~maddevelopers/mg5amcnlo/PY8meetsMG5aMC_release

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
      SUBROUTINE ML5_0_SLOOPMATRIXHEL(P,HEL,ANS)
      IMPLICIT NONE
C     
C     CONSTANTS
C     
      INTEGER    NEXTERNAL
      PARAMETER (NEXTERNAL=5)

      INCLUDE 'nsquaredSO.inc'

C     
C     ARGUMENTS 
C     
      REAL*8 P(0:3,NEXTERNAL)
      REAL*8 ANS(0:3,0:NSQUAREDSO)
      INTEGER HEL, USERHEL
      COMMON/ML5_0_USERCHOICE/USERHEL
C     ----------
C     BEGIN CODE
C     ----------
      USERHEL=HEL
      CALL ML5_0_SLOOPMATRIX(P,ANS)
      END

      LOGICAL FUNCTION ML5_0_IS_HEL_SELECTED(HELID)
      IMPLICIT NONE
C     
C     CONSTANTS
C     
      INTEGER    NEXTERNAL
      PARAMETER (NEXTERNAL=5)
      INTEGER    NCOMB
      PARAMETER (NCOMB=48)
C     
C     ARGUMENTS
C     
      INTEGER HELID
C     
C     LOCALS
C     
      INTEGER I,J
      LOGICAL FOUNDIT
C     
C     GLOBALS
C     
      INTEGER HELC(NEXTERNAL,NCOMB)
      COMMON/ML5_0_HELCONFIGS/HELC

      INTEGER POLARIZATIONS(0:NEXTERNAL,0:5)
      COMMON/ML5_0_BEAM_POL/POLARIZATIONS
C     ----------
C     BEGIN CODE
C     ----------

      ML5_0_IS_HEL_SELECTED = .TRUE.
      IF (POLARIZATIONS(0,0).EQ.-1) THEN
        RETURN
      ENDIF

      DO I=1,NEXTERNAL
        IF (POLARIZATIONS(I,0).EQ.-1) THEN
          CYCLE
        ENDIF
        FOUNDIT = .FALSE.
        DO J=1,POLARIZATIONS(I,0)
          IF (HELC(I,HELID).EQ.POLARIZATIONS(I,J)) THEN
            FOUNDIT = .TRUE.
            EXIT
          ENDIF
        ENDDO
        IF(.NOT.FOUNDIT) THEN
          ML5_0_IS_HEL_SELECTED = .FALSE.
          RETURN
        ENDIF
      ENDDO
      RETURN

      END

      LOGICAL FUNCTION ML5_0_ISZERO(TOTEST, REFERENCE_VALUE, AMPLN)
      IMPLICIT NONE
C     
C     CONSTANTS
C     
      INTEGER    NLOOPAMPS
      PARAMETER (NLOOPAMPS=396)
C     
C     ARGUMENTS 
C     
      REAL*8 TOTEST, REFERENCE_VALUE
      INTEGER AMPLN
C     
C     GLOBAL 
C     
      INCLUDE 'MadLoopParams.inc'

      COMPLEX*16 AMPL(3,NLOOPAMPS)
      LOGICAL S(NLOOPAMPS)
      COMMON/ML5_0_AMPL/AMPL,S
C     ----------
C     BEGIN CODE
C     ----------
      IF(ABS(REFERENCE_VALUE).EQ.0.0D0) THEN
        ML5_0_ISZERO=.FALSE.
        WRITE(*,*) '##E02 ERRROR Reference value for comparison is'
     $   //' zero.'
        STOP
      ELSE
        ML5_0_ISZERO=((ABS(TOTEST)/ABS(REFERENCE_VALUE)).LT.ZEROTHRES)
      ENDIF
      IF(AMPLN.NE.-1) THEN
        IF((.NOT.ML5_0_ISZERO).AND.(.NOT.S(AMPLN))) THEN
          WRITE(*,*) '##W01 WARNING Contribution ',AMPLN,' is detected'
     $     //' as contributing with CR=',(ABS(TOTEST)
     $     /ABS(REFERENCE_VALUE)),' but is unstable.'
        ENDIF
      ENDIF

      END

      SUBROUTINE ML5_0_SLOOPMATRIX(P_USER,ANSRETURNED)
C     
C     Generated by MadGraph5_aMC@NLO v. %(version)s, %(date)s
C     By the MadGraph5_aMC@NLO Development Team
C     Visit launchpad.net/madgraph5 and amcatnlo.web.cern.ch
C     
C     Returns amplitude squared summed/avg over colors
C     and helicities for the point in phase space P(0:3,NEXTERNAL)
C     and external lines W(0:6,NEXTERNAL)
C     
C     Process: g g > w- t b~ QCD<=2 QED<=1 [ virt = QCD ]
C     
      IMPLICIT NONE
C     
C     CONSTANTS
C     
      CHARACTER*512 PARAMFNAME,HELCONFIGFNAME,LOOPFILTERFNAME
      CHARACTER*512 COLORNUMFNAME,COLORDENOMFNAME, HELFILTERFNAME
      CHARACTER*512 PROC_PREFIX
      PARAMETER ( PARAMFNAME='MadLoopParams.dat')
      PARAMETER ( HELCONFIGFNAME='HelConfigs.dat')
      PARAMETER ( LOOPFILTERFNAME='LoopFilter.dat')
      PARAMETER ( HELFILTERFNAME='HelFilter.dat')
      PARAMETER ( COLORNUMFNAME='ColorNumFactors.dat')
      PARAMETER ( COLORDENOMFNAME='ColorDenomFactors.dat')
      PARAMETER ( PROC_PREFIX='ML5_0_')

      INTEGER NBORNAMPS
      PARAMETER (NBORNAMPS=8)
      INTEGER    NLOOPAMPS, NCTAMPS
      PARAMETER (NLOOPAMPS=396, NCTAMPS=252)
      INTEGER    NEXTERNAL
      PARAMETER (NEXTERNAL=5)
      INTEGER NINITIAL
      PARAMETER (NINITIAL=2)
      INTEGER    NWAVEFUNCS
      PARAMETER (NWAVEFUNCS=28)
      INTEGER    NCOMB
      PARAMETER (NCOMB=48)
      REAL*8     ZERO
      PARAMETER (ZERO=0D0)
      REAL*16     MP__ZERO
      PARAMETER (MP__ZERO=0E0_16)
      COMPLEX*16 IMAG1
      PARAMETER (IMAG1=(0D0,1D0))
C     This parameter is designed for the check timing command of MG5
      LOGICAL SKIPLOOPEVAL
      PARAMETER (SKIPLOOPEVAL=.FALSE.)
      LOGICAL BOOTANDSTOP
      PARAMETER (BOOTANDSTOP=.FALSE.)
      INCLUDE 'nsquaredSO.inc'
      INTEGER NSQUAREDSOP1
      PARAMETER (NSQUAREDSOP1=NSQUAREDSO+1)
      INTEGER MAXSTABILITYLENGTH
      DATA MAXSTABILITYLENGTH/20/
      COMMON/ML5_0_STABILITY_TESTS/MAXSTABILITYLENGTH
C     
C     ARGUMENTS 
C     
      REAL*8 P_USER(0:3,NEXTERNAL)
      REAL*8 ANSRETURNED(0:3,0:NSQUAREDSO)
C     
C     LOCAL VARIABLES 
C     
      REAL*8 ANS(0:3)
      INTEGER I,J,K,H

      CHARACTER*512 PARAMFN,HELCONFIGFN,LOOPFILTERFN,COLORNUMFN
     $ ,COLORDENOMFN,HELFILTERFN
      CHARACTER*512 TMP
      SAVE PARAMFN
      SAVE HELCONFIGFN
      SAVE LOOPFILTERFN
      SAVE COLORNUMFN
      SAVE COLORDENOMFN
      SAVE HELFILTERFN

      INTEGER HELPICKED_BU, CTMODEINIT_BU
      REAL*8 MLSTABTHRES_BU
C     P is the actual PS POINT used for the computation, and can be
C      rotated for the stability test purposes.
      REAL*8 P(0:3,NEXTERNAL)
C     DP_RES STORES THE DOUBLE PRECISION RESULT OBTAINED FROM
C      DIFFERENT EVALUATION METHODS IN ORDER TO ASSESS STABILITY.
C     THE STAB_STAGE COUNTER I CORRESPONDANCE GOES AS FOLLOWS
C     I=1 -> ORIGINAL PS, CTMODE=1
C     I=2 -> ORIGINAL PS, CTMODE=2, (ONLY WITH CTMODERUN=-1)
C     I=3 -> PS WITH ROTATION 1, CTMODE=1, (ONLY WITH CTMODERUN=-2)
C     I=4 -> PS WITH ROTATION 2, CTMODE=1, (ONLY WITH CTMODERUN=-3)
C     I=5 -> POSSIBLY MORE EVALUATION METHODS IN THE FUTURE, MAX IS
C      MAXSTABILITYLENGTH
C     IF UNSTABLE IT GOES TO THE SAME PATTERN BUT STAB_INDEX IS THEN
C      I+20.
      LOGICAL EVAL_DONE(MAXSTABILITYLENGTH)
      LOGICAL DOING_QP_EVALS
      INTEGER STAB_INDEX,BASIC_CT_MODE
      INTEGER N_DP_EVAL, N_QP_EVAL
      DATA N_DP_EVAL/1/
      DATA N_QP_EVAL/1/
C     This is used for loop-induced where the reference scale for
C      comparisons is infered from
C     the previous points
      REAL*8 NEXTREF
      DATA NEXTREF/ZERO/
      INTEGER NPSPOINTS
      DATA NPSPOINTS/0/
      LOGICAL FOUND_VALID_REDUCTION_METHOD
      DATA FOUND_VALID_REDUCTION_METHOD/.FALSE./

      REAL*8 ACC
      REAL*8 DP_RES(3,MAXSTABILITYLENGTH)
C     QP_RES STORES THE QUADRUPLE PRECISION RESULT OBTAINED FROM
C      DIFFERENT EVALUATION METHODS IN ORDER TO ASSESS STABILITY.
      REAL*8 QP_RES(3,MAXSTABILITYLENGTH)
      INTEGER NHEL(NEXTERNAL), IC(NEXTERNAL)
      INTEGER NATTEMPTS
      DATA NATTEMPTS/0/
      DATA IC/NEXTERNAL*1/
      REAL*8 BUFFR(3),TEMP(3),TEMP1,TEMP2
      COMPLEX*16 CFTOT
      LOGICAL FOUNDHELFILTER,FOUNDLOOPFILTER
      DATA FOUNDHELFILTER/.TRUE./
      DATA FOUNDLOOPFILTER/.TRUE./
      INTEGER IDEN
      DATA IDEN/256/
      INTEGER HELAVGFACTOR
      DATA HELAVGFACTOR/4/
C     For a 1>N process, them BEAMTWO_HELAVGFACTOR would be set to 1.
      INTEGER BEAMS_HELAVGFACTOR(2)
      DATA (BEAMS_HELAVGFACTOR(I),I=1,2)/2,2/
      LOGICAL DONEHELDOUBLECHECK
      DATA DONEHELDOUBLECHECK/.FALSE./
      INTEGER NEPS
      DATA NEPS/0/
C     Below are variables to bypass the checkphase and insure
C      stability check to take place
      LOGICAL OLD_CHECKPHASE, OLD_HELDOUBLECHECKED
      LOGICAL OLD_GOODHEL(NCOMB)
      LOGICAL OLD_GOODAMP(NLOOPAMPS,NCOMB)

      LOGICAL BYPASS_CHECK, ALWAYS_TEST_STABILITY
      COMMON/ML5_0_BYPASS_CHECK/BYPASS_CHECK, ALWAYS_TEST_STABILITY
C     
C     FUNCTIONS
C     
      LOGICAL ML5_0_ISZERO
      LOGICAL ML5_0_IS_HEL_SELECTED
C     
C     GLOBAL VARIABLES
C     
      INCLUDE 'process_info.inc'
      INCLUDE 'coupl.inc'
      INCLUDE 'mp_coupl.inc'
      INCLUDE 'MadLoopParams.inc'

      INTEGER NTRY
      DATA NTRY/0/
      LOGICAL CHECKPHASE
      DATA CHECKPHASE/.TRUE./
      LOGICAL HELDOUBLECHECKED
      DATA HELDOUBLECHECKED/.FALSE./
      REAL*8 REF
      DATA REF/0.0D0/
      COMMON/ML5_0_INIT/NTRY,CHECKPHASE,HELDOUBLECHECKED,REF

C     THE LOGICAL BELOWS ARE JUST TO KEEP TRACK OF WHETHER THE MP_PS
C      HAS BEEN SET YET OR NOT AND WHETER THE MP EXTERNAL WFS HAVE
C      BEEN COMPUTED YET.
      LOGICAL MP_DONE
      DATA MP_DONE/.FALSE./
      COMMON/ML5_0_MP_DONE/MP_DONE
      LOGICAL MP_PS_SET
      DATA MP_PS_SET/.FALSE./
      COMMON/ML5_0_MP_PS_SET/MP_PS_SET

C     PS CAN POSSIBILY BE PASSED THROUGH IMPROVE_PS BUT IS NOT
C      MODIFIED FOR THE PURPOSE OF THE STABILITY TEST	  
C     EVEN THOUGH THEY ARE PUT IN COMMON BLOCK, FOR NOW THEY ARE NOT
C      USED ANYWHERE ELSE
      REAL*8 PS(0:3,NEXTERNAL)
      COMMON/ML5_0_PSPOINT/PS
C     AGAIN BELOW, MP_PS IS THE FIXED (POSSIBLY IMPROVED) MP PS POINT
C      AND MP_P IS THE ONE WHICH CAN BE MODIFIED (I.E. ROTATED ETC.)
C      FOR STABILITY PURPOSE
C     EVEN THOUGH THEY ARE PUT IN COMMON BLOCK, FOR NOW THEY ARE NOT
C      USED ANYWHERE ELSE THAN HERE AND SET_MP_PS()
      REAL*16 MP_PS(0:3,NEXTERNAL),MP_P(0:3,NEXTERNAL)
      COMMON/ML5_0_MP_PSPOINT/MP_PS,MP_P

      REAL*8 LSCALE
      INTEGER CTMODE
      COMMON/ML5_0_CT/LSCALE,CTMODE

      LOGICAL GOODHEL(NCOMB)
      LOGICAL GOODAMP(NLOOPAMPS,NCOMB)
      COMMON/ML5_0_FILTERS/GOODAMP,GOODHEL

      INTEGER HELPICKED
      DATA HELPICKED/-1/
      COMMON/ML5_0_HELCHOICE/HELPICKED
      INTEGER USERHEL
      DATA USERHEL/-1/
      COMMON/ML5_0_USERCHOICE/USERHEL

      COMPLEX*16 AMP(NBORNAMPS,NCOMB)
      COMMON/ML5_0_AMPS/AMP
      COMPLEX*16 W(20,NWAVEFUNCS,NCOMB)
      INTEGER VALIDH
      COMMON/ML5_0_WFCTS/W
      COMMON/ML5_0_VALIDH/VALIDH

      COMPLEX*16 AMPL(3,NLOOPAMPS)
      LOGICAL S(NLOOPAMPS)
      COMMON/ML5_0_AMPL/AMPL,S

      INTEGER CF_D(NLOOPAMPS,NBORNAMPS)
      INTEGER CF_N(NLOOPAMPS,NBORNAMPS)
      COMMON/ML5_0_CF/CF_D,CF_N

      INTEGER HELC(NEXTERNAL,NCOMB)
      COMMON/ML5_0_HELCONFIGS/HELC

      REAL*8 PREC,USER_STAB_PREC
      DATA USER_STAB_PREC/-1.0D0/
      COMMON/ML5_0_USER_STAB_PREC/USER_STAB_PREC

C     Return codes H,T,U correspond to the hundreds, tens and units
C     building returncode, i.e.
C     RETURNCODE=100*RET_CODE_H+10*RET_CODE_T+RET_CODE_U

      INTEGER RET_CODE_H,RET_CODE_T,RET_CODE_U
      REAL*8 ACCURACY(0:NSQUAREDSO)
      DATA (ACCURACY(I),I=0,NSQUAREDSO)/NSQUAREDSOP1*1.0D0/
      DATA RET_CODE_H,RET_CODE_T,RET_CODE_U/1,1,0/
      COMMON/ML5_0_ACC/ACCURACY,RET_CODE_H,RET_CODE_T,RET_CODE_U

C     Allows to forbid the zero helicity double check, no matter the
C      value in MadLoopParams.dat
C     This can be accessed with the SET_FORBID_HEL_DOUBLECHECK
C      subroutine of MadLoopCommons.dat
      LOGICAL FORBID_HEL_DOUBLECHECK
      COMMON/FORBID_HEL_DOUBLECHECK/FORBID_HEL_DOUBLECHECK

      LOGICAL MP_DONE_ONCE
      DATA MP_DONE_ONCE/.FALSE./
      COMMON/ML5_0_MP_DONE_ONCE/MP_DONE_ONCE

      CHARACTER(512) MLPATH
      COMMON/MLPATH/MLPATH

      LOGICAL ML_INIT
      COMMON/ML_INIT/ML_INIT

C     This variable controls the *local* initialization of this
C      particular SubProcess.
C     For example, the reading of the filters must be done
C      independently by each SubProcess.
      LOGICAL LOCAL_ML_INIT
      DATA LOCAL_ML_INIT/.TRUE./

C     Variables related to turning off the Lorentz rotation test when
C      spin-2 particles are external
      LOGICAL WARNED_LORENTZ_STAB_TEST_OFF
      DATA WARNED_LORENTZ_STAB_TEST_OFF/.FALSE./
      INTEGER NROTATIONS_DP_BU,NROTATIONS_QP_BU

C     This array specify potential special requirements on the
C      helicities to
C     consider. POLARIZATIONS(0,0) is -1 if there is not such
C      requirement.
      INTEGER POLARIZATIONS(0:NEXTERNAL,0:5)
      COMMON/ML5_0_BEAM_POL/POLARIZATIONS

C     ----------
C     BEGIN CODE
C     ----------

      IF(ML_INIT) THEN
        CALL PRINT_MADLOOP_BANNER()
        TMP = 'auto'
        CALL SETMADLOOPPATH(TMP)
        CALL JOINPATH(MLPATH,PARAMFNAME,PARAMFN)
        CALL MADLOOPPARAMREADER(PARAMFN,.TRUE.)
        IF (FORBID_HEL_DOUBLECHECK) THEN
          DOUBLECHECKHELICITYFILTER = .FALSE.
        ENDIF
        ML_INIT = .FALSE.
C       For now only CutTools is interfaced in the default mode.
C        Samurai could follow.
        DO I=1,SIZE(MLREDUCTIONLIB)
          IF (MLREDUCTIONLIB(I).EQ.1) THEN
            FOUND_VALID_REDUCTION_METHOD = .TRUE.
          ENDIF
        ENDDO
        IF (.NOT.FOUND_VALID_REDUCTION_METHOD) THEN
          WRITE(*,*) 'ERROR:: For now, only CutTools is interfaced to'
     $     //' MadLoop in the non-optimized output.'
          WRITE(*,*) 'ERROR:: Make sure to include 1 in the parameter'
     $     //' MLReductionLib of the card MadLoopParams.dat'
          STOP 1
        ENDIF
      ENDIF
      IF (LOCAL_ML_INIT) THEN
C       Setup the file paths
        CALL JOINPATH(MLPATH,PARAMFNAME,PARAMFN)
        CALL JOINPATH(MLPATH,PROC_PREFIX,TMP)
        CALL JOINPATH(TMP,HELCONFIGFNAME,HELCONFIGFN)
        CALL JOINPATH(TMP,LOOPFILTERFNAME,LOOPFILTERFN)
        CALL JOINPATH(TMP,COLORNUMFNAME,COLORNUMFN)
        CALL JOINPATH(TMP,COLORDENOMFNAME,COLORDENOMFN)
        CALL JOINPATH(TMP,HELFILTERFNAME,HELFILTERFN)

