
ESyS-Particle Build and Installation Notes

Justin Rahardjo, Dr. Vince Boros

October 2014

Contents

1 Building ESyS-Particle 1

1.1 Easy Install . 1

1.2 Guide to a source-build . 1

1.2.1 Building the dependencies . 2

1.2.2 Con�guring and installing ESyS-Particle 6

2 Testing the ESyS-Particle Build 9

2.1 Tested Builds . 10

3 Problems found during build 13

3.1 Problems with Python . 13

3.1.1 Not installing pip . 13

3.2 Problems with Boost . 13

3.2.1 Syntax error on bootstrap . 13

3.2.2 Can't �nd pycon�g.h on b2 14

3.3 Problems with Povray . 14

3.3.1 Missing Make�le.in . 14

3.3.2 Missing thread library . 14

iii

iv CONTENTS

3.4 Problems with ESyS-Particle . 15

3.4.1 Warnings on Subdirectories 15

3.4.2 Python library not found or Permission Errors?? 16

3.4.3 Python 3.x Naming conventions 16

3.4.4 Cannot �nd boost/python.hpp 16

3.4.5 Cannot �nd the �ags to link with Boost Python 17

3.4.6 *.Plo �les not found . 17

3.4.7 Error on running script . 17

4 ESyS-Particle Release Steps 19

5 De�nitions and Concepts of Parameters and How-Tos 23

5.1 Masks . 23

5.2 Dump2VTK . 24

A Test Script 27

A.1 Main bash script . 27

A.2 Move output �les to folders . 30

A.3 Output test result to �le . 31

Chapter 1

Building ESyS-Particle

1.1 Easy Install

An extract from https://answers.launchpad.net/esys-particle/+faq/1792

To install a recent released version of ESyS-Particle on Ubuntu from prebuilt

packages, �rst remove any existing ESyS-Particle installation, and then type in a

terminal:

$ sudo apt -get update

$ sudo apt -get install esys -particle

Or for the latest trunk revision, including the most recent bug �xes:

$ sudo add -apt -repository ppa:esys -p-dev/daily

$ sudo apt -get update

$ sudo apt -get install esys -particle -daily

You will get updates automatically during the normal system update procedure.

1.2 Guide to a source-build

ESyS-Particle needs to be built against:

• Python 2.6.x, 2.7.x & 3.x

• Boost

• Povray

1

https://answers.launchpad.net/esys-particle/+faq/1792

2 CHAPTER 1. BUILDING ESYS-PARTICLE

• VTK (currently only supported on Python 2.x)

• epydoc (currently only supported on Python 2.x)

All these packages need to be installed under a directory that is separate from

/usr/ and /usr/local/. This will help in testing the build for each version of the

software.

1.2.1 Building the dependencies

Firstly, create a new directory to contain the various folders. For the rest of this

document, it is assumed that the ~/BUILD/ directory is the base directory for the

installations.

$ cd ~

$ mkdir -p BUILD/sources

$ cd BUILD

$ mkdir bin lib share include

And don't forget to add these folders to the environment variables. For a more

permanent install, add these to the end of the ~/.bashrc �le.

$ export PATH=$HOME/BUILD/bin:$PATH

$ export LD_LIBRARY_PATH=$HOME/BUILD/lib:$LD_LIBRARY_PATH

$ export LIBRARY_PATH=$HOME/BUILD/lib:$LIBRARY_PATH

Installing Python from Source

Get the Python sourcecode from https://www.python.org/downloads/source/

and place into the base directory. These instructions will be using Python 2.6.9

release. Adjust the commands accordingly to the release required.

$ cd ~/ BUILD/sources

$ tar xfz Python -2.6.9. tgz

$ rm Python -2.6.9. tgz

$ cd Python -2.6.9

$./ configure --prefix=$HOME/BUILD --enable -shared

$ make

$ make altinstall

NOTE:

• --prefix=x installs all platform-independent �les in x/lib

https://www.python.org/downloads/source/

1.2. GUIDE TO A SOURCE-BUILD 3

• --enabled-shared allows installation of the Python library as a shared object

• make altinstall allows multiple versions of Python to coexist.

Link the new installation of python and check the link

$ ln -sf $HOME/BUILD/bin/python2 .6 $HOME/bin/python

$ ln -sf $HOME/BUILD/bin/python2.6-config $HOME/bin/python -config

$ ls -l `which python `

NOTE: The command which python tells you which directory the command py-

thon looks for the libraries and binary �les. Place the result of this command into

the last bash command for above.

Installing Boost from Source

Get the Boost sourcecode from http://www.boost.org/users/history/ and place

into the base directory. These instructions will be using Boost 1.52.0 release. Adjust

the commands accordingly to the release required.

