~maddevelopers/mg5amcnlo/3.0.3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
      SUBROUTINE SBORN(P,ANS_SUMMED)
C     
C     Generated by MadGraph5_aMC@NLO v. %(version)s, %(date)s
C     By the MadGraph5_aMC@NLO Development Team
C     Visit launchpad.net/madgraph5 and amcatnlo.web.cern.ch
C     
C     
C     Return the sum of the split orders which are required in
C      orders.inc (BORN_ORDERS)
C     Also the values needed for the counterterms are stored in the
C      C_BORN_CNT common block
C     
C     
C     Process: d~ u > w+ [ all = QED QCD ] QCD^2<=2 QED^2<=2
C     Process: s~ c > w+ [ all = QED QCD ] QCD^2<=2 QED^2<=2
C     
C     
C     CONSTANTS
C     
      IMPLICIT NONE
      INCLUDE 'nexternal.inc'
      INTEGER NAMPSO, NSQAMPSO
      PARAMETER (NAMPSO=1, NSQAMPSO=1)
      INTEGER NGRAPHS
      PARAMETER (NGRAPHS=   1)
C     
C     ARGUMENTS 
C     
      REAL*8 P(0:3,NEXTERNAL-1)
C     
C     VARIABLES
C     
      INTEGER I,J,K
      INCLUDE 'orders.inc'
      DOUBLE PRECISION ANS_SUMMED
      COMPLEX*16 ANS(2,0:NSQAMPSO), ANS_CNT(2, NSPLITORDERS)
      LOGICAL KEEP_ORDER(NSQAMPSO), KEEP_ORDER_CNT(NSPLITORDERS,
     $  NSQAMPSO), FIRSTTIME
      DATA KEEP_ORDER / NSQAMPSO * .TRUE. /
      COMMON /C_KEEP_ORDER_CNT/ KEEP_ORDER_CNT
      COMMON /C_BORN_CNT/ ANS_CNT
      INTEGER ORD_SUBTRACT
      DATA FIRSTTIME / .TRUE. /
      INTEGER AMP_ORDERS(NSPLITORDERS)
      DOUBLE PRECISION TINY
      PARAMETER (TINY = 1D-12)
      DOUBLE PRECISION MAX_VAL
      DOUBLE PRECISION       WGT_ME_BORN,WGT_ME_REAL
      COMMON /C_WGT_ME_TREE/ WGT_ME_BORN,WGT_ME_REAL

      DOUBLE PRECISION AMP2B(1), JAMP2B(0:1,0:NAMPSO)
      COMMON/TO_AMPS_BORN/  AMP2B,       JAMP2B
      DOUBLE PRECISION AMP2(1), JAMP2(0:1)
      COMMON/TO_AMPS/  AMP2,       JAMP2
      LOGICAL SPLIT_TYPE_USED(NSPLITORDERS)
      COMMON/TO_SPLIT_TYPE_USED/SPLIT_TYPE_USED
C     
C     FUNCTIONS
C     
      INTEGER GETORDPOWFROMINDEX_B
      INTEGER ORDERS_TO_AMP_SPLIT_POS
C     
C     BEGIN CODE
C     
C     look for orders which match the born order constraint 

      IF (FIRSTTIME) THEN
        DO I = 1, NSQAMPSO
C         this is for the orders of the born to integrate
          DO J = 1, NSPLITORDERS
            IF(GETORDPOWFROMINDEX_B(J, I) .GT. BORN_ORDERS(J)) THEN
              KEEP_ORDER(I) = .FALSE.
              EXIT
            ENDIF
          ENDDO