C       Make sure that the loop filter is disabled when there is
C        spin-2 particles for 2>1 or 1>2 processes
        IF(MAX_SPIN_EXTERNAL_PARTICLE.GT.3.AND.(NEXTERNAL.LE.3.AND.HELI
     $CITYFILTERLEVEL.NE.0)) THEN
          WRITE(*,*) '##INFO: Helicity filter deactivated for 2>1'
     $     //' processes involving spin 2 particles.'
          HELICITYFILTERLEVEL = 0
C         We write a dummy filter for structural reasons here
          OPEN(1, FILE=HELFILTERFN, ERR=6116, STATUS='NEW'
     $     ,ACTION='WRITE')
          DO I=1,NCOMB
            WRITE(1,*) 'T'
          ENDDO
 6116     CONTINUE
          CLOSE(1)
        ENDIF

        OPEN(1, FILE=COLORNUMFN, ERR=104, STATUS='OLD',          
     $    ACTION='READ')
        DO I=1,NLOOPAMPS
          READ(1,*,END=105) (CF_N(I,J),J=1,NBORNAMPS)
        ENDDO
        GOTO 105
 104    CONTINUE
        STOP 'Color factors could not be initialized from file'
     $   //' ML5_0_ColorNumFactors.dat. File not found'
 105    CONTINUE
        CLOSE(1)
        OPEN(1, FILE=COLORDENOMFN, ERR=106, STATUS='OLD',          
     $    ACTION='READ')
        DO I=1,NLOOPAMPS
          READ(1,*,END=107) (CF_D(I,J),J=1,NBORNAMPS)
        ENDDO
        GOTO 107
 106    CONTINUE
        STOP 'Color factors could not be initialized from file'
     $   //' ML5_0_ColorDenomFactors.dat. File not found'
 107    CONTINUE
        CLOSE(1)
        OPEN(1, FILE=HELCONFIGFN, ERR=108, STATUS='OLD',              
     $       ACTION='READ')
        DO H=1,NCOMB
          READ(1,*,END=109) (HELC(I,H),I=1,NEXTERNAL)
        ENDDO
        GOTO 109
 108    CONTINUE
        STOP 'Color helictiy configurations could not be initialized'
     $   //' from file ML5_0_HelConfigs.dat. File not found'
 109    CONTINUE
        CLOSE(1)
        IF(BOOTANDSTOP) THEN
          WRITE(*,*) '##Stopped by user request.'
          STOP
        ENDIF
        LOCAL_ML_INIT = .FALSE.
      ENDIF

C     Make sure that lorentz rotation tests are not used if there is
C      external loop wavefunction of spin 2 and that one specific
C      helicity is asked
      NROTATIONS_DP_BU = NROTATIONS_DP
      NROTATIONS_QP_BU = NROTATIONS_QP
      IF(MAX_SPIN_EXTERNAL_PARTICLE.GT.3.AND.USERHEL.NE.-1) THEN
        IF(.NOT.WARNED_LORENTZ_STAB_TEST_OFF) THEN
          WRITE(*,*) '##WARNING: Evaluation of a specific helicity was'
     $     //' asked for this PS point, and there is a spin-2 (or'
     $     //' higher) particle in the external states.'
          WRITE(*,*) '##WARNING: As a result, MadLoop disabled the'
     $     //' Lorentz rotation test for this phase-space point only.'
          WRITE(*,*) '##WARNING: Further warning of that type'
     $     //' suppressed.'
          WARNED_LORENTZ_STAB_TEST_OFF = .FALSE.
        ENDIF
        NROTATIONS_QP=0
        NROTATIONS_DP=0
      ENDIF

      IF(NTRY.EQ.0) THEN
        CALL ML5_0_SET_N_EVALS(N_DP_EVAL,N_QP_EVAL)
        HELDOUBLECHECKED=(.NOT.DOUBLECHECKHELICITYFILTER)
     $   .OR.(HELICITYFILTERLEVEL.EQ.0)
        DO J=1,NCOMB
          DO I=1,NCTAMPS
            GOODAMP(I,J)=.TRUE.
          ENDDO
        ENDDO
        OPEN(1, FILE=LOOPFILTERFN, ERR=100, STATUS='OLD',          
     $    ACTION='READ')
        DO J=1,NCOMB
          READ(1,*,END=101) (GOODAMP(I,J),I=NCTAMPS+1,NLOOPAMPS)
        ENDDO
        GOTO 101
 100    CONTINUE
        FOUNDLOOPFILTER=.FALSE.
        DO J=1,NCOMB
          DO I=NCTAMPS+1,NLOOPAMPS
            GOODAMP(I,J)=(.NOT.USELOOPFILTER)
          ENDDO
        ENDDO
 101    CONTINUE
        CLOSE(1)
        IF (HELICITYFILTERLEVEL.EQ.0) THEN
          FOUNDHELFILTER=.TRUE.
          DO J=1,NCOMB
            GOODHEL(J)=.TRUE.
          ENDDO
          GOTO 122
        ENDIF
        OPEN(1, FILE=HELFILTERFN, ERR=102, STATUS='OLD',          
     $    ACTION='READ')
        READ(1,*,END=103) (GOODHEL(I),I=1,NCOMB)
        GOTO 103
 102    CONTINUE
        FOUNDHELFILTER=.FALSE.
        DO J=1,NCOMB
          GOODHEL(J)=.TRUE.
        ENDDO
 103    CONTINUE
        CLOSE(1)
 122    CONTINUE
      ENDIF

      MP_DONE=.FALSE.
      MP_DONE_ONCE=.FALSE.
      MP_PS_SET=.FALSE.
      STAB_INDEX=0
      DOING_QP_EVALS=.FALSE.
      EVAL_DONE(1)=.TRUE.
      DO I=2,MAXSTABILITYLENGTH
        EVAL_DONE(I)=.FALSE.
      ENDDO

C     Compute the born, for a specific helicity if asked so.
      CALL ML5_0_SMATRIXHEL(P_USER,USERHEL,ANS(0))


      IF (USER_STAB_PREC.GT.0.0D0) THEN
        MLSTABTHRES_BU=MLSTABTHRES
        MLSTABTHRES=USER_STAB_PREC
C       In the initialization, I cannot perform stability test and
C        therefore guarantee any precision
        CTMODEINIT_BU=CTMODEINIT
C       So either one choses quad precision directly
C       CTMODEINIT=4
C       Or, because this is very slow, we keep the orignal value. The
C        accuracy returned is -1 and tells the MC that he should not
C        trust the evaluation for checks.
        CTMODEINIT=CTMODEINIT_BU
      ENDIF

      IF(.NOT.BYPASS_CHECK) THEN
        NTRY=NTRY+1
      ENDIF

      IF(DONEHELDOUBLECHECK.AND.(.NOT.HELDOUBLECHECKED)) THEN
        HELDOUBLECHECKED=.TRUE.
        DONEHELDOUBLECHECK=.FALSE.
      ENDIF

      CHECKPHASE=(NTRY.LE.CHECKCYCLE).AND.(((.NOT.FOUNDLOOPFILTER)
     $ .AND.USELOOPFILTER).OR.(.NOT.FOUNDHELFILTER))

      IF (WRITEOUTFILTERS) THEN
        IF ((.NOT. CHECKPHASE).AND.(.NOT.FOUNDHELFILTER)) THEN
          OPEN(1, FILE=HELFILTERFN, ERR=110, STATUS='NEW'
     $     ,ACTION='WRITE')
          WRITE(1,*) (GOODHEL(I),I=1,NCOMB)
 110      CONTINUE
          CLOSE(1)
          FOUNDHELFILTER=.TRUE.
        ENDIF

        IF ((.NOT. CHECKPHASE).AND.(.NOT.FOUNDLOOPFILTER)
     $   .AND.USELOOPFILTER) THEN
          OPEN(1, FILE=LOOPFILTERFN, ERR=111, STATUS='NEW'
     $     ,ACTION='WRITE')
          DO J=1,NCOMB
            WRITE(1,*) (GOODAMP(I,J),I=NCTAMPS+1,NLOOPAMPS)
          ENDDO
 111      CONTINUE
          CLOSE(1)
          FOUNDLOOPFILTER=.TRUE.
        ENDIF
      ENDIF

      IF (BYPASS_CHECK) THEN
        OLD_CHECKPHASE = CHECKPHASE
        OLD_HELDOUBLECHECKED = HELDOUBLECHECKED
        CHECKPHASE = .FALSE.
        HELDOUBLECHECKED = .TRUE.
        DO I=1,NCOMB
          OLD_GOODHEL(I)=GOODHEL(I)
          GOODHEL(I) = .TRUE.
        ENDDO
        DO I=1,NCOMB
          DO J=1,NLOOPAMPS
            OLD_GOODAMP(J,I)=GOODAMP(J,I)
            GOODAMP(J,I) = .TRUE.
          ENDDO
        ENDDO
      ENDIF

      IF(CHECKPHASE.OR.(.NOT.HELDOUBLECHECKED)) THEN
        HELPICKED=1
        CTMODE=CTMODEINIT
      ELSE
        IF (USERHEL.NE.-1) THEN
          IF(.NOT.GOODHEL(USERHEL)) THEN
            ANS(1)=0.0D0
            ANS(2)=0.0D0
            ANS(3)=0.0D0
            GOTO 9999
          ENDIF
        ENDIF
        HELPICKED=USERHEL
        IF (CTMODERUN.GT.-1) THEN
          CTMODE=CTMODERUN
        ELSE
          CTMODE=1
        ENDIF
      ENDIF

      DO I=1,NEXTERNAL
        DO J=0,3
          PS(J,I)=P_USER(J,I)
        ENDDO
      ENDDO

      IF (IMPROVEPSPOINT.GE.0) THEN
C       Make the input PS more precise (exact onshell and
C        energy-momentum conservation)
        CALL ML5_0_IMPROVE_PS_POINT_PRECISION(PS)
      ENDIF

      DO I=1,NEXTERNAL
        DO J=0,3
          P(J,I)=PS(J,I)
        ENDDO
      ENDDO

      DO K=1, 3
        BUFFR(K)=0.0D0
        DO I=1,NLOOPAMPS
          AMPL(K,I)=(0.0D0,0.0D0)
        ENDDO
      ENDDO

      LSCALE=DSQRT(ABS((P(0,1)+P(0,2))**2-(P(1,1)+P(1,2))**2-(P(2,1)
     $ +P(2,2))**2-(P(3,1)+P(3,2))**2))

C     We chose to use the born evaluation for the reference
      CALL ML5_0_SMATRIX(P,REF)

 200  CONTINUE

      IF (CTMODE.EQ.0.OR.CTMODE.GE.4) THEN
        CALL MP_UPDATE_AS_PARAM()
      ENDIF

      IF (.NOT.MP_PS_SET.AND.(CTMODE.EQ.0.OR.CTMODE.GE.4)) THEN
        CALL ML5_0_SET_MP_PS(P_USER)
        MP_PS_SET = .TRUE.
      ENDIF

      DO K=1,3
        ANS(K)=0.0D0
      ENDDO

      VALIDH=-1
      DO H=1,NCOMB
        IF ((HELPICKED.EQ.H).OR.((HELPICKED.EQ.-1)
     $   .AND.(CHECKPHASE.OR.(.NOT.HELDOUBLECHECKED).OR.GOODHEL(H))))
     $    THEN

C         Handle the possible requirement of specific polarizations
          IF ((.NOT.CHECKPHASE)
     $     .AND.HELDOUBLECHECKED.AND.POLARIZATIONS(0,0)
     $     .EQ.0.AND.(.NOT.ML5_0_IS_HEL_SELECTED(H))) THEN
            CYCLE
          ENDIF

