~maddevelopers/mg5amcnlo/2.5.3_lep

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
      subroutine j3xxxx(fi,fo,gaf,gzf,zmass,zwidth , j3)
c
c This subroutine computes the sum of photon and Z currents with the
c suitable weights ( j(W3) = cos(theta_W) j(Z) + sin(theta_W) j(A) ).
c The output j3 is useful as an input of vvvxxx, jvvxxx or w3w3xx.
c The photon propagator is given in Feynman gauge, and the Z propagator
c is given in unitary gauge.
c
c input:
c       complex fi(6)          : flow-in  fermion                   |fi>
c       complex fo(6)          : flow-out fermion                   <fo|
c       complex gaf(2)         : fi couplings with A                 gaf
c       complex gzf(2)         : fi couplings with Z                 gzf
c       real    zmass          : mass  of Z
c       real    zwidth         : width of Z
c
c output:
c       complex j3(6)          : W3 current             j^mu(<fo|w3|fi>)
c     
      implicit none
      double complex fi(6),fo(6),j3(6),gaf(2),gzf(2)
      double complex c0l,c1l,c2l,c3l,csl,c0r,c1r,c2r,c3r,csr,dz,ddif
      double complex gn,gz3l,ga3l
      double complex cm2  ! mass**2- I Gamma mass (Fabio)
      double precision q(0:3),zmass,zwidth,zm2,zmw
      double precision q2,da,ww,cw,sw

      double precision rZero, rOne
      parameter( rZero = 0.0d0, rOne = 1.0d0 )
      double complex cImag, cZero
      parameter( cImag = ( 0.0d0, 1.0d0 ), cZero = ( 0.0d0, 0.0d0 ) )

#ifdef HELAS_CHECK
      integer stdo
      parameter( stdo = 6 )
#endif
c
#ifdef HELAS_CHECK
      if ( abs(fi(1))+abs(fi(2))+abs(fi(3))+abs(fi(4)).eq.rZero ) then
         write(stdo,*) ' helas-warn  : fi in j3xxxx is zero spinor'
      endif
      if ( abs(fi(5))+abs(fi(6)).eq.rZero ) then
         write(stdo,*)
     &        ' helas-error : fi in j3xxxx has zero momentum'
      endif
      if ( abs(fo(1))+abs(fo(2))+abs(fo(3))+abs(fo(4)).eq.rZero ) then
         write(stdo,*) ' helas-warn  : fo in j3xxxx is zero spinor'
      endif
      if ( abs(fo(5))+abs(fo(6)).eq.rZero ) then
         write(stdo,*)
     &        ' helas-error : fo in j3xxxx has zero momentum'
      endif
      if ( gaf(1).eq.cZero .and. gaf(2).eq.cZero ) then
         write(stdo,*)
     &        ' helas-error : gaf in j3xxxx is zero coupling'
      endif
      if ( gzf(1).eq.cZero .and. gzf(2).eq.cZero ) then
         write(stdo,*)
     &        ' helas-error : gzf in j3xxxx is zero coupling'
      endif
      if ( gaf(1).ne.gaf(2) ) then
         write(stdo,*)
     &        ' helas-warn  : gaf in j3xxxx is non-standard coupling'
         write(stdo,*) 
     &        '             : gaf = ( ',gaf(1),gaf(2),' )'
      endif
      if ( abs(gzf(1))*abs(gzf(2)).gt.rZero .or.
     &     abs(gzf(1)).le.abs(gzf(2))           ) then
         write(stdo,*)
     &        ' helas-warn  : gzf in j3xxxx is non-standard coupling'
         write(stdo,*) 
     &        '             : gzf = ( ',gzf(1),gzf(2),' )'
      endif
      if ( zmass.le.rZero ) then
         write(stdo,*) ' helas-error : zmass in j3xxxx is not positive'
         write(stdo,*) '             : zmass = ',zmass
      endif
      if ( zwidth.lt.rZero ) then
         write(stdo,*) ' helas-error : zwidth in j3xxxx is negative'
         write(stdo,*) '             : zwidth = ',zwidth
      endif
#endif

      j3(5) = fo(5)-fi(5)
      j3(6) = fo(6)-fi(6)

      q(0) = -dble( j3(5))
      q(1) = -dble( j3(6))
      q(2) = -dimag(j3(6))
      q(3) = -dimag(j3(5))
      q2 = q(0)**2-(q(1)**2+q(2)**2+q(3)**2)
      zm2 = zmass**2
      zmw = zmass*zwidth