$ cd ~/ BUILD/sources

$ tar --bzip2 -xf boost_1_52_0.tar.bz2

$ rm boost_1_52_0.tar.bz2

$ cd boost_1_52_0

$./ bootstrap.sh --prefix=$HOME/BUILD --with -libraries=filesystem ,

python ,regex ,system

$./b2

$./b2 install

NOTE: When con�guring ESyS-Particle, add the --with-boost=x option where x

is your base directory. If your Boost installation results in nonstandard library names

(such as the version of the C++ compiler included as part of the Boost library name),

the --with-boost-filesystem= and --with-boost-python= options will also be needed

to con�gure ESyS-Particle. The string following the = symbol needs to be the Boost

library name without the initial lib string and without the �nal .so extension (for

example, --with-boost-python=boost_python-gcc_4_3_3 if the Boost::Python library is

called libboost_python-gcc_4_3_3.so). If the con�gure script cannot �nd the correct

Python library, rerun the script with this additional option (including the quotation

marks): LDFLAGS="-Lx/lib".

NOTE: When using Povray 3.7 or higher, include the thread library when com-

piling. Please see Section 3.3 for more details.

http://www.boost.org/users/history/

4 CHAPTER 1. BUILDING ESYS-PARTICLE

NOTE: When building with Python 3.2 and above (see Section 3.2), remember

to include directory to the python headers in the b2 command. Such as ./b2 include

="~/BUILD/include/python3.xm".

Installing VTK from Source

The most up-to-date instructions to install VTK from source can be found at http:

//www.vtk.org/Wiki/VTK/Configure_and_Build.

The following instructions will be using CMake 2.8.12 Release and VTK 6.1.0

Release. Adjust the commands accordingly to the release required.

VTK requires CMake to be installed. So, download the source code at http:

//www.cmake.org/cmake/resources/software.html and place in the base folder.

These instructions go through installation of CMake in the root folder. So that it

may be shared with other testing installations. If it is equired to be installed in a

certain folder, add --prefix=/install/path to the con�gure line.

$ cd ~/ BUILD/sources

$ tar xfz cmake -2.8.12.2. tar.gz

$ cd cmake -2.8.12.2

$./ configure

$ make

$ make install

NOTE: If there is an error about not being able to �nd the Curses Libraries,

install the curses libraries �rst.

$ sudo apt -get install libncurses5 -dev

Once CMake is built, we move onto VTK.

$ cd ~/ BUILD/sources

$ tar xfz VTK -6.1.0. tar.gz

$ mkdir VTK -build

$ cd VTK -build

$ ccmake ../VTK -6.1.0

In the CCMake GUI, hit [c] to con�gure for the �rst time. Then, toggle to

advance view [t] and set these values:

• CMAKE_BUILD_TYPE - Release

• CMAKE_INSTALL_PREFIX - the base directory to install VTK in (can't use �$HOME�,

have to use � � or �/home/username/�)

http://www.vtk.org/Wiki/VTK/Configure_and_Build
http://www.vtk.org/Wiki/VTK/Configure_and_Build
http://www.cmake.org/cmake/resources/software.html
http://www.cmake.org/cmake/resources/software.html

1.2. GUIDE TO A SOURCE-BUILD 5

• BUILD_SHARED_LIBS - ON

• VTK_WRAP_PYTHON - ON

• Module_vtkPython - ON

• Module_vtkPythonInterpreter - ON

Once these options are set, hit [c] again to recon�gure, then check these values

and make sure it is using the correct python installation of the build.

• PYTHON_EXECUTABLE - your python installation (~/BUILD/bin/python)

• PYTHON_INCLUDE_DIR - (~/BUILD/include/python2.6)

• PYTHON_LIBRARY - (~/BUILD/lib/libpython2.6.so)

• VTK_INSTAL_PYTHON_MODULE_DIR - lib/python2.6/site-packages

Hit [c] to recon�gure again and then hit [g] to generate the required �les. Lastly,

build VTK.

$ cd ~/ BUILD/VTK -build

$ make

$ make install

NOTE: Whilst con�guring, there might be an error such as X11_Xt_LIB could not

be found. To �x this problem, simply install the XT library.

$ sudo apt -get install libxt -dev

Installing Povray from Source

Get the Povray source from the download page http://www.povray.org/download/

index-3.6.php. This instructions will be using Povray 3.6.1 release. Adjust the

commands accordingly to the release required.

$ cd ~/ BUILD/sources

$ tar xfz povray -3.6. tar.gz

$ rm povray -3.6. tar.gz

$ cd povray -3.6.1

$./ configure COMPILED_BY="your name <email@address >" --prefix=

$HOME/BUILD

$ make

$ make install

NOTE: There might be a problem with libpng12-dev. If so, remove it and use

libpng10-dev instead.

NOTE: If you are having problems installing Povray 3.7, please see Section 3.3.

http://www.povray.org/download/index-3.6.php
http://www.povray.org/download/index-3.6.php

6 CHAPTER 1. BUILDING ESYS-PARTICLE

Installing Epydoc from Source

Get the Epydoc source from the website http://epydoc.sourceforge.net/. This

instructions will be using Epydoc 3.0.1 release. Adjust the commands accordingly

to the release required.

$ cd ~/ BUILD/sources

$ unzip epydoc -3.0.1. zip

$ rm epydoc -3.0.1. zip

$ cd epydoc -3.0.1

Then use your preferred text editor to change the default installation path in

the Makefile to point to where you'd like epydoc to be installed.

