~maddevelopers/mg5amcnlo/2.6.5_ewa

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
      MODULE POLYNOMIAL_CONSTANTS
      IMPLICIT NONE
      INCLUDE 'coef_specs.inc'
      INCLUDE 'loop_max_coefs.inc'

C     Map associating a rank to each coefficient position
      INTEGER COEFTORANK_MAP(0:LOOPMAXCOEFS-1)
      DATA COEFTORANK_MAP(0:0)/1*0/
      DATA COEFTORANK_MAP(1:4)/4*1/
      DATA COEFTORANK_MAP(5:14)/10*2/

C     Map defining the number of coefficients for a symmetric tensor
C      of a given rank
      INTEGER NCOEF_R(0:2)
      DATA NCOEF_R/1,5,15/

C     Map defining the coef position resulting from the multiplication
C      of two lower rank coefs.
      INTEGER COMB_COEF_POS(0:LOOPMAXCOEFS-1,0:4)
      DATA COMB_COEF_POS(  0,  0:  4) /  0,  1,  2,  3,  4/
      DATA COMB_COEF_POS(  1,  0:  4) /  1,  5,  6,  8, 11/
      DATA COMB_COEF_POS(  2,  0:  4) /  2,  6,  7,  9, 12/
      DATA COMB_COEF_POS(  3,  0:  4) /  3,  8,  9, 10, 13/
      DATA COMB_COEF_POS(  4,  0:  4) /  4, 11, 12, 13, 14/
      DATA COMB_COEF_POS(  5,  0:  4) /  5, 15, 16, 19, 25/
      DATA COMB_COEF_POS(  6,  0:  4) /  6, 16, 17, 20, 26/
      DATA COMB_COEF_POS(  7,  0:  4) /  7, 17, 18, 21, 27/
      DATA COMB_COEF_POS(  8,  0:  4) /  8, 19, 20, 22, 28/
      DATA COMB_COEF_POS(  9,  0:  4) /  9, 20, 21, 23, 29/
      DATA COMB_COEF_POS( 10,  0:  4) / 10, 22, 23, 24, 30/
      DATA COMB_COEF_POS( 11,  0:  4) / 11, 25, 26, 28, 31/
      DATA COMB_COEF_POS( 12,  0:  4) / 12, 26, 27, 29, 32/
      DATA COMB_COEF_POS( 13,  0:  4) / 13, 28, 29, 30, 33/
      DATA COMB_COEF_POS( 14,  0:  4) / 14, 31, 32, 33, 34/

      END MODULE POLYNOMIAL_CONSTANTS


C     THE SUBROUTINE TO CREATE THE COEFFICIENTS FROM LAST LOOP WF AND 
C     MULTIPLY BY THE BORN

      SUBROUTINE CREATE_LOOP_COEFS(LOOP_WF,RANK,LCUT_SIZE
     $ ,LOOP_GROUP_NUMBER,SYMFACT,MULTIPLIER,COLOR_ID,HELCONFIG)
      USE POLYNOMIAL_CONSTANTS
      IMPLICIT NONE
C     
C     CONSTANTS 
C     
      INTEGER NBORNAMPS
      PARAMETER (NBORNAMPS=1)
      REAL*8 ZERO,ONE
      PARAMETER (ZERO=0.0D0,ONE=1.0D0)
      COMPLEX*16 IMAG1
      PARAMETER (IMAG1=(ZERO,ONE))
      COMPLEX*16 CMPLX_ZERO
      PARAMETER (CMPLX_ZERO=(ZERO,ZERO))
      INTEGER    NCOLORROWS
      PARAMETER (NCOLORROWS=2)
      INTEGER    NLOOPGROUPS
      PARAMETER (NLOOPGROUPS=1)
      INTEGER    NCOMB
      PARAMETER (NCOMB=12)
C     These are constants related to the split orders
      INTEGER    NSO, NSQUAREDSO, NAMPSO
      PARAMETER (NSO=1, NSQUAREDSO=1, NAMPSO=2)
C     
C     ARGUMENTS 
C     
      COMPLEX*16 LOOP_WF(MAXLWFSIZE,0:LOOPMAXCOEFS-1,MAXLWFSIZE)
      INTEGER RANK, COLOR_ID, SYMFACT, MULTIPLIER, LCUT_SIZE,
     $  HELCONFIG, LOOP_GROUP_NUMBER
C     
C     LOCAL VARIABLES 
C     
      COMPLEX*16 CFTOT
      COMPLEX*16 CONST(NAMPSO)
      INTEGER I,J
C     
C     FUNCTIONS
C     
      INTEGER ML5SOINDEX_FOR_BORN_AMP, ML5SOINDEX_FOR_LOOP_AMP,
     $  ML5SQSOINDEX
C     
C     GLOBAL VARIABLES
C     
      INTEGER CF_D(NCOLORROWS,NBORNAMPS)
      INTEGER CF_N(NCOLORROWS,NBORNAMPS)
      COMMON/CF/CF_D,CF_N

