation, forget any vari-
ables no longer necessary for future calculations, solve the next equation, and so on.
Suppose we wish to annotate the model to also solve the corresponding discrete adjoint
equations. Ideally, any changes to be made should be minimally invasive, easy to code,
and robust to changes in the forward discretisation. libadjoint has been designed
with such considerations in mind.

As discussed in section 3, libadjoint must offer calls to enable the model developer:

— to express the block structure of an equation solved in the forward model,
— to express any nonlinear dependencies of each block,
— to record the value of variables.

The model developer must also supply callbacks:

— to assemble each block on the diagonal of A (and its Hermitian),
— to compute the action of each off-diagonal block of A on a given vector (and its Her-

mitian),
— to compute the functional derivative source term of the adjoint equation,
— to compute the Hermitian action of the Jacobian of nonlinear terms on a given vector.

Once these requirements are satisfied, then the library may assemble the adjoint sys-
tem and return it to the model developer to be solved. The non-Hermitian version of
first two callbacks are typically straightforward, as this capability must already exist
in the forward model, and it is merely a matter of modularising and interfacing it. The
creating of the latter two and the Hermitian version of the first two callbacks may be
greatly facilitated by applying algorithmic differentiation (to be discussed in section
4.2).

We now sketch the annotation of the Burgers’ equation model to also solve the dis-
crete adjoint problem. In an actual complex model, the annotation would be spread
around in the code, so that each step or solve would record itself as it happens. For
clarity, error checking and memory deallocation have been left out from this sketch.
While the example is presented in Fortran, the library is accessible from C and For-
tran. Object-oriented C++ and Python interfaces are planned for a future release.

! u0, u
0
n, un, un−1

type(adj_variable) :: u0, un_guess, un_final, u_prev
! blocks that appear in A
type(adj_block) :: I, M, T
! blocks that have dependencies also have an associated adj_nonlinear_block
type(adj_nonlinear_block) :: V

! the fundamental object of libadjoint that records the model execution
type(adj_adjointer) :: adjointer
type(adj_equation) :: equation

integer :: ierr

! Initialisation
ierr = adj_create_adjointer(adjointer)

! Annotate the initial condition

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 P. E. Farrell, S. W. Funke and D. A. Ham

ierr = adj_create_block(name="IdentityOperator", block=I)
ierr = adj_create_variable(name="Velocity", timestep=0,

iteration=1, variable=u0)

! Compare the following line to row 1 of equation 10
ierr = adj_create_equation(variable=u0, blocks=(/I/),

targets=(/u0/), equation=equation)
ierr = adj_register_equation(adjointer, equation)

! Set up the mass matrix block
ierr = adj_create_block(name="MassMatrix", block=M)

! Set u_prev to the initial condition.
u_prev = u0

! Now enter the time loop
do timestep=1,no_timesteps
! Record the solve for u0n
ierr = adj_create_variable(name="Velocity", timestep=timestep,

iteration=0, variable=un_guess)

! Annotate the nonlinear dependency of the advection term on u_prev
ierr = adj_create_nonlinear_block(name="AdvectionOperator",

depends=(/u_prev/), nblock=V)
ierr = adj_create_block(name="TimesteppingOperator", nblock=V, block=T)

! Compare the following line to row 2 of equation 10
ierr = adj_create_equation(variable=un_guess, blocks=(/T, M/),

targets=(/u_prev, un_guess/), equation=equation)
ierr = adj_register_equation(adjointer, equation)

! Now record the solve for un
ierr = adj_create_variable(name="Velocity", timestep=timestep,

iteration=1, variable=un_final)

! Annotate the nonlinear dependency of the advection term:
! now it depends on both un_guess and on u_prev
ierr = adj_create_nonlinear_block(name="AdvectionOperator",

depends=(/u_prev, un_guess/), nblock=V)
ierr = adj_create_block(name="TimesteppingOperator", nblock=V, block=T)

! Compare the following line to row 3 of equation 10
ierr = adj_create_equation(variable=un_final, blocks=(/T, M/),

targets=(/u_prev, un_final/), equation=equation)
ierr = adj_register_equation(adjointer, equation)

! Next u_prev is current u_final
u_prev = u_final

end do

As can be seen, the annotation is fairly straight-forward and self-explanatory. The
structure of the annotation simply mimics the structure of A.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A new approach for developing discrete adjoint models A:13

With the information presented above, libadjoint can derive the structure of the
discrete adjoint system; it cannot, however, actually assemble the equations. As it
stands, the operators are mere abstract handles, known only by name. In order for
assembly to be possible, further information must be available: the operators must be
backed up with callbacks, so that libadjoint can apply them when necessary.

ierr = adj_register_operator_callback(adjointer, ADJ_BLOCK_ASSEMBLY_CB,
"IdentityOperator",
c_funloc(identity_assembly))

ierr = adj_register_operator_callback(adjointer, ADJ_BLOCK_ASSEMBLY_CB,
"MassMatrix",
c_funloc(mass_assembly))

ierr = adj_register_operator_callback(adjointer, ADJ_BLOCK_ACTION_CB,
"TimesteppingOperator",
c_funloc(timestepping_action))

ierr = adj_register_functional_derivative_callback(adjointer,
"MyFunctional",
c_funloc(functional_derivative))

For more details of the callback interface, see the libadjoint manual [Farrell and
Funke 2011]. With this information, the library can now assemble the adjoint equa-
tions by calling adj get adjoint equation:

type(adj_matrix) :: adjoint_lhs
type(adj_vector) :: adjoint_rhs, adjoint_soln
type(adj_variable) :: adjoint_var
integer :: nequations
integer :: equation
integer :: ierr

ierr = adj_equation_count(adjointer, nequations)
do equation=nequations-1,0,-1
! Have libadjoint assemble the adjoint equation:
ierr = adj_get_adjoint_equation(adjointer, equation, "MyFunctional",

lhs=adjoint_lhs, rhs=adjoint_rhs,
variable=adjoint_var)

! Now solve it:
adjoint_soln = solve(adjoint_lhs, adjoint_rhs)
! And supply the solution to libadjoint again:
ierr = adj_record_variable(adjointer, adjoint_var, adjoint_soln)

end do

This adjoint main loop is intended to give the idea; a more realistic example is given
in the manual [Farrell and Funke 2011, §6.2].

4.1. Vectors and matrices
libadjoint needs to manipulate vectors and matrices: the entire purpose of the out-
put function adj get adjoint equation is to assemble a left-hand-side matrix and a
right-hand-side vector. Therefore, libadjoint needs to have classes representing the
concepts of vectors and matrices.

However, one of the design goals of libadjoint is to be applicable to many different
models, using very different data structures. How, then, should the libadjoint vector
and matrix classes work?

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 P. E. Farrell, S. W. Funke and D. A. Ham

One approach is for libadjoint to define its own vector and matrix classes, to which
the model developer must convert the model data structures. However, writing yet
another linear algebra API is highly undesirable. A second approach would be to stan-
dardise on some common linear algebra API such as PETSc [Balay et al. 1997; Balay
et al. 2010] or Trilinos [Heroux et al. 2003]. However, this would introduce a large
hard dependency on such a library to any project which uses libadjoint; the aim for
libadjoint is to be small, lightweight, portable, and easy to install. Furthermore, it
would entail having the same data around in memory in two different formats (the for-
mat supported by libadjoint, and the model’s own), which would be very inefficient.
libadjoint settles on a third approach, inspired by the callback structure of the

Zoltan graph partitioning library [Devine et al. 2002]. The libadjoint vector and ma-
trix classes are merely thin wrappers around the user’s own data structures; at their
core, they are nothing but a pointer. While this approach has the great advantage that
it can be used with any and all pre-existing data structures, it means that libadjoint
has a problem: how can it manipulate these objects, when it knows nothing about
them? The answer is for the model developer to supply data callbacks to libadjoint,
to give libadjoint the power to manipulate these objects as necessary.

