~louis-simard-deactivatedaccount/scour/rework

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
# This software is OSI Certified Open Source Software.
# OSI Certified is a certification mark of the Open Source Initiative.
# 
# Copyright (c) 2006, Enthought, Inc.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
#  * Redistributions of source code must retain the above copyright notice, this
#    list of conditions and the following disclaimer.
#  * Redistributions in binary form must reproduce the above copyright notice,
#    this list of conditions and the following disclaimer in the documentation
#    and/or other materials provided with the distribution.
#  * Neither the name of Enthought, Inc. nor the names of its contributors may
#    be used to endorse or promote products derived from this software without
#    specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
# ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

""" Small hand-written recursive descent parser for SVG <path> data.


In [1]: from svg_regex import svg_parser

In [3]: svg_parser.parse('M 10,20 30,40V50 60 70')
Out[3]: [('M', [(10.0, 20.0), (30.0, 40.0)]), ('V', [50.0, 60.0, 70.0])]

In [4]: svg_parser.parse('M 0.6051.5')  # An edge case
Out[4]: [('M', [(0.60509999999999997, 0.5)])]

In [5]: svg_parser.parse('M 100-200')  # Another edge case
Out[5]: [('M', [(100.0, -200.0)])]
"""

import re
from decimal import *


# Sentinel.
class _EOF(object):
    def __repr__(self):
        return 'EOF'
EOF = _EOF()

lexicon = [
    ('float', r'[-\+]?(?:(?:[0-9]*\.[0-9]+)|(?:[0-9]+\.?))(?:[Ee][-\+]?[0-9]+)?'),
    ('int', r'[-\+]?[0-9]+'),
    ('command', r'[AaCcHhLlMmQqSsTtVvZz]'),
]


class Lexer(object):
    """ Break SVG path data into tokens.

    The SVG spec requires that tokens are greedy. This lexer relies on Python's
    regexes defaulting to greediness.

    This style of implementation was inspired by this article:

        http://www.gooli.org/blog/a-simple-lexer-in-python/
    """
    def __init__(self, lexicon):
        self.lexicon = lexicon
        parts = []
        for name, regex in lexicon:
            parts.append('(?P<%s>%s)' % (name, regex))
        self.regex_string = '|'.join(parts)
        self.regex = re.compile(self.regex_string)

    def lex(self, text):
        """ Yield (token_type, str_data) tokens.

        The last token will be (EOF, None) where EOF is the singleton object
        defined in this module.
        """
        for match in self.regex.finditer(text):
            for name, _ in self.lexicon:
                m = match.group(name)
                if m is not None:
                    yield (name, m)
                    break
        yield (EOF, None)

svg_lexer = Lexer(lexicon)


class SVGPathParser(object):
    """ Parse SVG <path> data into a list of commands.

    Each distinct command will take the form of a tuple (command, data). The
    `command` is just the character string that starts the command group in the
    <path> data, so 'M' for absolute moveto, 'm' for relative moveto, 'Z' for
    closepath, etc. The kind of data it carries with it depends on the command.
    For 'Z' (closepath), it's just None. The others are lists of individual
    argument groups. Multiple elements in these lists usually mean to repeat the
    command. The notable exception is 'M' (moveto) where only the first element
    is truly a moveto. The remainder are implicit linetos.

    See the SVG documentation for the interpretation of the individual elements
    for each command.

    The main method is `parse(text)`. It can only consume actual strings, not
    filelike objects or iterators.
    """

    def __init__(self, lexer=svg_lexer):
        self.lexer = lexer

        self.command_dispatch = {
            'Z': self.rule_closepath,
            'z': self.rule_closepath,
            'M': self.rule_moveto_or_lineto,
            'm': self.rule_moveto_or_lineto,
            'L': self.rule_moveto_or_lineto,
            'l': self.rule_moveto_or_lineto,
            'H': self.rule_orthogonal_lineto,
            'h': self.rule_orthogonal_lineto,
            'V': self.rule_orthogonal_lineto,
            'v': self.rule_orthogonal_lineto,
            'C': self.rule_curveto3,
            'c': self.rule_curveto3,
            'S': self.rule_curveto2,
            's': self.rule_curveto2,
            'Q': self.rule_curveto2,
            'q': self.rule_curveto2,
            'T': self.rule_curveto1,
            't': self.rule_curveto1,
            'A': self.rule_elliptical_arc,
            'a': self.rule_elliptical_arc,
        }

