~maddevelopers/mg5amcnlo/3.2.0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
      SUBROUTINE SMATRIX2(P,ANS_SUMMED)
C     
C     Generated by MadGraph5_aMC@NLO v. %(version)s, %(date)s
C     By the MadGraph5_aMC@NLO Development Team
C     Visit launchpad.net/madgraph5 and amcatnlo.web.cern.ch
C     
C     
C     Return the sum of the split orders which are required in
C      orders.inc (NLO_ORDERS)
C     
C     
C     Process: g d~ > w+ u~ [ all = QCD QED ] QCD^2<=2 QED^2<=2
C     Process: g s~ > w+ c~ [ all = QCD QED ] QCD^2<=2 QED^2<=2
C     
C     
C     CONSTANTS
C     
      IMPLICIT NONE
      INTEGER    NEXTERNAL
      PARAMETER (NEXTERNAL=4)
      INTEGER NSQAMPSO
      PARAMETER (NSQAMPSO=1)
C     
C     ARGUMENTS 
C     
      REAL*8 P(0:3,NEXTERNAL), ANS_SUMMED
C     
C     VARIABLES
C     
      INTEGER I,J
      REAL*8 ANS(0:NSQAMPSO)
      LOGICAL KEEP_ORDER(NSQAMPSO), FIRSTTIME
      INCLUDE 'orders.inc'
      DATA KEEP_ORDER / NSQAMPSO*.TRUE. /
      DATA FIRSTTIME / .TRUE. /
      INTEGER AMP_ORDERS(NSPLITORDERS)
      DOUBLE PRECISION ANS_MAX, TINY
      PARAMETER (TINY = 1D-12)
      DOUBLE PRECISION       WGT_ME_BORN,WGT_ME_REAL
      COMMON /C_WGT_ME_TREE/ WGT_ME_BORN,WGT_ME_REAL
C     
C     FUNCTIONS
C     
      INTEGER GETORDPOWFROMINDEX2
      INTEGER ORDERS_TO_AMP_SPLIT_POS
C     
C     BEGIN CODE
C     

C     look for orders which match the nlo order constraint 

      IF (FIRSTTIME) THEN
        DO I = 1, NSQAMPSO
          DO J = 1, NSPLITORDERS
            IF(GETORDPOWFROMINDEX2(J, I) .GT. NLO_ORDERS(J)) THEN
              KEEP_ORDER(I) = .FALSE.
              EXIT
            ENDIF
          ENDDO
          IF (KEEP_ORDER(I)) THEN
            WRITE(*,*) 'REAL 2: keeping split order ', I
          ELSE
            WRITE(*,*) 'REAL 2: not keeping split order ', I
          ENDIF
        ENDDO
        FIRSTTIME = .FALSE.
      ENDIF

      CALL SMATRIX2_SPLITORDERS(P,ANS)
      ANS_SUMMED = 0D0
      ANS_MAX = 0D0

C     reset the amp_split array
      AMP_SPLIT(1:AMP_SPLIT_SIZE) = 0D0

      DO I = 1, NSQAMPSO
        ANS_MAX = MAX(DABS(ANS(I)),ANS_MAX)
      ENDDO

      DO I = 1, NSQAMPSO
        IF (KEEP_ORDER(I)) THEN
          ANS_SUMMED = ANS_SUMMED + ANS(I)
C         keep track of the separate pieces correspoinding to
C          different coupling combinations
          DO J = 1, NSPLITORDERS
            AMP_ORDERS(J) = GETORDPOWFROMINDEX2(J, I)
          ENDDO
          IF (ABS(ANS(I)).GT.ANS_MAX*TINY)
     $      AMP_SPLIT(ORDERS_TO_AMP_SPLIT_POS(AMP_ORDERS)) = ANS(I)
        ENDIF
      ENDDO

C     avoid fake non-zeros
      IF (DABS(ANS_SUMMED).LT.TINY*ANS_MAX) ANS_SUMMED=0D0