This approach entails some extra work on the part of the model developer; however,
this extra work is once-off for each sort of data structure employed, and can easily be
shared between model developers by incorporating the various sets of data callbacks
in libadjoint itself. Already, libadjoint includes data callbacks for interfacing with
the PETSc Vec and Mat types, and more will be incorporated into the library as they
are developed.

4.2. Interacting with algorithmic differentiation
libadjoint requires certain derivatives and Hermitian actions in order to assemble
the adjoint equation, for which algorithmic differentiation tools can be used to generate
the corresponding routines A detailed introduction to the application of AD tools can
be found in Rall and Corliss [1996].

The derivative of the functional, ∂J/∂u, is always necessary for assembling the ad-
joint equations, for it acts as the source term. Code for computing the derivative may
be produced by applying an algorithmic differentiation tool in reverse mode to code
which computes J(u).

The derivative of the source term for the forward equation, ∂b/∂u, is necessary if the
right-hand side of the forward equation itself depends on u. Again, the application of
an algorithmic differentiation tool will produce the necessary subroutines.

If the simulation is nonlinear, then the nonlinear assembly routines must be differ-
entiated with respect to their arguments. In this case, the application of algorithmic
differentiation is slightly more complex, and so it is explained here. If V (u1, u2, . . .) is
the block of A with a nonlinear dependency, then the form of the derivatives necessary
for assembling the adjoint equation is

o =

[(
∂V

∂uk

)
c

]∗
λ, (24)

where uk is the variable with respect to which V must be differentiated, c is a given
contraction vector, and λ is a given adjoint variable. (Compare this to equation (23):
there, c ≡ u0, and λ is the adjoint variable corresponding to u01.) In order to produce
the code to compute this, write a function f which assembles the nonlinear operator
and applies it to a contraction vector:

f(u1, u2, . . . , c) = V (u1, . . .)c, (25)

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A new approach for developing discrete adjoint models A:15

and apply an AD tool in reverse mode to differentiate it with respect to uk. This yields
a new function

ūk = g(u1, u2, . . . , c, f̄), (26)
which computes the derivative of f with respect to uk in direction f̄ , i.e.

g =

(
∂f

∂uk

)∗
f̄ =

[(
∂V

∂uk

)
c

]∗
f̄ . (27)

Hence, o can be obtained by evaluating ūk at λ:
o = g(u1, u2, . . . , c, λ). (28)

In a similar way, the Hermitian action of blocks can be obtained. For that, write a
function f that computes

f(u1, u2, ..., c) = V (u1, . . .)c. (29)
The Jacobian of this expression with respect to c is V ; therefore, differentiating it in
reverse mode with respect to c yields a new function

c̄ = g(u1, u2, . . . , c, f̄), (30)
which computes the action of the Hermitian of V .

One of the advantages of the libadjoint approach is that it minimises the depen-
dence on any particular AD tool. Applying an AD tool to a whole codebase often in-
volves rewriting some parts of it to remove language features unsupported by the tool,
and the manual insertion of tool-specific directives to guide the differentiation. When
the developers of a model make a significant investment of time and money in the use
of one AD tool, this creates a hard dependency on that tool: continual re-application of
the AD tool is necessary as the model changes, and it would be difficult to swap that
tool for an alternative. By contrast, with the libadjoint approach, only small parts of
the model must be differentiated, and so the investment in any particular tool is light.

5. DERIVING THE DISCRETE ADJOINT EQUATIONS
In this section, we describe the algorithm at the core of libadjoint, the derivation of
the discrete adjoint equations.

Just as the forward matrix A is assembled row-by-row, the ad-
joint matrix (A + G − R)∗ is also assembled row-by-row. The follow-
ing algorithms assemble the left-hand side and right-hand side of
the adjoint system for λk, the adjoint variable at the k-th equation.
ALGORITHM 1: Assembly of the left-hand side of the linear system for λk

Data: the adjointer object; the index k of the adjoint equation to assemble
Result: the left-hand side matrix of the adjoint system lhs
G∗

kk ← 0
R∗

kk ← 0
if row k of A has a dependency on uk then

for all blocks Vkl that depend on uk do
G∗

kk ← G∗
kk +

(
∂Vkl
∂uk

ul

)∗

end
end
if bk has a dependency on uk then

R∗
kk ←

(
∂bk
∂uk

)∗

end
lhs← A∗

kk +G∗
kk −R∗

kk

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 P. E. Farrell, S. W. Funke and D. A. Ham

The first contribution to the left-hand side, A∗kk, is always present, and is the Her-
mitian of the operator on the left-hand side of the equation that was solved for uk.
The second contribution, G∗kk, is only present if row k of the matrix A has a depen-
dency on the variable uk, i.e. if the equation for uk depends on itself. Similarly, the R∗kk
contribution is only present of the right-hand side of the equation for uk depends on
uk.
ALGORITHM 2: Assembly of the right-hand side of the linear system for λk

Data: the adjointer object; the index k of the adjoint equation to assemble
Result: the right-hand side vector of the adjoint system rhs
rhs← ∂J

∂uk

for all blocks Alk 6= 0, l 6= k do
rhs← rhs −A∗

lkλl

end
for all equations l that depend on uk, l 6= k do

for all blocks Alj that depend on uk do
rhs← rhs −

(
∂Alj

∂uk
uj

)∗
λl

end
for all l such that bl depends on uk, l 6= k do

rhs← rhs + ∂bl
uk

∗
λl

end
end

When assembling the linear system to be solved for λk, we need to consider row k of
(A+G−R)∗. Equivalently, one can consider column k of (A+G−R).

First, consider the A∗ contributions to the right-hand side. Column k of A consists of
all blocks in all equations that target variable uk; when transposed, a block in equation
l that targets variable uk will multiply λl.

Next, consider the G∗ contributions. Column k of A has a nonzero entry in row l if
equation l has a dependency on variable uk. So every equation l that depends on uk will
contribute a term G∗lkλl to the right-hand side of the equation for λk. To compute Glk,
we take the derivative of equation l with respect to variable uk and contract it with u,
as in the example of equation (23).

Finally, consider the R∗ contributions. Column k of R consists of the derivatives of
the right-hand side b with respect to uk; therefore, each right-hand side component bl
that depends on uk will contribute a term (∂bl/∂uk)∗λk.

Of course, users of libadjoint do not need to concern themselves with the details
of the algorithms given above. However, they may be of use to discrete adjoint model
developers who choose not to use libadjoint.

6. FEATURES OF LIBADJOINT

6.1. Adjoint model development and debugging
libadjoint offers powerful debugging features to rapidly identify developer mistakes
at any stage of the adjoint development process.

