~maddevelopers/mg5amcnlo/WWW5_caching

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c FINITE PART OF THE INTEGRATE DIPOLES
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Returns fi(8):
c fi(1), regular piece at z!=1
c fi(2), delta piece at z=1
c fi(3), plus distribution at z!=1
c fi(4), plus distribution at z=1
c fi(5), mass correction to plus distribution at z!=1
c fi(6), mass correction to plus distribution at z=1
c fi(7), delta piece at z=1-4m^2/s
c fi(8), plus distribution at z!=1-4m^2/s
c fi(9), plus distribution at z=1-4m^2/s
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc


      SUBROUTINE finiteff(mi,mk,sik,id,id1,fi)
c  calculates the finite terms when both emitter
c  and spectator are in the final state
      implicit none

      include "coupl.inc"
      include 'dipole.inc'
c Arguments
      REAL*8 mi,mk,sik,fi(9)
      INTEGER id,id1,i
c Global
      REAL*8 ddilog,lambda_tr
      external ddilog,lambda_tr
c Local
      REAl*8 cf,ca,rhoi,rhok,rho,musq_i,musq_k,gsq,pi
      REAL*8 xp,yp,vik,muk,rho1,rho2,L,yl,rs,Qik2,a,b,c,d,xm,x,mui
      PARAMETER (cf=4d0/3d0,ca=3d0)
      PARAMETER (pi=3.1415926535897932385d0)
      complex*16 test

      do i=1,9
         fi(i)=0d0
      enddo

c For the massive cases, sik is the Qik^2 from CDST and vice versa.

      musq_i=mi**2/sik
      musq_k=mk**2/sik
      muk=Sqrt(musq_k)
      mui=Sqrt(musq_i)
      Qik2=sik-mi**2-mk**2
      gsq=GG(1)**2
      L=DLog(mu**2/sik)

C  ij~ massive and massive spectator
      if(mi.gt.0d0 .and. mk .gt. 0d0.and.id.eq.1) then
         rs=0d0
         vik=Sqrt(lambda_tr(1d0,musq_i,musq_k))/(1d0-musq_i-musq_k)
         rhoi=Sqrt((1d0-vik+2d0*musq_i/(1d0-musq_i-musq_k))/
     &        (1d0+vik+2d0*musq_i/(1d0-musq_i-musq_k)))
         rhok=Sqrt((1d0-vik+2d0*musq_k/(1d0-musq_i-musq_k))/
     &        (1d0+vik+2d0*musq_k/(1d0-musq_i-musq_k)))
         rho=Sqrt((1d0-vik)/(1d0+vik))
         fi(2)=(gsq*(6 + 2*L + 2*rs + 
     &        2*mk*((4*mk - 2*Sqrt(sik))/Qik2 + 1/(mk - Sqrt(sik))) - 
     &        (2*Pi**2)/(3.*vik) - 4*Log(-mi**2 + (mk - Sqrt(sik))**2) + 
     &        2*Log(mi - (mi*mk)/Sqrt(sik)) - 
     &        (4*mi**2*Log(mi/(-mk + Sqrt(sik))))/Qik2 + 3*Log(sik) - 
     &        (-4*Log(rho**2)*Log(1 + rho**2) + Log(rhoi**2)**2 + 
     &        Log(rhok**2)**2 -
     &        4*Log(rho)*(L + 2*Log(sik/Qik2)))/(2.*vik) - 
     &        (2*(-2*ddilog(rho**2) + ddilog(1 - rhoi**2) + 
     &        ddilog(1 - rhok**2)))/vik))/(16.*Pi**2)

C adding alpha dependent terms
         if(alpha_ff.ne.1d0) then
            a=(2*muk)/(1 - musq_i - musq_k)
            b=(2*(1 - muk))/(1 - musq_i - musq_k)
            c=(2*(1 - muk)*muk)/(1 - musq_i - musq_k)
            d=(1 - musq_i - musq_k)/2.
            xp=(-musq_i + (1 - muk)**2 +
     &           Sqrt(lambda_tr(1d0,musq_i,musq_k)))/(1-musq_i-musq_k)
            xm=(-musq_i + (1 - muk)**2 -
     &           Sqrt(lambda_tr(1d0,musq_i,musq_k)))/(1-musq_i-musq_k)
            yp=1 - (2*(1 - muk)*muk)/(1 - musq_i - musq_k)
            x=yp - alpha_ff*yp + Sqrt(((4*musq_i*musq_k)/
     &           ((musq_i - (1 - muk)**2)*(1 - musq_i - musq_k)) +
     &           1/yp - alpha_ff*yp)*(yp - alpha_ff*yp))
            fi(2)=fi(2)+gsq*(1/(1- muk)-(2*(2-2*musq_i-muk))/
     &           (1-musq_i-musq_k)+(3*(1+alpha_ff*yp))/2. + 
     &           (musq_i*(1 - alpha_ff*yp))/(2.*(musq_i +
     &           alpha_ff*(1 - musq_i - musq_k)*yp)) - 
     &           2*DLog((alpha_ff*(1 - musq_i - musq_k)*yp)/
     &           (-musq_i + (1 - muk)**2)) + 
     &           ((1 + musq_i - musq_k)*
     &           DLog((musq_i + alpha_ff*(1 - musq_i - musq_k)*yp)
     &           /(1 - muk)**2))/(2.*(1 - musq_i - musq_k)) + 
     &           (2*(-(DLog(b)*DLog((a*(-b + xm))/((a + b)*xm))) +
     &           DLog(b - x)*DLog(((a + x)*(-b + xm))/
     &           ((a + b)*(-x + xm))) + 
     &           DLog((c + xm)/(a + xm))*DLog((-x + xm)/xm) +
     &           DLog(a*(b - xp))*DLog(xp) + 
     &           (DLog((a + x)/a)*DLog(a*(a + x)*(a + xp)**2))/2. -
     &           DLog(c)*DLog(((a - c)*xp)/(a*(c + xp))) + 
     &           DLog(d)*DLog(((a + x)*xm*xp)/(a*(-x + xm)*(-x + xp))) -
     &           DLog((a + x)*(b - xp))*DLog(-x + xp) + 
     &           DLog(c + x)*DLog(((a-c)*(-x + xp))/((a + x)*(c + xp)))-
     &           ddilog(b/(a + b)) + ddilog(c/(-a + c)) + 
     &           ddilog((b - x)/(a + b)) - ddilog((c + x)/(-a + c)) +
     &           ddilog(b/(b - xm)) - ddilog((b - x)/(b - xm)) -
     &           ddilog(xm/(a + xm)) + ddilog(xm/(c + xm)) +
     &           ddilog((-x + xm)/(a+xm)) - ddilog((-x + xm)/(c + xm))+
     &           ddilog(a/(a + xp)) - ddilog((a + x)/(a + xp)) -
     &           ddilog(xp/(-b + xp)) - ddilog(c/(c + xp)) +
     &           ddilog((c + x)/(c + xp)) +
     &           ddilog((-x + xp)/(-b + xp))))/vik)/(8.*Pi**2)