      LOGICAL CHECKPHASE
      LOGICAL HELDOUBLECHECKED
      COMMON/INIT/CHECKPHASE, HELDOUBLECHECKED

      INTEGER HELOFFSET
      INTEGER GOODHEL(NCOMB)
      LOGICAL GOODAMP(NSQUAREDSO,NLOOPGROUPS)
      COMMON/FILTERS/GOODAMP,GOODHEL,HELOFFSET

      COMPLEX*16 LOOPCOEFS(0:LOOPMAXCOEFS-1,NSQUAREDSO,NLOOPGROUPS)
      COMMON/LCOEFS/LOOPCOEFS

      INTEGER HELPICKED
      COMMON/HELCHOICE/HELPICKED

      COMPLEX*16 AMP(NBORNAMPS)
      COMMON/AMPS/AMP

      DO I=1,NAMPSO
        CONST(I)=CMPLX_ZERO
      ENDDO

      DO I=1,NBORNAMPS
        CFTOT=CMPLX(CF_N(COLOR_ID,I)/(ONE*ABS(CF_D(COLOR_ID,I))),ZERO
     $   ,KIND=8)
        IF(CF_D(COLOR_ID,I).LT.0) CFTOT=CFTOT*IMAG1
        CONST(ML5SOINDEX_FOR_BORN_AMP(I))
     $   =CONST(ML5SOINDEX_FOR_BORN_AMP(I))+CFTOT*CONJG(AMP(I))
      ENDDO

      DO I=1,NAMPSO
        IF (CONST(I).NE.CMPLX_ZERO) THEN
          CONST(I)=(CONST(I)*MULTIPLIER)/SYMFACT
          IF (.NOT.CHECKPHASE.AND.HELDOUBLECHECKED.AND.HELPICKED.EQ.-1)
     $      THEN
            CONST(I)=CONST(I)*GOODHEL(HELCONFIG)
          ENDIF
          CALL MERGE_WL(LOOP_WF,RANK,LCUT_SIZE,CONST(I),LOOPCOEFS(0
     $     ,ML5SQSOINDEX(I,ML5SOINDEX_FOR_LOOP_AMP(COLOR_ID))
     $     ,LOOP_GROUP_NUMBER))
        ENDIF
      ENDDO

      END

      SUBROUTINE INVERT_MOMENTA_IN_POLYNOMIAL(NCOEFS,POLYNOMIAL)
C     Just a handy subroutine to modify the coefficients for the
C     tranformation q_loop -> -q_loop
C     It is only used for the NINJA interface
      USE POLYNOMIAL_CONSTANTS
      IMPLICIT NONE

      INTEGER I, NCOEFS

      COMPLEX*16 POLYNOMIAL(0:NCOEFS-1)

      DO I=0,NCOEFS-1
        IF (MOD(COEFTORANK_MAP(I),2).EQ.1) THEN
          POLYNOMIAL(I)=-POLYNOMIAL(I)
        ENDIF
      ENDDO