Firstly, libadjoint can check the consistency of the original forward model and the
annotation supplied to libadjoint. The normal use of libadjoint is to rewind that
annotation, assembling each adjoint equation in turn; however, with the callbacks and
information that the model developer has supplied, the library can also re-play the
annotation, to re-run the forward model. (Of course, in order for this to be possible,
the model developer must supply an additional callback which computes the source
term b.) When debugging the annotation, the model developer can include calls which
record the value of every variable computed through the original forward model run.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A new approach for developing discrete adjoint models A:17

Then, when libadjoint re-plays the annotation, it can automatically compare the re-
computed value against the original value, and issue an error if they differ. In this way,
the annotation becomes very systematic, as the library can identify the exact equation
on which the model and annotation differ.

Secondly, libadjoint can check the consistency of the Hermitian and non-Hermitian
case for each block. In order to check this, the library employs the identity

〈y, V x〉 = 〈V ∗y, x〉, (31)

for any suitable vectors x, y and block V . When instructed by the model developer,
libadjoint computes both sides of this identity for a prescribed number of random
vectors x, y, and checks that both sides are equal to machine precision. This check is
particularly useful for operators V which are never explicitly represented as matrices
in the model code.

Thirdly, libadjoint can check the consistency between the action of a nonlinear
operator and its derivative. Let V be the nonlinear operator in question, and let u be
its dependency. Let f(u) = V (u) · c for some fixed c. In order to check the consistency of
the derivative, the library employs the fact that

||f(u+ δu)− f(u)|| (32)

converges to zero at O(||δx||) as ||δx|| → 0, while

||f(u+ δu)− f(u)−∇f(u) · δu|| (33)

converges to zero at O(||δx||2) as ||δx|| → 0. This check is particularly useful when the
nonlinear assembly routine had to be modified so that an algorithmic differentiation
tool could be applied, as it asserts the correspondence between the original unmodified
code and the derivative of the modified model code.

Finally, libadjoint can output its current state to a HTML file, which can be viewed
by any web browser. This visualisation contains the annotated forward and adjoint
system with details about each block, the registered callbacks and the state of all vari-
ables (recorded or not and if yes, where, e.g. disk or memory). This functionality greatly
facilitates the model annotation process, since it allows the developer to directly com-
pare the model written in the form of equation (1), with libadjoint’s annotation.

These features combine to make annotating the model and developing callbacks as
straightforward as possible. Each of these debugging features gives useful feedback to
the model developer, pinpointing where any error in the input to the library is located.
When these debugging tests pass, the adjoint is almost certainly being assembled cor-
rectly.

6.2. Checkpointing
The adjoint operator in equation (16) consists of the three terms (A + G − R)∗. For a
nonlinear system, A will have dependencies on the forward solution and hence A∗ will
as well. Similarly, G and R may have complex dependencies on the forward solution.
As a consequence, different parts of the forward solution must be available at differ-
ent timesteps when assembling the adjoint of the linearised forward system. While
the straightforward approach of storing the whole forward solution is unproblematic
for steady state problems, it can become prohibitively expensive for time-dependent
simulations, since the storage requirement increases proportionally to the number of
timesteps. For example, a simulation with 107 unknowns and 105 timesteps would re-
quire over 7 terabytes. It is therefore apparent that the available storage would greatly
constrain the number timesteps for which a real-world adjoint simulation could be run.

One way to circumvent this problem is to use temporal interpolation: the complete
time interval [t, T] is divided into subintervals t = t1 < t2 < · · · < tn = T , where each ti

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 P. E. Farrell, S. W. Funke and D. A. Ham

corresponds to a timestep and n is much smaller than the number of timesteps. Now
instead of storing the variables at every timestep, only the variables at the selected
timesteps are kept. When the adjoint assembly requires an intermediate variable, a
temporal interpolation scheme is used to approximate its value. Although the general-
ity of this approach is questioned in Gunzburger [2003, §5.1], it is sometimes used in
hand-written codes; the adjoint of the NEMO ocean model is one such example [Vidard
et al. 2008, §1.3.1]. Their experience shows that the necessary code manipulation “re-
quires deep knowledge of the original program and of the underlying equations ... [and]
introduces approximation errors into the computed derivatives, whose mathematical
behavior is unclear” [Tber et al. 2007, §4.3].

The problems associated with interpolation may be circumvented using checkpoints,
from which the forward simulation can be restarted. In the simplest checkpointing
strategy, the complete time interval is split into a small number of equidistant subin-
tervals and a checkpoint is stored at the beginning of each interval. When an inter-
mediate value is required for the adjoint assembly, the forward simulation is restarted
from the closest preceding checkpoint and run up to the point at which the required
value is recomputed. An extension known as multi-level checkpointing applies this
idea recursively: the time interval of the partial forward integration is again split
into several subintervals on which checkpoints are stored, and so on. This multi-level
checkpointing is successfully used in the MITgcm ocean model [Heimbach et al. 2005].

Griewank [1992] proposed a strategy related to the multi-level approach in which
the checkpoint distribution is based on a binomial interval splitting. By reusing the
available checkpoint slots, a logarithmic growth of temporal and computational com-
plexity is achieved, which is proven to be optimal [Grimm et al. 1996]. Walther and
Griewank [2003] showed that this approach is indeed advantageous over the multi-
level checkpointing strategy and published a library named revolve that facilitates its
implementation [Griewank and Walther 2000].

Both multi-level checkpointing and revolve allow the adjoint model user to bal-
ance the storage and computational complexity to their needs. However, this flexibility
comes with additional development effort: the control flow switches context between
the forward and adjoint main loops, making the implementation of checkpointing more
difficult than the temporal interpolation.

While this can involve extensive development effort for a hand-written adjoint, the
abstraction of AD is powerful enough to automatically generate the adjoint control flow
according to the checkpointing strategy. Since the tape can be used to restart the sim-
ulation from a checkpoint, the checkpointing logic can be implemented entirely within
the AD tool. However, because the abstraction of AD considers the model as a sequence
of elemental instructions, it does not natively know about the concept of timestepping,
which is required for efficient checkpointing. This information must therefore be pro-
vided by the model developer, often by explicitly adding AD-specific directives to the
forward code. AD tools that offer checkpointing include TAF [Giering and Kaminski
2002] and ADOL-C [Kowarz and Walther 2006].

The abstraction of libadjoint is similar to AD but its level is much higher. As with
AD, it is sufficiently powerful to execute the required operations for checkpointing
entirely within the library. In particular, the annotation and the supplied callbacks
allow libadjoint to restart the simulation from a checkpoint. But in contrast to AD,
libadjoint’s annotation also provides the required timestep information. This makes
checkpointing with libadjoint available for almost no extra model development effort:
the only required callbacks are for handling checkpoints and a callback to solve linear
systems. The checkpointing strategy used in libadjoint is the optimal checkpointing
algorithm of Griewank [1992], as implemented in the revolve library [Griewank and
Walther 2000].

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A new approach for developing discrete adjoint models A:19

Checkpointing is a crucial feature for an efficient, time-dependent adjoint model.
That it is possible to implement the optimal checkpointing strategy entirely within
the library is a significant advantage over hand-written adjoints, where its implemen-
tation can be a prohibitively difficult task.