          IF (VALIDH.EQ.-1) VALIDH=H
          DO I=1,NEXTERNAL
            NHEL(I)=HELC(I,H)
          ENDDO
C         Check if we are in multiple precision and compute wfs and
C          amps accordingly if needed   
          IF (CTMODE.GE.4) THEN
C           Force that only current helicity is used in the routine
C            below
C           This should always be done, even if MP_DONE is True
C           because the AMPL of the R2 MUST be recomputed for loop
C            induced.
C           (because they are not saved for each hel configuration)
C           (This is not optimal unlike what is done int the loop
C            optimized output)
            HELPICKED_BU = HELPICKED
            HELPICKED = H
            CALL ML5_0_MP_BORN_AMPS_AND_WFS(MP_P)
            HELPICKED = HELPICKED_BU
            GOTO 300
          ENDIF
          CALL VXXXXX(P(0,1),ZERO,NHEL(1),-1*IC(1),W(1,1,H))
          CALL VXXXXX(P(0,2),ZERO,NHEL(2),-1*IC(2),W(1,2,H))
          CALL VXXXXX(P(0,3),MDL_MW,NHEL(3),+1*IC(3),W(1,3,H))
          CALL OXXXXX(P(0,4),MDL_MT,NHEL(4),+1*IC(4),W(1,4,H))
          CALL IXXXXX(P(0,5),MDL_MB,NHEL(5),-1*IC(5),W(1,5,H))
          CALL VVV1P0_1(W(1,1,H),W(1,2,H),GC_4,ZERO,ZERO,W(1,6,H))
          CALL FFV2_1(W(1,4,H),W(1,3,H),GC_11,MDL_MB,ZERO,W(1,7,H))
C         Amplitude(s) for born diagram with ID 1
          CALL FFV1_0(W(1,5,H),W(1,7,H),W(1,6,H),GC_5,AMP(1,H))
          CALL FFV2_2(W(1,5,H),W(1,3,H),GC_11,MDL_MT,MDL_WT,W(1,8,H))
C         Amplitude(s) for born diagram with ID 2
          CALL FFV1_0(W(1,8,H),W(1,4,H),W(1,6,H),GC_5,AMP(2,H))
          CALL FFV1_1(W(1,4,H),W(1,1,H),GC_5,MDL_MT,MDL_WT,W(1,9,H))
          CALL FFV1_2(W(1,5,H),W(1,2,H),GC_5,MDL_MB,ZERO,W(1,10,H))
C         Amplitude(s) for born diagram with ID 3
          CALL FFV2_0(W(1,10,H),W(1,9,H),W(1,3,H),GC_11,AMP(3,H))
C         Amplitude(s) for born diagram with ID 4
          CALL FFV1_0(W(1,8,H),W(1,9,H),W(1,2,H),GC_5,AMP(4,H))
          CALL FFV1_2(W(1,5,H),W(1,1,H),GC_5,MDL_MB,ZERO,W(1,11,H))
          CALL FFV1_1(W(1,4,H),W(1,2,H),GC_5,MDL_MT,MDL_WT,W(1,12,H))
C         Amplitude(s) for born diagram with ID 5
          CALL FFV2_0(W(1,11,H),W(1,12,H),W(1,3,H),GC_11,AMP(5,H))
C         Amplitude(s) for born diagram with ID 6
          CALL FFV1_0(W(1,11,H),W(1,7,H),W(1,2,H),GC_5,AMP(6,H))
C         Amplitude(s) for born diagram with ID 7
          CALL FFV1_0(W(1,8,H),W(1,12,H),W(1,1,H),GC_5,AMP(7,H))
C         Amplitude(s) for born diagram with ID 8
          CALL FFV1_0(W(1,10,H),W(1,7,H),W(1,1,H),GC_5,AMP(8,H))
          CALL FFV1P0_3(W(1,5,H),W(1,7,H),GC_5,ZERO,ZERO,W(1,13,H))
C         Counter-term amplitude(s) for loop diagram number 9
          CALL R2_GG_1_0(W(1,6,H),W(1,13,H),R2_GGQ,AMPL(1,1))
          CALL R2_GG_1_0(W(1,6,H),W(1,13,H),R2_GGQ,AMPL(1,2))
          CALL R2_GG_1_0(W(1,6,H),W(1,13,H),R2_GGQ,AMPL(1,3))
          CALL R2_GG_1_0(W(1,6,H),W(1,13,H),R2_GGQ,AMPL(1,4))
          CALL FFV1P0_3(W(1,8,H),W(1,4,H),GC_5,ZERO,ZERO,W(1,14,H))
C         Counter-term amplitude(s) for loop diagram number 10
          CALL R2_GG_1_0(W(1,6,H),W(1,14,H),R2_GGQ,AMPL(1,5))
          CALL R2_GG_1_0(W(1,6,H),W(1,14,H),R2_GGQ,AMPL(1,6))
          CALL R2_GG_1_0(W(1,6,H),W(1,14,H),R2_GGQ,AMPL(1,7))
          CALL R2_GG_1_0(W(1,6,H),W(1,14,H),R2_GGQ,AMPL(1,8))
C         Counter-term amplitude(s) for loop diagram number 11
          CALL VVV1_0(W(1,1,H),W(1,2,H),W(1,13,H),UV_3GB_1EPS,AMPL(2,9)
     $     )
          CALL VVV1_0(W(1,1,H),W(1,2,H),W(1,13,H),UV_3GB_1EPS,AMPL(2
     $     ,10))
          CALL VVV1_0(W(1,1,H),W(1,2,H),W(1,13,H),UV_3GB_1EPS,AMPL(2
     $     ,11))
          CALL VVV1_0(W(1,1,H),W(1,2,H),W(1,13,H),UV_3GB_1EPS,AMPL(2
     $     ,12))
          CALL VVV1_0(W(1,1,H),W(1,2,H),W(1,13,H),UV_3GB,AMPL(1,13))
          CALL VVV1_0(W(1,1,H),W(1,2,H),W(1,13,H),UV_3GB_1EPS,AMPL(2
     $     ,14))
          CALL VVV1_0(W(1,1,H),W(1,2,H),W(1,13,H),UV_3GT,AMPL(1,15))
          CALL VVV1_0(W(1,1,H),W(1,2,H),W(1,13,H),UV_3GB_1EPS,AMPL(2
     $     ,16))
          CALL VVV1_0(W(1,1,H),W(1,2,H),W(1,13,H),UV_3GG_1EPS,AMPL(2
     $     ,17))
          CALL VVV1_0(W(1,1,H),W(1,2,H),W(1,13,H),R2_3GQ,AMPL(1,18))
          CALL VVV1_0(W(1,1,H),W(1,2,H),W(1,13,H),R2_3GQ,AMPL(1,19))
          CALL VVV1_0(W(1,1,H),W(1,2,H),W(1,13,H),R2_3GQ,AMPL(1,20))
          CALL VVV1_0(W(1,1,H),W(1,2,H),W(1,13,H),R2_3GQ,AMPL(1,21))
C         Counter-term amplitude(s) for loop diagram number 12
          CALL VVV1_0(W(1,1,H),W(1,2,H),W(1,14,H),UV_3GB_1EPS,AMPL(2
     $     ,22))
          CALL VVV1_0(W(1,1,H),W(1,2,H),W(1,14,H),UV_3GB_1EPS,AMPL(2
     $     ,23))
          CALL VVV1_0(W(1,1,H),W(1,2,H),W(1,14,H),UV_3GB_1EPS,AMPL(2
     $     ,24))
          CALL VVV1_0(W(1,1,H),W(1,2,H),W(1,14,H),UV_3GB_1EPS,AMPL(2
     $     ,25))
          CALL VVV1_0(W(1,1,H),W(1,2,H),W(1,14,H),UV_3GB,AMPL(1,26))
          CALL VVV1_0(W(1,1,H),W(1,2,H),W(1,14,H),UV_3GB_1EPS,AMPL(2
     $     ,27))
          CALL VVV1_0(W(1,1,H),W(1,2,H),W(1,14,H),UV_3GT,AMPL(1,28))
          CALL VVV1_0(W(1,1,H),W(1,2,H),W(1,14,H),UV_3GB_1EPS,AMPL(2
     $     ,29))
          CALL VVV1_0(W(1,1,H),W(1,2,H),W(1,14,H),UV_3GG_1EPS,AMPL(2
     $     ,30))
          CALL VVV1_0(W(1,1,H),W(1,2,H),W(1,14,H),R2_3GQ,AMPL(1,31))
          CALL VVV1_0(W(1,1,H),W(1,2,H),W(1,14,H),R2_3GQ,AMPL(1,32))
          CALL VVV1_0(W(1,1,H),W(1,2,H),W(1,14,H),R2_3GQ,AMPL(1,33))
          CALL VVV1_0(W(1,1,H),W(1,2,H),W(1,14,H),R2_3GQ,AMPL(1,34))
          CALL FFV1_2(W(1,5,H),W(1,6,H),GC_5,MDL_MB,ZERO,W(1,15,H))
C         Counter-term amplitude(s) for loop diagram number 15
          CALL R2_QQ_1_R2_QQ_2_0(W(1,15,H),W(1,7,H),R2_QQQ,R2_QQB
     $     ,AMPL(1,35))
          CALL R2_QQ_2_0(W(1,15,H),W(1,7,H),UV_BMASS,AMPL(1,36))
          CALL R2_QQ_2_0(W(1,15,H),W(1,7,H),UV_BMASS_1EPS,AMPL(2,37))
C         Counter-term amplitude(s) for loop diagram number 16
          CALL R2_GG_1_R2_GG_3_0(W(1,6,H),W(1,13,H),R2_GGQ,R2_GGB
     $     ,AMPL(1,38))
C         Counter-term amplitude(s) for loop diagram number 17
          CALL FFV1_0(W(1,5,H),W(1,7,H),W(1,6,H),UV_GQQB_1EPS,AMPL(2
     $     ,39))
          CALL FFV1_0(W(1,5,H),W(1,7,H),W(1,6,H),UV_GQQB_1EPS,AMPL(2
     $     ,40))
          CALL FFV1_0(W(1,5,H),W(1,7,H),W(1,6,H),UV_GQQB_1EPS,AMPL(2
     $     ,41))
          CALL FFV1_0(W(1,5,H),W(1,7,H),W(1,6,H),UV_GQQB_1EPS,AMPL(2
     $     ,42))
          CALL FFV1_0(W(1,5,H),W(1,7,H),W(1,6,H),UV_GQQB,AMPL(1,43))
          CALL FFV1_0(W(1,5,H),W(1,7,H),W(1,6,H),UV_GQQB_1EPS,AMPL(2
     $     ,44))
          CALL FFV1_0(W(1,5,H),W(1,7,H),W(1,6,H),UV_GQQT,AMPL(1,45))
          CALL FFV1_0(W(1,5,H),W(1,7,H),W(1,6,H),UV_GQQB_1EPS,AMPL(2
     $     ,46))
          CALL FFV1_0(W(1,5,H),W(1,7,H),W(1,6,H),UV_GQQG_1EPS,AMPL(2
     $     ,47))
          CALL FFV1_0(W(1,5,H),W(1,7,H),W(1,6,H),R2_GQQ,AMPL(1,48))
C         Counter-term amplitude(s) for loop diagram number 19
          CALL R2_GG_1_R2_GG_3_0(W(1,6,H),W(1,14,H),R2_GGQ,R2_GGB
     $     ,AMPL(1,49))
C         Counter-term amplitude(s) for loop diagram number 20
          CALL FFV2_0(W(1,15,H),W(1,4,H),W(1,3,H),R2_BXTW,AMPL(1,50))
          CALL FFV1_1(W(1,4,H),W(1,6,H),GC_5,MDL_MT,MDL_WT,W(1,16,H))
C         Counter-term amplitude(s) for loop diagram number 23
          CALL FFV2_0(W(1,5,H),W(1,16,H),W(1,3,H),R2_BXTW,AMPL(1,51))
          CALL FFV2_1(W(1,9,H),W(1,3,H),GC_11,MDL_MB,ZERO,W(1,17,H))
C         Counter-term amplitude(s) for loop diagram number 25
          CALL R2_QQ_1_R2_QQ_2_0(W(1,10,H),W(1,17,H),R2_QQQ,R2_QQB
     $     ,AMPL(1,52))
          CALL R2_QQ_2_0(W(1,10,H),W(1,17,H),UV_BMASS,AMPL(1,53))
          CALL R2_QQ_2_0(W(1,10,H),W(1,17,H),UV_BMASS_1EPS,AMPL(2,54))
C         Counter-term amplitude(s) for loop diagram number 26
          CALL FFV2_0(W(1,10,H),W(1,9,H),W(1,3,H),R2_BXTW,AMPL(1,55))
C         Counter-term amplitude(s) for loop diagram number 27
          CALL FFV1_0(W(1,5,H),W(1,17,H),W(1,2,H),UV_GQQB_1EPS,AMPL(2
     $     ,56))
          CALL FFV1_0(W(1,5,H),W(1,17,H),W(1,2,H),UV_GQQB_1EPS,AMPL(2
     $     ,57))
          CALL FFV1_0(W(1,5,H),W(1,17,H),W(1,2,H),UV_GQQB_1EPS,AMPL(2
     $     ,58))
          CALL FFV1_0(W(1,5,H),W(1,17,H),W(1,2,H),UV_GQQB_1EPS,AMPL(2
     $     ,59))
          CALL FFV1_0(W(1,5,H),W(1,17,H),W(1,2,H),UV_GQQB,AMPL(1,60))
          CALL FFV1_0(W(1,5,H),W(1,17,H),W(1,2,H),UV_GQQB_1EPS,AMPL(2
     $     ,61))
          CALL FFV1_0(W(1,5,H),W(1,17,H),W(1,2,H),UV_GQQT,AMPL(1,62))
          CALL FFV1_0(W(1,5,H),W(1,17,H),W(1,2,H),UV_GQQB_1EPS,AMPL(2
     $     ,63))
          CALL FFV1_0(W(1,5,H),W(1,17,H),W(1,2,H),UV_GQQG_1EPS,AMPL(2
     $     ,64))
          CALL FFV1_0(W(1,5,H),W(1,17,H),W(1,2,H),R2_GQQ,AMPL(1,65))
          CALL FFV1_1(W(1,9,H),W(1,2,H),GC_5,MDL_MT,MDL_WT,W(1,18,H))
C         Counter-term amplitude(s) for loop diagram number 29
          CALL FFV2_0(W(1,5,H),W(1,18,H),W(1,3,H),R2_BXTW,AMPL(1,66))
          CALL FFV2_1(W(1,12,H),W(1,3,H),GC_11,MDL_MB,ZERO,W(1,19,H))
C         Counter-term amplitude(s) for loop diagram number 33
          CALL R2_QQ_1_R2_QQ_2_0(W(1,11,H),W(1,19,H),R2_QQQ,R2_QQB
     $     ,AMPL(1,67))
          CALL R2_QQ_2_0(W(1,11,H),W(1,19,H),UV_BMASS,AMPL(1,68))
          CALL R2_QQ_2_0(W(1,11,H),W(1,19,H),UV_BMASS_1EPS,AMPL(2,69))
C         Counter-term amplitude(s) for loop diagram number 34
          CALL FFV2_0(W(1,11,H),W(1,12,H),W(1,3,H),R2_BXTW,AMPL(1,70))
C         Counter-term amplitude(s) for loop diagram number 35
          CALL FFV1_0(W(1,11,H),W(1,7,H),W(1,2,H),UV_GQQB_1EPS,AMPL(2
     $     ,71))
          CALL FFV1_0(W(1,11,H),W(1,7,H),W(1,2,H),UV_GQQB_1EPS,AMPL(2
     $     ,72))
          CALL FFV1_0(W(1,11,H),W(1,7,H),W(1,2,H),UV_GQQB_1EPS,AMPL(2
     $     ,73))
          CALL FFV1_0(W(1,11,H),W(1,7,H),W(1,2,H),UV_GQQB_1EPS,AMPL(2
     $     ,74))
          CALL FFV1_0(W(1,11,H),W(1,7,H),W(1,2,H),UV_GQQB,AMPL(1,75))
          CALL FFV1_0(W(1,11,H),W(1,7,H),W(1,2,H),UV_GQQB_1EPS,AMPL(2
     $     ,76))
          CALL FFV1_0(W(1,11,H),W(1,7,H),W(1,2,H),UV_GQQT,AMPL(1,77))
          CALL FFV1_0(W(1,11,H),W(1,7,H),W(1,2,H),UV_GQQB_1EPS,AMPL(2
     $     ,78))
          CALL FFV1_0(W(1,11,H),W(1,7,H),W(1,2,H),UV_GQQG_1EPS,AMPL(2
     $     ,79))
          CALL FFV1_0(W(1,11,H),W(1,7,H),W(1,2,H),R2_GQQ,AMPL(1,80))
          CALL FFV1_2(W(1,11,H),W(1,2,H),GC_5,MDL_MB,ZERO,W(1,20,H))
C         Counter-term amplitude(s) for loop diagram number 37
          CALL R2_QQ_1_R2_QQ_2_0(W(1,20,H),W(1,7,H),R2_QQQ,R2_QQB
     $     ,AMPL(1,81))
          CALL R2_QQ_2_0(W(1,20,H),W(1,7,H),UV_BMASS,AMPL(1,82))
          CALL R2_QQ_2_0(W(1,20,H),W(1,7,H),UV_BMASS_1EPS,AMPL(2,83))
          CALL FFV1_1(W(1,7,H),W(1,2,H),GC_5,MDL_MB,ZERO,W(1,21,H))
C         Counter-term amplitude(s) for loop diagram number 38
          CALL R2_QQ_1_R2_QQ_2_0(W(1,11,H),W(1,21,H),R2_QQQ,R2_QQB
     $     ,AMPL(1,84))
          CALL R2_QQ_2_0(W(1,11,H),W(1,21,H),UV_BMASS,AMPL(1,85))
          CALL R2_QQ_2_0(W(1,11,H),W(1,21,H),UV_BMASS_1EPS,AMPL(2,86))
C         Counter-term amplitude(s) for loop diagram number 40
          CALL FFV2_0(W(1,20,H),W(1,4,H),W(1,3,H),R2_BXTW,AMPL(1,87))
C         Counter-term amplitude(s) for loop diagram number 43
          CALL FFV1_0(W(1,5,H),W(1,19,H),W(1,1,H),UV_GQQB_1EPS,AMPL(2
     $     ,88))
          CALL FFV1_0(W(1,5,H),W(1,19,H),W(1,1,H),UV_GQQB_1EPS,AMPL(2
     $     ,89))
          CALL FFV1_0(W(1,5,H),W(1,19,H),W(1,1,H),UV_GQQB_1EPS,AMPL(2
     $     ,90))
          CALL FFV1_0(W(1,5,H),W(1,19,H),W(1,1,H),UV_GQQB_1EPS,AMPL(2
     $     ,91))
          CALL FFV1_0(W(1,5,H),W(1,19,H),W(1,1,H),UV_GQQB,AMPL(1,92))
          CALL FFV1_0(W(1,5,H),W(1,19,H),W(1,1,H),UV_GQQB_1EPS,AMPL(2
     $     ,93))
          CALL FFV1_0(W(1,5,H),W(1,19,H),W(1,1,H),UV_GQQT,AMPL(1,94))
          CALL FFV1_0(W(1,5,H),W(1,19,H),W(1,1,H),UV_GQQB_1EPS,AMPL(2
     $     ,95))
          CALL FFV1_0(W(1,5,H),W(1,19,H),W(1,1,H),UV_GQQG_1EPS,AMPL(2
     $     ,96))
          CALL FFV1_0(W(1,5,H),W(1,19,H),W(1,1,H),R2_GQQ,AMPL(1,97))
C         Counter-term amplitude(s) for loop diagram number 45
          CALL FFV1_0(W(1,10,H),W(1,7,H),W(1,1,H),UV_GQQB_1EPS,AMPL(2
     $     ,98))
          CALL FFV1_0(W(1,10,H),W(1,7,H),W(1,1,H),UV_GQQB_1EPS,AMPL(2
     $     ,99))
          CALL FFV1_0(W(1,10,H),W(1,7,H),W(1,1,H),UV_GQQB_1EPS,AMPL(2
     $     ,100))
          CALL FFV1_0(W(1,10,H),W(1,7,H),W(1,1,H),UV_GQQB_1EPS,AMPL(2
     $     ,101))
          CALL FFV1_0(W(1,10,H),W(1,7,H),W(1,1,H),UV_GQQB,AMPL(1,102))
          CALL FFV1_0(W(1,10,H),W(1,7,H),W(1,1,H),UV_GQQB_1EPS,AMPL(2
     $     ,103))
          CALL FFV1_0(W(1,10,H),W(1,7,H),W(1,1,H),UV_GQQT,AMPL(1,104))
          CALL FFV1_0(W(1,10,H),W(1,7,H),W(1,1,H),UV_GQQB_1EPS,AMPL(2
     $     ,105))
          CALL FFV1_0(W(1,10,H),W(1,7,H),W(1,1,H),UV_GQQG_1EPS,AMPL(2
     $     ,106))
          CALL FFV1_0(W(1,10,H),W(1,7,H),W(1,1,H),R2_GQQ,AMPL(1,107))
C         Counter-term amplitude(s) for loop diagram number 48
          CALL VVV1_0(W(1,1,H),W(1,2,H),W(1,13,H),R2_3GQ,AMPL(1,108))
C         Counter-term amplitude(s) for loop diagram number 50
          CALL VVV1_0(W(1,1,H),W(1,2,H),W(1,14,H),R2_3GQ,AMPL(1,109))
C         Counter-term amplitude(s) for loop diagram number 53
          CALL FFV1_0(W(1,5,H),W(1,21,H),W(1,1,H),UV_GQQB_1EPS,AMPL(2
     $     ,110))
          CALL FFV1_0(W(1,5,H),W(1,21,H),W(1,1,H),UV_GQQB_1EPS,AMPL(2
     $     ,111))
          CALL FFV1_0(W(1,5,H),W(1,21,H),W(1,1,H),UV_GQQB_1EPS,AMPL(2
     $     ,112))
          CALL FFV1_0(W(1,5,H),W(1,21,H),W(1,1,H),UV_GQQB_1EPS,AMPL(2
     $     ,113))
          CALL FFV1_0(W(1,5,H),W(1,21,H),W(1,1,H),UV_GQQB,AMPL(1,114))
          CALL FFV1_0(W(1,5,H),W(1,21,H),W(1,1,H),UV_GQQB_1EPS,AMPL(2
     $     ,115))
          CALL FFV1_0(W(1,5,H),W(1,21,H),W(1,1,H),UV_GQQT,AMPL(1,116))
          CALL FFV1_0(W(1,5,H),W(1,21,H),W(1,1,H),UV_GQQB_1EPS,AMPL(2
     $     ,117))
          CALL FFV1_0(W(1,5,H),W(1,21,H),W(1,1,H),UV_GQQG_1EPS,AMPL(2
     $     ,118))
          CALL FFV1_0(W(1,5,H),W(1,21,H),W(1,1,H),R2_GQQ,AMPL(1,119))
          CALL FFV1_1(W(1,12,H),W(1,1,H),GC_5,MDL_MT,MDL_WT,W(1,22,H))
C         Counter-term amplitude(s) for loop diagram number 59
          CALL FFV2_0(W(1,5,H),W(1,22,H),W(1,3,H),R2_BXTW,AMPL(1,120))
          CALL FFV1_2(W(1,10,H),W(1,1,H),GC_5,MDL_MB,ZERO,W(1,23,H))
C         Counter-term amplitude(s) for loop diagram number 63
          CALL R2_QQ_1_R2_QQ_2_0(W(1,23,H),W(1,7,H),R2_QQQ,R2_QQB
     $     ,AMPL(1,121))
          CALL R2_QQ_2_0(W(1,23,H),W(1,7,H),UV_BMASS,AMPL(1,122))
          CALL R2_QQ_2_0(W(1,23,H),W(1,7,H),UV_BMASS_1EPS,AMPL(2,123))
          CALL FFV1_1(W(1,7,H),W(1,1,H),GC_5,MDL_MB,ZERO,W(1,24,H))