C         this is for the orders of the counterterms
          DO J = 1, NSPLITORDERS
            KEEP_ORDER_CNT(J,I) = .TRUE.
            DO K = 1, NSPLITORDERS
              IF (J.EQ.K) THEN
                ORD_SUBTRACT=2
              ELSE
                ORD_SUBTRACT=0
              ENDIF
              IF(GETORDPOWFROMINDEX_B(K, I) .GT. NLO_ORDERS(K)
     $         -ORD_SUBTRACT) THEN
                KEEP_ORDER_CNT(J,I) = .FALSE.
                EXIT
              ENDIF
            ENDDO
          ENDDO
          IF (KEEP_ORDER(I)) THEN
            WRITE(*,*) 'BORN: keeping split order ', I
          ELSE
            WRITE(*,*) 'BORN: not keeping split order ', I
          ENDIF
        ENDDO

        DO J = 1, NSPLITORDERS
          WRITE(*,*) 'counterterm S.O', J, ORDERNAMES(J)
          DO I = 1, NSQAMPSO
            IF (KEEP_ORDER_CNT(J,I)) THEN
              WRITE(*,*) 'BORN: keeping split order', I
            ELSE
              WRITE(*,*) 'BORN: not keeping split order', I
            ENDIF
          ENDDO
        ENDDO
        FIRSTTIME = .FALSE.
      ENDIF

      CALL SBORN_SPLITORDERS(P,ANS)

C     the born to be integrated
      ANS_SUMMED = 0D0
      MAX_VAL = 0D0

C     reset the amp_split array
      AMP_SPLIT(1:AMP_SPLIT_SIZE) = 0D0
      AMP_SPLIT_CNT(1:AMP_SPLIT_SIZE,1:2,1:NSPLITORDERS) = DCMPLX(0D0
     $ ,0D0)

      DO I = 1, NSQAMPSO
        MAX_VAL = MAX(MAX_VAL, ABS(ANS(1,I)))
      ENDDO
      DO I = 1, NSQAMPSO
        IF (KEEP_ORDER(I)) THEN
          ANS_SUMMED = ANS_SUMMED + ANS(1,I)
C         keep track of the separate pieces correspoinding to
C          different coupling combinations
          DO J = 1, NSPLITORDERS
            AMP_ORDERS(J) = GETORDPOWFROMINDEX_B(J, I)
          ENDDO
          IF(ABS(ANS(1,I)).GT.MAX_VAL*TINY)
     $      AMP_SPLIT(ORDERS_TO_AMP_SPLIT_POS(AMP_ORDERS)) = ANS(1,I)
        ENDIF
      ENDDO
C     this is to avoid fake non-zero contributions 
      IF (ABS(ANS_SUMMED).LT.MAX_VAL*TINY) ANS_SUMMED=0D0

      WGT_ME_BORN=ANS_SUMMED

C     fill the amp2 and jamp2 arrays
      AMP2(1:NGRAPHS)=AMP2B(1:NGRAPHS)  ! amp2 just needs to be copyed

      DO I = 0, INT(JAMP2B(0,0))
        JAMP2(I)=0D0
        DO J = 1, NAMPSO
C         here sum all, this may be refined later
          JAMP2(I)=JAMP2(I)+JAMP2B(I,J)
        ENDDO
      ENDDO


C     quantities for the counterterms
      DO J = 1, NSPLITORDERS
        ANS_CNT(1:2,J) = (0D0, 0D0)
        IF (.NOT.SPLIT_TYPE_USED(J)) CYCLE
        DO I = 1, NSQAMPSO
          IF (KEEP_ORDER_CNT(J,I)) THEN
            ANS_CNT(1,J) = ANS_CNT(1,J) + ANS(1,I)
            ANS_CNT(2,J) = ANS_CNT(2,J) + ANS(2,I)
C           keep track of the separate pieces also for counterterms
            DO K = 1, NSPLITORDERS
              AMP_ORDERS(K) = GETORDPOWFROMINDEX_B(K, I)
C             take into account the fact that the counterterm for a
C              given split order
C             will be multiplied by the corresponding squared coupling
              IF (K.EQ.J) AMP_ORDERS(K) = AMP_ORDERS(K) + 2
            ENDDO
C           this is to avoid fake non-zero contributions 
            IF (ABS(ANS(1,I)).GT.MAX_VAL*TINY)
     $        AMP_SPLIT_CNT(ORDERS_TO_AMP_SPLIT_POS(AMP_ORDERS),1,J) =
     $        ANS(1,I)
            IF (ABS(ANS(2,I)).GT.MAX_VAL*TINY)
     $        AMP_SPLIT_CNT(ORDERS_TO_AMP_SPLIT_POS(AMP_ORDERS),2,J) =
     $        ANS(2,I)
          ENDIF
        ENDDO
C       this is to avoid fake non-zero contributions 
        IF (ABS(ANS_CNT(1,J)).LT.MAX_VAL*TINY) ANS_CNT(1,J)=(0D0,0D0)
        IF (ABS(ANS_CNT(2,J)).LT.MAX_VAL*TINY) ANS_CNT(2,J)=(0D0,0D0)
      ENDDO