      WGT_ME_REAL = ANS_SUMMED

      END



      SUBROUTINE SMATRIX2_SPLITORDERS(P,ANS)
C     
C     Generated by MadGraph5_aMC@NLO v. %(version)s, %(date)s
C     By the MadGraph5_aMC@NLO Development Team
C     Visit launchpad.net/madgraph5 and amcatnlo.web.cern.ch
C     
C     Returns amplitude squared summed/avg over colors
C     and helicities
C     for the point in phase space P(0:3,NEXTERNAL)
C     
C     Process: g d~ > w+ u~ [ all = QCD QED ] QCD^2<=2 QED^2<=2
C     Process: g s~ > w+ c~ [ all = QCD QED ] QCD^2<=2 QED^2<=2
C     
      IMPLICIT NONE
C     
C     CONSTANTS
C     
      INCLUDE 'nexternal.inc'
      INTEGER     NCOMB
      PARAMETER ( NCOMB=24)
      INTEGER NSQAMPSO
      PARAMETER (NSQAMPSO=1)
C     
C     ARGUMENTS 
C     
      REAL*8 P(0:3,NEXTERNAL),ANS(0:NSQAMPSO)
C     
C     LOCAL VARIABLES 
C     
      INTEGER IHEL,IDEN,I,J,T_IDENT(NCOMB)
      REAL*8 T(0:NSQAMPSO),T_SAVE(NCOMB,0:NSQAMPSO)
      SAVE T_SAVE,T_IDENT
      INTEGER NHEL(NEXTERNAL,NCOMB)
      DATA (NHEL(I,   1),I=1,4) /-1,-1,-1, 1/
      DATA (NHEL(I,   2),I=1,4) /-1,-1,-1,-1/
      DATA (NHEL(I,   3),I=1,4) /-1,-1, 0, 1/
      DATA (NHEL(I,   4),I=1,4) /-1,-1, 0,-1/
      DATA (NHEL(I,   5),I=1,4) /-1,-1, 1, 1/
      DATA (NHEL(I,   6),I=1,4) /-1,-1, 1,-1/
      DATA (NHEL(I,   7),I=1,4) /-1, 1,-1, 1/
      DATA (NHEL(I,   8),I=1,4) /-1, 1,-1,-1/
      DATA (NHEL(I,   9),I=1,4) /-1, 1, 0, 1/
      DATA (NHEL(I,  10),I=1,4) /-1, 1, 0,-1/
      DATA (NHEL(I,  11),I=1,4) /-1, 1, 1, 1/
      DATA (NHEL(I,  12),I=1,4) /-1, 1, 1,-1/
      DATA (NHEL(I,  13),I=1,4) / 1,-1,-1, 1/
      DATA (NHEL(I,  14),I=1,4) / 1,-1,-1,-1/
      DATA (NHEL(I,  15),I=1,4) / 1,-1, 0, 1/
      DATA (NHEL(I,  16),I=1,4) / 1,-1, 0,-1/
      DATA (NHEL(I,  17),I=1,4) / 1,-1, 1, 1/
      DATA (NHEL(I,  18),I=1,4) / 1,-1, 1,-1/
      DATA (NHEL(I,  19),I=1,4) / 1, 1,-1, 1/
      DATA (NHEL(I,  20),I=1,4) / 1, 1,-1,-1/
      DATA (NHEL(I,  21),I=1,4) / 1, 1, 0, 1/
      DATA (NHEL(I,  22),I=1,4) / 1, 1, 0,-1/
      DATA (NHEL(I,  23),I=1,4) / 1, 1, 1, 1/
      DATA (NHEL(I,  24),I=1,4) / 1, 1, 1,-1/
      LOGICAL GOODHEL(NCOMB)
      DATA GOODHEL/NCOMB*.FALSE./
      INTEGER NTRY
      DATA NTRY/0/
      DATA IDEN/96/
C     ----------
C     BEGIN CODE
C     ----------
      NTRY=NTRY+1
      DO I=0,NSQAMPSO
        ANS(I) = 0D0
      ENDDO
      DO IHEL=1,NCOMB
        IF (GOODHEL(IHEL) .OR. NTRY .LT. 2) THEN
          IF (NTRY.LT.2) THEN
C           for the first ps-point, check for helicities that give
C           identical matrix elements
            CALL MATRIX_2(P ,NHEL(1,IHEL),T)
            DO I=0,NSQAMPSO
              T_SAVE(IHEL,I)=T(I)
            ENDDO
            T_IDENT(IHEL)=-1
            DO I=1,IHEL-1
              IF (T(0).EQ.0D0) EXIT
              IF (T_SAVE(I,0).EQ.0D0) CYCLE
              DO J = 0, NSQAMPSO
                IF (ABS(T(J)/T_SAVE(I,J)-1D0) .GT. 1D-12) GOTO 444
              ENDDO
              T_IDENT(IHEL) = I
 444          CONTINUE
            ENDDO
          ELSE
            IF (T_IDENT(IHEL).GT.0) THEN
C             if two helicity states are identical, dont recompute
              DO I=0,NSQAMPSO
                T(I)=T_SAVE(T_IDENT(IHEL),I)
                T_SAVE(IHEL,I)=T(I)
              ENDDO
            ELSE
              CALL MATRIX_2(P ,NHEL(1,IHEL),T)
              DO I=0,NSQAMPSO
                T_SAVE(IHEL,I)=T(I)
              ENDDO
            ENDIF
          ENDIF
C         add to the sum of helicities
          DO I=1,NSQAMPSO  !keep loop from 1!!
            ANS(I)=ANS(I)+T(I)
          ENDDO
          IF (T(0) .NE. 0D0 .AND. .NOT. GOODHEL(IHEL)) THEN
            GOODHEL(IHEL)=.TRUE.
          ENDIF
        ENDIF
      ENDDO
      DO I=1,NSQAMPSO
        ANS(I)=ANS(I)/DBLE(IDEN)
        ANS(0)=ANS(0)+ANS(I)
      ENDDO
      END