C         Counter-term amplitude(s) for loop diagram number 64
          CALL R2_QQ_1_R2_QQ_2_0(W(1,10,H),W(1,24,H),R2_QQQ,R2_QQB
     $     ,AMPL(1,124))
          CALL R2_QQ_2_0(W(1,10,H),W(1,24,H),UV_BMASS,AMPL(1,125))
          CALL R2_QQ_2_0(W(1,10,H),W(1,24,H),UV_BMASS_1EPS,AMPL(2,126))
C         Counter-term amplitude(s) for loop diagram number 66
          CALL FFV2_0(W(1,23,H),W(1,4,H),W(1,3,H),R2_BXTW,AMPL(1,127))
C         Counter-term amplitude(s) for loop diagram number 69
          CALL FFV1_0(W(1,5,H),W(1,24,H),W(1,2,H),UV_GQQB_1EPS,AMPL(2
     $     ,128))
          CALL FFV1_0(W(1,5,H),W(1,24,H),W(1,2,H),UV_GQQB_1EPS,AMPL(2
     $     ,129))
          CALL FFV1_0(W(1,5,H),W(1,24,H),W(1,2,H),UV_GQQB_1EPS,AMPL(2
     $     ,130))
          CALL FFV1_0(W(1,5,H),W(1,24,H),W(1,2,H),UV_GQQB_1EPS,AMPL(2
     $     ,131))
          CALL FFV1_0(W(1,5,H),W(1,24,H),W(1,2,H),UV_GQQB,AMPL(1,132))
          CALL FFV1_0(W(1,5,H),W(1,24,H),W(1,2,H),UV_GQQB_1EPS,AMPL(2
     $     ,133))
          CALL FFV1_0(W(1,5,H),W(1,24,H),W(1,2,H),UV_GQQT,AMPL(1,134))
          CALL FFV1_0(W(1,5,H),W(1,24,H),W(1,2,H),UV_GQQB_1EPS,AMPL(2
     $     ,135))
          CALL FFV1_0(W(1,5,H),W(1,24,H),W(1,2,H),UV_GQQG_1EPS,AMPL(2
     $     ,136))
          CALL FFV1_0(W(1,5,H),W(1,24,H),W(1,2,H),R2_GQQ,AMPL(1,137))
C         Counter-term amplitude(s) for loop diagram number 85
          CALL R2_GG_1_R2_GG_3_0(W(1,6,H),W(1,13,H),R2_GGQ,R2_GGT
     $     ,AMPL(1,138))
C         Counter-term amplitude(s) for loop diagram number 86
          CALL R2_QQ_1_R2_QQ_2_0(W(1,8,H),W(1,16,H),R2_QQQ,R2_QQT
     $     ,AMPL(1,139))
          CALL R2_QQ_2_0(W(1,8,H),W(1,16,H),UV_TMASS,AMPL(1,140))
          CALL R2_QQ_2_0(W(1,8,H),W(1,16,H),UV_TMASS_1EPS,AMPL(2,141))
C         Counter-term amplitude(s) for loop diagram number 87
          CALL R2_GG_1_R2_GG_3_0(W(1,6,H),W(1,14,H),R2_GGQ,R2_GGT
     $     ,AMPL(1,142))
C         Counter-term amplitude(s) for loop diagram number 88
          CALL FFV1_0(W(1,8,H),W(1,4,H),W(1,6,H),UV_GQQB_1EPS,AMPL(2
     $     ,143))
          CALL FFV1_0(W(1,8,H),W(1,4,H),W(1,6,H),UV_GQQB_1EPS,AMPL(2
     $     ,144))
          CALL FFV1_0(W(1,8,H),W(1,4,H),W(1,6,H),UV_GQQB_1EPS,AMPL(2
     $     ,145))
          CALL FFV1_0(W(1,8,H),W(1,4,H),W(1,6,H),UV_GQQB_1EPS,AMPL(2
     $     ,146))
          CALL FFV1_0(W(1,8,H),W(1,4,H),W(1,6,H),UV_GQQB,AMPL(1,147))
          CALL FFV1_0(W(1,8,H),W(1,4,H),W(1,6,H),UV_GQQB_1EPS,AMPL(2
     $     ,148))
          CALL FFV1_0(W(1,8,H),W(1,4,H),W(1,6,H),UV_GQQT,AMPL(1,149))
          CALL FFV1_0(W(1,8,H),W(1,4,H),W(1,6,H),UV_GQQB_1EPS,AMPL(2
     $     ,150))
          CALL FFV1_0(W(1,8,H),W(1,4,H),W(1,6,H),UV_GQQG_1EPS,AMPL(2
     $     ,151))
          CALL FFV1_0(W(1,8,H),W(1,4,H),W(1,6,H),R2_GQQ,AMPL(1,152))
          CALL FFV2_2(W(1,10,H),W(1,3,H),GC_11,MDL_MT,MDL_WT,W(1,25,H))
C         Counter-term amplitude(s) for loop diagram number 90
          CALL R2_QQ_1_R2_QQ_2_0(W(1,25,H),W(1,9,H),R2_QQQ,R2_QQT
     $     ,AMPL(1,153))
          CALL R2_QQ_2_0(W(1,25,H),W(1,9,H),UV_TMASS,AMPL(1,154))
          CALL R2_QQ_2_0(W(1,25,H),W(1,9,H),UV_TMASS_1EPS,AMPL(2,155))
C         Counter-term amplitude(s) for loop diagram number 91
          CALL FFV1_0(W(1,8,H),W(1,9,H),W(1,2,H),UV_GQQB_1EPS,AMPL(2
     $     ,156))
          CALL FFV1_0(W(1,8,H),W(1,9,H),W(1,2,H),UV_GQQB_1EPS,AMPL(2
     $     ,157))
          CALL FFV1_0(W(1,8,H),W(1,9,H),W(1,2,H),UV_GQQB_1EPS,AMPL(2
     $     ,158))
          CALL FFV1_0(W(1,8,H),W(1,9,H),W(1,2,H),UV_GQQB_1EPS,AMPL(2
     $     ,159))
          CALL FFV1_0(W(1,8,H),W(1,9,H),W(1,2,H),UV_GQQB,AMPL(1,160))
          CALL FFV1_0(W(1,8,H),W(1,9,H),W(1,2,H),UV_GQQB_1EPS,AMPL(2
     $     ,161))
          CALL FFV1_0(W(1,8,H),W(1,9,H),W(1,2,H),UV_GQQT,AMPL(1,162))
          CALL FFV1_0(W(1,8,H),W(1,9,H),W(1,2,H),UV_GQQB_1EPS,AMPL(2
     $     ,163))
          CALL FFV1_0(W(1,8,H),W(1,9,H),W(1,2,H),UV_GQQG_1EPS,AMPL(2
     $     ,164))
          CALL FFV1_0(W(1,8,H),W(1,9,H),W(1,2,H),R2_GQQ,AMPL(1,165))
C         Counter-term amplitude(s) for loop diagram number 92
          CALL R2_QQ_1_R2_QQ_2_0(W(1,8,H),W(1,18,H),R2_QQQ,R2_QQT
     $     ,AMPL(1,166))
          CALL R2_QQ_2_0(W(1,8,H),W(1,18,H),UV_TMASS,AMPL(1,167))
          CALL R2_QQ_2_0(W(1,8,H),W(1,18,H),UV_TMASS_1EPS,AMPL(2,168))
          CALL FFV1_2(W(1,8,H),W(1,2,H),GC_5,MDL_MT,MDL_WT,W(1,26,H))
C         Counter-term amplitude(s) for loop diagram number 93
          CALL R2_QQ_1_R2_QQ_2_0(W(1,26,H),W(1,9,H),R2_QQQ,R2_QQT
     $     ,AMPL(1,169))
          CALL R2_QQ_2_0(W(1,26,H),W(1,9,H),UV_TMASS,AMPL(1,170))
          CALL R2_QQ_2_0(W(1,26,H),W(1,9,H),UV_TMASS_1EPS,AMPL(2,171))
          CALL FFV2_2(W(1,11,H),W(1,3,H),GC_11,MDL_MT,MDL_WT,W(1,27,H))
C         Counter-term amplitude(s) for loop diagram number 95
          CALL R2_QQ_1_R2_QQ_2_0(W(1,27,H),W(1,12,H),R2_QQQ,R2_QQT
     $     ,AMPL(1,172))
          CALL R2_QQ_2_0(W(1,27,H),W(1,12,H),UV_TMASS,AMPL(1,173))
          CALL R2_QQ_2_0(W(1,27,H),W(1,12,H),UV_TMASS_1EPS,AMPL(2,174))
C         Counter-term amplitude(s) for loop diagram number 96
          CALL FFV1_0(W(1,27,H),W(1,4,H),W(1,2,H),UV_GQQB_1EPS,AMPL(2
     $     ,175))
          CALL FFV1_0(W(1,27,H),W(1,4,H),W(1,2,H),UV_GQQB_1EPS,AMPL(2
     $     ,176))
          CALL FFV1_0(W(1,27,H),W(1,4,H),W(1,2,H),UV_GQQB_1EPS,AMPL(2
     $     ,177))
          CALL FFV1_0(W(1,27,H),W(1,4,H),W(1,2,H),UV_GQQB_1EPS,AMPL(2
     $     ,178))
          CALL FFV1_0(W(1,27,H),W(1,4,H),W(1,2,H),UV_GQQB,AMPL(1,179))
          CALL FFV1_0(W(1,27,H),W(1,4,H),W(1,2,H),UV_GQQB_1EPS,AMPL(2
     $     ,180))
          CALL FFV1_0(W(1,27,H),W(1,4,H),W(1,2,H),UV_GQQT,AMPL(1,181))
          CALL FFV1_0(W(1,27,H),W(1,4,H),W(1,2,H),UV_GQQB_1EPS,AMPL(2
     $     ,182))
          CALL FFV1_0(W(1,27,H),W(1,4,H),W(1,2,H),UV_GQQG_1EPS,AMPL(2
     $     ,183))
          CALL FFV1_0(W(1,27,H),W(1,4,H),W(1,2,H),R2_GQQ,AMPL(1,184))
C         Counter-term amplitude(s) for loop diagram number 98
          CALL FFV1_0(W(1,8,H),W(1,12,H),W(1,1,H),UV_GQQB_1EPS,AMPL(2
     $     ,185))
          CALL FFV1_0(W(1,8,H),W(1,12,H),W(1,1,H),UV_GQQB_1EPS,AMPL(2
     $     ,186))
          CALL FFV1_0(W(1,8,H),W(1,12,H),W(1,1,H),UV_GQQB_1EPS,AMPL(2
     $     ,187))
          CALL FFV1_0(W(1,8,H),W(1,12,H),W(1,1,H),UV_GQQB_1EPS,AMPL(2
     $     ,188))
          CALL FFV1_0(W(1,8,H),W(1,12,H),W(1,1,H),UV_GQQB,AMPL(1,189))
          CALL FFV1_0(W(1,8,H),W(1,12,H),W(1,1,H),UV_GQQB_1EPS,AMPL(2
     $     ,190))
          CALL FFV1_0(W(1,8,H),W(1,12,H),W(1,1,H),UV_GQQT,AMPL(1,191))
          CALL FFV1_0(W(1,8,H),W(1,12,H),W(1,1,H),UV_GQQB_1EPS,AMPL(2
     $     ,192))
          CALL FFV1_0(W(1,8,H),W(1,12,H),W(1,1,H),UV_GQQG_1EPS,AMPL(2
     $     ,193))
          CALL FFV1_0(W(1,8,H),W(1,12,H),W(1,1,H),R2_GQQ,AMPL(1,194))
C         Counter-term amplitude(s) for loop diagram number 99
          CALL FFV1_0(W(1,25,H),W(1,4,H),W(1,1,H),UV_GQQB_1EPS,AMPL(2
     $     ,195))
          CALL FFV1_0(W(1,25,H),W(1,4,H),W(1,1,H),UV_GQQB_1EPS,AMPL(2
     $     ,196))
          CALL FFV1_0(W(1,25,H),W(1,4,H),W(1,1,H),UV_GQQB_1EPS,AMPL(2
     $     ,197))
          CALL FFV1_0(W(1,25,H),W(1,4,H),W(1,1,H),UV_GQQB_1EPS,AMPL(2
     $     ,198))
          CALL FFV1_0(W(1,25,H),W(1,4,H),W(1,1,H),UV_GQQB,AMPL(1,199))
          CALL FFV1_0(W(1,25,H),W(1,4,H),W(1,1,H),UV_GQQB_1EPS,AMPL(2
     $     ,200))
          CALL FFV1_0(W(1,25,H),W(1,4,H),W(1,1,H),UV_GQQT,AMPL(1,201))
          CALL FFV1_0(W(1,25,H),W(1,4,H),W(1,1,H),UV_GQQB_1EPS,AMPL(2
     $     ,202))
          CALL FFV1_0(W(1,25,H),W(1,4,H),W(1,1,H),UV_GQQG_1EPS,AMPL(2
     $     ,203))
          CALL FFV1_0(W(1,25,H),W(1,4,H),W(1,1,H),R2_GQQ,AMPL(1,204))
C         Counter-term amplitude(s) for loop diagram number 100
          CALL VVV1_0(W(1,1,H),W(1,2,H),W(1,13,H),R2_3GQ,AMPL(1,205))
C         Counter-term amplitude(s) for loop diagram number 101
          CALL VVV1_0(W(1,1,H),W(1,2,H),W(1,14,H),R2_3GQ,AMPL(1,206))
C         Counter-term amplitude(s) for loop diagram number 107
          CALL FFV1_0(W(1,26,H),W(1,4,H),W(1,1,H),UV_GQQB_1EPS,AMPL(2
     $     ,207))
          CALL FFV1_0(W(1,26,H),W(1,4,H),W(1,1,H),UV_GQQB_1EPS,AMPL(2
     $     ,208))
          CALL FFV1_0(W(1,26,H),W(1,4,H),W(1,1,H),UV_GQQB_1EPS,AMPL(2
     $     ,209))
          CALL FFV1_0(W(1,26,H),W(1,4,H),W(1,1,H),UV_GQQB_1EPS,AMPL(2
     $     ,210))
          CALL FFV1_0(W(1,26,H),W(1,4,H),W(1,1,H),UV_GQQB,AMPL(1,211))
          CALL FFV1_0(W(1,26,H),W(1,4,H),W(1,1,H),UV_GQQB_1EPS,AMPL(2
     $     ,212))
          CALL FFV1_0(W(1,26,H),W(1,4,H),W(1,1,H),UV_GQQT,AMPL(1,213))
          CALL FFV1_0(W(1,26,H),W(1,4,H),W(1,1,H),UV_GQQB_1EPS,AMPL(2
     $     ,214))
          CALL FFV1_0(W(1,26,H),W(1,4,H),W(1,1,H),UV_GQQG_1EPS,AMPL(2
     $     ,215))
          CALL FFV1_0(W(1,26,H),W(1,4,H),W(1,1,H),R2_GQQ,AMPL(1,216))
C         Counter-term amplitude(s) for loop diagram number 108
          CALL R2_QQ_1_R2_QQ_2_0(W(1,8,H),W(1,22,H),R2_QQQ,R2_QQT
     $     ,AMPL(1,217))
          CALL R2_QQ_2_0(W(1,8,H),W(1,22,H),UV_TMASS,AMPL(1,218))
          CALL R2_QQ_2_0(W(1,8,H),W(1,22,H),UV_TMASS_1EPS,AMPL(2,219))
          CALL FFV1_2(W(1,8,H),W(1,1,H),GC_5,MDL_MT,MDL_WT,W(1,28,H))
C         Counter-term amplitude(s) for loop diagram number 109
          CALL R2_QQ_1_R2_QQ_2_0(W(1,28,H),W(1,12,H),R2_QQQ,R2_QQT
     $     ,AMPL(1,220))
          CALL R2_QQ_2_0(W(1,28,H),W(1,12,H),UV_TMASS,AMPL(1,221))
          CALL R2_QQ_2_0(W(1,28,H),W(1,12,H),UV_TMASS_1EPS,AMPL(2,222))
C         Counter-term amplitude(s) for loop diagram number 112
          CALL FFV1_0(W(1,28,H),W(1,4,H),W(1,2,H),UV_GQQB_1EPS,AMPL(2
     $     ,223))
          CALL FFV1_0(W(1,28,H),W(1,4,H),W(1,2,H),UV_GQQB_1EPS,AMPL(2
     $     ,224))
          CALL FFV1_0(W(1,28,H),W(1,4,H),W(1,2,H),UV_GQQB_1EPS,AMPL(2
     $     ,225))
          CALL FFV1_0(W(1,28,H),W(1,4,H),W(1,2,H),UV_GQQB_1EPS,AMPL(2
     $     ,226))
          CALL FFV1_0(W(1,28,H),W(1,4,H),W(1,2,H),UV_GQQB,AMPL(1,227))
          CALL FFV1_0(W(1,28,H),W(1,4,H),W(1,2,H),UV_GQQB_1EPS,AMPL(2
     $     ,228))
          CALL FFV1_0(W(1,28,H),W(1,4,H),W(1,2,H),UV_GQQT,AMPL(1,229))
          CALL FFV1_0(W(1,28,H),W(1,4,H),W(1,2,H),UV_GQQB_1EPS,AMPL(2
     $     ,230))
          CALL FFV1_0(W(1,28,H),W(1,4,H),W(1,2,H),UV_GQQG_1EPS,AMPL(2
     $     ,231))
          CALL FFV1_0(W(1,28,H),W(1,4,H),W(1,2,H),R2_GQQ,AMPL(1,232))
C         Counter-term amplitude(s) for loop diagram number 119
          CALL R2_GG_1_R2_GG_2_0(W(1,6,H),W(1,13,H),R2_GGG_1,R2_GGG_2
     $     ,AMPL(1,233))
C         Counter-term amplitude(s) for loop diagram number 120
          CALL R2_GG_1_R2_GG_2_0(W(1,6,H),W(1,14,H),R2_GGG_1,R2_GGG_2
     $     ,AMPL(1,234))
C         Counter-term amplitude(s) for loop diagram number 121
          CALL VVV1_0(W(1,1,H),W(1,2,H),W(1,13,H),R2_3GG,AMPL(1,235))
C         Counter-term amplitude(s) for loop diagram number 122
          CALL VVV1_0(W(1,1,H),W(1,2,H),W(1,14,H),R2_3GG,AMPL(1,236))
C         Amplitude(s) for UVCT diagram with ID 135
          CALL FFV1_0(W(1,5,H),W(1,7,H),W(1,6,H),GC_5,AMPL(2,237))
          AMPL(2,237)=AMPL(2,237)*(4.0D0*UVWFCT_G_1_1EPS+2.0D0
     $     *UVWFCT_B_0_1EPS)
C         Amplitude(s) for UVCT diagram with ID 136
          CALL FFV1_0(W(1,5,H),W(1,7,H),W(1,6,H),GC_5,AMPL(1,238))
          AMPL(1,238)=AMPL(1,238)*(1.0D0*UVWFCT_B_0+2.0D0*UVWFCT_G_1
     $     +1.0D0*UVWFCT_T_0+2.0D0*UVWFCT_G_2)
C         Amplitude(s) for UVCT diagram with ID 137
          CALL FFV1_0(W(1,8,H),W(1,4,H),W(1,6,H),GC_5,AMPL(2,239))
          AMPL(2,239)=AMPL(2,239)*(4.0D0*UVWFCT_G_1_1EPS+2.0D0
     $     *UVWFCT_B_0_1EPS)
C         Amplitude(s) for UVCT diagram with ID 138
          CALL FFV1_0(W(1,8,H),W(1,4,H),W(1,6,H),GC_5,AMPL(1,240))
          AMPL(1,240)=AMPL(1,240)*(1.0D0*UVWFCT_B_0+2.0D0*UVWFCT_G_1
     $     +1.0D0*UVWFCT_T_0+2.0D0*UVWFCT_G_2)
C         Amplitude(s) for UVCT diagram with ID 139
          CALL FFV2_0(W(1,10,H),W(1,9,H),W(1,3,H),GC_11,AMPL(2,241))
          AMPL(2,241)=AMPL(2,241)*(4.0D0*UVWFCT_G_1_1EPS+2.0D0
     $     *UVWFCT_B_0_1EPS)
C         Amplitude(s) for UVCT diagram with ID 140
          CALL FFV2_0(W(1,10,H),W(1,9,H),W(1,3,H),GC_11,AMPL(1,242))
          AMPL(1,242)=AMPL(1,242)*(1.0D0*UVWFCT_B_0+2.0D0*UVWFCT_G_1
     $     +1.0D0*UVWFCT_T_0+2.0D0*UVWFCT_G_2)
C         Amplitude(s) for UVCT diagram with ID 141
          CALL FFV1_0(W(1,8,H),W(1,9,H),W(1,2,H),GC_5,AMPL(2,243))
          AMPL(2,243)=AMPL(2,243)*(4.0D0*UVWFCT_G_1_1EPS+2.0D0
     $     *UVWFCT_B_0_1EPS)
C         Amplitude(s) for UVCT diagram with ID 142
          CALL FFV1_0(W(1,8,H),W(1,9,H),W(1,2,H),GC_5,AMPL(1,244))
          AMPL(1,244)=AMPL(1,244)*(1.0D0*UVWFCT_B_0+2.0D0*UVWFCT_G_1
     $     +1.0D0*UVWFCT_T_0+2.0D0*UVWFCT_G_2)
C         Amplitude(s) for UVCT diagram with ID 143
          CALL FFV2_0(W(1,11,H),W(1,12,H),W(1,3,H),GC_11,AMPL(2,245))
          AMPL(2,245)=AMPL(2,245)*(4.0D0*UVWFCT_G_1_1EPS+2.0D0
     $     *UVWFCT_B_0_1EPS)
C         Amplitude(s) for UVCT diagram with ID 144
          CALL FFV2_0(W(1,11,H),W(1,12,H),W(1,3,H),GC_11,AMPL(1,246))
          AMPL(1,246)=AMPL(1,246)*(1.0D0*UVWFCT_B_0+2.0D0*UVWFCT_G_1
     $     +1.0D0*UVWFCT_T_0+2.0D0*UVWFCT_G_2)
C         Amplitude(s) for UVCT diagram with ID 145
          CALL FFV1_0(W(1,11,H),W(1,7,H),W(1,2,H),GC_5,AMPL(2,247))
          AMPL(2,247)=AMPL(2,247)*(4.0D0*UVWFCT_G_1_1EPS+2.0D0
     $     *UVWFCT_B_0_1EPS)
C         Amplitude(s) for UVCT diagram with ID 146
          CALL FFV1_0(W(1,11,H),W(1,7,H),W(1,2,H),GC_5,AMPL(1,248))
          AMPL(1,248)=AMPL(1,248)*(1.0D0*UVWFCT_B_0+2.0D0*UVWFCT_G_1
     $     +1.0D0*UVWFCT_T_0+2.0D0*UVWFCT_G_2)
C         Amplitude(s) for UVCT diagram with ID 147
          CALL FFV1_0(W(1,8,H),W(1,12,H),W(1,1,H),GC_5,AMPL(2,249))
          AMPL(2,249)=AMPL(2,249)*(4.0D0*UVWFCT_G_1_1EPS+2.0D0
     $     *UVWFCT_B_0_1EPS)
C         Amplitude(s) for UVCT diagram with ID 148
          CALL FFV1_0(W(1,8,H),W(1,12,H),W(1,1,H),GC_5,AMPL(1,250))
          AMPL(1,250)=AMPL(1,250)*(1.0D0*UVWFCT_B_0+2.0D0*UVWFCT_G_1
     $     +1.0D0*UVWFCT_T_0+2.0D0*UVWFCT_G_2)
C         Amplitude(s) for UVCT diagram with ID 149
          CALL FFV1_0(W(1,10,H),W(1,7,H),W(1,1,H),GC_5,AMPL(2,251))
          AMPL(2,251)=AMPL(2,251)*(4.0D0*UVWFCT_G_1_1EPS+2.0D0
     $     *UVWFCT_B_0_1EPS)
C         Amplitude(s) for UVCT diagram with ID 150
          CALL FFV1_0(W(1,10,H),W(1,7,H),W(1,1,H),GC_5,AMPL(1,252))
          AMPL(1,252)=AMPL(1,252)*(1.0D0*UVWFCT_B_0+2.0D0*UVWFCT_G_1
     $     +1.0D0*UVWFCT_T_0+2.0D0*UVWFCT_G_2)
 300      CONTINUE