LIB = $HOME/BUILD

Then continue on with the installation using the command make install.

1.2.2 Con�guring and installing ESyS-Particle

Once all the required dependencies are installed, we can start con�guring the esys-

particle installation and install it. Firstly, create a directory for the ESyS-Particle

source and installation �les.

$ cd ~/ BUILD

$ mkdir esys -particle

$ cd esys -particle

$ bzr branch lp:esys -particle

$ mv esys -particle/ source

$ mkdir install build

$ cd source

$./ autogen.sh

$ cd ~/ BUILD/esys -particle/build

$../ source/configure CC=mpicc CXX=mpic++ CXXFLAGS="-Wall -Wextra"

--srcdir=$HOME/BUILD/esys -particle/source --prefix=$HOME/BUILD/

esys -particle/install --with -boost=$HOME/BUILD --with -povray --

enable -vtk --with -epydoc --enable -docs

$ make

$ make install

NOTE: When compiling for Python 3.x, remember that both vtk and epydoc are

not supported and thus remove --enable-vtk and --with-epydoc in the con�gure com-

mand.

http://epydoc.sourceforge.net/

1.2. GUIDE TO A SOURCE-BUILD 7

NOTE: Remember to uninstall previous version of ESyS-Particle before installing

the new one. As sometimes during make, a few errors come up when the previous

installations is con�icting.

$ cd old/esys/source/dir

$ sudo make uninstall

$ make distclean

And lastly, don't forget to add the ESyS-Particle installation paths to your en-

vironment variables.

$ export PATH=$HOME/BUILD/esys -particle/install/bin:$PATH

$ export LD_LIBRARY_PATH=$HOME/BUILD/esys -particle/install/lib:

$LD_LIBRARY_PATH

$ export LIBRARY_PATH=$HOME/BUILD/esys -particle/install/lib:

$LIBRARY_PATH

$ export PYTHONPATH=$HOME/BUILD/esys -particle/install/lib/pythonx.x

/site -packages /: $PYTHONPATH

Chapter 2

Testing the ESyS-Particle Build

Once ESyS-Particle has been built using all its dependencies, the installation needs

to be tested. To do this, run all the tutorial scripts from the ESyS-Particle Tutorial.

And insure that it all runs correctly.

These test scripts can all be run together by using a bash script to run one after

the other. A few things can be added to the script such as a way to move all the

output �les into another folder to tidy things up when viewing the results.

An example test script can be seen in Appendix A.

Once the build has been tested, the installation directories can be renamed so

that a new build can be tested. To rename the builds, we can use the following

script:

for name in bin include lib share etc; do

mv $name "python_2_6_9_"$name;

done

mv esys -particle/install esys -particle/python_2_6_9_install

mv particle_build esys -particle/python_2_6_9_build

Once the �les are renamed, we can start the testing process again from Sec-

tion 1.2.1.

9

10 CHAPTER 2. TESTING THE ESYS-PARTICLE BUILD

2.1 Tested Builds

Shown in this section is all the builds with di�erent versions of Boost and Python

that has been tested in di�erent systems by the developers.

Python Boost Povray VTK Epydoc Built? Pass Test? Notes
2.6.9 1.37 3.6.1 Yes Yes Yes Yes
2.6.9 1.55 3.6.1 Yes Yes Yes Yes
2.7.8 1.38 3.6.1 Yes Yes Yes Yes
2.7.8 1.41 3.6.1 Yes Yes Yes Yes
2.7.8 1.55 3.6.1 Yes Yes Yes Yes
3.0.1 1.55 3.6.1 No No Yes Yes
3.1.5 1.41 3.6.1 No No Yes Yes
3.1.5 1.55 3.6.1 No No Yes Yes
3.2.5 1.47 3.6.1 No No Yes Yes
3.2.5 1.55 3.6.1 No No Yes Yes wide-unicode
3.2.5 1.55 3.6.1 No No Yes Yes pymalloc
3.2.5 1.55 3.6.1 No No Yes Yes pydebug
3.3.5 1.47 3.6.1 No No Yes Yes
3.3.5 1.52 3.6.1 No No Yes Yes
3.3.5 1.55 3.6.1 No No Yes Yes wide-unicode
3.3.5 1.55 3.6.1 No No Yes Yes pymalloc
3.3.5 1.55 3.6.1 No No Yes Yes pydebug
3.3.5 1.55 3.6.1 No No Yes Yes
3.4.1 1.47 3.6.1 No No Yes Yes
3.4.1 1.55 3.6.1 No No Yes Yes

Table 2.1: A list of the builds of ESyS-Particle v2.3.1 tested on a Ubuntu 14.0.4
system. (VTK version 6.1.0 and Epydoc version 3.0.1)

