~louis/ubuntu/trusty/clamav/lp799623_fix_logrotate

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
//===- ARMScheduleV6.td - ARM v6 Scheduling Definitions ----*- tablegen -*-===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This file defines the itinerary class data for the ARM v6 processors.
//
//===----------------------------------------------------------------------===//

// Model based on ARM1176
//
// Scheduling information derived from "ARM1176JZF-S Technical Reference Manual".
//
def ARMV6Itineraries : ProcessorItineraries<[
  //
  // No operand cycles
  InstrItinData<IIC_iALUx    , [InstrStage<1, [FU_Pipe0]>]>,
  //
  // Binary Instructions that produce a result
  InstrItinData<IIC_iALUi    , [InstrStage<1, [FU_Pipe0]>], [2, 2]>,
  InstrItinData<IIC_iALUr    , [InstrStage<1, [FU_Pipe0]>], [2, 2, 2]>,
  InstrItinData<IIC_iALUsi   , [InstrStage<1, [FU_Pipe0]>], [2, 2, 1]>,
  InstrItinData<IIC_iALUsr   , [InstrStage<2, [FU_Pipe0]>], [3, 3, 2, 1]>,
  //
  // Unary Instructions that produce a result
  InstrItinData<IIC_iUNAr    , [InstrStage<1, [FU_Pipe0]>], [2, 2]>,
  InstrItinData<IIC_iUNAsi   , [InstrStage<1, [FU_Pipe0]>], [2, 1]>,
  InstrItinData<IIC_iUNAsr   , [InstrStage<2, [FU_Pipe0]>], [3, 2, 1]>,
  //
  // Compare instructions
  InstrItinData<IIC_iCMPi    , [InstrStage<1, [FU_Pipe0]>], [2]>,
  InstrItinData<IIC_iCMPr    , [InstrStage<1, [FU_Pipe0]>], [2, 2]>,
  InstrItinData<IIC_iCMPsi   , [InstrStage<1, [FU_Pipe0]>], [2, 1]>,
  InstrItinData<IIC_iCMPsr   , [InstrStage<2, [FU_Pipe0]>], [3, 2, 1]>,
  //
  // Move instructions, unconditional
  InstrItinData<IIC_iMOVi    , [InstrStage<1, [FU_Pipe0]>], [2]>,
  InstrItinData<IIC_iMOVr    , [InstrStage<1, [FU_Pipe0]>], [2, 2]>,
  InstrItinData<IIC_iMOVsi   , [InstrStage<1, [FU_Pipe0]>], [2, 1]>,
  InstrItinData<IIC_iMOVsr   , [InstrStage<2, [FU_Pipe0]>], [3, 2, 1]>,
  //
  // Move instructions, conditional
  InstrItinData<IIC_iCMOVi   , [InstrStage<1, [FU_Pipe0]>], [3]>,
  InstrItinData<IIC_iCMOVr   , [InstrStage<1, [FU_Pipe0]>], [3, 2]>,
  InstrItinData<IIC_iCMOVsi  , [InstrStage<1, [FU_Pipe0]>], [3, 1]>,
  InstrItinData<IIC_iCMOVsr  , [InstrStage<1, [FU_Pipe0]>], [4, 2, 1]>,

  // Integer multiply pipeline
  //
  InstrItinData<IIC_iMUL16   , [InstrStage<1, [FU_Pipe0]>], [4, 1, 1]>,
  InstrItinData<IIC_iMAC16   , [InstrStage<1, [FU_Pipe0]>], [4, 1, 1, 2]>,
  InstrItinData<IIC_iMUL32   , [InstrStage<2, [FU_Pipe0]>], [5, 1, 1]>,
  InstrItinData<IIC_iMAC32   , [InstrStage<2, [FU_Pipe0]>], [5, 1, 1, 2]>,
  InstrItinData<IIC_iMUL64   , [InstrStage<3, [FU_Pipe0]>], [6, 1, 1]>,
  InstrItinData<IIC_iMAC64   , [InstrStage<3, [FU_Pipe0]>], [6, 1, 1, 2]>,
  
  // Integer load pipeline
  //
  // Immediate offset
  InstrItinData<IIC_iLoadi   , [InstrStage<1, [FU_Pipe0]>], [4, 1]>,
  //
  // Register offset
  InstrItinData<IIC_iLoadr   , [InstrStage<1, [FU_Pipe0]>], [4, 1, 1]>,
  //
  // Scaled register offset, issues over 2 cycles
  InstrItinData<IIC_iLoadsi  , [InstrStage<2, [FU_Pipe0]>], [5, 2, 1]>,
  //
  // Immediate offset with update
  InstrItinData<IIC_iLoadiu  , [InstrStage<1, [FU_Pipe0]>], [4, 2, 1]>,
  //
  // Register offset with update
  InstrItinData<IIC_iLoadru  , [InstrStage<1, [FU_Pipe0]>], [4, 2, 1, 1]>,
  //
  // Scaled register offset with update, issues over 2 cycles
  InstrItinData<IIC_iLoadsiu , [InstrStage<2, [FU_Pipe0]>], [5, 2, 2, 1]>,

  //
  // Load multiple
  InstrItinData<IIC_iLoadm   , [InstrStage<3, [FU_Pipe0]>]>,

  // Integer store pipeline
  //
  // Immediate offset
  InstrItinData<IIC_iStorei  , [InstrStage<1, [FU_Pipe0]>], [2, 1]>,
  //
  // Register offset
  InstrItinData<IIC_iStorer  , [InstrStage<1, [FU_Pipe0]>], [2, 1, 1]>,