 999  RETURN
      END



      SUBROUTINE SBORN_SPLITORDERS(P1,ANS)
C     
C     Generated by MadGraph5_aMC@NLO v. %(version)s, %(date)s
C     By the MadGraph5_aMC@NLO Development Team
C     Visit launchpad.net/madgraph5 and amcatnlo.web.cern.ch
C     
C     RETURNS AMPLITUDE SQUARED SUMMED/AVG OVER COLORS
C     AND HELICITIES
C     FOR THE POINT IN PHASE SPACE P1(0:3,NEXTERNAL-1)
C     
C     Process: d~ u > w+ [ all = QED QCD ] QCD^2<=2 QED^2<=2
C     Process: s~ c > w+ [ all = QED QCD ] QCD^2<=2 QED^2<=2
C     
      IMPLICIT NONE
C     
C     CONSTANTS
C     
      INCLUDE 'nexternal.inc'
      INCLUDE 'born_nhel.inc'
      INTEGER     NCOMB
      PARAMETER ( NCOMB=  12 )
      INTEGER NAMPSO, NSQAMPSO
      PARAMETER (NAMPSO=1, NSQAMPSO=1)
      INTEGER    THEL
      PARAMETER (THEL=NCOMB*4)
      INTEGER NGRAPHS
      PARAMETER (NGRAPHS=   1)
C     
C     ARGUMENTS 
C     
      REAL*8 P1(0:3,NEXTERNAL-1)
      COMPLEX*16 ANS(2,0:NSQAMPSO)
C     
C     LOCAL VARIABLES 
C     
      INTEGER IHEL,IDEN,I,J,JJ,GLU_IJ
      REAL*8 BORNS(2,0:NSQAMPSO)
      COMPLEX*16 BORNTILDE
      INTEGER NTRY(4)
      DATA NTRY /4*0/
      COMPLEX*16 T(2,NSQAMPSO)
      INTEGER NHEL(NEXTERNAL-1,NCOMB)
      DATA (NHEL(I,   1),I=1,3) /-1, 1,-1/
      DATA (NHEL(I,   2),I=1,3) /-1, 1, 0/
      DATA (NHEL(I,   3),I=1,3) /-1, 1, 1/
      DATA (NHEL(I,   4),I=1,3) /-1,-1,-1/
      DATA (NHEL(I,   5),I=1,3) /-1,-1, 0/
      DATA (NHEL(I,   6),I=1,3) /-1,-1, 1/
      DATA (NHEL(I,   7),I=1,3) / 1, 1,-1/
      DATA (NHEL(I,   8),I=1,3) / 1, 1, 0/
      DATA (NHEL(I,   9),I=1,3) / 1, 1, 1/
      DATA (NHEL(I,  10),I=1,3) / 1,-1,-1/
      DATA (NHEL(I,  11),I=1,3) / 1,-1, 0/
      DATA (NHEL(I,  12),I=1,3) / 1,-1, 1/
      INTEGER IDEN_VALUES(4)
      DATA IDEN_VALUES /36, 36, 36, 36/
      INTEGER IJ_VALUES(4)
      DATA IJ_VALUES /1, 2, 1, 2/
C     
C     GLOBAL VARIABLES
C     
      DOUBLE PRECISION AMP2(NGRAPHS), JAMP2(0:1,0:NAMPSO)
      COMMON/TO_AMPS_BORN/  AMP2,       JAMP2
      DATA JAMP2(0,0) /   1/
      LOGICAL GOODHEL(NCOMB,4)
      COMMON /C_GOODHEL/GOODHEL
      DOUBLE COMPLEX SAVEAMP(NGRAPHS,MAX_BHEL)
      COMMON/TO_SAVEAMP/SAVEAMP