2.1. TESTED BUILDS 11

Python Boost Built? Pass Test? Notes
2.6.9 1.37 Yes Yes
2.7.8 1.37 Yes Yes
2.7.8 1.55 Yes Yes
3.0.1 1.41 Yes Yes
3.0.1 1.56 Yes Yes
3.1.5 1.41 Yes Yes
3.1.5 1.56 Yes Yes
3.2.5 1.47 Yes Yes
3.2.5 1.47 Yes Yes wide-unicode
3.2.5 1.47 Yes Yes pymalloc
3.2.5 1.47 Yes Yes pydebug
3.2.5 1.55 Yes Yes
3.3.5 1.47 Yes Yes
3.3.5 1.55 Yes Yes
3.3.5 1.55 Yes Yes wide-unicode
3.3.5 1.55 Yes Yes pymalloc
3.3.5 1.55 Yes Yes pydebug
3.4.1 1.47 Yes Yes
3.4.1 1.55 Yes Yes
3.4.1 1.56 Yes Yes

Table 2.2: A list of the builds of ESyS-Particle v2.3.1 tested on a Ubuntu 12.0.4
system. (VTK version 6.1.0 and Epydoc version 3.0.1 for installs with Python 2.x
and Povray 3.6.1)

12 CHAPTER 2. TESTING THE ESYS-PARTICLE BUILD

Python Boost Built? Pass Test?
2.6.8 1.37 Yes Yes
2.6.8 1.49 Yes Yes
2.6.9 1.56 Yes Yes
2.7.3 1.49 Yes Yes
2.7.8 1.37 Yes Yes
2.7.8 1.56 Yes Yes
3.0.1 1.41 Yes Yes
3.0.1 1.56 Yes Yes
3.1.5 1.41 Yes Yes
3.1.5 1.56 Yes Yes
3.2.3 1.49 Yes Yes
3.2.5 1.47 Yes Yes
3.2.5 1.56 Yes Yes
3.3.5 1.47 Yes Yes
3.3.5 1.56 Yes Yes
3.4.1 1.47 Yes Yes
3.4.1 1.52 Yes Yes
3.4.2 1.56 Yes Yes

Table 2.3: A list of the builds of ESyS-Particle v2.3.1 tested on a Debian 7.2 with
system Boost 1.49.0 and Python 2.6.8, 2.7.3 and 3.2.3. (VTK version 6.1.0 and
Epydoc version 3.0.1 for installs with Python 2.x and Povray 3.6.1)

Python Boost Built? Pass Test? Notes
2.6.0 1.36 Yes Yes These two are the system versions and so are

present when the other Boost and Python
modules are loaded.

2.7.3 1.51 Yes Yes 2-B Unicode
2.7.3 1.55 Yes Yes 2-B Unicode
3.2.2 1.55 Yes Yes 2-B Unicode
3.3.5 1.47 Yes Yes using icc 12.0.3: ESyS-Particle con�guration

fell over using newer icc during the Boost
compatibility test

3.4.1 1.47 Yes Yes using icc 12.0.3: ESyS-Particle con�guration
fell over using newer icc during the Boost
compatibility test

Table 2.4: A list of the builds of ESyS-Particle v2.3.1 tested on a Suse 11 system
with system Boost 1.36.0 and Python 2.6.0. (VTK version 6.1.0 and Epydoc version
3.0.1 for installs with Python 2.x and Povray 3.6.1)

Chapter 3

Problems found during build

3.1 Problems with Python

3.1.1 Not installing pip

During installation of Python 3.4, sometimes it comes up with a warning where PIP

is not installed.

Ignoring ensurepip failure: pip 1.5.4 requires SSL/TLS

This can be �xed by installing the SSL library:

sudo apt-get install libssl-dev openssl

3.2 Problems with Boost

3.2.1 Syntax error on bootstrap

For Python 3.1 and above, there is a syntax error that comes when running bootstrap

.sh. This is caused by an older version of Python's print function. Details on the

patch can be found here: https://svn.boost.org/trac/boost/ticket/5677.

13

https://svn.boost.org/trac/boost/ticket/5677

14 CHAPTER 3. PROBLEMS FOUND DURING BUILD

3.2.2 Can't �nd pycon�g.h on b2

During the ./b2 command, if pycon�g.h can't be found. This is caused by Python's

naming convention for the include directory from 3.2 and above. To �x it, insure

that it is in the path. i.e:

$ export CPLUS_INCLUDE_PATH="CPLUS_INCLUDE_PATH:$HOME/BUILD/include

/python3.xm/"

3.3 Problems with Povray

Povray 3.7.0 can only be built with Boost 1.53 or higher, unde�ned references are

found when using Boost 1.52. These unde�ned references are found in the boost

threading library.

3.3.1 Missing Make�le.in

If there is a problem from a missing Make�le.in, follow these instructions to install

Povray-3.7. The problem here is caused by how di�erent versions of automake

respond to �les in sub-directories.

$ cd povray -3.7- stable/unix

$ sed 's/automake --w/automake --add -missing --w/g' -i prebuild.sh

$ sed 's/dist -bzip2/dist -bzip2 subdir -objects/g' -i configure.ac

$./ prebuild.sh

$ cd ..

