~maddevelopers/mg5amcnlo/3.0.2-alpha0-merged3.2.0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
################################################################################
#
# Copyright (c) 2009 The MadGraph5_aMC@NLO Development team and Contributors
#
# This file is a part of the MadGraph5_aMC@NLO project, an application which 
# automatically generates Feynman diagrams and matrix elements for arbitrary
# high-energy processes in the Standard Model and beyond.
#
# It is subject to the MadGraph5_aMC@NLO license which should accompany this 
# distribution.
#
# For more information, visit madgraph.phys.ucl.ac.be and amcatnlo.web.cern.ch
#
################################################################################

"""Methods and classes to export matrix elements to Python format."""

from __future__ import absolute_import
import fractions
import glob
import itertools
import logging
import os
import re
import shutil
import subprocess
import aloha

import madgraph.core.color_algebra as color
import madgraph.core.helas_objects as helas_objects
import madgraph.iolibs.drawing_eps as draw
import madgraph.iolibs.files as files
import madgraph.iolibs.helas_call_writers as helas_call_writers
import madgraph.iolibs.file_writers as writers
import madgraph.iolibs.template_files as Template
import madgraph.iolibs.ufo_expression_parsers as parsers
import madgraph.iolibs.group_subprocs as group_subprocs
from madgraph import MadGraph5Error, MG5DIR

import madgraph.various.misc as misc

import aloha.create_aloha as create_aloha
import aloha.aloha_writers as aloha_writers

_file_path = os.path.split(os.path.dirname(os.path.realpath(__file__)))[0] + '/'
logger = logging.getLogger('madgraph.export_python')


#===============================================================================
# ProcessExporterPython
#===============================================================================
class ProcessExporterPython(object):
    """Class to take care of exporting a set of matrix elements to
    Python format."""

    class ProcessExporterPythonError(Exception):
        pass
    
    def __init__(self, matrix_elements, python_helas_call_writer):
        """Initiate with matrix elements, helas call writer.
        Generate the process matrix element functions as strings."""

        self.config_maps = {}
        if isinstance(matrix_elements, helas_objects.HelasMultiProcess):
            self.matrix_elements = matrix_elements.get('matrix_elements')
        elif isinstance(matrix_elements,
                        group_subprocs.SubProcessGroup):
            self.config_maps = matrix_elements.get('diagram_maps')
            self.matrix_elements = matrix_elements.get('matrix_elements')
        elif isinstance(matrix_elements,
                        helas_objects.HelasMatrixElementList):
            self.matrix_elements = matrix_elements
        elif isinstance(matrix_elements,
                        helas_objects.HelasMatrixElement):
            self.matrix_elements = helas_objects.HelasMatrixElementList(\
                                                     [matrix_elements])
        if not self.matrix_elements:
            raise MadGraph5Error("No matrix elements to export")

        self.model = self.matrix_elements[0].get('processes')[0].get('model')

        self.helas_call_writer = python_helas_call_writer

        if not isinstance(self.helas_call_writer, helas_call_writers.PythonUFOHelasCallWriter):
            raise Exception("helas_call_writer not PythonUFOHelasCallWriter")

        self.matrix_methods = {}

    # Methods for generation of process file strings in Python

    #===========================================================================
    # write_python_process_cc_file
    #===========================================================================
    def get_python_matrix_methods(self, gauge_check=False):
        """Write the matrix element calculation method for the processes"""

        replace_dict = {}

        # Extract version number and date from VERSION file
        info_lines = self.get_mg5_info_lines()
        replace_dict['info_lines'] = info_lines

        for ime, matrix_element in enumerate(self.matrix_elements):
            process_string = matrix_element.get('processes')[0].shell_string()
            if process_string in self.matrix_methods:
                continue

            replace_dict['process_string'] = process_string

            # Extract number of external particles
            (nexternal, ninitial) = matrix_element.get_nexternal_ninitial()
            replace_dict['nexternal'] = nexternal

            # Extract ncomb
            ncomb = matrix_element.get_helicity_combinations()
            replace_dict['ncomb'] = ncomb

            # Extract helicity lines
            helicity_lines = self.get_helicity_matrix(matrix_element)
            replace_dict['helicity_lines'] = helicity_lines

            # Extract overall denominator
            # Averaging initial state color, spin, and identical FS particles
            den_factor_line = self.get_den_factor_line(matrix_element)
            replace_dict['den_factor_line'] = den_factor_line

            # Extract process info lines for all processes
            process_lines = self.get_process_info_lines(matrix_element)
            replace_dict['process_lines'] = process_lines
        
            # Extract ngraphs
            ngraphs = matrix_element.get_number_of_amplitudes()
            replace_dict['ngraphs'] = ngraphs

            # Extract ndiags
            ndiags = len(matrix_element.get('diagrams'))
            replace_dict['ndiags'] = ndiags

            # Extract helas calls
            helas_calls = self.helas_call_writer.get_matrix_element_calls(\
                                                    matrix_element, gauge_check)
            replace_dict['helas_calls'] = "\n        ".join(helas_calls)