      DOUBLE PRECISION SAVEMOM(NEXTERNAL-1,2)
      COMMON/TO_SAVEMOM/SAVEMOM
      DOUBLE PRECISION HEL_FAC
      INTEGER GET_HEL,SKIP(4)
      COMMON/CBORN/HEL_FAC,GET_HEL,SKIP
      LOGICAL CALCULATEDBORN
      COMMON/CCALCULATEDBORN/CALCULATEDBORN
      INTEGER NFKSPROCESS
      COMMON/C_NFKSPROCESS/NFKSPROCESS
      LOGICAL COND_IJ
C     ----------
C     BEGIN CODE
C     ----------
      IDEN=IDEN_VALUES(NFKSPROCESS)
      GLU_IJ = IJ_VALUES(NFKSPROCESS)
      NTRY(NFKSPROCESS)=NTRY(NFKSPROCESS)+1
      IF (NTRY(NFKSPROCESS).LT.2) THEN
        IF (GLU_IJ.EQ.0) THEN
          SKIP(NFKSPROCESS)=0
        ELSE
          SKIP(NFKSPROCESS)=1
          DO WHILE(NHEL(GLU_IJ ,SKIP(NFKSPROCESS)).NE.-NHEL(GLU_IJ ,1))
            SKIP(NFKSPROCESS)=SKIP(NFKSPROCESS)+1
          ENDDO
          SKIP(NFKSPROCESS)=SKIP(NFKSPROCESS)-1
        ENDIF
      ENDIF
      DO JJ=1,NGRAPHS
        AMP2(JJ)=0D0
      ENDDO
      DO I=0,NAMPSO
        DO JJ=1,INT(JAMP2(0,0))
          JAMP2(JJ,I)=0D0
        ENDDO
      ENDDO
      IF (CALCULATEDBORN) THEN
        DO J=1,NEXTERNAL-1
          IF (SAVEMOM(J,1).NE.P1(0,J) .OR. SAVEMOM(J,2).NE.P1(3,J))
     $      THEN
            CALCULATEDBORN=.FALSE.
            WRITE (*,*) 'momenta not the same in Born'
            STOP
          ENDIF
        ENDDO
      ENDIF
      IF (.NOT.CALCULATEDBORN) THEN
        DO J=1,NEXTERNAL-1
          SAVEMOM(J,1)=P1(0,J)
          SAVEMOM(J,2)=P1(3,J)
        ENDDO
        DO J=1,MAX_BHEL
          DO JJ=1,NGRAPHS
            SAVEAMP(JJ,J)=(0D0,0D0)
          ENDDO
        ENDDO
      ENDIF
      DO I=0,NSQAMPSO
        ANS(1,I) = 0D0
        ANS(2,I) = 0D0
      ENDDO
      HEL_FAC=1D0
      DO IHEL=1,NCOMB
          ! the following lines are to avoid segfaults when glu_ij=0
        COND_IJ=SKIP(NFKSPROCESS).EQ.0
        IF (.NOT.COND_IJ) COND_IJ=COND_IJ.OR.NHEL(GLU_IJ,IHEL)
     $   .EQ.NHEL(GLU_IJ,1)
          !if (nhel(glu_ij,ihel).EQ.NHEL(GLU_IJ,1).or.skip(nfksprocess).eq.0) then
        IF (COND_IJ) THEN
          IF ((GOODHEL(IHEL,NFKSPROCESS) .OR. GOODHEL(IHEL
     $     +SKIP(NFKSPROCESS),NFKSPROCESS) .OR. NTRY(NFKSPROCESS) .LT.
     $      2) ) THEN