$./ bootstrap

$./ configure COMPILED_BY="your name <email@address >" --prefix=

$HOME/BUILD

$ make

$ make install

3.3.2 Missing thread library

Installation of Povray 3.7 can't be done because of this error:

checking for boostlib >= 1.37... yes

checking whether the Boost :: Thread library is available ... yes

checking whether the boost thread library is usable ... no

configure: error: in `/home/jrahardjo/BUILD/povray -3.7-stable ':

3.4. PROBLEMS WITH ESYS-PARTICLE 15

configure: error: cannot link with the boost thread library

This is found during the con�gure process, this problem is because of it not being

able to �nd the correct Boost::Thread library. So, �rstly insure you have installed

the threading library, if not, during bootstrapping of boost, insure that it is included

(--with-libraries=.....,thread).

If the same error persists after installing the boost_threading library, add the lib-

raries manually to the con�guration line of Povray (LIBS="-lboost_system -lboost_thread

").

3.4 Problems with ESyS-Particle

3.4.1 Warnings on Subdirectories

** This problem has been solved in rev.1139. **

During ./autogen.sh, a warning with regards to subdirectories is there.

Model/Makefile.am:26: warning: source file '$(top_srcdir)/Fields/

FieldMaster.cpp ' is in a subdirectory ,

Model/Makefile.am:26: but option 'subdir -objects ' is disabled

automake: warning: possible forward -incompatibility.

automake: At least a source file is in a subdirectory , but the '

subdir -objects '

automake: automake option hasn 't been enabled. For now , the

corresponding output

automake: object file(s) will be placed in the top -level directory.

However ,

automake: this behaviour will change in future Automake versions:

they will

automake: unconditionally cause object files to be placed in the

same subdirectory

automake: of the corresponding sources.

automake: You are advised to start using 'subdir -objects ' option

throughout your

automake: project , to avoid future incompatibilities.

This is not a problem atm, but might be worth looking into eventually.

16 CHAPTER 3. PROBLEMS FOUND DURING BUILD

3.4.2 Python library not found or Permission Errors??

During make install, there was a problem where Python was not able to �nd the

libpython2.6.so.1.0 object �le.

This problem seems to be caused by some permission errors. As the install folders

seem to be under root instead of the current user. Using chown -R, on the install

folder, seems to have solved the problem. This was caused by the original command

sudo make install. Use make install instead.

3.4.3 Python 3.x Naming conventions

** This problem has been solved in rev.1146. **

There is a problem with Python 3.2 and above where the naming convention has

changed from pythonx.x to pythonx.xm. And as such, there are problems found in the

con�gure �le as well as during make. A �x for the con�guration process has been

placed and it lets the user go through the con�g with no problems. But this problem

arises again during the build process and as such, a soft-link from libpython3.x.so

to libpython3.xm.so needs to be created to solve this problem temporarily.

$ ln -sf $HOME/BUILD/lib/libpython3.xm.so $HOME/BUILD/lib/

libpython3.x.so

3.4.4 Cannot �nd boost/python.hpp

Another error comes up as:

checking for boost/python.hpp ... no

configure: error: cannot find boost/python.hpp

Despite the message, when looking through the config.log, it was found that it

actually found the correct �le, but then found unde�ned references in the �le itself.

This is caused by a similar naming convention problem as mentioned in the previous

section. This is solved by including the required path to the correct include folder.

$ export CPLUS_INCLUDE_PATH="CPLUS_INCLUDE_PATH:$HOME/BUILD/include

/python3.xm/"

3.4. PROBLEMS WITH ESYS-PARTICLE 17

3.4.5 Cannot �nd the �ags to link with Boost Python

** This problem has been solved in rev.1146. **

Another error appears where it is unable to link with Boost Python library.

checking for Boost python library ... no

configure: error: cannot find the flags to link with Boost python

After looking through the con�g.log, this problem was caused by an incompatibility

of Unicode between UCS4 and UCS2 of the python version. To solve this problem,

speci�cally add the version of Python when con�guring boost.

This problem was caused by similar reasons to 3.4.3.

$./ bootstrap.sh --prefix=$HOME/BUILD --with -python=$HOME/BUILD/bin

/python3.xm --with -libraries=filesystem ,python ,regex ,system

$./b2 include="$HOME/BUILD/include/python3.xm"

$./b2 install

3.4.6 *.Plo �les not found

During make, sometimes it comes up with an error where it is unable to �nd .Plo

�les. The solution to this is to add --disable-dependecy-tracking option to the ./

configure command

3.4.7 Error on running script

When running the script using mpirun, there has been an error with _sysconfigdata_m

missing from python.