      END

C     Now the routines to update the wavefunctions



C     THE SUBROUTINE TO CREATE THE COEFFICIENTS FROM LAST LOOP WF AND 
C     MULTIPLY BY THE BORN

      SUBROUTINE MP_CREATE_LOOP_COEFS(LOOP_WF,RANK,LCUT_SIZE
     $ ,LOOP_GROUP_NUMBER,SYMFACT,MULTIPLIER,COLOR_ID,HELCONFIG)
      USE POLYNOMIAL_CONSTANTS
      IMPLICIT NONE
C     
C     CONSTANTS 
C     
      INTEGER NBORNAMPS
      PARAMETER (NBORNAMPS=1)
      REAL*16 ZERO,ONE
      PARAMETER (ZERO=0.0E0_16,ONE=1.0E0_16)
      COMPLEX*32 IMAG1
      PARAMETER (IMAG1=(ZERO,ONE))
      COMPLEX*32 CMPLX_ZERO
      PARAMETER (CMPLX_ZERO=(ZERO,ZERO))
      INTEGER    NCOLORROWS
      PARAMETER (NCOLORROWS=2)
      INTEGER    NLOOPGROUPS
      PARAMETER (NLOOPGROUPS=1)
      INTEGER    NCOMB
      PARAMETER (NCOMB=12)
C     These are constants related to the split orders
      INTEGER    NSO, NSQUAREDSO, NAMPSO
      PARAMETER (NSO=1, NSQUAREDSO=1, NAMPSO=2)
C     
C     ARGUMENTS 
C     
      COMPLEX*32 LOOP_WF(MAXLWFSIZE,0:LOOPMAXCOEFS-1,MAXLWFSIZE)
      INTEGER RANK, COLOR_ID, SYMFACT, MULTIPLIER, LCUT_SIZE,
     $  HELCONFIG, LOOP_GROUP_NUMBER
C     
C     LOCAL VARIABLES 
C     
      COMPLEX*32 CFTOT
      COMPLEX*32 CONST(NAMPSO)
      INTEGER I,J
C     
C     FUNCTIONS
C     
      INTEGER ML5SOINDEX_FOR_BORN_AMP, ML5SOINDEX_FOR_LOOP_AMP,
     $  ML5SQSOINDEX
C     
C     GLOBAL VARIABLES
C     
      INTEGER CF_D(NCOLORROWS,NBORNAMPS)
      INTEGER CF_N(NCOLORROWS,NBORNAMPS)
      COMMON/CF/CF_D,CF_N

      LOGICAL CHECKPHASE
      LOGICAL HELDOUBLECHECKED
      COMMON/INIT/CHECKPHASE, HELDOUBLECHECKED

      INTEGER HELOFFSET
      INTEGER GOODHEL(NCOMB)
      LOGICAL GOODAMP(NSQUAREDSO,NLOOPGROUPS)
      COMMON/FILTERS/GOODAMP,GOODHEL,HELOFFSET

      COMPLEX*32 LOOPCOEFS(0:LOOPMAXCOEFS-1,NSQUAREDSO,NLOOPGROUPS)
      COMMON/MP_LCOEFS/LOOPCOEFS

      INTEGER HELPICKED
      COMMON/HELCHOICE/HELPICKED

      COMPLEX*32 AMP(NBORNAMPS)
      COMMON/MP_AMPS/AMP

      DO I=1,NAMPSO
        CONST(I)=CMPLX_ZERO
      ENDDO

      DO I=1,NBORNAMPS
        CFTOT=CMPLX(CF_N(COLOR_ID,I)/(ONE*ABS(CF_D(COLOR_ID,I))),ZERO
     $   ,KIND=16)
        IF(CF_D(COLOR_ID,I).LT.0) CFTOT=CFTOT*IMAG1
        CONST(ML5SOINDEX_FOR_BORN_AMP(I))
     $   =CONST(ML5SOINDEX_FOR_BORN_AMP(I))+CFTOT*CONJG(AMP(I))
      ENDDO

      DO I=1,NAMPSO
        IF (CONST(I).NE.CMPLX_ZERO) THEN
          CONST(I)=(CONST(I)*MULTIPLIER)/SYMFACT
          IF (.NOT.CHECKPHASE.AND.HELDOUBLECHECKED.AND.HELPICKED.EQ.-1)
     $      THEN
            CONST(I)=CONST(I)*GOODHEL(HELCONFIG)
          ENDIF
          CALL MP_MERGE_WL(LOOP_WF,RANK,LCUT_SIZE,CONST(I),LOOPCOEFS(0
     $     ,ML5SQSOINDEX(I,ML5SOINDEX_FOR_LOOP_AMP(COLOR_ID))
     $     ,LOOP_GROUP_NUMBER))
        ENDIF
      ENDDO