            CALL BORN(P1,NHEL(1,IHEL),IHEL,T,BORNS)
            DO I=1,NSQAMPSO
              ANS(1,I)=ANS(1,I)+T(1,I)
              ANS(2,I)=ANS(2,I)+T(2,I)
            ENDDO
            IF ( BORNS(1,0).NE.0D0 .AND. .NOT. GOODHEL(IHEL
     $       ,NFKSPROCESS) ) THEN
              GOODHEL(IHEL,NFKSPROCESS)=.TRUE.
            ENDIF
            IF ( BORNS(2,0).NE.0D0 .AND. .NOT. GOODHEL(IHEL
     $       +SKIP(NFKSPROCESS),NFKSPROCESS) ) THEN
              GOODHEL(IHEL+SKIP(NFKSPROCESS),NFKSPROCESS)=.TRUE.
            ENDIF
          ENDIF
        ENDIF
      ENDDO
      DO I=1,NSQAMPSO
        ANS(1,I)=ANS(1,I)/DBLE(IDEN)
        ANS(2,I)=ANS(2,I)/DBLE(IDEN)
        ANS(1,0)=ANS(1,0)+ANS(1,I)
        ANS(2,0)=ANS(2,0)+ANS(2,I)
      ENDDO
      CALCULATEDBORN=.TRUE.
      END


      SUBROUTINE BORN(P,NHEL,HELL,ANS,BORNS)
C     
C     Generated by MadGraph5_aMC@NLO v. %(version)s, %(date)s
C     By the MadGraph5_aMC@NLO Development Team
C     Visit launchpad.net/madgraph5 and amcatnlo.web.cern.ch
C     RETURNS AMPLITUDE SQUARED SUMMED/AVG OVER COLORS
C     FOR THE POINT WITH EXTERNAL LINES W(0:6,NEXTERNAL-1)

C     Process: d~ u > w+ [ all = QED QCD ] QCD^2<=2 QED^2<=2
C     Process: s~ c > w+ [ all = QED QCD ] QCD^2<=2 QED^2<=2
C     
      IMPLICIT NONE
C     
C     CONSTANTS
C     
      INTEGER NAMPSO, NSQAMPSO
      PARAMETER (NAMPSO=1, NSQAMPSO=1)
      INTEGER    NGRAPHS,    NEIGEN
      PARAMETER (NGRAPHS=   1,NEIGEN=  1)
      INTEGER    NWAVEFUNCS, NCOLOR
      PARAMETER (NWAVEFUNCS=3, NCOLOR=1)
      REAL*8     ZERO
      PARAMETER (ZERO=0D0)
      COMPLEX*16 IMAG1
      PARAMETER (IMAG1 = (0D0,1D0))
      INCLUDE 'nexternal.inc'
      INCLUDE 'born_nhel.inc'
      INCLUDE 'coupl.inc'
C     
C     ARGUMENTS 
C     
      REAL*8 P(0:3,NEXTERNAL-1),BORNS(2,0:NSQAMPSO)
      INTEGER NHEL(NEXTERNAL-1), HELL
      COMPLEX*16 ANS(2,NSQAMPSO)
C     
C     LOCAL VARIABLES 
C     
      INTEGER I,J,M,N,IHEL,BACK_HEL,GLU_IJ
      INTEGER IC(NEXTERNAL-1),NMO
      PARAMETER (NMO=NEXTERNAL-1)
      DATA IC /NMO*1/
      REAL*8 DENOM(NCOLOR), CF(NCOLOR,NCOLOR)
      COMPLEX*16 ZTEMP, AMP(NGRAPHS), JAMP(NCOLOR,NAMPSO), W(8
     $ ,NWAVEFUNCS), JAMPH(2, NCOLOR,NAMPSO)
C     
C     GLOBAL VARIABLES
C     
      DOUBLE PRECISION AMP2(1), JAMP2(0:1,0:NAMPSO)
      COMMON/TO_AMPS_BORN/  AMP2,       JAMP2
      DOUBLE COMPLEX SAVEAMP(NGRAPHS,MAX_BHEL)
      COMMON/TO_SAVEAMP/SAVEAMP
      DOUBLE PRECISION HEL_FAC
      INTEGER GET_HEL,SKIP(4)
      COMMON/CBORN/HEL_FAC,GET_HEL,SKIP
      LOGICAL CALCULATEDBORN
      COMMON/CCALCULATEDBORN/CALCULATEDBORN
      INTEGER NFKSPROCESS
      COMMON/C_NFKSPROCESS/NFKSPROCESS
      INTEGER STEP_HEL
      LOGICAL COND_IJ