      SUBROUTINE MATRIX_2(P,NHEL,RES)
C     
C     Generated by MadGraph5_aMC@NLO v. %(version)s, %(date)s
C     By the MadGraph5_aMC@NLO Development Team
C     Visit launchpad.net/madgraph5 and amcatnlo.web.cern.ch
C     
C     Returns amplitude squared summed/avg over colors
C     for the point with external lines W(0:6,NEXTERNAL)
C     
C     Process: g d~ > w+ u~ [ all = QCD QED ] QCD^2<=2 QED^2<=2
C     Process: g s~ > w+ c~ [ all = QCD QED ] QCD^2<=2 QED^2<=2
C     
      IMPLICIT NONE
C     
C     CONSTANTS
C     
      INTEGER    NGRAPHS
      PARAMETER (NGRAPHS=2)
      INTEGER    NWAVEFUNCS, NCOLOR
      PARAMETER (NWAVEFUNCS=5, NCOLOR=1)
      INTEGER NAMPSO, NSQAMPSO
      PARAMETER (NAMPSO=1, NSQAMPSO=1)
      REAL*8     ZERO
      PARAMETER (ZERO=0D0)
      COMPLEX*16 IMAG1
      PARAMETER (IMAG1=(0D0,1D0))
      INCLUDE 'nexternal.inc'
      INCLUDE 'coupl.inc'
C     
C     ARGUMENTS 
C     
      REAL*8 P(0:3,NEXTERNAL)
      INTEGER NHEL(NEXTERNAL)
      REAL*8 RES(0:NSQAMPSO)
C     
C     LOCAL VARIABLES 
C     
      INTEGER I,J,M,N
      INTEGER IC(NEXTERNAL)
      DATA IC /NEXTERNAL*1/
      REAL*8  CF(NCOLOR,NCOLOR)
      COMPLEX*16 ZTEMP, AMP(NGRAPHS), JAMP(NCOLOR,NAMPSO), W(8
     $ ,NWAVEFUNCS)
      COMPLEX*16 TMP_JAMP(0)
C     
C     FUNCTION
C     
      INTEGER SQSOINDEX2
C     
C     COLOR DATA
C     
      DATA (CF(I,  1),I=  1,  1) /4.000000000000000D+00/
C     1 T(1,2,4)
C     ----------
C     BEGIN CODE
C     ----------
      CALL VXXXXX(P(0,1),ZERO,NHEL(1),-1*IC(1),W(1,1))
      CALL OXXXXX(P(0,2),ZERO,NHEL(2),-1*IC(2),W(1,2))
      CALL VXXXXX(P(0,3),MDL_MW,NHEL(3),+1*IC(3),W(1,3))
      CALL IXXXXX(P(0,4),ZERO,NHEL(4),-1*IC(4),W(1,4))
      CALL FFV1_1(W(1,2),W(1,1),GC_5,ZERO,ZERO,W(1,5))
C     Amplitude(s) for diagram number 1
      CALL FFV2_0(W(1,4),W(1,5),W(1,3),GC_11,AMP(1))
      CALL FFV1_2(W(1,4),W(1,1),GC_5,ZERO,ZERO,W(1,5))
C     Amplitude(s) for diagram number 2
      CALL FFV2_0(W(1,5),W(1,2),W(1,3),GC_11,AMP(2))
C     JAMPs contributing to orders QCD=1 QED=1
      JAMP(1,1) = (-1.000000000000000D+00)*AMP(1)+(-1.000000000000000D
     $ +00)*AMP(2)

      DO I=0,NSQAMPSO
        RES(I)=0D0
      ENDDO
      DO M = 1, NAMPSO
        DO I = 1, NCOLOR
          ZTEMP = (0.D0,0.D0)
          DO J = 1, NCOLOR
            ZTEMP = ZTEMP + CF(J,I)*JAMP(J,M)
          ENDDO
          DO N = 1, NAMPSO
            RES(SQSOINDEX2(M,N)) = RES(SQSOINDEX2(M,N)) + ZTEMP
     $       *DCONJG(JAMP(I,N))
          ENDDO
        ENDDO
      ENDDO