      END

      SUBROUTINE MP_INVERT_MOMENTA_IN_POLYNOMIAL(NCOEFS,POLYNOMIAL)
C     Just a handy subroutine to modify the coefficients for the
C     tranformation q_loop -> -q_loop
C     It is only used for the NINJA interface
      USE POLYNOMIAL_CONSTANTS
      IMPLICIT NONE

      INTEGER I, NCOEFS

      COMPLEX*32 POLYNOMIAL(0:NCOEFS-1)

      DO I=0,NCOEFS-1
        IF (MOD(COEFTORANK_MAP(I),2).EQ.1) THEN
          POLYNOMIAL(I)=-POLYNOMIAL(I)
        ENDIF
      ENDDO

      END

C     Now the routines to update the wavefunctions



      SUBROUTINE EVAL_POLY(C,R,Q,OUT)
      USE POLYNOMIAL_CONSTANTS
      COMPLEX*16 C(0:LOOPMAXCOEFS-1)
      INTEGER R
      COMPLEX*16 Q(0:3)
      COMPLEX*16 OUT

      OUT=C(0)
      IF (R.GE.1) THEN
        OUT=OUT+C(1)*Q(0)+C(2)*Q(1)+C(3)*Q(2)+C(4)*Q(3)
      ENDIF
      IF (R.GE.2) THEN
        OUT=OUT+C(5)*Q(0)*Q(0)+C(6)*Q(0)*Q(1)+C(7)*Q(1)*Q(1)+C(8)*Q(0)
     $   *Q(2)+C(9)*Q(1)*Q(2)+C(10)*Q(2)*Q(2)+C(11)*Q(0)*Q(3)+C(12)
     $   *Q(1)*Q(3)+C(13)*Q(2)*Q(3)+C(14)*Q(3)*Q(3)
      ENDIF
      END

      SUBROUTINE MP_EVAL_POLY(C,R,Q,OUT)
      USE POLYNOMIAL_CONSTANTS
      COMPLEX*32 C(0:LOOPMAXCOEFS-1)
      INTEGER R
      COMPLEX*32 Q(0:3)
      COMPLEX*32 OUT

      OUT=C(0)
      IF (R.GE.1) THEN
        OUT=OUT+C(1)*Q(0)+C(2)*Q(1)+C(3)*Q(2)+C(4)*Q(3)
      ENDIF
      IF (R.GE.2) THEN
        OUT=OUT+C(5)*Q(0)*Q(0)+C(6)*Q(0)*Q(1)+C(7)*Q(1)*Q(1)+C(8)*Q(0)
     $   *Q(2)+C(9)*Q(1)*Q(2)+C(10)*Q(2)*Q(2)+C(11)*Q(0)*Q(3)+C(12)
     $   *Q(1)*Q(3)+C(13)*Q(2)*Q(3)+C(14)*Q(3)*Q(3)
      ENDIF
      END

      SUBROUTINE ADD_COEFS(A,RA,B,RB)
      USE POLYNOMIAL_CONSTANTS
      INTEGER I
      COMPLEX*16 A(0:LOOPMAXCOEFS-1),B(0:LOOPMAXCOEFS-1)
      INTEGER RA,RB

      DO I=0,NCOEF_R(RB)-1
        A(I)=A(I)+B(I)
      ENDDO
      END

      SUBROUTINE MP_ADD_COEFS(A,RA,B,RB)
      USE POLYNOMIAL_CONSTANTS
      INTEGER I
      COMPLEX*32 A(0:LOOPMAXCOEFS-1),B(0:LOOPMAXCOEFS-1)
      INTEGER RA,RB

      DO I=0,NCOEF_R(RB)-1
        A(I)=A(I)+B(I)
      ENDDO
      END

      SUBROUTINE MERGE_WL(WL,R,LCUT_SIZE,CONST,OUT)
      USE POLYNOMIAL_CONSTANTS
      INTEGER I,J
      COMPLEX*16 WL(MAXLWFSIZE,0:LOOPMAXCOEFS-1,MAXLWFSIZE)
      INTEGER R,LCUT_SIZE
      COMPLEX*16 CONST
      COMPLEX*16 OUT(0:LOOPMAXCOEFS-1)