C     
C     FUNCTION
C     
      INTEGER SQSOINDEXB

      INTEGER IJ_VALUES(4)
      DATA IJ_VALUES /1, 2, 1, 2/
C     
C     COLOR DATA
C     
      DATA DENOM(1)/1/
      DATA (CF(I,  1),I=  1,  1) /    3/
C     1 T(1,2)
C     ----------
C     BEGIN CODE
C     ----------
      GLU_IJ = IJ_VALUES(NFKSPROCESS)
      DO I = 1, NSQAMPSO
        ANS(1,I)=0D0
        ANS(2,I)=0D0
        BORNS(1,I)=0D0
        BORNS(2,I)=0D0
      ENDDO
      BORNS(1,0)=0D0
      BORNS(2,0)=0D0
      IF (GLU_IJ.NE.0) THEN
        BACK_HEL = NHEL(GLU_IJ)
        IF (BACK_HEL.NE.0) THEN
          STEP_HEL=-2*BACK_HEL
        ELSE
          STEP_HEL=1
        ENDIF
      ELSE
        BACK_HEL=0
        STEP_HEL=1
      ENDIF
      DO IHEL=BACK_HEL,-BACK_HEL,STEP_HEL
        IF (GLU_IJ.NE.0) THEN
          COND_IJ=IHEL.EQ.BACK_HEL.OR.NHEL(GLU_IJ).NE.0
        ELSE
          COND_IJ=IHEL.EQ.BACK_HEL
        ENDIF
        IF (COND_IJ) THEN
          IF (GLU_IJ.NE.0) THEN
            IF (NHEL(GLU_IJ).NE.0) NHEL(GLU_IJ) = IHEL
          ENDIF
          IF (.NOT. CALCULATEDBORN) THEN
            CALL OXXXXX(P(0,1),ZERO,NHEL(1),-1*IC(1),W(1,1))
            CALL IXXXXX(P(0,2),ZERO,NHEL(2),+1*IC(2),W(1,2))
            CALL VXXXXX(P(0,3),MDL_MW,NHEL(3),+1*IC(3),W(1,3))
C           Amplitude(s) for diagram number 1
            CALL FFV2_0(W(1,2),W(1,1),W(1,3),GC_47,AMP(1))
            DO I=1,NGRAPHS
              IF(IHEL.EQ.BACK_HEL)THEN
                SAVEAMP(I,HELL)=AMP(I)
              ELSEIF(IHEL.EQ.-BACK_HEL)THEN
                SAVEAMP(I,HELL+SKIP(NFKSPROCESS))=AMP(I)
              ELSE
                WRITE(*,*) 'ERROR #1 in born.f'
                STOP
              ENDIF
            ENDDO
          ELSEIF (CALCULATEDBORN) THEN
            DO I=1,NGRAPHS
              IF(IHEL.EQ.BACK_HEL)THEN
                AMP(I)=SAVEAMP(I,HELL)
              ELSEIF(IHEL.EQ.-BACK_HEL)THEN
                AMP(I)=SAVEAMP(I,HELL+SKIP(NFKSPROCESS))
              ELSE
                WRITE(*,*) 'ERROR #1 in born.f'
                STOP
              ENDIF
            ENDDO
          ENDIF
C         JAMPs contributing to orders QCD=0 QED=1
          JAMP(1,1)=-AMP(1)
          DO M = 1, NAMPSO
            DO I = 1, NCOLOR
              ZTEMP = (0.D0,0.D0)
              DO J = 1, NCOLOR
                ZTEMP = ZTEMP + CF(J,I)*JAMP(J,M)
              ENDDO
              DO N = 1, NAMPSO
                BORNS(2-(1+BACK_HEL*IHEL)/2,SQSOINDEXB(M,N))=BORNS(2
     $           -(1+BACK_HEL*IHEL)/2,SQSOINDEXB(M,N))+ZTEMP
     $           *DCONJG(JAMP(I,N))/DENOM(I)
              ENDDO
            ENDDO
          ENDDO
          DO I = 1, NGRAPHS
            AMP2(I)=AMP2(I)+AMP(I)*DCONJG(AMP(I))
          ENDDO
          DO J = 1,NAMPSO
            DO I = 1, NCOLOR
              JAMP2(I,J)=JAMP2(I,J)+JAMP(I,J)*DCONJG(JAMP(I,J))
              JAMPH(2-(1+BACK_HEL*IHEL)/2,I,J)=JAMP(I,J)
            ENDDO
          ENDDO
        ENDIF
      ENDDO
      DO I = 1, NSQAMPSO
        BORNS(1,0)=BORNS(1,0)+BORNS(1,I)
        BORNS(2,0)=BORNS(2,0)+BORNS(2,I)
        ANS(1,I) = BORNS(1,I) + BORNS(2,I)
      ENDDO
      DO M = 1, NAMPSO
        DO I = 1, NCOLOR
          ZTEMP = (0.D0,0.D0)
          DO J = 1, NCOLOR
            ZTEMP = ZTEMP + CF(J,I)*JAMPH(2,J,M)
          ENDDO
          DO N = 1, NAMPSO
            ANS(2,SQSOINDEXB(M,N))= ANS(2,SQSOINDEXB(M,N)) + ZTEMP
     $       *DCONJG(JAMPH(1,I,N))/DENOM(I)
          ENDDO
        ENDDO
      ENDDO
      IF (GLU_IJ.NE.0) NHEL(GLU_IJ) = BACK_HEL
      END