#ifdef HELAS_CHECK
      if ( abs(j3(5))+abs(j3(6)).eq.rZero ) then
         write(stdo,*)
     &        ' helas-error : j3 in j3xxxx has zero momentum'
      endif
      if ( q2.eq.rZero ) then
         write(stdo,*)
     &        ' helas-error : j3 in j3xxxx is on photon pole'
         write(stdo,*)
     &        '             : q = ',q(0),q(1),q(2),q(3)
         j3(1) = cZero
         j3(2) = cZero
         j3(3) = cZero
         j3(4) = cZero
         return
      endif
      if ( zwidth.eq.rZero .and. q2.eq.zm2 ) then
         write(stdo,*) ' helas-error : j3 in j3xxxx is on z pole'
         write(stdo,*) '             : q        = ',q(0),q(1),q(2),q(3)
         write(stdo,*) '             : abs(q**2)= ',sqrt(abs(q2))
         j3(1) = cZero
         j3(2) = cZero
         j3(3) = cZero
         j3(4) = cZero
         return
      endif
#endif

      da = rOne/q2
C      ww = max(dsign(zmw,q2), rZero)
      dz = rOne/dcmplx( q2-zm2, zmw )
      ddif = dcmplx( -zm2, zmw )*da*dz

c ddif is the difference : ddif=da-dz
c  For the running width, use below instead of the above ww,dz and ddif.
c      ww = max( zwidth*q2/zmass, rZero )
c      dz = rOne/dcmplx( q2-zm2, zmw )
c      ddif = dcmplx( -zm2, zmw )*da*dz



      cw = rOne/sqrt(rOne+(gzf(2)/gaf(2))**2)
      sw = sqrt((rOne-cw)*(rOne+cw))
      gn = gaf(2)*sw
      gz3l = gzf(1)*cw
      ga3l = gaf(1)*sw
      c0l =   fo(3)*fi(1)+fo(4)*fi(2)
      c0r =   fo(1)*fi(3)+fo(2)*fi(4)
      c1l = -(fo(3)*fi(2)+fo(4)*fi(1))
      c1r =   fo(1)*fi(4)+fo(2)*fi(3)
      c2l =  (fo(3)*fi(2)-fo(4)*fi(1))*cImag
      c2r = (-fo(1)*fi(4)+fo(2)*fi(3))*cImag
      c3l =  -fo(3)*fi(1)+fo(4)*fi(2)
      c3r =   fo(1)*fi(3)-fo(2)*fi(4)

c     Fabio's implementation of the fixed width
      cm2=dcmplx( zm2, -zmw )
c     csl = (q(0)*c0l-q(1)*c1l-q(2)*c2l-q(3)*c3l)/zm2
c     csr = (q(0)*c0r-q(1)*c1r-q(2)*c2r-q(3)*c3r)/zm2
      csl = (q(0)*c0l-q(1)*c1l-q(2)*c2l-q(3)*c3l)/cm2
      csr = (q(0)*c0r-q(1)*c1r-q(2)*c2r-q(3)*c3r)/cm2
      
      j3(1) =  gz3l*dz*(c0l-csl*q(0))+ga3l*c0l*da
     &       + gn*(c0r*ddif+csr*q(0)*dz)
      j3(2) =  gz3l*dz*(c1l-csl*q(1))+ga3l*c1l*da
     &       + gn*(c1r*ddif+csr*q(1)*dz)
      j3(3) =  gz3l*dz*(c2l-csl*q(2))+ga3l*c2l*da
     &       + gn*(c2r*ddif+csr*q(2)*dz)
      j3(4) =  gz3l*dz*(c3l-csl*q(3))+ga3l*c3l*da
     &       + gn*(c3r*ddif+csr*q(3)*dz)
c
      return
      end