      DO I=1,LCUT_SIZE
        DO J=0,NCOEF_R(R)-1
          OUT(J)=OUT(J)+WL(I,J,I)*CONST
        ENDDO
      ENDDO
      END

      SUBROUTINE MP_MERGE_WL(WL,R,LCUT_SIZE,CONST,OUT)
      USE POLYNOMIAL_CONSTANTS
      INTEGER I,J
      COMPLEX*32 WL(MAXLWFSIZE,0:LOOPMAXCOEFS-1,MAXLWFSIZE)
      INTEGER R,LCUT_SIZE
      COMPLEX*32 CONST
      COMPLEX*32 OUT(0:LOOPMAXCOEFS-1)

      DO I=1,LCUT_SIZE
        DO J=0,NCOEF_R(R)-1
          OUT(J)=OUT(J)+WL(I,J,I)*CONST
        ENDDO
      ENDDO
      END

      SUBROUTINE UPDATE_WL_0_1(A,LCUT_SIZE,B,IN_SIZE,OUT_SIZE,OUT)
      USE POLYNOMIAL_CONSTANTS
      INTEGER I,J,K
      COMPLEX*16 A(MAXLWFSIZE,0:LOOPMAXCOEFS-1,MAXLWFSIZE)
      COMPLEX*16 B(MAXLWFSIZE,0:VERTEXMAXCOEFS-1,MAXLWFSIZE)
      COMPLEX*16 OUT(MAXLWFSIZE,0:LOOPMAXCOEFS-1,MAXLWFSIZE)
      INTEGER LCUT_SIZE,IN_SIZE,OUT_SIZE

      DO I=1,LCUT_SIZE
        DO J=1,OUT_SIZE
          DO K=0,4
            OUT(J,K,I)=(0.0D0,0.0D0)
          ENDDO
          DO K=1,IN_SIZE
            OUT(J,0,I)=OUT(J,0,I)+A(K,0,I)*B(J,0,K)
            OUT(J,1,I)=OUT(J,1,I)+A(K,0,I)*B(J,1,K)
            OUT(J,2,I)=OUT(J,2,I)+A(K,0,I)*B(J,2,K)
            OUT(J,3,I)=OUT(J,3,I)+A(K,0,I)*B(J,3,K)
            OUT(J,4,I)=OUT(J,4,I)+A(K,0,I)*B(J,4,K)
          ENDDO
        ENDDO
      ENDDO
      END

      SUBROUTINE MP_UPDATE_WL_0_1(A,LCUT_SIZE,B,IN_SIZE,OUT_SIZE,OUT)
      USE POLYNOMIAL_CONSTANTS
      INTEGER I,J,K
      COMPLEX*32 A(MAXLWFSIZE,0:LOOPMAXCOEFS-1,MAXLWFSIZE)
      COMPLEX*32 B(MAXLWFSIZE,0:VERTEXMAXCOEFS-1,MAXLWFSIZE)
      COMPLEX*32 OUT(MAXLWFSIZE,0:LOOPMAXCOEFS-1,MAXLWFSIZE)
      INTEGER LCUT_SIZE,IN_SIZE,OUT_SIZE

      DO I=1,LCUT_SIZE
        DO J=1,OUT_SIZE
          DO K=0,4
            OUT(J,K,I)=CMPLX(0.0E0_16,0.0E0_16,KIND=16)
          ENDDO
          DO K=1,IN_SIZE
            OUT(J,0,I)=OUT(J,0,I)+A(K,0,I)*B(J,0,K)
            OUT(J,1,I)=OUT(J,1,I)+A(K,0,I)*B(J,1,K)
            OUT(J,2,I)=OUT(J,2,I)+A(K,0,I)*B(J,2,K)
            OUT(J,3,I)=OUT(J,3,I)+A(K,0,I)*B(J,3,K)
            OUT(J,4,I)=OUT(J,4,I)+A(K,0,I)*B(J,4,K)
          ENDDO
        ENDDO
      ENDDO
      END