7. DISCUSSION
7.1. Maintainability
Developing an adjoint model is a significant investment; maintaining the adjoint as
the forward model changes is even more so. An adjoint model left unattended will soon
lose consistency with the forward model, and will become useless as a tool for doing
science. In this regard, AD has a major advantage: as the AD tool can continually be
re-applied to the changing forward code base, the adjoint is always consistent with
the forward model (barring bugs in the AD tool, of course, or the introduction of non-
differentiable features in the model), and so the maintenance burden is approximately
zero. By contrast, if the adjoint model is hand-written, then every change to the for-
ward model must be matched by a corresponding change to the adjoint model, leading
to a very high maintenance burden. Heimbach et al. [2010] states: “the work of keep-
ing the [hand-written] adjoint model up-to-date with its forward parent model matches
the work of forward model development.”

The libadjoint approach compares favourably to writing the discrete adjoint model
by hand. Firstly, the annotation itself changes only rarely; even if the discretisation
implemented is tweaked, the pattern of the equations (i.e., the target and dependen-
cies of the operators) changes only if a major new discretisation is implemented. If the
callbacks supplied to libadjoint use the code in the forward model itself for comput-
ing the action/assembly of the operators, then the change will also be propagated to
the adjoint model, and the forward and adjoint models will still be consistent. If the
implementation of a nonlinear operator changes, then one can re-apply an AD tool to
recompute its derivative code. So while the maintenance burden may be higher than in
the pure AD case, we expect that the maintenance load of an adjoint model developed
with libadjoint will be manageable.

One mechanism for reducing the maintenance load further is to automate the pro-
cess of verifying the consistency between the forward model and the adjoint model.
For example, the MITgcm project runs a nightly suite of forward and adjoint test cases
so that any problems are detected as soon as possible. All of the debugging features
described in section 6.1 can be automated so that any change that induces an incon-
sistency is not accepted into the model source code. For more details of the strategy
implemented for automated model verification, see Farrell et al. [2011].

7.2. Advantages and disadvantages
Using libadjoint to assemble the discrete adjoint equations has a certain fixed over-
head in terms of development effort: the model must be annotated and callbacks must
be interfaced, regardless of how complex or AD-able the model is. Therefore, if the
model has been written in such a way that an AD tool is immediately applicable, tak-
ing the pure AD approach will almost certainly be faster and easier to develop. As
suggested by the examples of MITgcm and Fluidity in section 1.3, libadjoint is not
intended for this class of models. libadjoint does not replace AD tools: it extends their
domain of applicability to models for which AD is currently impractical. However, for
the class of models where an AD tool is not immediately applicable, the libadjoint
approach compares very favourably to writing the discrete adjoint equations by hand.

Firstly, the expertise required to implement the adjoint at all is greatly reduced: the
model developer must describe the forward model in some detail, but the derivation

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 P. E. Farrell, S. W. Funke and D. A. Ham

and assembly of the adjoint equations is performed by the library. libadjoint manages
the lifecycles of the forward and adjoint variables, so that the model developer does
not need to implement the complicated algorithm for deciding when a variable may be
deallocated. These features combine to make the development of adjoint models more
accessible to research groups and industrial teams that currently lack the necessary
expertise, and so the many applications of adjoints can be deployed more widely.

Secondly, the process is made much more systematic: by adopting its high-level ab-
straction, libadjoint can pinpoint exactly where the model developer has made a mis-
take in the process of adjoint model development. By contrast, if the discrete adjoint
equations were assembled by hand and found to be incorrect, then the model devel-
oper is faced with the very difficult task of finding exactly where the bugs lie. With the
libadjoint approach, the adjoint model development is incrementally verifiable.

Thirdly, the adjoint model developed has a much lower maintenance burden than the
corresponding hand-written adjoint. Many changes that would require developer in-
tervention to retain consistency no longer do so. The model annotation changes rarely.
Furthermore, the debugging features of section 6.1 can be automated so that the model
developers are notified when a change has lost the consistency of the adjoint model.

Fourthly, by adopting its high-level abstraction, the library is able to provide power-
ful features that would be prohibitively complex to implement by hand. As described
in section 6.2, libadjoint can implement an optimal checkpointing scheme with al-
most no extra effort from the model developer. As noted previously, many hand-written
adjoint models do not implement a checkpointing scheme due to the complexity of its
implementation, and so their adjoint is severely restricted in the science it can do be-
cause of the prohibitive storage costs. The fact that it is possible to use an optimal
checkpointing scheme entirely within libadjoint strongly suggests that the abstrac-
tion on which the library is based is a useful one.

Based on these points, we suggest that libadjoint is a significant advance over
writing the discrete adjoint model by hand.

8. EXAMPLES
8.1. Burgers’ equation
As part of its developer training documentation, Fluidity includes a small example
solver which solves the Burgers’ equation (equation (8)). This model was adjoined as
a proof-of-concept for libadjoint. For the reasons explained in section 1.3, we are
unaware of any current free AD tool that is applicable to this model.

Firstly, work was undertaken to implement the data callbacks, to allow libadjoint
to manipulate Fluidity’s scalar, vector and tensor field classes. Next, a system was de-
veloped for model users to express their functional of interest. One approach would be
to hard-code each functional in Fortran, and select between them with #ifdef switches
or runtime options, but this would limit users to selecting between the small pool of im-
plemented functionals. Fluidity embeds a Python interpreter [van Rossum et al. 2008]
to provide dynamic programming facilities to model users; this was extended to pro-
vide a Python interface with which users could code their own functionals of interest
in a flexible and user-friendly manner. While this sacrifices some efficiency, function-
als are generally quite cheap to compute, and their cost is usually dominated by the
cost of the forward/reverse PDE solve; if a computationally expensive functional were
desired, the functional could easily be implemented in Fortran.

Then, the model was annotated with an annotation similar to that presented in
section 4. The library calls for the annotation are distributed through the model,
close to the code which they describe: the annotation of each nonlinear iteration hap-
pens within the nonlinear iteration loop, the timestep annotation happens within the

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A new approach for developing discrete adjoint models A:21

(a) The forward matrix A (compare to
equation (10)).

(b) The adjoint matrix (A+G)∗. The spar-
sity pattern of G was derived in equation
(22).

Fig. 2: The HTML output of libadjoint on the Burgers’ equation model. The green
background denotes the diagonal blocks; and the grey background marks off-diagonal,
nonzero blocks.

timestep loop, etc. At this point, the annotation was visualised in HTML and inspected
to ensure it matched the expectations of the model developers, see figure 2.

Once the annotation was complete, the callbacks were interfaced and registered. Ma-
trices that do not change throughout the simulation, such as the mass and diffusion
matrices, were cached; the advection matrix must be reassembled at the arguments
supplied. Fortunately, the existing forward model was well-written, and the function-
ality to assemble the advection matrix was available as a subroutine call. At this
point, the annotation and callbacks were debugged by comparing the original model
run against the forward replay mode of libadjoint (section 6.1).

Next, the necessary derivatives were supplied to libadjoint. The differentiation
of the functional was achieved with uncertainties, an object-overloading automatic
differentiation tool for Python [Lebigot 2011]. Differentiating the nonlinear advection
term was more challenging, as the subroutine made extensive use of derived types
which are poorly supported by free AD tools. To that end, the advection assembly sub-
routine was re-written in Fortran 77, and code for its derivative was generated with
TAPENADE, a source-to-source AD tool [Hascoët and Pascual 2004]. At this point, the
consistency between the original Fortran 90 advection routine and the derivative of the
rewritten Fortran 77 advection routine was asserted with the derivative test described
in section 6.1. This test found several inconsistencies between the original and rewrit-
ten advection routines, which were rapidly eliminated. Again, it is to be emphasised
that no freely-available AD tool is capable of differentiating the entire model, and so
the pure AD approach is impractical. However, it was entirely practical to reimplement
a Fortran 77 version of just the nonlinear advection operator, as the amount of code to
convert to an AD-differentiable form was very small.