      DO I=1,NSQAMPSO
        RES(0)=RES(0)+RES(I)
      ENDDO

      END

C     
C     Helper functions to deal with the split orders.
C     

      INTEGER FUNCTION SQSOINDEX2(AMPORDERA,AMPORDERB)
C     
C     This functions plays the role of the interference matrix. It can
C      be hardcoded or 
C     made more elegant using hashtables if its execution speed ever
C      becomes a relevant
C     factor. From two split order indices of the jamps, it return the
C      corresponding
C     index in the squared order canonical ordering.
C     
C     CONSTANTS
C     
      IMPLICIT NONE
      INTEGER NAMPSO, NSQAMPSO
      PARAMETER (NAMPSO=1, NSQAMPSO=1)
      INTEGER NSPLITORDERS
      PARAMETER (NSPLITORDERS=2)
C     
C     ARGUMENTS
C     
      INTEGER AMPORDERA, AMPORDERB
C     
C     LOCAL VARIABLES
C     
      INTEGER I, SQORDERS(NSPLITORDERS)
      INTEGER AMPSPLITORDERS(NAMPSO,NSPLITORDERS)
      DATA (AMPSPLITORDERS(  1,I),I=  1,  2) /    1,    1/
C     
C     FUNCTION
C     
      INTEGER SQSOINDEX_FROM_ORDERS2
C     
C     BEGIN CODE
C     
      DO I=1,NSPLITORDERS
        SQORDERS(I)=AMPSPLITORDERS(AMPORDERA,I)
     $   +AMPSPLITORDERS(AMPORDERB,I)
      ENDDO
      SQSOINDEX2=SQSOINDEX_FROM_ORDERS2(SQORDERS)
      END



      INTEGER FUNCTION SQSOINDEX_FROM_ORDERS2(ORDERS)
C     
C     From a list of values for the split orders, this function
C      returns the
C     corresponding index in the squared orders canonical ordering.
C     
      IMPLICIT NONE
      INTEGER NSQAMPSO
      PARAMETER (NSQAMPSO=1)
      INTEGER NSPLITORDERS
      PARAMETER (NSPLITORDERS=2)
C     
C     ARGUMENTS
C     
      INTEGER ORDERS(NSPLITORDERS)
C     
C     LOCAL VARIABLES
C     
      INTEGER I,J
      INTEGER SQSPLITORDERS(NSQAMPSO,NSPLITORDERS)
C     the values listed below are for QCD, QED
      DATA (SQSPLITORDERS(  1,I),I=  1,  2) /    2,    2/
C     
C     BEGIN CODE
C     
      DO I=1,NSQAMPSO
        DO J=1,NSPLITORDERS
          IF (ORDERS(J).NE.SQSPLITORDERS(I,J)) GOTO 1009
        ENDDO
        SQSOINDEX_FROM_ORDERS2 = I
        RETURN
 1009   CONTINUE
      ENDDO

      WRITE(*,*) 'ERROR:: Stopping function sqsoindex_from_orders'
      WRITE(*,*) 'Could not find squared orders ',(ORDERS(I),I=1
     $ ,NSPLITORDERS)
      STOP

      END



      INTEGER FUNCTION GETORDPOWFROMINDEX2(IORDER, INDX)
C     
C     Return the power of the IORDER-th order appearing at position
C      INDX
C     in the split-orders output
C     
      IMPLICIT NONE
      INTEGER NSQAMPSO
      PARAMETER (NSQAMPSO=1)
      INTEGER NSPLITORDERS
      PARAMETER (NSPLITORDERS=2)
C     
C     ARGUMENTS
C     
      INTEGER IORDER, INDX
C     
C     LOCAL VARIABLES
C     
      INTEGER I
      INTEGER SQSPLITORDERS(NSQAMPSO,NSPLITORDERS)
C     the values listed below are for QCD, QED
      DATA (SQSPLITORDERS(  1,I),I=  1,  2) /    2,    2/
C     
C     BEGIN CODE
C     
      IF (IORDER.GT.NSPLITORDERS.OR.IORDER.LT.1) THEN
        WRITE(*,*) 'INVALID IORDER 2', IORDER
        WRITE(*,*) 'SHOULD BE BETWEEN 1 AND ', NSPLITORDERS
        STOP
      ENDIF

      IF (INDX.GT.NSQAMPSO.OR.INDX.LT.1) THEN
        WRITE(*,*) 'INVALID INDX 2', INDX
        WRITE(*,*) 'SHOULD BE BETWEEN 1 AND ', NSQAMPSO
        STOP
      ENDIF

      GETORDPOWFROMINDEX2=SQSPLITORDERS(INDX, IORDER)
      END



      SUBROUTINE GET_NSQSO_REAL2(NSQSO)
C     
C     Simple subroutine returning the number of squared split order
C     contributions returned in ANS when calling SMATRIX_SPLITORDERS
C     
      IMPLICIT NONE
      INTEGER NSQAMPSO
      PARAMETER (NSQAMPSO=1)
      INTEGER NSQSO

      NSQSO=NSQAMPSO

      END