          DO I=1,NCTAMPS
            DO J=1,NBORNAMPS
              CFTOT=DCMPLX(CF_N(I,J)/DBLE(ABS(CF_D(I,J))),0.0D0)
              IF(CF_D(I,J).LT.0) CFTOT=CFTOT*IMAG1
              DO K=1,3
                ANS(K)=ANS(K)+2.0D0*DBLE(CFTOT*AMPL(K,I)*DCONJG(AMP(J
     $           ,H)))
              ENDDO
            ENDDO
          ENDDO
        ENDIF
      ENDDO

C     WHEN CTMODE IS >=4, then the MP computation of wfs and amps is
C      automatically done.
      IF (CTMODE.GE.4) THEN
        MP_DONE = .TRUE.
      ENDIF

      IF(SKIPLOOPEVAL) THEN
        GOTO 1226
      ENDIF

C     Loop amplitude for loop diagram with ID 9
      CALL ML5_0_LOOP_2_2(1,6,13,DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16)
     $ ,DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,2,1,4,253,AMPL(1,253),S(253))
C     Loop amplitude for loop diagram with ID 10
      CALL ML5_0_LOOP_2_2(1,6,14,DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16)
     $ ,DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,2,1,4,254,AMPL(1,254),S(254))
C     Loop amplitude for loop diagram with ID 11
      CALL ML5_0_LOOP_3_3(2,1,2,13,DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16)
     $ ,DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),GC_5,MP__GC_5,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,3,1,4,255,AMPL(1,255),S(255))
C     Loop amplitude for loop diagram with ID 12
      CALL ML5_0_LOOP_3_3(2,1,2,14,DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16)
     $ ,DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),GC_5,MP__GC_5,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,3,1,4,256,AMPL(1,256),S(256))
C     Loop amplitude for loop diagram with ID 13
      CALL ML5_0_LOOP_3_3(3,1,2,13,DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16)
     $ ,DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),GC_5,MP__GC_5,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,3,1,4,257,AMPL(1,257),S(257))
C     Loop amplitude for loop diagram with ID 14
      CALL ML5_0_LOOP_3_3(3,1,2,14,DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16)
     $ ,DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),GC_5,MP__GC_5,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,3,1,4,258,AMPL(1,258),S(258))
C     Loop amplitude for loop diagram with ID 15
      CALL ML5_0_LOOP_2_2(4,7,15,DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16)
     $ ,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16),GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,1,1,1,259,AMPL(1,259),S(259))
C     Loop amplitude for loop diagram with ID 16
      CALL ML5_0_LOOP_2_2(1,6,13,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB
     $ ,KIND=16),DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16),GC_5
     $ ,MP__GC_5,GC_5,MP__GC_5,2,1,1,260,AMPL(1,260),S(260))
C     Loop amplitude for loop diagram with ID 17
      CALL ML5_0_LOOP_3_3(5,5,6,7,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB
     $ ,KIND=16),DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),GC_5,MP__GC_5,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,2,1,1,261,AMPL(1,261),S(261))
C     Loop amplitude for loop diagram with ID 18
      CALL ML5_0_LOOP_3_3(6,5,6,7,DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16)
     $ ,DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MB)
     $ ,CMPLX(MP__MDL_MB,KIND=16),GC_5,MP__GC_5,GC_4,MP__GC_4,GC_5
     $ ,MP__GC_5,2,1,1,262,AMPL(1,262),S(262))
C     Loop amplitude for loop diagram with ID 19
      CALL ML5_0_LOOP_2_2(1,6,14,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB
     $ ,KIND=16),DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16),GC_5
     $ ,MP__GC_5,GC_5,MP__GC_5,2,1,1,263,AMPL(1,263),S(263))
C     Loop amplitude for loop diagram with ID 20
      CALL ML5_0_LOOP_3_3(7,3,4,15,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MB)
     $ ,CMPLX(MP__MDL_MB,KIND=16),GC_11,MP__GC_11,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,2,1,1,264,AMPL(1,264),S(264))
C     Loop amplitude for loop diagram with ID 21
      CALL ML5_0_LOOP_4_4(8,3,4,5,6,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MB)
     $ ,CMPLX(MP__MDL_MB,KIND=16),DCMPLX(MDL_MB),CMPLX(MP__MDL_MB
     $ ,KIND=16),GC_11,MP__GC_11,GC_5,MP__GC_5,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,3,1,1,265,AMPL(1,265),S(265))
C     Loop amplitude for loop diagram with ID 22
      CALL ML5_0_LOOP_4_4(9,3,5,4,6,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MT)
     $ ,CMPLX(MP__MDL_MT,KIND=16),DCMPLX(MDL_MT),CMPLX(MP__MDL_MT
     $ ,KIND=16),GC_11,MP__GC_11,GC_5,MP__GC_5,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,3,1,1,266,AMPL(1,266),S(266))
C     Loop amplitude for loop diagram with ID 23
      CALL ML5_0_LOOP_3_3(10,3,5,16,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MT)
     $ ,CMPLX(MP__MDL_MT,KIND=16),GC_11,MP__GC_11,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,2,1,1,267,AMPL(1,267),S(267))
C     Loop amplitude for loop diagram with ID 24
      CALL ML5_0_LOOP_4_4(11,3,4,6,5,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MB),CMPLX(MP__MDL_MB
     $ ,KIND=16),GC_11,MP__GC_11,GC_5,MP__GC_5,GC_4,MP__GC_4,GC_5
     $ ,MP__GC_5,3,1,1,268,AMPL(1,268),S(268))
C     Loop amplitude for loop diagram with ID 25
      CALL ML5_0_LOOP_2_2(12,10,17,DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16)
     $ ,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16),GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,1,1,1,269,AMPL(1,269),S(269))
C     Loop amplitude for loop diagram with ID 26
      CALL ML5_0_LOOP_3_3(7,3,9,10,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MB)
     $ ,CMPLX(MP__MDL_MB,KIND=16),GC_11,MP__GC_11,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,2,1,1,270,AMPL(1,270),S(270))
C     Loop amplitude for loop diagram with ID 27
      CALL ML5_0_LOOP_3_3(13,2,5,17,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MB)
     $ ,CMPLX(MP__MDL_MB,KIND=16),GC_5,MP__GC_5,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,2,1,1,271,AMPL(1,271),S(271))
C     Loop amplitude for loop diagram with ID 28
      CALL ML5_0_LOOP_4_4(14,2,3,9,5,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB
     $ ,KIND=16),DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MB),CMPLX(MP__MDL_MB
     $ ,KIND=16),GC_5,MP__GC_5,GC_11,MP__GC_11,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,3,1,1,272,AMPL(1,272),S(272))
C     Loop amplitude for loop diagram with ID 29
      CALL ML5_0_LOOP_3_3(10,3,5,18,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MT)
     $ ,CMPLX(MP__MDL_MT,KIND=16),GC_11,MP__GC_11,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,2,1,1,273,AMPL(1,273),S(273))
C     Loop amplitude for loop diagram with ID 30
      CALL ML5_0_LOOP_4_4(15,2,5,3,9,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16)
     $ ,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),GC_4,MP__GC_4,GC_5,MP__GC_5,GC_11
     $ ,MP__GC_11,GC_5,MP__GC_5,3,1,1,274,AMPL(1,274),S(274))
C     Loop amplitude for loop diagram with ID 31
      CALL ML5_0_LOOP_4_4(16,2,3,5,9,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT
     $ ,KIND=16),DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MT),CMPLX(MP__MDL_MT
     $ ,KIND=16),GC_5,MP__GC_5,GC_11,MP__GC_11,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,3,1,1,275,AMPL(1,275),S(275))
C     Loop amplitude for loop diagram with ID 32
      CALL ML5_0_LOOP_3_3(17,2,5,17,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),GC_4,MP__GC_4,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,2,1,1,276,AMPL(1,276),S(276))
C     Loop amplitude for loop diagram with ID 33
      CALL ML5_0_LOOP_2_2(12,11,19,DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16)
     $ ,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16),GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,1,1,1,277,AMPL(1,277),S(277))
C     Loop amplitude for loop diagram with ID 34
      CALL ML5_0_LOOP_3_3(7,3,12,11,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MB)
     $ ,CMPLX(MP__MDL_MB,KIND=16),GC_11,MP__GC_11,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,2,1,1,278,AMPL(1,278),S(278))
C     Loop amplitude for loop diagram with ID 35
      CALL ML5_0_LOOP_3_3(18,2,7,11,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MB)
     $ ,CMPLX(MP__MDL_MB,KIND=16),GC_5,MP__GC_5,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,2,1,1,279,AMPL(1,279),S(279))
C     Loop amplitude for loop diagram with ID 36
      CALL ML5_0_LOOP_4_4(14,2,3,4,11,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB
     $ ,KIND=16),DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MB),CMPLX(MP__MDL_MB
     $ ,KIND=16),GC_5,MP__GC_5,GC_11,MP__GC_11,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,3,1,1,280,AMPL(1,280),S(280))
C     Loop amplitude for loop diagram with ID 37
      CALL ML5_0_LOOP_2_2(4,7,20,DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16)
     $ ,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16),GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,1,1,1,281,AMPL(1,281),S(281))
C     Loop amplitude for loop diagram with ID 38
      CALL ML5_0_LOOP_2_2(12,11,21,DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16)
     $ ,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16),GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,1,1,1,282,AMPL(1,282),S(282))
C     Loop amplitude for loop diagram with ID 39
      CALL ML5_0_LOOP_3_3(19,2,7,11,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),GC_4,MP__GC_4,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,2,1,1,283,AMPL(1,283),S(283))
C     Loop amplitude for loop diagram with ID 40
      CALL ML5_0_LOOP_3_3(7,3,4,20,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MB)
     $ ,CMPLX(MP__MDL_MB,KIND=16),GC_11,MP__GC_11,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,2,1,1,284,AMPL(1,284),S(284))
C     Loop amplitude for loop diagram with ID 41
      CALL ML5_0_LOOP_4_4(16,2,3,11,4,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT
     $ ,KIND=16),DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MT),CMPLX(MP__MDL_MT
     $ ,KIND=16),GC_5,MP__GC_5,GC_11,MP__GC_11,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,3,1,1,285,AMPL(1,285),S(285))
C     Loop amplitude for loop diagram with ID 42
      CALL ML5_0_LOOP_4_4(20,2,4,3,11,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16)
     $ ,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),GC_4,MP__GC_4,GC_5,MP__GC_5,GC_11
     $ ,MP__GC_11,GC_5,MP__GC_5,3,1,1,286,AMPL(1,286),S(286))
C     Loop amplitude for loop diagram with ID 43
      CALL ML5_0_LOOP_3_3(13,1,5,19,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MB)
     $ ,CMPLX(MP__MDL_MB,KIND=16),GC_5,MP__GC_5,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,2,1,1,287,AMPL(1,287),S(287))
C     Loop amplitude for loop diagram with ID 44
      CALL ML5_0_LOOP_4_4(14,1,3,12,5,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB
     $ ,KIND=16),DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MB),CMPLX(MP__MDL_MB
     $ ,KIND=16),GC_5,MP__GC_5,GC_11,MP__GC_11,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,3,1,1,288,AMPL(1,288),S(288))
C     Loop amplitude for loop diagram with ID 45
      CALL ML5_0_LOOP_3_3(18,1,7,10,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MB)
     $ ,CMPLX(MP__MDL_MB,KIND=16),GC_5,MP__GC_5,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,2,1,1,289,AMPL(1,289),S(289))
C     Loop amplitude for loop diagram with ID 46
      CALL ML5_0_LOOP_4_4(14,1,3,4,10,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB
     $ ,KIND=16),DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MB),CMPLX(MP__MDL_MB
     $ ,KIND=16),GC_5,MP__GC_5,GC_11,MP__GC_11,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,3,1,1,290,AMPL(1,290),S(290))
C     Loop amplitude for loop diagram with ID 47
      CALL ML5_0_LOOP_5_5(21,1,2,3,4,5,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB
     $ ,KIND=16),DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16)
     $ ,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MB),CMPLX(MP__MDL_MB
     $ ,KIND=16),GC_5,MP__GC_5,GC_5,MP__GC_5,GC_11,MP__GC_11,GC_5
     $ ,MP__GC_5,GC_5,MP__GC_5,4,1,1,291,AMPL(1,291),S(291))
C     Loop amplitude for loop diagram with ID 48
      CALL ML5_0_LOOP_3_3(2,1,2,13,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB
     $ ,KIND=16),DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16)
     $ ,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16),GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,GC_5,MP__GC_5,3,1,1,292,AMPL(1,292),S(292))
C     Loop amplitude for loop diagram with ID 49
      CALL ML5_0_LOOP_4_4(22,1,2,7,5,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB
     $ ,KIND=16),DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MB),CMPLX(MP__MDL_MB
     $ ,KIND=16),GC_5,MP__GC_5,GC_5,MP__GC_5,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,3,1,1,293,AMPL(1,293),S(293))
C     Loop amplitude for loop diagram with ID 50
      CALL ML5_0_LOOP_3_3(2,1,2,14,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB
     $ ,KIND=16),DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16)
     $ ,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16),GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,GC_5,MP__GC_5,3,1,1,294,AMPL(1,294),S(294))
C     Loop amplitude for loop diagram with ID 51
      CALL ML5_0_LOOP_3_3(3,1,2,13,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB
     $ ,KIND=16),DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16)
     $ ,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16),GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,GC_5,MP__GC_5,3,1,1,295,AMPL(1,295),S(295))
C     Loop amplitude for loop diagram with ID 52
      CALL ML5_0_LOOP_4_4(23,1,2,5,7,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB
     $ ,KIND=16),DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MB),CMPLX(MP__MDL_MB
     $ ,KIND=16),GC_5,MP__GC_5,GC_5,MP__GC_5,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,3,1,1,296,AMPL(1,296),S(296))
C     Loop amplitude for loop diagram with ID 53
      CALL ML5_0_LOOP_3_3(13,1,5,21,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MB)
     $ ,CMPLX(MP__MDL_MB,KIND=16),GC_5,MP__GC_5,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,2,1,1,297,AMPL(1,297),S(297))
C     Loop amplitude for loop diagram with ID 54
      CALL ML5_0_LOOP_4_4(24,1,5,2,7,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MB),CMPLX(MP__MDL_MB
     $ ,KIND=16),GC_5,MP__GC_5,GC_5,MP__GC_5,GC_4,MP__GC_4,GC_5
     $ ,MP__GC_5,3,1,1,298,AMPL(1,298),S(298))
C     Loop amplitude for loop diagram with ID 55
      CALL ML5_0_LOOP_3_3(3,1,2,14,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB
     $ ,KIND=16),DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16)
     $ ,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16),GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,GC_5,MP__GC_5,3,1,1,299,AMPL(1,299),S(299))
C     Loop amplitude for loop diagram with ID 56
      CALL ML5_0_LOOP_5_5(25,1,2,5,4,3,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB
     $ ,KIND=16),DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MT),CMPLX(MP__MDL_MT
     $ ,KIND=16),DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16),GC_5
     $ ,MP__GC_5,GC_5,MP__GC_5,GC_5,MP__GC_5,GC_5,MP__GC_5,GC_11
     $ ,MP__GC_11,4,1,1,300,AMPL(1,300),S(300))
C     Loop amplitude for loop diagram with ID 57
      CALL ML5_0_LOOP_5_5(26,1,3,2,4,5,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB
     $ ,KIND=16),DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16)
     $ ,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MB),CMPLX(MP__MDL_MB
     $ ,KIND=16),GC_5,MP__GC_5,GC_11,MP__GC_11,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,GC_5,MP__GC_5,4,1,1,301,AMPL(1,301),S(301))
C     Loop amplitude for loop diagram with ID 58
      CALL ML5_0_LOOP_5_5(27,1,3,4,2,5,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB
     $ ,KIND=16),DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16)
     $ ,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16),GC_5,MP__GC_5,GC_11
     $ ,MP__GC_11,GC_5,MP__GC_5,GC_4,MP__GC_4,GC_5,MP__GC_5,4,1,1,302
     $ ,AMPL(1,302),S(302))
C     Loop amplitude for loop diagram with ID 59
      CALL ML5_0_LOOP_3_3(10,3,5,22,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MT)
     $ ,CMPLX(MP__MDL_MT,KIND=16),GC_11,MP__GC_11,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,2,1,1,303,AMPL(1,303),S(303))
C     Loop amplitude for loop diagram with ID 60
      CALL ML5_0_LOOP_4_4(16,1,3,5,12,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT
     $ ,KIND=16),DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MT),CMPLX(MP__MDL_MT
     $ ,KIND=16),GC_5,MP__GC_5,GC_11,MP__GC_11,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,3,1,1,304,AMPL(1,304),S(304))
C     Loop amplitude for loop diagram with ID 61
      CALL ML5_0_LOOP_4_4(15,1,5,3,12,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16)
     $ ,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),GC_4,MP__GC_4,GC_5,MP__GC_5,GC_11
     $ ,MP__GC_11,GC_5,MP__GC_5,3,1,1,305,AMPL(1,305),S(305))
C     Loop amplitude for loop diagram with ID 62
      CALL ML5_0_LOOP_3_3(17,1,5,19,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),GC_4,MP__GC_4,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,2,1,1,306,AMPL(1,306),S(306))
C     Loop amplitude for loop diagram with ID 63
      CALL ML5_0_LOOP_2_2(4,7,23,DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16)
     $ ,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16),GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,1,1,1,307,AMPL(1,307),S(307))
C     Loop amplitude for loop diagram with ID 64
      CALL ML5_0_LOOP_2_2(12,10,24,DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16)
     $ ,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16),GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,1,1,1,308,AMPL(1,308),S(308))
C     Loop amplitude for loop diagram with ID 65
      CALL ML5_0_LOOP_3_3(19,1,7,10,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),GC_4,MP__GC_4,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,2,1,1,309,AMPL(1,309),S(309))
C     Loop amplitude for loop diagram with ID 66
      CALL ML5_0_LOOP_3_3(7,3,4,23,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MB)
     $ ,CMPLX(MP__MDL_MB,KIND=16),GC_11,MP__GC_11,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,2,1,1,310,AMPL(1,310),S(310))
C     Loop amplitude for loop diagram with ID 67
      CALL ML5_0_LOOP_4_4(16,1,3,10,4,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT
     $ ,KIND=16),DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MT),CMPLX(MP__MDL_MT
     $ ,KIND=16),GC_5,MP__GC_5,GC_11,MP__GC_11,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,3,1,1,311,AMPL(1,311),S(311))
C     Loop amplitude for loop diagram with ID 68
      CALL ML5_0_LOOP_4_4(20,1,4,3,10,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16)
     $ ,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),GC_4,MP__GC_4,GC_5,MP__GC_5,GC_11
     $ ,MP__GC_11,GC_5,MP__GC_5,3,1,1,312,AMPL(1,312),S(312))
C     Loop amplitude for loop diagram with ID 69
      CALL ML5_0_LOOP_3_3(13,2,5,24,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MB)
     $ ,CMPLX(MP__MDL_MB,KIND=16),GC_5,MP__GC_5,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,2,1,1,313,AMPL(1,313),S(313))
C     Loop amplitude for loop diagram with ID 70
      CALL ML5_0_LOOP_4_4(28,1,5,2,7,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16)
     $ ,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),GC_4,MP__GC_4,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,GC_5,MP__GC_5,3,1,1,314,AMPL(1,314),S(314))
C     Loop amplitude for loop diagram with ID 71
      CALL ML5_0_LOOP_5_5(29,1,3,2,5,4,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT
     $ ,KIND=16),DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16)
     $ ,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MT),CMPLX(MP__MDL_MT
     $ ,KIND=16),GC_5,MP__GC_5,GC_11,MP__GC_11,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,GC_5,MP__GC_5,4,1,1,315,AMPL(1,315),S(315))
C     Loop amplitude for loop diagram with ID 72
      CALL ML5_0_LOOP_5_5(30,1,4,3,2,5,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16)
     $ ,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16),DCMPLX(MDL_MB)
     $ ,CMPLX(MP__MDL_MB,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16)
     $ ,GC_4,MP__GC_4,GC_5,MP__GC_5,GC_11,MP__GC_11,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,4,1,1,316,AMPL(1,316),S(316))
C     Loop amplitude for loop diagram with ID 73
      CALL ML5_0_LOOP_3_3(17,2,5,24,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),GC_4,MP__GC_4,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,2,1,1,317,AMPL(1,317),S(317))
C     Loop amplitude for loop diagram with ID 74
      CALL ML5_0_LOOP_3_3(17,1,5,21,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),GC_4,MP__GC_4,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,2,1,1,318,AMPL(1,318),S(318))
C     Loop amplitude for loop diagram with ID 75