#        self.number_tokens = set(['int', 'float'])
        self.number_tokens = list(['int', 'float'])

    def parse(self, text):
        """ Parse a string of SVG <path> data.
        """
        next = self.lexer.lex(text).next
        token = next()
        return self.rule_svg_path(next, token)

    def rule_svg_path(self, next, token):
        commands = []
        while token[0] is not EOF:
            if token[0] != 'command':
                raise SyntaxError("expecting a command; got %r" % (token,))
            rule = self.command_dispatch[token[1]]
            command_group, token = rule(next, token)
            commands.append(command_group)
        return commands

    def rule_closepath(self, next, token):
        command = token[1]
        token = next()
        return (command, []), token

    def rule_moveto_or_lineto(self, next, token):
        command = token[1]
        token = next()
        coordinates = []
        while token[0] in self.number_tokens:
            pair, token = self.rule_coordinate_pair(next, token)
            coordinates.extend(pair)
        return (command, coordinates), token

    def rule_orthogonal_lineto(self, next, token):
        command = token[1]
        token = next()
        coordinates = []
        while token[0] in self.number_tokens:
            coord, token = self.rule_coordinate(next, token)
            coordinates.append(coord)
        return (command, coordinates), token

    def rule_curveto3(self, next, token):
        command = token[1]
        token = next()
        coordinates = []
        while token[0] in self.number_tokens:
            pair1, token = self.rule_coordinate_pair(next, token)
            pair2, token = self.rule_coordinate_pair(next, token)
            pair3, token = self.rule_coordinate_pair(next, token)
            coordinates.extend(pair1)
            coordinates.extend(pair2)
            coordinates.extend(pair3)
        return (command, coordinates), token

    def rule_curveto2(self, next, token):
        command = token[1]
        token = next()
        coordinates = []
        while token[0] in self.number_tokens:
            pair1, token = self.rule_coordinate_pair(next, token)
            pair2, token = self.rule_coordinate_pair(next, token)
            coordinates.extend(pair1)
            coordinates.extend(pair2)
        return (command, coordinates), token

    def rule_curveto1(self, next, token):
        command = token[1]
        token = next()
        coordinates = []
        while token[0] in self.number_tokens:
            pair1, token = self.rule_coordinate_pair(next, token)
            coordinates.extend(pair1)
        return (command, coordinates), token

    def rule_elliptical_arc(self, next, token):
        command = token[1]
        token = next()
        arguments = []
        while token[0] in self.number_tokens:
            rx = Decimal(token[1]) * 1
            if rx < 0.0:
                raise SyntaxError("expecting a nonnegative number; got %r" % (token,))

            token = next()
            if token[0] not in self.number_tokens:
                raise SyntaxError("expecting a number; got %r" % (token,))
            ry = Decimal(token[1]) * 1
            if ry < 0.0:
                raise SyntaxError("expecting a nonnegative number; got %r" % (token,))

            token = next()
            if token[0] not in self.number_tokens:
                raise SyntaxError("expecting a number; got %r" % (token,))
            axis_rotation = Decimal(token[1]) * 1

            token = next()
            if token[1] not in ('0', '1'):
                raise SyntaxError("expecting a boolean flag; got %r" % (token,))
            large_arc_flag = Decimal(token[1]) * 1

            token = next()
            if token[1] not in ('0', '1'):
                raise SyntaxError("expecting a boolean flag; got %r" % (token,))
            sweep_flag = Decimal(token[1]) * 1

            token = next()
            if token[0] not in self.number_tokens:
                raise SyntaxError("expecting a number; got %r" % (token,))
            x = Decimal(token[1]) * 1

            token = next()
            if token[0] not in self.number_tokens:
                raise SyntaxError("expecting a number; got %r" % (token,))
            y = Decimal(token[1]) * 1

            token = next()
            arguments.extend([rx, ry, axis_rotation, large_arc_flag, sweep_flag, x, y])

        return (command, arguments), token

    def rule_coordinate(self, next, token):
        if token[0] not in self.number_tokens:
            raise SyntaxError("expecting a number; got %r" % (token,))
        x = Decimal(token[1]) * 1
        token = next()
        return x, token


    def rule_coordinate_pair(self, next, token):
        # Inline these since this rule is so common.
        if token[0] not in self.number_tokens:
            raise SyntaxError("expecting a number; got %r" % (token,))
        x = Decimal(token[1]) * 1
        token = next()
        if token[0] not in self.number_tokens:
            raise SyntaxError("expecting a number; got %r" % (token,))
        y = Decimal(token[1]) * 1
        token = next()
        return [x, y], token


svg_parser = SVGPathParser()