            # Extract nwavefuncs
            nwavefuncs = matrix_element.get_number_of_wavefunctions()
            replace_dict['nwavefuncs'] = nwavefuncs

            # Extract ncolor
            ncolor = max(1, len(matrix_element.get('color_basis')))
            replace_dict['ncolor'] = ncolor

            # Extract model parameter lines
            model_parameter_lines = \
                                 self.get_model_parameter_lines(matrix_element)
            replace_dict['model_parameters'] = model_parameter_lines

            # Extract color data lines
            color_matrix_lines = self.get_color_matrix_lines(matrix_element)
            replace_dict['color_matrix_lines'] = \
                                               "\n        ".join(color_matrix_lines)



            # Extract JAMP lines
            jamp_lines = self.get_jamp_lines(matrix_element)
            replace_dict['jamp_lines'] = "\n        ".join(jamp_lines)

            # Extract amp2 lines
            amp2_lines = self.get_amp2_lines(matrix_element,
                                        self.config_maps.setdefault(ime, []))
            replace_dict['amp2_lines'] = '\n        '.join(amp2_lines)

            method_file = open(os.path.join(_file_path, \
                       'iolibs/template_files/matrix_method_python.inc')).read()
            method_file = method_file % replace_dict

            self.matrix_methods[process_string] = method_file

        return self.matrix_methods

    def get_helicity_matrix(self, matrix_element):
        """Return the Helicity matrix definition lines for this matrix element"""

        helicity_line = "helicities = [ \\\n        "
        helicity_line_list = []

        for helicities in matrix_element.get_helicity_matrix():
            helicity_line_list.append("[" + ",".join(['%d'] * len(helicities)) % \
                                      tuple(helicities) + "]")
            
        return helicity_line + ",\n        ".join(helicity_line_list) + "]"


    def get_den_factor_line(self, matrix_element):
        """Return the denominator factor line for this matrix element"""

        return "denominator = %d" % \
               matrix_element.get_denominator_factor()

    def get_color_matrix_lines(self, matrix_element):
        """Return the color matrix definition lines for this matrix element. Split
        rows in chunks of size n."""

        if not matrix_element.get('color_matrix'):
            return ["denom = [1.]", "cf = [[1.]];"]
        else:
            color_denominators = matrix_element.get('color_matrix').\
                                                 get_line_denominators()
            denom_string = "denom = [%s];" % \
                           ",".join(["%i" % denom for denom in color_denominators])

            matrix_strings = []
            my_cs = color.ColorString()
            for index, denominator in enumerate(color_denominators):
                # Then write the numerators for the matrix elements
                num_list = matrix_element.get('color_matrix').\
                                            get_line_numerators(index, denominator)

                matrix_strings.append("%s" % \
                                     ",".join(["%d" % i for i in num_list]))
            matrix_string = "cf = [[" + \
                            "],\n        [".join(matrix_strings) + "]];"
            return [denom_string, matrix_string]

    def get_jamp_lines(self, matrix_element):
        """Return the jamp = sum(fermionfactor * amp[i]) lines"""

        res_list = []

        for i, coeff_list in enumerate(matrix_element.get_color_amplitudes()):

            res = "jamp[%d] = " % i

            # Optimization: if all contributions to that color basis element have
            # the same coefficient (up to a sign), put it in front
            list_fracs = [abs(coefficient[0][1]) for coefficient in coeff_list]
            common_factor = False
            diff_fracs = list(set(list_fracs))
            if len(diff_fracs) == 1 and abs(diff_fracs[0]) != 1:
                common_factor = True
                global_factor = diff_fracs[0]
                res = res + '%s(' % coeff(1, global_factor, False, 0)

            for (coefficient, amp_number) in coeff_list:
                if common_factor:
                    res = res + "%samp[%d]" % (coeff(coefficient[0],
                                               coefficient[1] / abs(coefficient[1]),
                                               coefficient[2],
                                               coefficient[3]),
                                               amp_number - 1)
                else:
                    res = res + "%samp[%d]" % (coeff(coefficient[0],
                                               coefficient[1],
                                               coefficient[2],
                                               coefficient[3]),
                                               amp_number - 1)

            if common_factor:
                res = res + ')'

            res_list.append(res)

        return res_list

    def get_amp2_lines(self, matrix_element, config_map = []):
        """Return the amp2(i) = sum(amp for diag(i))^2 lines"""

        ret_lines = []
        # Get minimum legs in a vertex
        
        vert_list = [max(diag.get_vertex_leg_numbers()) for diag in \
           matrix_element.get('diagrams') if diag.get_vertex_leg_numbers()!=[]]
        minvert = min(vert_list) if vert_list!=[] else 0