      BLOCK DATA GOODHELS
      INTEGER     NCOMB
      PARAMETER ( NCOMB=  12 )
      INTEGER    THEL
      PARAMETER (THEL=NCOMB*4)
      LOGICAL GOODHEL(NCOMB,4)
      COMMON /C_GOODHEL/GOODHEL
      DATA GOODHEL/THEL*.FALSE./
      END



C     
C     Helper functions to deal with the split orders.
C     

      INTEGER FUNCTION SQSOINDEXB(AMPORDERA,AMPORDERB)
C     
C     This functions plays the role of the interference matrix. It can
C      be hardcoded or 
C     made more elegant using hashtables if its execution speed ever
C      becomes a relevant
C     factor. From two split order indices of the jamps, it return the
C      corresponding
C     index in the squared order canonical ordering.
C     
C     CONSTANTS
C     
      IMPLICIT NONE
      INTEGER NAMPSO, NSQAMPSO
      PARAMETER (NAMPSO=1, NSQAMPSO=1)
      INTEGER NSPLITORDERS
      PARAMETER (NSPLITORDERS=2)
C     
C     ARGUMENTS
C     
      INTEGER AMPORDERA, AMPORDERB
C     
C     LOCAL VARIABLES
C     
      INTEGER I, SQORDERS(NSPLITORDERS)
      INTEGER AMPSPLITORDERS(NAMPSO,NSPLITORDERS)
      DATA (AMPSPLITORDERS(  1,I),I=  1,  2) /    0,    1/
C     
C     FUNCTION
C     
      INTEGER SQSOINDEXB_FROM_ORDERS
C     
C     BEGIN CODE
C     
      DO I=1,NSPLITORDERS
        SQORDERS(I)=AMPSPLITORDERS(AMPORDERA,I)
     $   +AMPSPLITORDERS(AMPORDERB,I)
      ENDDO
      SQSOINDEXB=SQSOINDEXB_FROM_ORDERS(SQORDERS)
      END