Traceback (most recent call last):

File "/usr/lib/python3 .3/ site.py", line 629, in <module >

main()

File "/usr/lib/python3 .3/ site.py", line 614, in main

known_paths = addusersitepackages(known_paths)

File "/usr/lib/python3 .3/ site.py", line 284, in

addusersitepackages

user_site = getusersitepackages ()

File "/usr/lib/python3 .3/ site.py", line 260, in

getusersitepackages

user_base = getuserbase () # this will also set USER_BASE

18 CHAPTER 3. PROBLEMS FOUND DURING BUILD

File "/usr/lib/python3 .3/ site.py", line 250, in getuserbase

USER_BASE = get_config_var('userbase ')

File "/usr/lib/python3 .3/ sysconfig.py", line 610, in

get_config_var

return get_config_vars ().get(name)

File "/usr/lib/python3 .3/ sysconfig.py", line 560, in

get_config_vars

_init_posix(_CONFIG_VARS)

File "/usr/lib/python3 .3/ sysconfig.py", line 432, in _init_posix

from _sysconfigdata import build_time_vars

File "/usr/lib/python3 .3/ _sysconfigdata.py", line 6, in <module >

from _sysconfigdata_m import *

ImportError: No module named '_sysconfigdata_m '

This is caused because of multiple python installations and the system not being

able to �nd the correct one. Fix the python installation to �x this problem. Another

solution is to make sure that the environment variables are pointing to the correct

directories (check ~/.bashrc).

Chapter 4

ESyS-Particle Release Steps

Described in this section is the steps needed to create a new release for ESyS-Particle.

1. Write release notes at https://wiki.geocomp.uq.edu.au/index.php/Release_

Notes_for_ESyS-Particle

2. Update version information in configure.ac, Doxyfile, Doc/Tutorial/paper.tex,

Foundation/version.h

3. Update the tutorial if necessary and generate the new PDF �le:

./render.sh in Doc/Tutorial/

4. Upload the new �le to https://wiki.geocomp.uq.edu.au/index.php/File:

ESyS-Particle_Tutorial.pdf

5. Update the trunk:

bzr commit

6. Generate an updated API by building the code using the --with-epydoc option

7. Copy the API to shake200:/data/www/esys/esys-particle_python_doc/

esys-particle-2.3.1

8. Generate updated source code documentation:

doxygen Doxyfile

9. Copy the source code documentation to shake200:/data/www/esys/esys-particle_

doxygen_doc/esys-particle-2.3.1

19

https://wiki.geocomp.uq.edu.au/index.php/Release_Notes_for_ESyS-Particle
https://wiki.geocomp.uq.edu.au/index.php/Release_Notes_for_ESyS-Particle
https://wiki.geocomp.uq.edu.au/index.php/File:ESyS-Particle_Tutorial.pdf
https://wiki.geocomp.uq.edu.au/index.php/File:ESyS-Particle_Tutorial.pdf
shake200:/data/www/esys/esys-particle_python_doc/esys-particle-2.3.1
shake200:/data/www/esys/esys-particle_python_doc/esys-particle-2.3.1
shake200:/data/www/esys/esys-particle_doxygen_doc/esys-particle-2.3.1
shake200:/data/www/esys/esys-particle_doxygen_doc/esys-particle-2.3.1

20 CHAPTER 4. ESYS-PARTICLE RELEASE STEPS

10. Branch from the trunk:

bzr branch lp:esys-particle source2.3.1

11. Push the new branch to Launchpad:

bzr push lp:~esys-p-dev/esys-particle/2.3.1

12. Change the new branch status to �Mature�:

Code page → lp:~esys-p-dev/esys-particle/2.3.1 → Status

For major version:

13. Create series 2.3:

Project overview page → Register a series

14. Link the mainline branch for the series: 2.3 Series page

15. Create a 2.3 series milestone:

2.3 Series page → Create milestone: Name: 2.3.1

16. Link �xed and committed bugs to the milestone, if any exist:

Bugs page → Target to milestone

17. Create a 2.3 series release:

2.3 Series page → Create release

18. Make a new tarball:

tar -cavf ESyS-Particle-2.3.1.tar.gz --exclude-vcs *

19. Create a signature for the tarball:

gpg --armor --sign --detach-sig ESyS-Particle-2.3.1.tar.gz

• if no keys has been de�ned in the system, generate the keys by using:

gpg --gen-key

• and afterwards, the key would need to be uploaded to the server:

gpg --keyserver `hkp://keys.gnupg.net' --send keys <key-ids>

the key id can be found using: gpg --list-keys

20. Upload the new tarball and signature:

Milestone page → Add download �le

21

21. Change the 2.3 series status from �Active Development� to �Current Stable

Release�: 2.3 Series page

22. Change the status of bugs �xed for the release from �Fix Committed� to �Fix

Released�: Bugs page

Chapter 5

De�nitions and Concepts of

Parameters and How-Tos

A few notes on the de�nitions and concepts of some parameters used in one or both

of ESyS-Particle and GenGeo as well as How-To notes.

5.1 Masks

This is essentially a bitwise-mask that is applied to the particle tags. The default

value of -1 means that no mask is applied.

The way bitmasking works is that it masks the positions in the binary value.