      SUBROUTINE UPDATE_WL_0_0(A,LCUT_SIZE,B,IN_SIZE,OUT_SIZE,OUT)
      USE POLYNOMIAL_CONSTANTS
      INTEGER I,J,K
      COMPLEX*16 A(MAXLWFSIZE,0:LOOPMAXCOEFS-1,MAXLWFSIZE)
      COMPLEX*16 B(MAXLWFSIZE,0:VERTEXMAXCOEFS-1,MAXLWFSIZE)
      COMPLEX*16 OUT(MAXLWFSIZE,0:LOOPMAXCOEFS-1,MAXLWFSIZE)
      INTEGER LCUT_SIZE,IN_SIZE,OUT_SIZE

      DO I=1,LCUT_SIZE
        DO J=1,OUT_SIZE
          DO K=0,0
            OUT(J,K,I)=(0.0D0,0.0D0)
          ENDDO
          DO K=1,IN_SIZE
            OUT(J,0,I)=OUT(J,0,I)+A(K,0,I)*B(J,0,K)
          ENDDO
        ENDDO
      ENDDO
      END

      SUBROUTINE MP_UPDATE_WL_0_0(A,LCUT_SIZE,B,IN_SIZE,OUT_SIZE,OUT)
      USE POLYNOMIAL_CONSTANTS
      INTEGER I,J,K
      COMPLEX*32 A(MAXLWFSIZE,0:LOOPMAXCOEFS-1,MAXLWFSIZE)
      COMPLEX*32 B(MAXLWFSIZE,0:VERTEXMAXCOEFS-1,MAXLWFSIZE)
      COMPLEX*32 OUT(MAXLWFSIZE,0:LOOPMAXCOEFS-1,MAXLWFSIZE)
      INTEGER LCUT_SIZE,IN_SIZE,OUT_SIZE

      DO I=1,LCUT_SIZE
        DO J=1,OUT_SIZE
          DO K=0,0
            OUT(J,K,I)=CMPLX(0.0E0_16,0.0E0_16,KIND=16)
          ENDDO
          DO K=1,IN_SIZE
            OUT(J,0,I)=OUT(J,0,I)+A(K,0,I)*B(J,0,K)
          ENDDO
        ENDDO
      ENDDO
      END

      SUBROUTINE UPDATE_WL_1_1(A,LCUT_SIZE,B,IN_SIZE,OUT_SIZE,OUT)
      USE POLYNOMIAL_CONSTANTS
      INTEGER I,J,K
      COMPLEX*16 A(MAXLWFSIZE,0:LOOPMAXCOEFS-1,MAXLWFSIZE)
      COMPLEX*16 B(MAXLWFSIZE,0:VERTEXMAXCOEFS-1,MAXLWFSIZE)
      COMPLEX*16 OUT(MAXLWFSIZE,0:LOOPMAXCOEFS-1,MAXLWFSIZE)
      INTEGER LCUT_SIZE,IN_SIZE,OUT_SIZE

      DO I=1,LCUT_SIZE
        DO J=1,OUT_SIZE
          DO K=0,14
            OUT(J,K,I)=(0.0D0,0.0D0)
          ENDDO
          DO K=1,IN_SIZE
            OUT(J,0,I)=OUT(J,0,I)+A(K,0,I)*B(J,0,K)
            OUT(J,1,I)=OUT(J,1,I)+A(K,0,I)*B(J,1,K)+A(K,1,I)*B(J,0,K)
            OUT(J,2,I)=OUT(J,2,I)+A(K,0,I)*B(J,2,K)+A(K,2,I)*B(J,0,K)
            OUT(J,3,I)=OUT(J,3,I)+A(K,0,I)*B(J,3,K)+A(K,3,I)*B(J,0,K)
            OUT(J,4,I)=OUT(J,4,I)+A(K,0,I)*B(J,4,K)+A(K,4,I)*B(J,0,K)
            OUT(J,5,I)=OUT(J,5,I)+A(K,1,I)*B(J,1,K)
            OUT(J,6,I)=OUT(J,6,I)+A(K,1,I)*B(J,2,K)+A(K,2,I)*B(J,1,K)
            OUT(J,7,I)=OUT(J,7,I)+A(K,2,I)*B(J,2,K)
            OUT(J,8,I)=OUT(J,8,I)+A(K,1,I)*B(J,3,K)+A(K,3,I)*B(J,1,K)
            OUT(J,9,I)=OUT(J,9,I)+A(K,2,I)*B(J,3,K)+A(K,3,I)*B(J,2,K)
            OUT(J,10,I)=OUT(J,10,I)+A(K,3,I)*B(J,3,K)
            OUT(J,11,I)=OUT(J,11,I)+A(K,1,I)*B(J,4,K)+A(K,4,I)*B(J,1,K)
            OUT(J,12,I)=OUT(J,12,I)+A(K,2,I)*B(J,4,K)+A(K,4,I)*B(J,2,K)
            OUT(J,13,I)=OUT(J,13,I)+A(K,3,I)*B(J,4,K)+A(K,4,I)*B(J,3,K)
            OUT(J,14,I)=OUT(J,14,I)+A(K,4,I)*B(J,4,K)
          ENDDO
        ENDDO
      ENDDO
      END