      CALL ML5_0_LOOP_4_4(31,1,2,7,5,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MB)
     $ ,CMPLX(MP__MDL_MB,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16)
     $ ,GC_4,MP__GC_4,GC_4,MP__GC_4,GC_5,MP__GC_5,GC_5,MP__GC_5,3,1,1
     $ ,319,AMPL(1,319),S(319))
C     Loop amplitude for loop diagram with ID 76
      CALL ML5_0_LOOP_4_4(32,1,2,5,7,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MB)
     $ ,CMPLX(MP__MDL_MB,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16)
     $ ,GC_4,MP__GC_4,GC_4,MP__GC_4,GC_5,MP__GC_5,GC_5,MP__GC_5,3,1,1
     $ ,320,AMPL(1,320),S(320))
C     Loop amplitude for loop diagram with ID 77
      CALL ML5_0_LOOP_3_4_3(33,1,2,1,5,1,2,7,DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16)
     $ ,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16),GC_5,MP__GC_5,GC_6
     $ ,MP__GC_6,GC_5,MP__GC_5,1,1,1,321,AMPL(1,321),S(321))
      CALL ML5_0_LOOP_3_4_3(34,1,2,1,5,1,2,7,DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16)
     $ ,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16),GC_5,MP__GC_5,GC_6
     $ ,MP__GC_6,GC_5,MP__GC_5,1,1,1,322,AMPL(1,322),S(322))
      CALL ML5_0_LOOP_3_4_3(35,1,2,1,5,1,2,7,DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16)
     $ ,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16),GC_5,MP__GC_5,GC_6
     $ ,MP__GC_6,GC_5,MP__GC_5,1,1,1,323,AMPL(1,323),S(323))
C     Loop amplitude for loop diagram with ID 78
      CALL ML5_0_LOOP_5_5(36,1,3,5,2,4,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT
     $ ,KIND=16),DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16)
     $ ,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16),GC_5,MP__GC_5,GC_11
     $ ,MP__GC_11,GC_5,MP__GC_5,GC_4,MP__GC_4,GC_5,MP__GC_5,4,1,1,324
     $ ,AMPL(1,324),S(324))
C     Loop amplitude for loop diagram with ID 79
      CALL ML5_0_LOOP_5_5(37,1,2,4,5,3,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT
     $ ,KIND=16),DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MB),CMPLX(MP__MDL_MB
     $ ,KIND=16),DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16),GC_5
     $ ,MP__GC_5,GC_5,MP__GC_5,GC_5,MP__GC_5,GC_5,MP__GC_5,GC_11
     $ ,MP__GC_11,4,1,1,325,AMPL(1,325),S(325))
C     Loop amplitude for loop diagram with ID 80
      CALL ML5_0_LOOP_5_5(38,1,4,2,3,5,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16)
     $ ,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16),DCMPLX(MDL_MB)
     $ ,CMPLX(MP__MDL_MB,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16)
     $ ,GC_4,MP__GC_4,GC_5,MP__GC_5,GC_5,MP__GC_5,GC_11,MP__GC_11,GC_5
     $ ,MP__GC_5,4,1,1,326,AMPL(1,326),S(326))
C     Loop amplitude for loop diagram with ID 81
      CALL ML5_0_LOOP_5_5(39,1,2,4,3,5,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MT)
     $ ,CMPLX(MP__MDL_MT,KIND=16),DCMPLX(MDL_MB),CMPLX(MP__MDL_MB
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),GC_4,MP__GC_4
     $ ,GC_4,MP__GC_4,GC_5,MP__GC_5,GC_11,MP__GC_11,GC_5,MP__GC_5,4,1
     $ ,1,327,AMPL(1,327),S(327))
C     Loop amplitude for loop diagram with ID 82
      CALL ML5_0_LOOP_5_5(40,1,2,3,5,4,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT
     $ ,KIND=16),DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16)
     $ ,DCMPLX(MDL_MB),CMPLX(MP__MDL_MB,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MT),CMPLX(MP__MDL_MT
     $ ,KIND=16),GC_5,MP__GC_5,GC_5,MP__GC_5,GC_11,MP__GC_11,GC_5
     $ ,MP__GC_5,GC_5,MP__GC_5,4,1,1,328,AMPL(1,328),S(328))
C     Loop amplitude for loop diagram with ID 83
      CALL ML5_0_LOOP_5_5(41,1,2,5,3,4,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MB)
     $ ,CMPLX(MP__MDL_MB,KIND=16),DCMPLX(MDL_MT),CMPLX(MP__MDL_MT
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),GC_4,MP__GC_4
     $ ,GC_4,MP__GC_4,GC_5,MP__GC_5,GC_11,MP__GC_11,GC_5,MP__GC_5,4,1
     $ ,1,329,AMPL(1,329),S(329))
C     Loop amplitude for loop diagram with ID 84
      CALL ML5_0_LOOP_4_5_4(42,1,1,2,1,3,4,1,2,5,DCMPLX(MDL_MT)
     $ ,CMPLX(MP__MDL_MT,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16)
     $ ,DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MB)
     $ ,CMPLX(MP__MDL_MB,KIND=16),GC_11,MP__GC_11,GC_5,MP__GC_5,GC_6
     $ ,MP__GC_6,GC_5,MP__GC_5,2,1,1,330,AMPL(1,330),S(330))
      CALL ML5_0_LOOP_4_5_4(43,1,1,2,1,3,4,1,2,5,DCMPLX(MDL_MT)
     $ ,CMPLX(MP__MDL_MT,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16)
     $ ,DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MB)
     $ ,CMPLX(MP__MDL_MB,KIND=16),GC_11,MP__GC_11,GC_5,MP__GC_5,GC_6
     $ ,MP__GC_6,GC_5,MP__GC_5,2,1,1,331,AMPL(1,331),S(331))
      CALL ML5_0_LOOP_4_5_4(44,1,1,2,1,3,4,1,2,5,DCMPLX(MDL_MT)
     $ ,CMPLX(MP__MDL_MT,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16)
     $ ,DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MB)
     $ ,CMPLX(MP__MDL_MB,KIND=16),GC_11,MP__GC_11,GC_5,MP__GC_5,GC_6
     $ ,MP__GC_6,GC_5,MP__GC_5,2,1,1,332,AMPL(1,332),S(332))
C     Loop amplitude for loop diagram with ID 85
      CALL ML5_0_LOOP_2_2(1,6,13,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT
     $ ,KIND=16),DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16),GC_5
     $ ,MP__GC_5,GC_5,MP__GC_5,2,1,1,333,AMPL(1,333),S(333))
C     Loop amplitude for loop diagram with ID 86
      CALL ML5_0_LOOP_2_2(12,8,16,DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16)
     $ ,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16),GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,1,1,1,334,AMPL(1,334),S(334))
C     Loop amplitude for loop diagram with ID 87
      CALL ML5_0_LOOP_2_2(1,6,14,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT
     $ ,KIND=16),DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16),GC_5
     $ ,MP__GC_5,GC_5,MP__GC_5,2,1,1,335,AMPL(1,335),S(335))
C     Loop amplitude for loop diagram with ID 88
      CALL ML5_0_LOOP_3_3(45,4,6,8,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT
     $ ,KIND=16),DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),GC_5,MP__GC_5,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,2,1,1,336,AMPL(1,336),S(336))
C     Loop amplitude for loop diagram with ID 89
      CALL ML5_0_LOOP_3_3(46,4,6,8,DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16)
     $ ,DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MT)
     $ ,CMPLX(MP__MDL_MT,KIND=16),GC_5,MP__GC_5,GC_4,MP__GC_4,GC_5
     $ ,MP__GC_5,2,1,1,337,AMPL(1,337),S(337))
C     Loop amplitude for loop diagram with ID 90
      CALL ML5_0_LOOP_2_2(4,9,25,DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16)
     $ ,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16),GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,1,1,1,338,AMPL(1,338),S(338))
C     Loop amplitude for loop diagram with ID 91
      CALL ML5_0_LOOP_3_3(18,2,9,8,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MT)
     $ ,CMPLX(MP__MDL_MT,KIND=16),GC_5,MP__GC_5,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,2,1,1,339,AMPL(1,339),S(339))
C     Loop amplitude for loop diagram with ID 92
      CALL ML5_0_LOOP_2_2(12,8,18,DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16)
     $ ,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16),GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,1,1,1,340,AMPL(1,340),S(340))
C     Loop amplitude for loop diagram with ID 93
      CALL ML5_0_LOOP_2_2(4,9,26,DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16)
     $ ,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16),GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,1,1,1,341,AMPL(1,341),S(341))
C     Loop amplitude for loop diagram with ID 94
      CALL ML5_0_LOOP_3_3(19,2,9,8,DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16)
     $ ,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),GC_4,MP__GC_4,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,2,1,1,342,AMPL(1,342),S(342))
C     Loop amplitude for loop diagram with ID 95
      CALL ML5_0_LOOP_2_2(4,12,27,DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16)
     $ ,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16),GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,1,1,1,343,AMPL(1,343),S(343))
C     Loop amplitude for loop diagram with ID 96
      CALL ML5_0_LOOP_3_3(18,2,4,27,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MT)
     $ ,CMPLX(MP__MDL_MT,KIND=16),GC_5,MP__GC_5,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,2,1,1,344,AMPL(1,344),S(344))
C     Loop amplitude for loop diagram with ID 97
      CALL ML5_0_LOOP_3_3(19,2,4,27,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),GC_4,MP__GC_4,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,2,1,1,345,AMPL(1,345),S(345))
C     Loop amplitude for loop diagram with ID 98
      CALL ML5_0_LOOP_3_3(18,1,12,8,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MT)
     $ ,CMPLX(MP__MDL_MT,KIND=16),GC_5,MP__GC_5,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,2,1,1,346,AMPL(1,346),S(346))
C     Loop amplitude for loop diagram with ID 99
      CALL ML5_0_LOOP_3_3(18,1,4,25,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MT)
     $ ,CMPLX(MP__MDL_MT,KIND=16),GC_5,MP__GC_5,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,2,1,1,347,AMPL(1,347),S(347))
C     Loop amplitude for loop diagram with ID 100
      CALL ML5_0_LOOP_3_3(2,1,2,13,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT
     $ ,KIND=16),DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16)
     $ ,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16),GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,GC_5,MP__GC_5,3,1,1,348,AMPL(1,348),S(348))
C     Loop amplitude for loop diagram with ID 101
      CALL ML5_0_LOOP_3_3(2,1,2,14,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT
     $ ,KIND=16),DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16)
     $ ,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16),GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,GC_5,MP__GC_5,3,1,1,349,AMPL(1,349),S(349))
C     Loop amplitude for loop diagram with ID 102
      CALL ML5_0_LOOP_4_4(22,1,2,4,8,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT
     $ ,KIND=16),DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MT),CMPLX(MP__MDL_MT
     $ ,KIND=16),GC_5,MP__GC_5,GC_5,MP__GC_5,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,3,1,1,350,AMPL(1,350),S(350))
C     Loop amplitude for loop diagram with ID 103
      CALL ML5_0_LOOP_3_3(3,1,2,13,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT
     $ ,KIND=16),DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16)
     $ ,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16),GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,GC_5,MP__GC_5,3,1,1,351,AMPL(1,351),S(351))
C     Loop amplitude for loop diagram with ID 104
      CALL ML5_0_LOOP_3_3(3,1,2,14,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT
     $ ,KIND=16),DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16)
     $ ,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16),GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,GC_5,MP__GC_5,3,1,1,352,AMPL(1,352),S(352))
C     Loop amplitude for loop diagram with ID 105
      CALL ML5_0_LOOP_4_4(23,1,2,8,4,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT
     $ ,KIND=16),DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MT),CMPLX(MP__MDL_MT
     $ ,KIND=16),GC_5,MP__GC_5,GC_5,MP__GC_5,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,3,1,1,353,AMPL(1,353),S(353))
C     Loop amplitude for loop diagram with ID 106
      CALL ML5_0_LOOP_4_4(47,1,4,2,8,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MT),CMPLX(MP__MDL_MT
     $ ,KIND=16),GC_5,MP__GC_5,GC_5,MP__GC_5,GC_4,MP__GC_4,GC_5
     $ ,MP__GC_5,3,1,1,354,AMPL(1,354),S(354))
C     Loop amplitude for loop diagram with ID 107
      CALL ML5_0_LOOP_3_3(18,1,4,26,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MT)
     $ ,CMPLX(MP__MDL_MT,KIND=16),GC_5,MP__GC_5,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,2,1,1,355,AMPL(1,355),S(355))
C     Loop amplitude for loop diagram with ID 108
      CALL ML5_0_LOOP_2_2(12,8,22,DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16)
     $ ,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16),GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,1,1,1,356,AMPL(1,356),S(356))
C     Loop amplitude for loop diagram with ID 109
      CALL ML5_0_LOOP_2_2(4,12,28,DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16)
     $ ,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16),GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,1,1,1,357,AMPL(1,357),S(357))
C     Loop amplitude for loop diagram with ID 110
      CALL ML5_0_LOOP_3_3(19,1,12,8,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),GC_4,MP__GC_4,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,2,1,1,358,AMPL(1,358),S(358))
C     Loop amplitude for loop diagram with ID 111
      CALL ML5_0_LOOP_3_3(19,1,4,25,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),GC_4,MP__GC_4,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,2,1,1,359,AMPL(1,359),S(359))
C     Loop amplitude for loop diagram with ID 112
      CALL ML5_0_LOOP_3_3(18,2,4,28,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MT)
     $ ,CMPLX(MP__MDL_MT,KIND=16),GC_5,MP__GC_5,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,2,1,1,360,AMPL(1,360),S(360))
C     Loop amplitude for loop diagram with ID 113
      CALL ML5_0_LOOP_4_4(48,1,4,2,8,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16)
     $ ,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),GC_4,MP__GC_4,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,GC_5,MP__GC_5,3,1,1,361,AMPL(1,361),S(361))
C     Loop amplitude for loop diagram with ID 114
      CALL ML5_0_LOOP_3_3(19,2,4,28,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),GC_4,MP__GC_4,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,2,1,1,362,AMPL(1,362),S(362))
C     Loop amplitude for loop diagram with ID 115
      CALL ML5_0_LOOP_3_3(19,1,4,26,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),GC_4,MP__GC_4,GC_5,MP__GC_5,GC_5
     $ ,MP__GC_5,2,1,1,363,AMPL(1,363),S(363))
C     Loop amplitude for loop diagram with ID 116
      CALL ML5_0_LOOP_4_4(32,1,2,8,4,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MT)
     $ ,CMPLX(MP__MDL_MT,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16)
     $ ,GC_4,MP__GC_4,GC_4,MP__GC_4,GC_5,MP__GC_5,GC_5,MP__GC_5,3,1,1
     $ ,364,AMPL(1,364),S(364))
C     Loop amplitude for loop diagram with ID 117
      CALL ML5_0_LOOP_4_4(31,1,2,4,8,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),DCMPLX(MDL_MT)
     $ ,CMPLX(MP__MDL_MT,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16)
     $ ,GC_4,MP__GC_4,GC_4,MP__GC_4,GC_5,MP__GC_5,GC_5,MP__GC_5,3,1,1
     $ ,365,AMPL(1,365),S(365))
C     Loop amplitude for loop diagram with ID 118
      CALL ML5_0_LOOP_3_4_3(49,1,2,1,4,1,2,8,DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16)
     $ ,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16),GC_5,MP__GC_5,GC_6
     $ ,MP__GC_6,GC_5,MP__GC_5,1,1,1,366,AMPL(1,366),S(366))
      CALL ML5_0_LOOP_3_4_3(50,1,2,1,4,1,2,8,DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16)
     $ ,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16),GC_5,MP__GC_5,GC_6
     $ ,MP__GC_6,GC_5,MP__GC_5,1,1,1,367,AMPL(1,367),S(367))
      CALL ML5_0_LOOP_3_4_3(51,1,2,1,4,1,2,8,DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16)
     $ ,DCMPLX(MDL_MT),CMPLX(MP__MDL_MT,KIND=16),GC_5,MP__GC_5,GC_6
     $ ,MP__GC_6,GC_5,MP__GC_5,1,1,1,368,AMPL(1,368),S(368))
C     Loop amplitude for loop diagram with ID 119
      CALL ML5_0_LOOP_2_2(52,6,13,DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16)
     $ ,DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),GC_4,MP__GC_4,GC_4
     $ ,MP__GC_4,2,2,1,369,AMPL(1,369),S(369))
C     Loop amplitude for loop diagram with ID 120
      CALL ML5_0_LOOP_2_2(52,6,14,DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16)
     $ ,DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),GC_4,MP__GC_4,GC_4
     $ ,MP__GC_4,2,2,1,370,AMPL(1,370),S(370))
C     Loop amplitude for loop diagram with ID 121
      CALL ML5_0_LOOP_3_3(53,1,2,13,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),GC_4,MP__GC_4,GC_4,MP__GC_4,GC_4
     $ ,MP__GC_4,3,1,1,371,AMPL(1,371),S(371))
C     Loop amplitude for loop diagram with ID 122
      CALL ML5_0_LOOP_3_3(53,1,2,14,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),GC_4,MP__GC_4,GC_4,MP__GC_4,GC_4
     $ ,MP__GC_4,3,1,1,372,AMPL(1,372),S(372))
C     Loop amplitude for loop diagram with ID 123
      CALL ML5_0_LOOP_2_3_2(54,1,2,1,13,2,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),GC_4,MP__GC_4
     $ ,GC_6,MP__GC_6,1,2,1,373,AMPL(1,373),S(373))
      CALL ML5_0_LOOP_2_3_2(55,1,2,1,13,2,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),GC_4,MP__GC_4
     $ ,GC_6,MP__GC_6,1,2,1,374,AMPL(1,374),S(374))
      CALL ML5_0_LOOP_2_3_2(56,1,2,1,13,2,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),GC_4,MP__GC_4
     $ ,GC_6,MP__GC_6,1,2,1,375,AMPL(1,375),S(375))
C     Loop amplitude for loop diagram with ID 124
      CALL ML5_0_LOOP_2_3_2(54,1,2,1,14,2,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),GC_4,MP__GC_4
     $ ,GC_6,MP__GC_6,1,2,1,376,AMPL(1,376),S(376))
      CALL ML5_0_LOOP_2_3_2(55,1,2,1,14,2,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),GC_4,MP__GC_4
     $ ,GC_6,MP__GC_6,1,2,1,377,AMPL(1,377),S(377))
      CALL ML5_0_LOOP_2_3_2(56,1,2,1,14,2,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),GC_4,MP__GC_4
     $ ,GC_6,MP__GC_6,1,2,1,378,AMPL(1,378),S(378))
C     Loop amplitude for loop diagram with ID 125
      CALL ML5_0_LOOP_2_3_2(54,1,2,2,13,1,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),GC_4,MP__GC_4
     $ ,GC_6,MP__GC_6,1,2,1,379,AMPL(1,379),S(379))
      CALL ML5_0_LOOP_2_3_2(55,1,2,2,13,1,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),GC_4,MP__GC_4
     $ ,GC_6,MP__GC_6,1,2,1,380,AMPL(1,380),S(380))
      CALL ML5_0_LOOP_2_3_2(56,1,2,2,13,1,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),GC_4,MP__GC_4
     $ ,GC_6,MP__GC_6,1,2,1,381,AMPL(1,381),S(381))
C     Loop amplitude for loop diagram with ID 126
      CALL ML5_0_LOOP_2_3_2(54,1,2,2,14,1,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),GC_4,MP__GC_4
     $ ,GC_6,MP__GC_6,1,2,1,382,AMPL(1,382),S(382))
      CALL ML5_0_LOOP_2_3_2(55,1,2,2,14,1,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),GC_4,MP__GC_4
     $ ,GC_6,MP__GC_6,1,2,1,383,AMPL(1,383),S(383))
      CALL ML5_0_LOOP_2_3_2(56,1,2,2,14,1,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),GC_4,MP__GC_4
     $ ,GC_6,MP__GC_6,1,2,1,384,AMPL(1,384),S(384))
C     Loop amplitude for loop diagram with ID 127
      CALL ML5_0_LOOP_2_3_2(57,2,1,1,2,13,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),GC_6,MP__GC_6
     $ ,GC_4,MP__GC_4,1,2,1,385,AMPL(1,385),S(385))
      CALL ML5_0_LOOP_2_3_2(58,2,1,1,2,13,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),GC_6,MP__GC_6
     $ ,GC_4,MP__GC_4,1,2,1,386,AMPL(1,386),S(386))
      CALL ML5_0_LOOP_2_3_2(59,2,1,1,2,13,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),GC_6,MP__GC_6
     $ ,GC_4,MP__GC_4,1,2,1,387,AMPL(1,387),S(387))
C     Loop amplitude for loop diagram with ID 128
      CALL ML5_0_LOOP_2_3_2(57,2,1,1,2,14,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),GC_6,MP__GC_6
     $ ,GC_4,MP__GC_4,1,2,1,388,AMPL(1,388),S(388))
      CALL ML5_0_LOOP_2_3_2(58,2,1,1,2,14,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),GC_6,MP__GC_6
     $ ,GC_4,MP__GC_4,1,2,1,389,AMPL(1,389),S(389))
      CALL ML5_0_LOOP_2_3_2(59,2,1,1,2,14,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),GC_6,MP__GC_6
     $ ,GC_4,MP__GC_4,1,2,1,390,AMPL(1,390),S(390))
C     Loop amplitude for loop diagram with ID 129
      CALL ML5_0_LOOP_2_2(60,6,13,DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16)
     $ ,DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),GC_4,MP__GC_4,GC_4
     $ ,MP__GC_4,2,1,1,391,AMPL(1,391),S(391))
C     Loop amplitude for loop diagram with ID 130
      CALL ML5_0_LOOP_2_2(60,6,14,DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16)
     $ ,DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),GC_4,MP__GC_4,GC_4
     $ ,MP__GC_4,2,1,1,392,AMPL(1,392),S(392))
C     Loop amplitude for loop diagram with ID 131
      CALL ML5_0_LOOP_3_3(61,1,2,13,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),GC_4,MP__GC_4,GC_4,MP__GC_4,GC_4
     $ ,MP__GC_4,3,1,1,393,AMPL(1,393),S(393))
C     Loop amplitude for loop diagram with ID 132
      CALL ML5_0_LOOP_3_3(61,1,2,14,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),GC_4,MP__GC_4,GC_4,MP__GC_4,GC_4
     $ ,MP__GC_4,3,1,1,394,AMPL(1,394),S(394))
C     Loop amplitude for loop diagram with ID 133
      CALL ML5_0_LOOP_3_3(62,1,2,13,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),GC_4,MP__GC_4,GC_4,MP__GC_4,GC_4
     $ ,MP__GC_4,3,1,1,395,AMPL(1,395),S(395))
C     Loop amplitude for loop diagram with ID 134
      CALL ML5_0_LOOP_3_3(62,1,2,14,DCMPLX(ZERO),CMPLX(MP__ZERO
     $ ,KIND=16),DCMPLX(ZERO),CMPLX(MP__ZERO,KIND=16),DCMPLX(ZERO)
     $ ,CMPLX(MP__ZERO,KIND=16),GC_4,MP__GC_4,GC_4,MP__GC_4,GC_4
     $ ,MP__GC_4,3,1,1,396,AMPL(1,396),S(396))