With the derivatives supplied, libadjoint successfully assembled each adjoint equa-
tion in turn, beginning at the end of simulation time and propagating backwards. The
gradient of the functional with respect to various parameters (initial conditions, source
terms) was computed with

dJ

dm
= −〈λ, ∂F

∂m
〉+

∂J

∂m
, (34)

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 P. E. Farrell, S. W. Funke and D. A. Ham

Number of mesh elements 2 · 104 4 · 104 8 · 104 16 · 104

Runtime of forward solve (s) 17 33 65 129
Runtime of adjoint solve (s) 17 33 66 134

Table I: Runtime comparison of the forward and adjoint Burgers’ equation model with
varying mesh resolution. The timestep is fixed to ∆t = 1/32 s.

where m is the vector of control parameters and F ≡ A(u)u − b(u) [Gunzburger 2003,
equation 2.34]. The correctness of the adjoint solution was verified with a derivative
test analogous to that of equation (33), by examining the order of convergence of J(m+
δm)−J(m)−dJ/dm ·δm). As expected, the Taylor remainder converged at second-order
for a wide variety of simulations, functionals and choice of control parameters, giving
high confidence in the correctness of the adjoint equations assembled by libadjoint.

To benchmark the efficiency of the implementation, the adjoint model was applied
to a steady-state 1D problem with known analytical solution u = sin(x) + cos(x) in
the domain interval [−10, 10]. A pseudo time-stepping approach with a 1/32 s timestep
size was applied for 1 s, which is sufficient to converge to the steady-state solution.
The PDE was discretised in space using the finite element method with piecewise lin-
ear basis functions on a uniform mesh, and in time using the Crank-Nicolson scheme
[Crank and Nicolson 1947]. The runtime benchmarks were performed on one 2.13 GHz
Intel Xeon CPU core. To obtain comparable timings for the forward and adjoint model
without incorporating model specific overhead, the benchmark includes only the non-
linear assembly, solver times and libadjoint related function calls. Specifically, the
assembly of the linear operators is excluded, since they are assembled once in the ini-
tialisation step and then reused in both the forward and adjoint main loop. Moreover,
the runtime of the embedded Python interpreter and I/O are excluded. The averaged
results of four runs are given in table I. They show that the adjoint model is almost
as fast as the original forward code, even though the G∗ matrix contributions have
to be computed for the adjoint run, which are not present in the forward run. It may
be concluded that, for this example at least, the adjoint implementation produced by
libadjoint is very efficient compared with the forward model.

8.2. Shallow water model
Fluidity also includes a shallow water model which is significantly more complex than
the Burgers’ equation solver presented in the previous section. The shallow water
model uses the advanced P1DG-P2 discretisation, which is both LBB-stable and can
represent geostrophic balance exactly; the model equations and discretisation are fully
described in Cotter et al. [2009]. Unlike the Burgers’ equation model, the shallow wa-
ter model has more than one prognostic variable. The model is also made more complex
by the fact that it solves on arbitrary one- or two-dimensional manifolds embedded in
three-dimensional space, following the strategy of Bernard et al. [2009].

As the shallow water model is also part of Fluidity, it was possible to use the data
callbacks for Fluidity’s datatypes and the Python interface for implementing function-
als from the previous work on the Burgers’ equation model. The forward model was
annotated, and the callbacks implemented. For this work, we chose to adjoint the lin-
ear shallow water model, as the implementation of the nonlinear term on arbitrary
manifolds is still under development. Since almost all of the operators were cached
by the forward model anyhow, the callbacks merely used these cached matrices. The
only matrices not cached were the projection operators associated with the capacity to
solve on arbitrary manifolds; the code for these projection operators was modularised
to isolate the functionality in subroutines that the callbacks could use.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A new approach for developing discrete adjoint models A:23

The debugging features of section 6.1 were applied to detect potential implemen-
tation errors. The annotation of the forward model was verified by performing the
forward replay test. Once this worked, the adjoint equations were assembled. An ini-
tial application of the Hermitian consistency check (equation 31) indicated that the
manifold projection operators were not self-adjoint. The required transposed projec-
tions were implemented by hand after which the Hermitian consistency check passed.
Finally, the correctness of the adjoint solution was verified using the derivative test of
equation (33). As expected, the Taylor remainder converged at second-order for a wide
variety of simulations with different functionals and choice of control parameters.

Despite the increased code complexity of the forward model, the process of adjoining
the shallow water model was largely similar to that of the Burgers’ equation, and no
more difficult. Using libadjoint has a fixed overhead of annotation, but the fact that
the process of developing the adjoint model is systematic and incrementally verifiable
means that the difficulty of adjoining models scales well with model complexity.

8.3. Application of the shallow water adjoint model to an idealised data assimilation problem
Once the shallow water adjoint model is implemented and verified, it can be used in
a wide range of applications: data and parameter estimation, sensitivity and stability
analysis, design optimisation, and error estimation. A short introduction can be found
in Errico [1997, §5], Giles and Pierce [2000] and Moore et al. [2004].

To demonstrate the functionality and efficiency of the shallow water adjoint model
described in the previous section, it was used to solve an idealised data assimilation
problem. In data assimilation, some of the parameters specifying the problem are not
exactly known; however, observations of the solution (possibly at different time levels
if the problem is time-dependent) are available. The goal of data assimilation is to
find a better estimate of the unknown input parameters for which the solution best
“fits” the observations, usually in a least-squares sense. These kind of problems arise
in many fields of geosciences, in particular in weather prediction; a detailed discussion
is beyond the scope of this paper, but can be found in Park and Xu [2009].

Here, we restrict ourself to a simple shallow water setup in a two-dimensional,
doubly-periodic domain Ω = [0, 1]2. In the considered problem, the initial value (at
time t = 0) for the layer thickness η is unknown, while that of the velocity u is known.
Given the observation of the entire η field at time t = 1/2 and t = 1, we seek the initial
condition for η that recovers these observations. With the misfit functional defined as:

J(η) := ||η(t = 1/2)− ηobst=1/2||
2
L2

+ ||η(t = 1)− ηobst=1||2L2
, (35)

this problem can be formulated mathematically as an optimisation problem:

min
ηest

J(ηest) subject to (36a)

∂u

∂t
+ g∇η = 0 (36b)

∂η

∂t
+ h∇ · u = 0 (36c)

u(t = 0) = u0 (36d)
η(t = 0) = ηest (36e)
u(x = 0) = u(x = 1), u(y = 0) = u(y = 1) (36f)
η(x = 0) = η(x = 1), η(y = 0) = η(y = 1). (36g)

The minimum value of (36a) is zero which is achieved if and only if the observations
ηobst=1/2 at time t = 1/2 and ηobst=1 at time t = 1 are exactly recovered. The constraints (36b)

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 P. E. Farrell, S. W. Funke and D. A. Ham

and (36c) are the momentum and pressure equation of the linear shallow water equa-
tions. The parameters g and h are the gravity constant and the mean layer thickness
respectively. Equations (36d) and (36e) enforce the initial condition: u0 is the known
velocity initial condition and ηest is the estimate of the layer thickness initial condition.
Finally, the equations (36f) and (36g) enforce the periodic boundary conditions.