      SUBROUTINE MP_UPDATE_WL_1_1(A,LCUT_SIZE,B,IN_SIZE,OUT_SIZE,OUT)
      USE POLYNOMIAL_CONSTANTS
      INTEGER I,J,K
      COMPLEX*32 A(MAXLWFSIZE,0:LOOPMAXCOEFS-1,MAXLWFSIZE)
      COMPLEX*32 B(MAXLWFSIZE,0:VERTEXMAXCOEFS-1,MAXLWFSIZE)
      COMPLEX*32 OUT(MAXLWFSIZE,0:LOOPMAXCOEFS-1,MAXLWFSIZE)
      INTEGER LCUT_SIZE,IN_SIZE,OUT_SIZE

      DO I=1,LCUT_SIZE
        DO J=1,OUT_SIZE
          DO K=0,14
            OUT(J,K,I)=CMPLX(0.0E0_16,0.0E0_16,KIND=16)
          ENDDO
          DO K=1,IN_SIZE
            OUT(J,0,I)=OUT(J,0,I)+A(K,0,I)*B(J,0,K)
            OUT(J,1,I)=OUT(J,1,I)+A(K,0,I)*B(J,1,K)+A(K,1,I)*B(J,0,K)
            OUT(J,2,I)=OUT(J,2,I)+A(K,0,I)*B(J,2,K)+A(K,2,I)*B(J,0,K)
            OUT(J,3,I)=OUT(J,3,I)+A(K,0,I)*B(J,3,K)+A(K,3,I)*B(J,0,K)
            OUT(J,4,I)=OUT(J,4,I)+A(K,0,I)*B(J,4,K)+A(K,4,I)*B(J,0,K)
            OUT(J,5,I)=OUT(J,5,I)+A(K,1,I)*B(J,1,K)
            OUT(J,6,I)=OUT(J,6,I)+A(K,1,I)*B(J,2,K)+A(K,2,I)*B(J,1,K)
            OUT(J,7,I)=OUT(J,7,I)+A(K,2,I)*B(J,2,K)
            OUT(J,8,I)=OUT(J,8,I)+A(K,1,I)*B(J,3,K)+A(K,3,I)*B(J,1,K)
            OUT(J,9,I)=OUT(J,9,I)+A(K,2,I)*B(J,3,K)+A(K,3,I)*B(J,2,K)
            OUT(J,10,I)=OUT(J,10,I)+A(K,3,I)*B(J,3,K)
            OUT(J,11,I)=OUT(J,11,I)+A(K,1,I)*B(J,4,K)+A(K,4,I)*B(J,1,K)
            OUT(J,12,I)=OUT(J,12,I)+A(K,2,I)*B(J,4,K)+A(K,4,I)*B(J,2,K)
            OUT(J,13,I)=OUT(J,13,I)+A(K,3,I)*B(J,4,K)+A(K,4,I)*B(J,3,K)
            OUT(J,14,I)=OUT(J,14,I)+A(K,4,I)*B(J,4,K)
          ENDDO
        ENDDO
      ENDDO
      END