      DO I=NCTAMPS+1,NLOOPAMPS
        ANS(1)=ANS(1)+AMPL(1,I)
        ANS(2)=ANS(2)+AMPL(2,I)
        ANS(3)=ANS(3)+AMPL(3,I)
        IF((CTMODERUN.NE.-1).AND..NOT.CHECKPHASE.AND.(.NOT.S(I))) THEN
          WRITE(*,*) '##W03 WARNING Contribution ',I,' is unstable.'
        ENDIF
      ENDDO

 1226 CONTINUE

      IF (CHECKPHASE.OR.(.NOT.HELDOUBLECHECKED)) THEN
C       Update of NEXTREF, will be used for loop induced only.
        NEXTREF = NEXTREF + ANS(1) + ANS(2) + ANS(3)
        IF((USERHEL.EQ.-1).OR.(USERHEL.EQ.HELPICKED)) THEN
          BUFFR(1)=BUFFR(1)+ANS(1)
          BUFFR(2)=BUFFR(2)+ANS(2)
          BUFFR(3)=BUFFR(3)+ANS(3)
        ENDIF

        IF (CHECKPHASE) THEN
C         SET THE HELICITY FILTER
          IF(.NOT.FOUNDHELFILTER) THEN
            IF(ML5_0_ISZERO(ABS(ANS(1))+ABS(ANS(2))+ABS(ANS(3)),REF
     $       /DBLE(NCOMB),-1)) THEN
              IF(NTRY.EQ.1) THEN
                GOODHEL(HELPICKED)=.FALSE.
              ELSEIF(GOODHEL(HELPICKED)) THEN
                WRITE(*,*) '##W02A WARNING Inconsistent helicity '
     $           ,HELPICKED
                IF(HELINITSTARTOVER) THEN
                  WRITE(*,*) '##I01 INFO Initialization starting over'
     $             //' because of inconsistency in the helicity filter'
     $             //' setup.'
                  NTRY=0
                ENDIF
              ENDIF
            ELSE
              IF(.NOT.GOODHEL(HELPICKED)) THEN
                WRITE(*,*) '##W02B WARNING Inconsistent helicity '
     $           ,HELPICKED
                IF(HELINITSTARTOVER) THEN
                  WRITE(*,*) '##I01 INFO Initialization starting over'
     $             //' because of inconsistency in the helicity filter'
     $             //' setup.'
                  NTRY=0
                ELSE
                  GOODHEL(HELPICKED)=.TRUE.
                ENDIF
              ENDIF
            ENDIF
          ENDIF

C         SET THE LOOP FILTER
          IF(.NOT.FOUNDLOOPFILTER.AND.USELOOPFILTER) THEN
            DO I=NCTAMPS+1,NLOOPAMPS
              IF(.NOT.ML5_0_ISZERO(ABS(AMPL(1,I))+ABS(AMPL(2,I))
     $         +ABS(AMPL(3,I)),(REF*1.0D-4),I)) THEN
                IF(NTRY.EQ.1) THEN
                  GOODAMP(I,HELPICKED)=.TRUE.
                ELSEIF(.NOT.GOODAMP(I,HELPICKED)) THEN
                  WRITE(*,*) '##W02 WARNING Inconsistent loop amp ',I
     $             ,' for helicity ',HELPICKED,'.'
                  IF(LOOPINITSTARTOVER) THEN
                    WRITE(*,*) '##I01 INFO Initialization starting'
     $               //' over because of inconsistency in the loop'
     $               //' filter setup.'
                    NTRY=0
                  ELSE
                    GOODAMP(I,HELPICKED)=.TRUE.
                  ENDIF
                ENDIF
              ENDIF
            ENDDO
          ENDIF
        ELSEIF (.NOT.HELDOUBLECHECKED)THEN
          IF ((.NOT.GOODHEL(HELPICKED))
     $     .AND.(.NOT.ML5_0_ISZERO(ABS(ANS(1))+ABS(ANS(2))+ABS(ANS(3))
     $     ,REF/DBLE(NCOMB),-1))) THEN
            WRITE(*,*) '##W15 Helicity filter could not be'
     $       //' successfully double checked.'
            WRITE(*,*) '##One reason for this is that you have changed'
     $       //' sensible parameters which affected what are the zero'
     $       //' helicity configurations.'
            WRITE(*,*) '##MadLoop will try to reset the Helicity'
     $       //' filter with the next PS points it receives.'
            NTRY=0
            OPEN(30,FILE=HELFILTERFN,ERR=349)
 349        CONTINUE
            CLOSE(30,STATUS='delete')
          ENDIF
C         SET HELDOUBLECHECKED TO .TRUE. WHEN DONE
C         even if it failed we do not want to redo the check
C          afterwards if HELINITSTARTOVER=.FALSE.
          IF (HELPICKED.EQ.NCOMB.AND.(NTRY.NE.0.OR..NOT.HELINITSTARTOVE
     $R)) THEN
            DONEHELDOUBLECHECK=.TRUE.
          ENDIF
        ENDIF

C       GOTO NEXT HELICITY OR FINISH
        IF(HELPICKED.NE.NCOMB) THEN
          HELPICKED=HELPICKED+1
          MP_DONE=.FALSE.
          GOTO 200
        ELSE
          ANS(1)=BUFFR(1)
          ANS(2)=BUFFR(2)
          ANS(3)=BUFFR(3)
C         We add one here to the number of PS points used for building
C          the reference scale for comparison (used only for
C          loop-induced processes).
          NPSPOINTS = NPSPOINTS+1
          IF(NTRY.EQ.0) THEN
            NATTEMPTS=NATTEMPTS+1
            IF(NATTEMPTS.EQ.MAXATTEMPTS) THEN
              WRITE(*,*) '##E01 ERROR Could not initialize the filters'
     $         //' in ',MAXATTEMPTS,' trials'
              STOP
            ENDIF
          ENDIF
        ENDIF

      ENDIF

      DO K=1,3
        ANS(K)=ANS(K)/DBLE(IDEN)
        IF (USERHEL.NE.-1) THEN
          ANS(K)=ANS(K)*HELAVGFACTOR
        ELSE
          DO J=1,NINITIAL
            IF (POLARIZATIONS(J,0).NE.-1) THEN
              ANS(K)=ANS(K)*BEAMS_HELAVGFACTOR(J)
              ANS(K)=ANS(K)/POLARIZATIONS(J,0)
            ENDIF
          ENDDO
        ENDIF
      ENDDO

      IF(.NOT.CHECKPHASE.AND.HELDOUBLECHECKED.AND.(CTMODERUN.LE.-1))
     $  THEN
        STAB_INDEX=STAB_INDEX+1
        IF(DOING_QP_EVALS) THEN
          QP_RES(1,STAB_INDEX)=ANS(1)
          QP_RES(2,STAB_INDEX)=ANS(2)
          QP_RES(3,STAB_INDEX)=ANS(3)
        ELSE
          DP_RES(1,STAB_INDEX)=ANS(1)
          DP_RES(2,STAB_INDEX)=ANS(2)
          DP_RES(3,STAB_INDEX)=ANS(3)
        ENDIF

        IF(DOING_QP_EVALS) THEN
          BASIC_CT_MODE=4
        ELSE
          BASIC_CT_MODE=1
        ENDIF

C       BEGINNING OF THE DEFINITIONS OF THE DIFFERENT EVALUATION
C        METHODS

        IF(.NOT.EVAL_DONE(2)) THEN
          EVAL_DONE(2)=.TRUE.
          CTMODE=BASIC_CT_MODE+1
          GOTO 200
        ENDIF

        CTMODE=BASIC_CT_MODE

        IF(.NOT.EVAL_DONE(3).AND.
     $    ((DOING_QP_EVALS.AND.NROTATIONS_QP.GE.1)
     $   .OR.((.NOT.DOING_QP_EVALS).AND.NROTATIONS_DP.GE.1)) ) THEN
          EVAL_DONE(3)=.TRUE.
          CALL ML5_0_ROTATE_PS(PS,P,1)
          IF (DOING_QP_EVALS) CALL ML5_0_MP_ROTATE_PS(MP_PS,MP_P,1)
          GOTO 200
        ENDIF

        IF(.NOT.EVAL_DONE(4).AND.
     $    ((DOING_QP_EVALS.AND.NROTATIONS_QP.GE.2)
     $   .OR.((.NOT.DOING_QP_EVALS).AND.NROTATIONS_DP.GE.2)) ) THEN
          EVAL_DONE(4)=.TRUE.
          CALL ML5_0_ROTATE_PS(PS,P,2)
          IF (DOING_QP_EVALS) CALL ML5_0_MP_ROTATE_PS(MP_PS,MP_P,2)
          GOTO 200
        ENDIF

        CALL ML5_0_ROTATE_PS(PS,P,0)
        IF (DOING_QP_EVALS) CALL ML5_0_MP_ROTATE_PS(MP_PS,MP_P,0)