This optimisation problem can be solved iteratively as follows. Firstly, use the esti-
mate ηest to solve the shallow water model and its adjoint with respect to the misfit
functional J . Then, equation (34) yields the derivative dJ/dη at the current point in
parameter space. Finally, a gradient based optimisation algorithm is applied to ob-
tain a better estimate for ηest, with which the procedure is restarted. For the following
benchmarks, the L-BFGS-B algorithm [Byrd et al. 1995] of SciPy [Jones et al. 2001]
was used as optimisation algorithm (no bounds or memory limit were specified, in
which case the L-BFGS-B algorithm is equivalent to BFGS). Starting with an initial
estimate ηest ≡ 0, the optimisation loop was repeated until either the gradient norm of
J was less than 10−12 or (Jk − Jk+1)/max(|Jk|, |Jk+1|, 1) ≤ f · ε, where the superscript
denotes the iteration of the optimisation loop and ε the machine precision.

In order to verify the implementation of the solution procedure, its order of con-
vergence was checked against theoretical results. For this, an analytical solution for
problem (36) is required. By choosing g = h = 1, a periodic solution for equations (36b)
and (36c) is given by:

u =

(
sin(2π(t+ x))
sin(2π(t+ y))

)
η = − sin(2π(t+ y))− sin(2π(t+ x)).

From this, the initial condition and observations are derived:

u0 = u(t = 0)

ηobst=1/2 = η(t = 1/2)

ηobst=1 = η(t = 1).

With a correct implementation, we expect the final ηest in the optimisation loop to
converge to η(t = 0) at the same order of convergence as the method used in the forward
discretisation.

The forward and adjoint shallow water problems were solved with the model de-
scribed in section 8.2. The forward model uses Crank-Nicolson in time [Crank and
Nicolson 1947] and the P1DG-P2 finite element in space [Cotter et al. 2009]. For the
interpolated initial conditions employed here, P1DG-P2 converges at second order in
space [Cotter and Ham 2011] while Crank-Nicolson achieves second order in time.
However, any error in the implementation of the discretisation is likely to break either
the spatial or temporal order of convergence. Problem (36) was therefore run with four
different mesh resolutions and a very small timestep to derive the spatial order of con-
vergence. The results are shown in table II: as expected, second order convergence is
observed for both the control variable ηest and the final state variables (to observe sec-
ond order convergence for ηest with the highest resolution, it was necessary to perform
9 additional optimisation iterations after reaching the stopping criteria of the optimi-
sation loop). The same technique was used to check the temporal order of convergence.
The results in table III show again second order convergence, giving high confidence
in the correctness of the data assimilation implementation.

To benchmark the efficiency of the implementation, the average time required to
solve the forward and adjoint system was recorded. The problem was computed four
times and the results averaged. Table IV shows almost identical timings for both

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A new approach for developing discrete adjoint models A:25

Mesh element size 0.3 0.3/2 0.3/4 0.3/8
L-BFGS-B iterations 24 27 29 31 + 9
Rate of convergence for ηest 2.0 2.3 2.1
Rate of convergence for η(t = 1) 1.6 2.2 2.2
Rate of convergence for u(t = 1) 2.3 2.2 2.3

Table II: Spatial order convergence of the data assimilation problem. The timestep size
is 5 · 10−5 s. The expected order is 2.

Timestep size (s) 1/4 1/8 1/16 1/32
L-BFGS-B iterations 20 20 30 28
Rate of convergence for ηest 1.9 1.9 2.0
Rate of convergence for η(t = 1) 2.5 2.0 1.9
Rate of convergence for u(t = 1) 1.9 1.9 2.0

Table III: Temporal order convergence of the data assimilation problem. The mesh
element size is 0.3/16. The expected order is 2.

Mesh element size 0.3/4 0.3/8 0.3/16
Timestep size (s) 1/32 1/64 1/128
Runtime of forward solve (s) 2.4 29 464
Runtime of adjoint solve (s) 2.5 29 474
libadjoint annotation time (s) 0.03 0.07 0.2

Table IV: Averaged runtimes of the forward/adjoint solve and the total execution time
of the libadjoint annotation in the data assimilation problem.

solves, which can be interpreted as follows: consider the shallow water model cast
in the form given in equation 1. The linearity of the problem yields a forward operator
A which is independent of the solution vector. With equation (17) we obtain that G ≡ 0.
Similarly, the right hand side b of equation 1 does not depend on the solution, yield-
ing R ≡ 0 (see equation (18)). Hence the adjoint operator is just the transpose of the
forward operator A, see equation (16). An efficient adjoint implementation is therefore
expected to be approximately as fast as the forward equivalent. It is remarkable that
even though the application of libadjoint has been performed without any optimisa-
tion, the benchmark timings suggest that the efficiency of the resulting adjoint model
is very close to this best case assumption. Finally, the execution time of libadjoint
to annotate the forward model was measured and was found to be less than 2% of the
forward running time, see table IV.

9. SUMMARY AND OUTLOOK
A new approach to implementing discrete adjoint models has been presented. Whereas
algorithmic differentiation tools are based on the abstraction that the model is a se-
quence of elemental instructions, we instead treat the model as a sequence of linear
solves: the entire approach flows from exploring this higher-level abstraction. We have
written an open-source library, libadjoint, which implements this abstraction. The
model developer annotates the forward model using library calls with a description of
the equations being solved, and supplies callbacks to assemble the featured operators;
with this information, libadjoint can symbolically manipulate the recorded forward
equations, to deduce and assemble the discrete adjoint equations. This approach is in-
tended to extend the domain of applicability of adjoint techniques to models for which
the pure AD approach is impractical.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 P. E. Farrell, S. W. Funke and D. A. Ham

The libadjoint approach has several major advantages over hand-writing the dis-
crete adjoint code: it requires significantly less expertise in adjoint theory, the process
of adjoint model development becomes systematic and incrementally verifiable, the
maintenance burden of the adjoint model is considerably reduced, and it is possible
to offer complex features such as checkpointing schemes for balancing storage and re-
computation costs entirely within the library itself. Therefore, we suggest it represents
a superior alternative to manually implementing the discrete adjoint equations.

We intend to extend libadjoint further in future projects. While this paper has fo-
cussed entirely on implementing adjoint models, there is no reason why this approach
will not also apply to implementing tangent linear models. In fact, once the necessary
functionality is implemented in libadjoint, models that use the library for their ad-
joint will get a tangent linear model for almost no extra work. As documented in Moore
et al. [2004], the combination of an adjoint and tangent linear model offers extremely
powerful tools to computational scientists.

The libadjoint abstraction can also be pushed in interesting directions where it
is difficult to extend AD. As computers become more powerful, there is an increasing
trend towards more realistic multiphysics simulations which couple several individual
models together; the climate models employed in the IPCC Coupled Model Intercom-
parison Project offer an excellent and important example [Randall et al. 2007]. In order
to maintain modularity and flexibility of the individual components (for example, the
separate ocean, atmosphere, ice and land models) are maintained separately, and com-
bined through a coupler which organises data transfer between and execution of com-
ponents (weak coupling). The pure AD approach soon runs into great difficulty with
such a system; while coupled models have been differentiated with AD, they have been
restricted to tightly-coupled models, where the models are embedded into the same
codebase [Galanti et al. 2002; Kauker et al. 2009; Heimbach et al. 2010]. By contrast,
we hope that the semantic annotation approach of libadjoint will extend naturally to
weakly coupled models, provided some interaction with the coupling software is per-
formed.