For example, when the given mask is 1, it only selects those with a value of 1 in

the �rst position of the binary. And as such, will return tags with numbers 1, 3, 5,

7 and so on. Whereas when the given mask is 2, it selects those with value of 1 in

Binary Roman
1 0 0 1
0 1 0 2
1 1 0 3
0 0 1 4
1 0 1 5
0 1 1 6
1 1 1 7

(a) mask = -1

Binary Roman
1 0 0 1
0 1 0 2
1 1 0 3
0 0 1 4
1 0 1 5
0 1 1 6
1 1 1 7

(b) mask = 1

Binary Roman
1 0 0 1
0 1 0 2
1 1 0 3
0 0 1 4
1 0 1 5
0 1 1 6
1 1 1 7

(c) mask = 2

Table 5.1: Binary to Roman table

23

24CHAPTER 5. DEFINITIONS AND CONCEPTS OF PARAMETERS ANDHOW-TOS

the second position of the binary, thus returning the tags with numbers 2, 3, 6, 7

and so on. Table 5.1 shows the masked bits and the positions of the binary, giving

a clearer description of the process.

5.2 Dump2VTK

Converting ESyS-Particle's checkpointer output �les into VTK �les for viewing in

Paraview.

$ dump2vtk -i -o -t tini numsnap deltat [-list] [-bkrlist] [-t0]

[-sz] [-rxb] [-single_tag] [-rot] [-unwrap]

Options and their arguments 1:

• i: setup the CheckPointer fileNamePrefix, which should be equal to the �le-

NamePre�x de�ned in the CheckPointPrms class.

• o: setup the VTK output fileNamePrefix

• t: de�ne the initial recording time step (tini), the total number of snapshots

that you want to produce (numsnap) and the gap between two recording time

steps, i.e., the interval (in time steps) between two CheckPointer �les (deltat),

such that dump2vtk knows which CheckPointer �le to convert next.

• list: instead of constructing the list of input �les starting from the Check-

Pointer �leNamePre�x and from the arguments of the option -t, it takes as

input a list of �les

• brklist: not yet analyzed

• t0: not yet analyzed

• sz: take only a slice Z = constant

• rxb: not yet analyzed

• single_tag: not yet analyzed

• rot: �ag for indicating that the particles are rotational

1http://scientificandhpcomputing.blogspot.com.au/2009/07/dump2vtk-tips-tricks.

html

http://scientificandhpcomputing.blogspot.com.au/2009/07/dump2vtk-tips-tricks.html
http://scientificandhpcomputing.blogspot.com.au/2009/07/dump2vtk-tips-tricks.html

5.2. DUMP2VTK 25

For most usecases, with checkpointer �les that are in the format of: <CheckPointer

fileNamePrefix>_t=????_ID.txt

The following command will su�ce:

$ dump2vtk -i <CheckPointer fileNamePrefix > -o snaps_ -t 0 26 10000

-rot

Appendix A

Test Script

A.1 Main bash script

1 #!/bin/sh

A script that runs all the scripts to test ESys -Particle

installation

3

START=`date +%s`

5

python out2file.py w $1"-Test.txt" "# Testing build: "$1

7

if mpirun -np 2 '/home/jrahardjo/BUILD/esys -particle/install/bin/

esysparticle ' Scripts/bingle.py

9 then python out2file.py a $1"-Test.txt" "bingle.py pass"

else

11 python out2file.py a $1"-Test.txt" "bingle.py FAIL"

fi

13

if mpirun -np 2 '/home/jrahardjo/BUILD/esys -particle/install/bin/

esysparticle ' Scripts/bingle_output.py

15 then python out2file.py a $1"-Test.txt" "bingle_output.py pass"

else

17 python out2file.py a $1"-Test.txt" "bingle_output.py FAIL"

fi

19

if mpirun -np 2 '/home/jrahardjo/BUILD/esys -particle/install/bin/

esysparticle ' Scripts/bingle_chk.py

21 then python out2file.py a $1"-Test.txt" "bingle_chk.py pass"

else

23 python out2file.py a $1"-Test.txt" "bingle_chk.py FAIL"

fi

27

28 APPENDIX A. TEST SCRIPT

25 sh move_output_files.sh bingle_chk bingle_data_

27 if mpirun -np 2 '/home/jrahardjo/BUILD/esys -particle/install/bin/

esysparticle ' Scripts/bingle_vis.py

then python out2file.py a $1"-Test.txt" "bingle_vis.py pass"

29 else

python out2file.py a $1"-Test.txt" "bingle_vis.py FAIL"

31 fi

sh move_output_files.sh bingle_vis bingle_data_

33

if mpirun -np 2 '/home/jrahardjo/BUILD/esys -particle/install/bin/

esysparticle ' Scripts/gravity.py

35 then python out2file.py a $1"-Test.txt" "gravity.py pass"

else

37 python out2file.py a $1"-Test.txt" "gravity.py FAIL"

fi

39 sh move_output_files.sh gravity gravity_data

41 if mpirun -np 2 '/home/jrahardjo/BUILD/esys -particle/install/bin/

esysparticle ' Scripts/gravity_cube.py

then python out2file.py a $1"-Test.txt" "gravity_cube.py pass"

43 else

python out2file.py a $1"-Test.txt" "gravity_cube.py FAIL"