      INTEGER FUNCTION SQSOINDEXB_FROM_ORDERS(ORDERS)
C     
C     From a list of values for the split orders, this function
C      returns the
C     corresponding index in the squared orders canonical ordering.
C     
      IMPLICIT NONE
      INTEGER NSQAMPSO
      PARAMETER (NSQAMPSO=1)
      INTEGER NSPLITORDERS
      PARAMETER (NSPLITORDERS=2)
C     
C     ARGUMENTS
C     
      INTEGER ORDERS(NSPLITORDERS)
C     
C     LOCAL VARIABLES
C     
      INTEGER I,J
      INTEGER SQSPLITORDERS(NSQAMPSO,NSPLITORDERS)
C     the values listed below are for QCD, QED
      DATA (SQSPLITORDERS(  1,I),I=  1,  2) /    0,    2/
C     
C     BEGIN CODE
C     
      DO I=1,NSQAMPSO
        DO J=1,NSPLITORDERS
          IF (ORDERS(J).NE.SQSPLITORDERS(I,J)) GOTO 1009
        ENDDO
        SQSOINDEXB_FROM_ORDERS = I
        RETURN
 1009   CONTINUE
      ENDDO

      WRITE(*,*) 'ERROR:: Stopping function sqsoindex_from_orders'
      WRITE(*,*) 'Could not find squared orders ',(ORDERS(I),I=1
     $ ,NSPLITORDERS)
      STOP

      END



      INTEGER FUNCTION GETORDPOWFROMINDEX_B(IORDER, INDX)
C     
C     Return the power of the IORDER-th order appearing at position
C      INDX
C     in the split-orders output
C     
      IMPLICIT NONE
      INTEGER NSQAMPSO
      PARAMETER (NSQAMPSO=1)
      INTEGER NSPLITORDERS
      PARAMETER (NSPLITORDERS=2)
C     
C     ARGUMENTS
C     
      INTEGER IORDER, INDX
C     
C     LOCAL VARIABLES
C     
      INTEGER I
      INTEGER SQSPLITORDERS(NSQAMPSO,NSPLITORDERS)
C     the values listed below are for QCD, QED
      DATA (SQSPLITORDERS(  1,I),I=  1,  2) /    0,    2/
C     
C     BEGIN CODE
C     
      IF (IORDER.GT.NSPLITORDERS.OR.IORDER.LT.1) THEN
        WRITE(*,*) 'INVALID IORDER B', IORDER
        WRITE(*,*) 'SHOULD BE BETWEEN 1 AND ', NSPLITORDERS
        STOP
      ENDIF

      IF (INDX.GT.NSQAMPSO.OR.INDX.LT.1) THEN
        WRITE(*,*) 'INVALID INDX B', INDX
        WRITE(*,*) 'SHOULD BE BETWEEN 1 AND ', NSQAMPSO
        STOP
      ENDIF

      GETORDPOWFROMINDEX_B=SQSPLITORDERS(INDX, IORDER)
      END


      SUBROUTINE GET_NSQSO_B(NSQSO)
C     
C     Simple subroutine returning the number of squared split order
C     contributions returned in ANS when calling SMATRIX_SPLITORDERS
C     
      IMPLICIT NONE
      INTEGER NSQAMPSO
      PARAMETER (NSQAMPSO=1)
      INTEGER NSQSO

      NSQSO=NSQAMPSO

      END