        if config_map:
            # In this case, we need to sum up all amplitudes that have
            # identical topologies, as given by the config_map (which
            # gives the topology/config for each of the diagrams
            diagrams = matrix_element.get('diagrams')
            # Combine the diagrams with identical topologies
            config_to_diag_dict = {}
            for idiag, diag in enumerate(matrix_element.get('diagrams')):
                if config_map[idiag] == 0:
                    continue
                try:
                    config_to_diag_dict[config_map[idiag]].append(idiag)
                except KeyError:
                    config_to_diag_dict[config_map[idiag]] = [idiag]
            # Write out the AMP2s summing squares of amplitudes belonging
            # to eiher the same diagram or different diagrams with
            # identical propagator properties.  Note that we need to use
            # AMP2 number corresponding to the first diagram number used
            # for that AMP2.
            for config in config_to_diag_dict.keys():

                line = "self.amp2[%d]+=" % (config_to_diag_dict[config][0])

                line += "+".join(["abs(amp[%(num)d]*amp[%(num)d].conjugate())" % \
                                  {"num": a.get('number')-1} for a in \
                                  sum([diagrams[idiag].get('amplitudes') for \
                                       idiag in config_to_diag_dict[config]],
                                      [])])
                ret_lines.append(line)
            ret_lines.sort()
        else:
            wf_dict = {}
            vx_list = []
            optimization = 0
            for idiag, diag in enumerate(matrix_element.get('diagrams')):
                # Ignore any diagrams with 4-particle vertices.
                if diag.get_vertex_leg_numbers()!=[] and \
                                   max(diag.get_vertex_leg_numbers()) > minvert:
                    continue
                # Now write out the expression for AMP2, meaning the sum of
                # squared amplitudes belonging to the same diagram
                line = "self.amp2[%d]+=" % (idiag)
                line += "+".join(["abs(amp[%(num)d]*amp[%(num)d].conjugate())" % \
                                  {"num": a.get('number')-1} for a in \
                                  diag.get('amplitudes')])
                ret_lines.append(line)

        return ret_lines

    def get_mg5_info_lines(self):
        """Return info lines for MG5, suitable to place at beginning of
        Python files"""

        info = misc.get_pkg_info()
        info_lines = ""
        if info and 'version' in info and  'date' in info:
            info_lines = "#  MadGraph5_aMC@NLO v. %s, %s\n" % \
                         (info['version'], info['date'])
            info_lines = info_lines + \
                         "        #  By the MadGraph5_aMC@NLO Development Team\n" + \
                         "        #  Visit launchpad.net/madgraph5 and amcatnlo.web.cern.ch"
        else:
            info_lines = "        #  by MadGraph5_aMC@NLO\n" + \
                         "        #  By the MadGraph5_aMC@NLO Development Team\n" + \
                         "        #  Visit launchpad.net/madgraph5 and amcatnlo.web.cern.ch"        

        return info_lines

    def get_process_info_lines(self, matrix_element):
        """Return info lines describing the processes for this matrix element"""

        return"\n        ".join([ "# " + process.nice_string().replace('\n', '\n# * ') \
                         for process in matrix_element.get('processes')])


    def get_model_parameter_lines(self, matrix_element):
        """Return definitions for all model parameters used in this
        matrix element"""

        # Get all masses and widths used
        if aloha.complex_mass:
            parameters = [(wf.get('mass') == 'ZERO' or wf.get('width')=='ZERO') 
                          and wf.get('mass') or 'CMASS_%s' % wf.get('mass') 
                          for wf in \
                          matrix_element.get_all_wavefunctions()]
            parameters += [wf.get('mass') for wf in \
                      matrix_element.get_all_wavefunctions()]
        else:
            parameters = [wf.get('mass') for wf in \
                      matrix_element.get_all_wavefunctions()]
        parameters += [wf.get('width') for wf in \
                       matrix_element.get_all_wavefunctions()]
        parameters = list(set(parameters))
        if 'ZERO' in parameters:
            parameters.remove('ZERO')

        # Get all couplings used

        
        couplings = list(set([c.replace('-', '') for func \
                              in matrix_element.get_all_wavefunctions() + \
                              matrix_element.get_all_amplitudes() for c in func.get('coupling')
                              if func.get('mothers') ]))
        
        return "\n        ".join([\
                         "%(param)s = model.get(\'parameter_dict\')[\"%(param)s\"]"\
                         % {"param": param} for param in sorted(parameters)]) + \
               "\n        " + "\n        ".join([\
                         "%(coup)s = model.get(\'coupling_dict\')[\"%(coup)s\"]"\
                              % {"coup": coup} for coup in sorted(couplings)])

#===============================================================================
# Global helper methods
#===============================================================================

def coeff(ff_number, frac, is_imaginary, Nc_power, Nc_value=3):
    """Returns a nicely formatted string for the coefficients in JAMP lines"""

    total_coeff = ff_number * frac * fractions.Fraction(Nc_value) ** Nc_power

    if total_coeff == 1:
        if is_imaginary:
            return '+complex(0,1)*'
        else:
            return '+'
    elif total_coeff == -1:
        if is_imaginary:
            return '-complex(0,1)*'
        else:
            return '-'

    res_str = '%+i.' % total_coeff.numerator

    if total_coeff.denominator != 1:
        # Check if total_coeff is an integer
        res_str = res_str + '/%i.' % total_coeff.denominator

    if is_imaginary:
        res_str = res_str + '*complex(0,1)'

    return res_str + '*'