45 fi

sh move_output_files.sh gravity_cube gravity_data

47

if mpirun -np 2 '/home/jrahardjo/BUILD/esys -particle/install/bin/

esysparticle ' Scripts/slope_fail.py

49 then python out2file.py a $1"-Test.txt" "slope_fail.py pass"

else

51 python out2file.py a $1"-Test.txt" "slope_fail.py FAIL"

fi

53 sh move_output_files.sh slope_fail slope_data_

55 if mpirun -np 2 '/home/jrahardjo/BUILD/esys -particle/install/bin/

esysparticle ' Scripts/slope_friction.py

then python out2file.py a $1"-Test.txt" "slope_friction.py pass"

57 else

python out2file.py a $1"-Test.txt" "slope_friction.py FAIL"

59 fi

sh move_output_files.sh slope_friction slope_data_

61

if mpirun -np 2 '/home/jrahardjo/BUILD/esys -particle/install/bin/

esysparticle ' Scripts/slope_friction_floor.py

63 then python out2file.py a $1"-Test.txt" "slope_friction_floor.py

pass"

else

A.1. MAIN BASH SCRIPT 29

65 python out2file.py a $1"-Test.txt" "slope_friction_floor.py FAIL"

fi

67 sh move_output_files.sh slope_friction_floor slope_data_

69 if mpirun -np 2 '/home/jrahardjo/BUILD/esys -particle/install/bin/

esysparticle ' Scripts/slope_friction_walls.py

then python out2file.py a $1"-Test.txt" "slope_friction_walls.py

pass"

71 else

python out2file.py a $1"-Test.txt" "slope_friction_walls.py FAIL"

73 fi

sh move_output_files.sh slope_friction_walls slope_data_

75

if mpirun -np 2 '/home/jrahardjo/BUILD/esys -particle/install/bin/

esysparticle ' Scripts/hopper_flow.py

77 then python out2file.py a $1"-Test.txt" "hopper_flow.py pass"

else

79 python out2file.py a $1"-Test.txt" "hopper_flow.py FAIL"

fi

81 sh move_output_files.sh hopper_flow flow_data_

83 if mpirun -np 2 '/home/jrahardjo/BUILD/esys -particle/install/bin/

esysparticle ' Scripts/rot_compress.py

then python out2file.py a $1"-Test.txt" "rot_compress.py pass"

85 else

python out2file.py a $1"-Test.txt" "rot_compress.py FAIL"

87 fi

mkdir -p rot_compress

89 mv *.dat rot_compress

91 END=`date +%s`

ELAPSED=$(($END - $START))

93

python out2file.py a $1"-Test.txt" "Time consumed by testing: "

$ELAPSED" seconds"

30 APPENDIX A. TEST SCRIPT

A.2 Move output �les to folders

#!/bin/sh

2 # A script to move all the output files of a test script into a new

folder

4 mkdir -p $1

mv $2* $1 2>/dev/null

6 mv snap_* $1 2>/dev/null

A.3. OUTPUT TEST RESULT TO FILE 31

A.3 Output test result to �le

#!/usr/bin/env python

2 # A Python script used to write or append a line to a file given

the file name.

4 # Author: J. Rahardjo 2014

6 import sys

import os

8

def ensure_file_exists(filename = "output.txt"):

10 """ Checks if the file to be appended to exists. If not ,

Create the file in the root location

12 """

if not os.path.exists(filename):

14 f = open(filename , 'w')

f.write("# Test results file\n")

16 f.close ()

18 def append_to_file(string , filename = "output.txt"):

ensure_file_exists(filename)

20 f = open(filename , 'a')

f.write(string + "\n")

22 f.close ()

24 def write_to_file(string , filename = "output.txt"):

ensure_file_exists(filename)

26 f = open(filename , 'w')

f.write(string + "\n")

28 f.close ()

30 if __name__ == '__main__ ':

command = str(sys.argv [1])

32 filename = str(sys.argv [2])

string = str(sys.argv [3])

34 if(command == 'a'):

append_to_file(string , filename)

36 elif(command == 'w'):

write_to_file(string , filename)

38 else:

sys.exit("Command not recognized :\n" + \

40 "--- Please use 'a' to append or 'w' to write")

	Building ESyS-Particle
	Easy Install
	Guide to a source-build
	Building the dependencies
	Configuring and installing ESyS-Particle

	Testing the ESyS-Particle Build
	Tested Builds

	Problems found during build
	Problems with Python
	Not installing pip

	Problems with Boost
	Syntax error on bootstrap
	Can't find pyconfig.h on b2

	Problems with Povray
	Missing Makefile.in
	Missing thread library

	Problems with ESyS-Particle
	Warnings on Subdirectories
	Python library not found or Permission Errors??
	Python 3.x Naming conventions
	Cannot find boost/python.hpp
	Cannot find the flags to link with Boost Python
	*.Plo files not found
	Error on running script

	ESyS-Particle Release Steps
	Definitions and Concepts of Parameters and How-Tos
	Masks
	Dump2VTK

	Test Script
	Main bash script
	Move output files to folders
	Output test result to file