C       END OF THE DEFINITIONS OF THE DIFFERENT EVALUATION METHODS

        IF(DOING_QP_EVALS) THEN
          CALL ML5_0_COMPUTE_ACCURACY(QP_RES,N_QP_EVAL,ACC,ANS(1))
          ACCURACY(0)=ACC
          RET_CODE_H=3
          IF(ACC.GE.MLSTABTHRES) THEN
            RET_CODE_H=4
            NEPS=NEPS+1
            CALL ML5_0_COMPUTE_ACCURACY(DP_RES,N_DP_EVAL,TEMP1,TEMP)
            WRITE(*,*) '##W03 WARNING An unstable PS point was',      
     $        ' detected.'
            WRITE(*,*) '##(DP,QP) accuracies : (',TEMP1,',',ACC,')'
            WRITE(*,*) '##Best estimate (fin,1eps,2eps) :',(ANS(I),I=1
     $       ,3)
            IF(NEPS.LE.10) THEN
              WRITE(*,*) '##Double precision evaluations :',(DP_RES(1
     $         ,I),I=1,N_DP_EVAL)
              WRITE(*,*) '##Quad   precision evaluations :',(QP_RES(1
     $         ,I),I=1,N_QP_EVAL)
              WRITE(*,*) '##PS point specification :'
              WRITE(*,*) '##Renormalization scale MU_R=',MU_R
              DO I=1,NEXTERNAL
                WRITE (*,'(i2,1x,4e27.17)') I, P(0,I),P(1,I),P(2,I)
     $           ,P(3,I)
              ENDDO
            ENDIF
            IF(NEPS.EQ.10) THEN
              WRITE(*,*) '##Further output of the details of these'
     $         //' unstable PS points will now be suppressed.'
            ENDIF
          ENDIF
        ELSE
          CALL ML5_0_COMPUTE_ACCURACY(DP_RES,N_DP_EVAL,ACC,ANS(1))
          IF(ACC.GE.MLSTABTHRES) THEN
            DOING_QP_EVALS=.TRUE.
            EVAL_DONE(1)=.TRUE.
            DO I=2,MAXSTABILITYLENGTH
              EVAL_DONE(I)=.FALSE.
            ENDDO
            STAB_INDEX=0
            CTMODE=4
            GOTO 200
          ELSE
            ACCURACY(0)=ACC
            RET_CODE_H=2
          ENDIF
        ENDIF
      ELSE
        RET_CODE_H=1
        ACCURACY=-1.0D0
      ENDIF

 9999 CONTINUE

C     Finalize the return code
      IF (MP_DONE_ONCE) THEN
        RET_CODE_T=2
      ELSE
        RET_CODE_T=1
      ENDIF
      IF(CHECKPHASE.OR..NOT.HELDOUBLECHECKED) THEN
        RET_CODE_H=1
        RET_CODE_T=RET_CODE_T+2
        ACCURACY=-1.0D0
      ENDIF
      IF (RET_CODE_H.EQ.4) THEN
        RET_CODE_U=0
      ELSE
        RET_CODE_U=1
      ENDIF

C     Reinitialize the default threshold if it was specified by the
C      user
      IF (USER_STAB_PREC.GT.0.0D0) THEN
        MLSTABTHRES=MLSTABTHRES_BU
        CTMODEINIT=CTMODEINIT_BU
      ENDIF

C     Reinitialize the Lorentz test if it had been disabled because
C      spin-2 particles are in the external states.
      NROTATIONS_DP = NROTATIONS_DP_BU
      NROTATIONS_QP = NROTATIONS_QP_BU

C     Conform to the returned synthax of split orders even though the
C      default output does not support it (this then done only for
C      compatibility purpose).
      ANSRETURNED(0,0)=ANS(0)
      ANSRETURNED(1,0)=ANS(1)
      ANSRETURNED(2,0)=ANS(2)
      ANSRETURNED(3,0)=ANS(3)

C     Reinitialize the check phase logicals and the filters if check
C      bypassed
      IF (BYPASS_CHECK) THEN
        CHECKPHASE = OLD_CHECKPHASE
        HELDOUBLECHECKED = OLD_HELDOUBLECHECKED
        DO I=1,NCOMB
          GOODHEL(I)=OLD_GOODHEL(I)
        ENDDO
        DO I=1,NCOMB
          DO J=1,NLOOPAMPS
            GOODAMP(J,I)=OLD_GOODAMP(J,I)
          ENDDO
        ENDDO
      ENDIF

      END

      SUBROUTINE ML5_0_COMPUTE_ACCURACY(FULLLIST, LENGTH, ACC,
     $  ESTIMATE)
      IMPLICIT NONE
C     
C     PARAMETERS 
C     
      INTEGER MAXSTABILITYLENGTH
      COMMON/ML5_0_STABILITY_TESTS/MAXSTABILITYLENGTH
C     
C     ARGUMENTS 
C     
      REAL*8 FULLLIST(3,MAXSTABILITYLENGTH)
      INTEGER LENGTH
      REAL*8 ACC, ESTIMATE(3)
C     
C     LOCAL VARIABLES 
C     
      LOGICAL MASK(MAXSTABILITYLENGTH)
      LOGICAL MASK3(3)
      DATA MASK3/.TRUE.,.TRUE.,.TRUE./
      INTEGER I,J
      REAL*8 AVG
      REAL*8 DIFF
      REAL*8 ACCURACIES(3)
      REAL*8 LIST(MAXSTABILITYLENGTH)

C     ----------
C     BEGIN CODE
C     ----------
      DO I=1,LENGTH
        MASK(I)=.TRUE.
      ENDDO
      DO I=LENGTH+1,MAXSTABILITYLENGTH
        MASK(I)=.FALSE.
      ENDDO

      DO I=1,3
        DO J=1,MAXSTABILITYLENGTH
          LIST(J)=FULLLIST(I,J)
        ENDDO
        DIFF=MAXVAL(LIST,1,MASK)-MINVAL(LIST,1,MASK)
        AVG=(MAXVAL(LIST,1,MASK)+MINVAL(LIST,1,MASK))/2.0D0
        ESTIMATE(I)=AVG
        IF (AVG.EQ.0.0D0) THEN
          ACCURACIES(I)=DIFF
        ELSE
          ACCURACIES(I)=DIFF/ABS(AVG)
        ENDIF
      ENDDO

C     The technique below is too sensitive, typically to
C     unstablities in very small poles
C     ACC=MAXVAL(ACCURACIES,1,MASK3)
C     The following is used instead
      ACC = 0.0D0
      AVG = 0.0D0
      DO I=1,3
        ACC = ACC + ACCURACIES(I)*ABS(ESTIMATE(I))
        AVG = AVG + ESTIMATE(I)
      ENDDO
      ACC  = ACC / ( ABS(AVG) / 3.0D0)

C     If NaN are present in the evaluation, automatically set the
C      accuracy to 1.0d99.
      DO I=1,3
        DO J=1,MAXSTABILITYLENGTH
          IF (ISNAN(FULLLIST(I,J))) THEN
            ACC = 1.0D99
          ENDIF
        ENDDO
      ENDDO

      END

      SUBROUTINE ML5_0_SET_N_EVALS(N_DP_EVALS,N_QP_EVALS)

      IMPLICIT NONE
      INTEGER N_DP_EVALS, N_QP_EVALS

      INCLUDE 'MadLoopParams.inc'

      IF(CTMODERUN.LE.-1) THEN
        N_DP_EVALS=2+NROTATIONS_DP
        N_QP_EVALS=2+NROTATIONS_QP
      ELSE
        N_DP_EVALS=1
        N_QP_EVALS=1
      ENDIF

      IF(N_DP_EVALS.GT.20.OR.N_QP_EVALS.GT.20) THEN
        WRITE(*,*) '##ERROR:: Increase hardcoded maxstabilitylength.'
        STOP
      ENDIF

      END


C     THIS SUBROUTINE SIMPLY SET THE GLOBAL PS CONFIGURATION GLOBAL
C      VARIABLES FROM A GIVEN VARIABLE IN DOUBLE PRECISION
      SUBROUTINE ML5_0_SET_MP_PS(P)

      INTEGER    NEXTERNAL
      PARAMETER (NEXTERNAL=5)
      REAL*16 MP_PS(0:3,NEXTERNAL),MP_P(0:3,NEXTERNAL)
      COMMON/ML5_0_MP_PSPOINT/MP_PS,MP_P
      REAL*8 P(0:3,NEXTERNAL)

      DO I=1,NEXTERNAL
        DO J=0,3
          MP_PS(J,I)=P(J,I)
        ENDDO
      ENDDO
      CALL ML5_0_MP_IMPROVE_PS_POINT_PRECISION(MP_PS)
      DO I=1,NEXTERNAL
        DO J=0,3
          MP_P(J,I)=MP_PS(J,I)
        ENDDO
      ENDDO

      END

      SUBROUTINE ML5_0_SET_COUPLINGORDERS_TARGET(SOTARGET)
      IMPLICIT NONE
C     
C     This routine can be accessed by an external user to set the
C      squared split order target.
C     This functionality is only available in the optimized mode, but
C      for compatibility 
C     purposes, a dummy version is also put in this default output.
C     
C     
C     ARGUMENTS
C     
      INTEGER SOTARGET
C     ----------
C     BEGIN CODE
C     ----------
      WRITE(*,*) '##WARNING:: Ignored, the possibility of selecting'
     $ //' specific squared order contributions is not available in'
     $ //' the default mode.'

      END

      SUBROUTINE ML5_0_FORCE_STABILITY_CHECK(ONOFF)
C     
C     This function can be called by the MadLoop user so as to always
C      have stability
C     checked, even during initialisation, when calling the *_thres
C      routines.
C     
      LOGICAL ONOFF

      LOGICAL BYPASS_CHECK, ALWAYS_TEST_STABILITY
      DATA BYPASS_CHECK, ALWAYS_TEST_STABILITY /.FALSE.,.FALSE./
      COMMON/ML5_0_BYPASS_CHECK/BYPASS_CHECK, ALWAYS_TEST_STABILITY

      ALWAYS_TEST_STABILITY = ONOFF

      END

      SUBROUTINE ML5_0_GET_ANSWER_DIMENSION(ANSDIM)
C     
C     Simple subroutine which returns the upper bound of the second
C      dimension of the
C     quantity ANS(0:3,0:ANSDIM) returned by MadLoop. As long as the
C      default output
C     cannot handle split orders, this ANSDIM will always be 0.
C     
      INCLUDE 'nsquaredSO.inc'

      INTEGER ANSDIM

      ANSDIM=NSQUAREDSO

      END

      SUBROUTINE ML5_0_GET_NSQSO_LOOP(NSQSO)
C     
C     Simple subroutine returning the number of squared split order
C     contributions returned in ANS when calling sloopmatrix 
C     
      INCLUDE 'nsquaredSO.inc'

      INTEGER NSQSO

      NSQSO=NSQUAREDSO

      END

      SUBROUTINE ML5_0_SET_LEG_POLARIZATION(LEG_ID, LEG_POLARIZATION)
      IMPLICIT NONE
C     
C     ARGUMENTS
C     
      INTEGER LEG_ID
      INTEGER LEG_POLARIZATION
C     
C     LOCALS
C     
      INTEGER I
      INTEGER LEG_POLARIZATIONS(0:5)
C     ----------
C     BEGIN CODE
C     ----------

      IF (LEG_POLARIZATION.EQ.-10000) THEN
        LEG_POLARIZATIONS(0)=-1
        DO I=1,5
          LEG_POLARIZATIONS(I)=-10000
        ENDDO
      ELSE
        LEG_POLARIZATIONS(0)=1
        LEG_POLARIZATIONS(1)=LEG_POLARIZATION
        DO I=2,5
          LEG_POLARIZATIONS(I)=-10000
        ENDDO
      ENDIF
      CALL ML5_0_SET_LEG_POLARIZATIONS(LEG_ID,LEG_POLARIZATIONS)

      END

      SUBROUTINE ML5_0_SET_LEG_POLARIZATIONS(LEG_ID, LEG_POLARIZATIONS)
      IMPLICIT NONE
C     
C     CONSTANTS
C     
      INTEGER    NEXTERNAL
      PARAMETER (NEXTERNAL=5)
      INTEGER NPOLENTRIES
      PARAMETER (NPOLENTRIES=(NEXTERNAL+1)*6)
      INTEGER    NCOMB
      PARAMETER (NCOMB=48)
C     
C     ARGUMENTS
C     
      INTEGER LEG_ID
      INTEGER LEG_POLARIZATIONS(0:5)
C     
C     LOCALS
C     
      INTEGER I,J
      LOGICAL ALL_SUMMED_OVER
C     
C     GLOBALS
C     
C     Entry 0 of the first dimension is all -1 if there is no
C      polarization requirement.
C     Then for each leg with ID legID, it is either summed over if
C     POLARIZATIONS(legID,0) is -1, or the list of helicity considered
C      for that
C     leg is POLARIZATIONS(legID,1: POLARIZATIONS(legID,0)   ).
      INTEGER POLARIZATIONS(0:NEXTERNAL,0:5)
      DATA ((POLARIZATIONS(I,J),I=0,NEXTERNAL),J=0,5)/NPOLENTRIES*-1/
      COMMON/ML5_0_BEAM_POL/POLARIZATIONS

      INTEGER BORN_POLARIZATIONS(0:NEXTERNAL,0:5)
      COMMON/ML5_0_BORN_BEAM_POL/BORN_POLARIZATIONS

C     ----------
C     BEGIN CODE
C     ----------

      IF (LEG_POLARIZATIONS(0).EQ.-1) THEN
        DO I=0,5
          POLARIZATIONS(LEG_ID,I)=-1
        ENDDO
      ELSE
        DO I=0,LEG_POLARIZATIONS(0)
          POLARIZATIONS(LEG_ID,I)=LEG_POLARIZATIONS(I)
        ENDDO
        DO I=LEG_POLARIZATIONS(0)+1,5
          POLARIZATIONS(LEG_ID,I)=-10000
        ENDDO
      ENDIF

      ALL_SUMMED_OVER = .TRUE.
      DO I=1,NEXTERNAL
        IF (POLARIZATIONS(I,0).NE.-1) THEN
          ALL_SUMMED_OVER = .FALSE.
          EXIT
        ENDIF
      ENDDO
      IF (ALL_SUMMED_OVER) THEN
        DO I=0,5
          POLARIZATIONS(0,I)=-1
        ENDDO
      ELSE
        DO I=0,5
          POLARIZATIONS(0,I)=0
        ENDDO
      ENDIF

      DO I=0,NEXTERNAL
        DO J=0,5
          BORN_POLARIZATIONS(I,J) = POLARIZATIONS(I,J)
        ENDDO
      ENDDO


      RETURN

      END

      SUBROUTINE ML5_0_SLOOPMATRIXHEL_THRES(P,HEL,ANS,PREC_ASKED
     $ ,PREC_FOUND,RET_CODE)
      IMPLICIT NONE
C     
C     CONSTANTS
C     
      INTEGER    NEXTERNAL
      PARAMETER (NEXTERNAL=5)
      INCLUDE 'nsquaredSO.inc'
C     
C     ARGUMENTS 
C     
      REAL*8 P(0:3,NEXTERNAL)
      REAL*8 ANS(0:3,0:NSQUAREDSO)
      INTEGER HEL,RET_CODE
      REAL*8 PREC_ASKED,PREC_FOUND(0:NSQUAREDSO)
C     
C     GLOBAL VARIABLES
C     
      REAL*8 USER_STAB_PREC
      COMMON/ML5_0_USER_STAB_PREC/USER_STAB_PREC

      INTEGER I

      INTEGER H,T,U
      REAL*8 ACCURACY(0:NSQUAREDSO)
      COMMON/ML5_0_ACC/ACCURACY,H,T,U

      LOGICAL BYPASS_CHECK, ALWAYS_TEST_STABILITY
      COMMON/ML5_0_BYPASS_CHECK/BYPASS_CHECK, ALWAYS_TEST_STABILITY

C     ----------
C     BEGIN CODE
C     ----------
      USER_STAB_PREC = PREC_ASKED
      CALL ML5_0_SLOOPMATRIXHEL(P,HEL,ANS)
      IF(ALWAYS_TEST_STABILITY.AND.(H.EQ.1.OR.ACCURACY(0).LT.0.0D0))
     $  THEN
        BYPASS_CHECK = .TRUE.
        CALL ML5_0_SLOOPMATRIXHEL(P,HEL,ANS)
        BYPASS_CHECK = .FALSE.
C       Make sure we correctly return an initialization-type T code
        IF (T.EQ.2) T=4
        IF (T.EQ.1) T=3
      ENDIF

C     Reset it to default value not to affect next runs
      USER_STAB_PREC = -1.0D0
      DO I=0,NSQUAREDSO
        PREC_FOUND(I)=ACCURACY(I)
      ENDDO
      RET_CODE=100*H+10*T+U

      END

      SUBROUTINE ML5_0_SLOOPMATRIX_THRES(P,ANS,PREC_ASKED,PREC_FOUND
     $ ,RET_CODE)
C     
C     Inputs are:
C     P(0:3, Nexternal)  double  :: Kinematic configuration
C      (E,px,py,pz)
C     PEC_ASKED          double  :: Target relative accuracy, -1 for
C      default
C     
C     Outputs are:
C     ANS(3)             double  :: Result (finite, single pole,
C      double pole) 
C     PREC_FOUND         double  :: Relative accuracy estimated for
C      the result
C     Returns -1 if no stab test could be performed.
C     RET_CODE			 integer :: Return code. See below for details
C     
C     Return code conventions: RET_CODE = H*100 + T*10 + U
C     
C     H == 1
C     Stability unknown.
C     H == 2
C     Stable PS (SPS) point.
C     No stability rescue was necessary.
C     H == 3
C     Unstable PS (UPS) point.
C     Stability rescue necessary, and successful.
C     H == 4
C     Exceptional PS (EPS) point.
C     Stability rescue attempted, but unsuccessful.
C     
C     T == 1
C     Default computation (double prec.) was performed.
C     T == 2
C     Quadruple precision was used for this PS point.
C     T == 3
C     MadLoop in initialization phase. Only double precision used.
C     T == 4
C     MadLoop in initialization phase. Quadruple precision used.
C     
C     U is a number left for future use (always set to 0 for now).
C     example: TIR vs OPP usage.
C     
      IMPLICIT NONE
C     
C     CONSTANTS
C     
      INTEGER    NEXTERNAL
      PARAMETER (NEXTERNAL=5)
      INCLUDE 'nsquaredSO.inc'
C     
C     ARGUMENTS 
C     
      REAL*8 P(0:3,NEXTERNAL)
      REAL*8 ANS(0:3,0:NSQUAREDSO)
      REAL*8 PREC_ASKED,PREC_FOUND(0:NSQUAREDSO)
      INTEGER RET_CODE
C     
C     GLOBAL VARIABLES
C     
      REAL*8 USER_STAB_PREC
      COMMON/ML5_0_USER_STAB_PREC/USER_STAB_PREC

      INTEGER I

      INTEGER H,T,U
      REAL*8 ACCURACY(0:NSQUAREDSO)
      COMMON/ML5_0_ACC/ACCURACY,H,T,U

      LOGICAL BYPASS_CHECK, ALWAYS_TEST_STABILITY
      COMMON/ML5_0_BYPASS_CHECK/BYPASS_CHECK, ALWAYS_TEST_STABILITY

C     ----------
C     BEGIN CODE
C     ----------
      USER_STAB_PREC = PREC_ASKED
      CALL ML5_0_SLOOPMATRIX(P,ANS)
      IF(ALWAYS_TEST_STABILITY.AND.(H.EQ.1.OR.ACCURACY(0).LT.0.0D0))
     $  THEN
        BYPASS_CHECK = .TRUE.
        CALL ML5_0_SLOOPMATRIX(P,ANS)
        BYPASS_CHECK = .FALSE.
C       Make sure we correctly return an initialization-type T code
        IF (T.EQ.2) T=4
        IF (T.EQ.1) T=3
      ENDIF

C     Reset it to default value not to affect next runs
      USER_STAB_PREC = -1.0D0
      DO I=0,NSQUAREDSO
        PREC_FOUND(I)=ACCURACY(I)
      ENDDO
      RET_CODE=100*H+10*T+U

      END