Adjoint models have already made a large impact across a number of scientific and
industrial domains, and their impact can only be strengthened by facilitating the pro-
cess of adjoint model development. By making adjoint model development cheaper and
easier, we hope that libadjoint can further popularise these powerful techniques.

REFERENCES
BALAY, S., BROWN, J., BUSCHELMAN, K., EIJKHOUT, V., GROPP, W. D., KAUSHIK, D., KNEPLEY, M. G.,

MCINNES, L. C., SMITH, B. F., AND ZHANG, H. 2010. PETSc users manual. Tech. Rep. ANL-95/11,
Argonne National Laboratory. Revision 3.1.

BALAY, S., GROPP, W. D., MCINNES, L. C., AND SMITH, B. F. 1997. Efficient management of parallelism in
object oriented numerical software libraries. In Modern Software Tools in Scientific Computing, E. Arge,
A. M. Bruaset, and H. P. Langtangen, Eds. Birkhäuser Press, 163–202.

BERNARD, P. E., REMACLE, J. F., COMBLEN, R., LEGAT, V., AND HILLEWAERT, K. 2009. High-order dis-
continuous Galerkin schemes on general 2D manifolds applied to the shallow water equations. Journal
of Computational Physics 228, 17, 6514–6535.

BISCHOF, C. H., BÜCKER, H. M., RASCH, A., SLUSANSCHI, E., AND LANG, B. 2007. Automatic differ-
entiation of the general-purpose computational fluid dynamics package FLUENT. Journal of Fluids
Engineering 129, 5, 652–658.

BYRD, R. H., LU, P., NOCEDAL, J., AND ZHU, C. 1995. A limited memory algorithm for bound constrained
optimization. SIAM Journal on Scientific and Statistical Computing 16, 5, 1190–1208.

COLEMAN, T. F., SANTOSA, F., AND VERMA, A. 1998. Semi-automatic differentiation. In Computational
methods for optimal design and control: proceedings of the AFOSR Workshop on Optimal Design and
Control. Vol. 24. Birkhäuser, Arlington, VA, 113.

COTTER, C. AND HAM, D. 2011. Numerical wave propagation for the triangular p1dg-p2 finite element pair.
Journal of Computational Physics 230, 8, 2806 – 2820.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A new approach for developing discrete adjoint models A:27

COTTER, C. J., HAM, D. A., AND PAIN, C. C. 2009. A mixed discontinuous/continuous finite element pair
for shallow-water ocean modelling. Ocean Modelling 26, 1-2, 86–90.

CRANK, J. AND NICOLSON, P. 1947. A practical method for numerical evaluation of solutions of partial dif-
ferential equations of the heat-conduction type. In Mathematical Proceedings of the Cambridge Philo-
sophical Society. Vol. 43. 50–67.

DAVIES, D. R., WILSON, C. R., AND KRAMER, S. C. 2011. Fluidity: A fully unstructured anisotropic adaptive
mesh computational modeling framework for geodynamics. Geochemistry Geophysics Geosystems 12, 6.

DEVINE, K., BOMAN, E., HEAPHY, R., HENDRICKSON, B., AND VAUGHAN, C. 2002. Zoltan data manage-
ment services for parallel dynamic applications. Computing in Science and Engineering 4, 2, 90–97.

ERRICO, R. M. 1997. What is an adjoint model? Bulletin of the American Meteorological Society 78, 11,
2577–2591.

FANG, F., PAIN, C. C., NAVON, I. M., GORMAN, G. J., PIGGOTT, M. D., AND ALLISON, P. A. 2010. The
independent set perturbation adjoint method: a new method of differentiating mesh based fluids models.
International Journal for Numerical Methods in Fluids.

FARRELL, P. E. AND FUNKE, S. W. 2011. libadjoint: a library for developing adjoint models (Version 0.8).
http://launchpad.net/libadjoint.

FARRELL, P. E., PIGGOTT, M. D., GORMAN, G. J., HAM, D. A., WILSON, C. R., AND BOND, T. M. 2011.
Automated continuous verification for numerical simulation. Geoscientific Model Development 4, 2, 435–
449.

GALANTI, E., TZIPERMAN, E., HARRISON, M., ROSATI, A., GIERING, R., AND SIRKES, Z. 2002. The equato-
rial thermocline outcropping – a seasonal control on the tropical pacific oceanâ??atmosphere instability
strength. Journal of Climate 15, 19, 2721–2739.

GIERING, R. AND KAMINSKI, T. 1998. Recipes for adjoint code construction. ACM Transactions on Mathe-
matical Software 24, 4, 437–474.

GIERING, R. AND KAMINSKI, T. 2002. Recomputations in reverse mode AD. In Automatic Differentiation
of Algorithms: From Simulation to Optimization, G. Corliss, A. Griewank, C. Faurè, L. Hascoët, and
U. Naumann, Eds. Automatic Differentiation of Algorithms: From Simulation to Optimization. Springer
Verlag, Heidelberg, Chapter 33, 283–291.

GIERING, R. AND KAMINSKI, T. 2003. Applying TAF to generate efficient derivative code of Fortran 77-95
programs. Proceedings in Applied Mathematics and Mechanics 2, 1, 54–57.

GILES, M., GHATE, D., AND DUTA, M. 2005. Using automatic differentiation for adjoint CFD code devel-
opment. In Post-SAROD Indo-French Workshop on Recent Developments in Tools for Aerodynamics &
Multidisciplinary Optimization. Bangalore.

GILES, M. B. AND PIERCE, N. A. 2000. An introduction to the adjoint approach to design. Flow, Turbulence
and Combustion 65, 3-4, 393–415.

GRIEWANK, A. 1992. Achieving logarithmic growth of temporal and spatial complexity in reverse automatic
differentiation. Optimization Methods and Software 1, 1, 35–54.

GRIEWANK, A. 2003. A mathematical view of automatic differentiation. Acta Numerica 12, 321–398.
GRIEWANK, A. 2008. Evaluating derivatives: principles and techniques of algorithmic differentiation. Fron-

tiers in Applied Mathematics. SIAM.
GRIEWANK, A. AND WALTHER, A. 2000. Algorithm 799: revolve: an implementation of checkpointing for

the reverse or adjoint mode of computational differentiation. ACM Transactions on Mathematical Soft-
ware 26, 1, 19–45.

GRIMM, J., POTTIER, L., AND ROSTAING-SCHMIDT, N. 1996. Optimal time and minimum space-time prod-
uct for reversing a certain class of programs. In Computational Differentiation: Techniques, Applications,
and Tools, M. Berz, C. H. Bischof, G. F. Corliss, and A. Griewank, Eds. SIAM, Philadelphia, PA, 95–106.

GUNZBURGER, M. D. 2003. Perspectives in Flow Control and Optimization. Advances in Design and Control.
Society for Industrial Mathematics.

HASCOËT, L. AND PASCUAL, V. 2004. Tapenade 2.1 user’s guide. Tech. Rep. RT-0300, INRIA Sophia Antipo-
lis, Sophia Antipolis, FR 06902.