  //
  // Scaled register offset, issues over 2 cycles
  InstrItinData<IIC_iStoresi , [InstrStage<2, [FU_Pipe0]>], [2, 2, 1]>,
  //
  // Immediate offset with update
  InstrItinData<IIC_iStoreiu , [InstrStage<1, [FU_Pipe0]>], [2, 2, 1]>,
  //
  // Register offset with update
  InstrItinData<IIC_iStoreru , [InstrStage<1, [FU_Pipe0]>], [2, 2, 1, 1]>,
  //
  // Scaled register offset with update, issues over 2 cycles
  InstrItinData<IIC_iStoresiu, [InstrStage<2, [FU_Pipe0]>], [2, 2, 2, 1]>,
  //
  // Store multiple
  InstrItinData<IIC_iStorem   , [InstrStage<3, [FU_Pipe0]>]>,
  
  // Branch
  //
  // no delay slots, so the latency of a branch is unimportant
  InstrItinData<IIC_Br      , [InstrStage<1, [FU_Pipe0]>]>,

  // VFP
  // Issue through integer pipeline, and execute in NEON unit. We assume
  // RunFast mode so that NFP pipeline is used for single-precision when
  // possible.
  //
  // FP Special Register to Integer Register File Move
  InstrItinData<IIC_fpSTAT , [InstrStage<1, [FU_Pipe0]>], [3]>,
  //
  // Single-precision FP Unary
  InstrItinData<IIC_fpUNA32 , [InstrStage<1, [FU_Pipe0]>], [5, 2]>,
  //
  // Double-precision FP Unary
  InstrItinData<IIC_fpUNA64 , [InstrStage<1, [FU_Pipe0]>], [5, 2]>,
  //
  // Single-precision FP Compare
  InstrItinData<IIC_fpCMP32 , [InstrStage<1, [FU_Pipe0]>], [2, 2]>,
  //
  // Double-precision FP Compare
  InstrItinData<IIC_fpCMP64 , [InstrStage<1, [FU_Pipe0]>], [2, 2]>,
  //
  // Single to Double FP Convert
  InstrItinData<IIC_fpCVTSD , [InstrStage<1, [FU_Pipe0]>], [5, 2]>,
  //
  // Double to Single FP Convert
  InstrItinData<IIC_fpCVTDS , [InstrStage<1, [FU_Pipe0]>], [5, 2]>,
  //
  // Single-Precision FP to Integer Convert
  InstrItinData<IIC_fpCVTSI , [InstrStage<1, [FU_Pipe0]>], [9, 2]>,
  //
  // Double-Precision FP to Integer Convert
  InstrItinData<IIC_fpCVTDI , [InstrStage<1, [FU_Pipe0]>], [9, 2]>,
  //
  // Integer to Single-Precision FP Convert
  InstrItinData<IIC_fpCVTIS , [InstrStage<1, [FU_Pipe0]>], [9, 2]>,
  //
  // Integer to Double-Precision FP Convert
  InstrItinData<IIC_fpCVTID , [InstrStage<1, [FU_Pipe0]>], [9, 2]>,
  //
  // Single-precision FP ALU
  InstrItinData<IIC_fpALU32 , [InstrStage<1, [FU_Pipe0]>], [9, 2, 2]>,
  //
  // Double-precision FP ALU
  InstrItinData<IIC_fpALU64 , [InstrStage<1, [FU_Pipe0]>], [9, 2, 2]>,
  //
  // Single-precision FP Multiply
  InstrItinData<IIC_fpMUL32 , [InstrStage<1, [FU_Pipe0]>], [9, 2, 2]>,
  //
  // Double-precision FP Multiply
  InstrItinData<IIC_fpMUL64 , [InstrStage<2, [FU_Pipe0]>], [9, 2, 2]>,
  //
  // Single-precision FP MAC
  InstrItinData<IIC_fpMAC32 , [InstrStage<1, [FU_Pipe0]>], [9, 2, 2, 2]>,
  //
  // Double-precision FP MAC
  InstrItinData<IIC_fpMAC64 , [InstrStage<2, [FU_Pipe0]>], [9, 2, 2, 2]>,
  //
  // Single-precision FP DIV
  InstrItinData<IIC_fpDIV32 , [InstrStage<15, [FU_Pipe0]>], [20, 2, 2]>,
  //
  // Double-precision FP DIV
  InstrItinData<IIC_fpDIV64 , [InstrStage<29, [FU_Pipe0]>], [34, 2, 2]>,
  //
  // Single-precision FP SQRT
  InstrItinData<IIC_fpSQRT32 , [InstrStage<15, [FU_Pipe0]>], [20, 2, 2]>,
  //
  // Double-precision FP SQRT
  InstrItinData<IIC_fpSQRT64 , [InstrStage<29, [FU_Pipe0]>], [34, 2, 2]>,
  //
  // Single-precision FP Load
  InstrItinData<IIC_fpLoad32 , [InstrStage<1, [FU_Pipe0]>], [5, 2, 2]>,
  //
  // Double-precision FP Load
  InstrItinData<IIC_fpLoad64 , [InstrStage<1, [FU_Pipe0]>], [5, 2, 2]>,
  //
  // FP Load Multiple
  InstrItinData<IIC_fpLoadm , [InstrStage<3, [FU_Pipe0]>]>,
  //
  // Single-precision FP Store
  InstrItinData<IIC_fpStore32 , [InstrStage<1, [FU_Pipe0]>], [2, 2, 2]>,
  //
  // Double-precision FP Store
  // use FU_Issue to enforce the 1 load/store per cycle limit
  InstrItinData<IIC_fpStore64 , [InstrStage<1, [FU_Pipe0]>], [2, 2, 2]>,
  //
  // FP Store Multiple
  InstrItinData<IIC_fpStorem , [InstrStage<3, [FU_Pipe0]>]>
]>;