HEIMBACH, P., HILL, C., AND GIERING, R. 2005. An efficient exact adjoint of the parallel MIT General
Circulation Model, generated via automatic differentiation. Future Generation Computer Systems 21, 8,
1356–1371.

HEIMBACH, P., MENEMENLIS, D., LOSCH, M., CAMPIN, J. M., AND HILL, C. 2010. On the formulation of
sea-ice models. Part 2: Lessons from multi-year adjoint sea-ice export sensitivities through the Cana-
dian Arctic Archipelago. Ocean Modelling 33, 1-2, 145–158.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 P. E. Farrell, S. W. Funke and D. A. Ham

HEROUX, M., BARTLETT, R., HOWLE, V., HOEKSTRA, R., HU, J., KOLDA, T., LEHOUCQ, R., LONG, K.,
PAWLOWSKI, R., PHIPPS, E., SALINGER, A., THORNQUIST, H., TUMINARO, R., WILLENBRING, J., AND
WILLIAMS, A. 2003. An overview of Trilinos. Tech. Rep. SAND2003-2927, Sandia National Laboratories.

HINZE, M., PINNAU, R., ULBRICH, M., AND ULBRICH, S. 2009. Optimization with PDE constraints. Math-
ematical Modelling: Theory and Applications Series, vol. 23. Springer.

JONES, E., OLIPHANT, T., PETERSON, P., ET AL. 2001. SciPy: Open source scientific tools for Python.
KAUKER, F., KAMINSKI, T., KARCHER, M., GIERING, R., GERDES, R., AND VOSSBECK, M. 2009. Adjoint

analysis of the 2007 all time Arctic sea-ice minimum. Geophysical Research Letters 36, 3, L03707.
KIM, J., HUNKE, E., AND LIPSCOMB, W. 2006. A sensitivity-enhanced simulation approach for Community

Climate System Model. In Computational Science – ICCS 2006, V. Alexandrov, G. van Albada, P. Sloot,
and J. Dongarra, Eds. Lecture Notes in Computer Science Series, vol. 3994/2006. 533–540.

KOWARZ, A. AND WALTHER, A. 2006. Optimal checkpointing for time-stepping procedures in ADOL-C. In
Computational Science–ICCS 2006, V. N. Alexandrov, G. D. van Albada, P. M. A. Sloot, and J. Dongarra,
Eds. Springer, Reading, UK, 541–549.

LEBIGOT, E. 2011. Uncertainties: a Python module for calculations with uncertainties (Version 1.5.4).
MARSHALL, J., ADCROFT, A., HILL, C., PERELMAN, L., AND HEISEY, C. 1997. A finite-volume, incom-

pressible navier stokes model for studies of the ocean on parallel computers. Journal of Geophysical
Research 102, C3, 5753–5766.

MARTA, A. C., MADER, C. A., MARTINS, J. R. R. A., VAN DER WEIDE, E., AND ALONSO, J. J. 2007.
A methodology for the development of discrete adjoint solvers using automatic differentiation tools.
International Journal of Computational Fluid Dynamics 21, 9, 307–327.

MARTINS, J. R. R. A., STURDZA, P., AND ALONSO, J. J. 2003. The complex-step derivative approximation.
ACM Transactions on Mathematical Software 29, 3, 245–262.

MOORE, A. M., ARANGO, H. G., LORENZO, E. D., CORNUELLE, B. D., MILLER, A. J., AND NEILSON, D. J.
2004. A comprehensive ocean prediction and analysis system based on the tangent linear and adjoint of
a regional ocean model. Ocean Modelling 7, 1-2, 227–258.

MÜLLER, J.-D. AND CUSDIN, P. 2005. On the performance of discrete adjoint cfd codes using automatic
differentiation. International Journal for Numerical Methods in Fluids 47, 8-9, 939–945.

PARK, S. K. AND XU, L. 2009. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications.
Springer Verlag.

PIGGOTT, M. D., GORMAN, G. J., PAIN, C. C., ALLISON, P. A., CANDY, A. S., MARTIN, B. T., AND WELLS,
M. R. 2008. A new computational framework for multi-scale ocean modelling based on adapting un-
structured meshes. International Journal for Numerical Methods in Fluids 56, 8, 1003–1015.

RALL, L. B. AND CORLISS, G. F. 1996. An introduction to automatic differentiation. In Computational Dif-
ferentiation: Techniques, Applications, and Tools, M. Berz, C. H. Bischof, G. F. Corliss, and A. Griewank,
Eds. SIAM, Philadelphia, PA, 1–17.

RANDALL, D. A., WOOD, R. A., BONY, S., COLMAN, R., FICHEFET, T., FYFE, J., KATTSOV, V., PITMAN,
A., SHUKLA, J., SRINIVASAN, J., STOUFFER, R., SUMI, A., AND TAYLOR, K. 2007. Climate models and
their evaluation. In Climate Change 2007: The Physical Science Basis, S. Solomon, D. Qin, M. Manning,
Z. Chen, M. Marquis, K. Averyt, M.Tignor, and H. Miller, Eds. Cambridge University Press, 589–662.

STEIN, W. A. ET AL. 2011. Sage Mathematics Software (Version 4.5.3).
STEIN, W. A. AND JOYNER, D. 2005. SAGE: System for Algebra and Geometry Experimentation. ACM

SIGSAM Bulletin 39, 2, 61–64.
TBER, M. H., HASCOËT, L., VIDARD, A., AND DAUVERGNE, B. 2007. Building the tangent and adjoint codes

of the ocean general circulation model OPA with the automatic differentiation tool TAPENADE. Tech.
Rep. RR-6372, INRIA, Sophia Antipolis.

UTKE, J., NAUMANN, U., FAGAN, M., TALLENT, N., STROUT, M., HEIMBACH, P., HILL, C., AND WUNSCH,
C. 2008. OpenAD/F: A modular open-source tool for automatic differentiation of Fortran codes. ACM
Transactions on Mathematical Software 34, 4, 1–36.

VAN ROSSUM, G., DRAKE, F. L., ET AL. 2008. Python reference manual.
VIDARD, A., VIGILANT, F., DELTEL, C., AND BENSHILA, R. 2008. NEMO tangent & adjoint models (Nemo-

Tam): reference manual & user’s guide. ANR-08-COSI-016.
WALTHER, A. AND GRIEWANK, A. 2003. Advantages of binomial checkpointing for memory-reduced adjoint

calculations. In Proceedings of ENUMATH 2003, M. Feistauer, V. Dolejı́, P. Knobloch, and K. Najzar,
Eds. Springer, Prague, Czech Republic, 834–843.

WANG, Q., MOIN, P., AND IACCARINO, G. 2009. Minimal repetition dynamic checkpointing algorithm for
unsteady adjoint calculation. SIAM Journal on Scientific Computing 31, 4, 2549–2567.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A new approach for developing discrete adjoint models A:29

XIAO, Q., KUO, Y. H., MA, Z., HUANG, W., HUANG, X. Y., ZHANG, X., BARKER, D. M., MICHALAKES, J.,
AND DUDHIA, J. 2008. Application of an adiabatic WRF adjoint to the investigation of the May 2004
McMurdo, Antarctica, severe wind event. Monthly Weather Review 136, 10, 3696–3713.

Received August 2011; revised Month Year; accepted Month Year

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