         endif

C ij~ massive and massless spectator
      elseif(mi.gt.0d0.and.mk.eq.0d0.and.id.eq.1) then
         rs=0d0
         fi(2)= (gsq*(72d0 + 6d0*L*(4d0 + L) - 11d0*Pi**2 + 24d0*rs + 
     &        (24d0*musq_i*DLog(musq_i))/(-1d0 + musq_i) + 
     &        6d0*(4d0*DLog(1 - musq_i)**2 + 
     &        (2d0 + 2d0*L - Log(musq_i))*DLog(musq_i) - 
     &        4d0*DLog(1d0 - musq_i)*(2d0 + L + DLog(musq_i))) - 
     &        24d0*ddilog(1d0 - musq_i)))/(192d0*Pi**2)

C adding alpha dependent terms
         if(alpha_ff.ne.1d0) then
            fi(2)=fi(2)+(gsq*(-2*DLog(alpha_ff) + 
     &           (2*DLog(alpha_ff+(1-alpha_ff)*musq_i))/(1-musq_i) + 
     &           (-2 + 3*alpha_ff-alpha_ff/(alpha_ff+(1-alpha_ff)*musq_i) - 
     &           ((3 - musq_i)*DLog(alpha_ff+(1-alpha_ff)*musq_i))/
     &           (1 - musq_i))/2. +2*(-(DLog(alpha_ff)*DLog(musq_i))- 
     &           ddilog((-1+ musq_i)/musq_i) + 
     &           ddilog((alpha_ff*(-1 + musq_i))/musq_i))))/(8.*pi**2)
         endif

C ij~ massless quark and massive spectator
      elseif(mi.eq.0d0 .and. mk.gt.0d0 .and. id.eq.1) then
         if(scheme .eq. 'HV') then
            rs=0d0
         elseif(scheme .eq. 'DR') then
            rs=-1d0/2d0
         endif
         fi(2)= (gsq*((36*L*(1 + muk) + 
     &        6*L**2*(1 + muk) - 11*Pi**2 + 
     &        24*(5 + rs) + muk*(-11*Pi**2 + 24*(2 + rs)) - 
     &        36*(1 + muk)*Log((-1 + muk)**2) - 6*(1 + muk)*
     &        (-4*Log(1 - musq_k)**2 + Log(musq_k)*(-2*L + Log(musq_k))+ 
     &        4*Log(1 - musq_k)*(L + Log(musq_k))))/(1 + muk) 
     &        - 24*ddilog(1 - musq_k)))/
     &        (192.*Pi**2)

C adding alpha dependent terms
         if(alpha_ff.ne.1d0) then
            yp=(1d0-musq_k)/(1d0+musq_k)
            xp=yp*(1d0-alpha_ff)+
     &           Sqrt((1d0-alpha_ff)*(1d0-alpha_ff*yp**2))
            fi(2)=fi(2)+(gsq*((-3*((1-alpha_ff)*yp+DLog(alpha_ff)))/2. + 
     &           2*(-DLog((1-xp+yp)/(1+yp))**2+DLog((1+2*xp*yp-yp**2)/
     &           ((1 + xp - yp)*(1 - xp + yp)))**2/2. + 
     &           2*(DLog((1+xp-yp)/(1-yp))*DLog((1+yp)/2.) + 
     &           DLog((1+yp)/(2.*yp))*DLog((1+2*xp*yp-yp**2)/(1-yp**2))- 
     &           ddilog((1-yp)/2.) +ddilog((1 + xp - yp)/2.) + 
     &           ddilog((1 - yp)/(1 + yp)) - 
     &           ddilog((1+2*xp*yp-yp**2)/(1+yp)**2)))
     &           ))/(8.*pi**2)
         endif


C ij~ massless quark and massless spectator
      elseif(mi.eq.0d0 .and. mk.eq.0d0 .and. id.eq.1) then
         if(scheme .eq. 'HV') then
            rs=0d0
         elseif(scheme .eq. 'DR') then
            rs=-1d0/2d0
         endif
         fi(2)=(gsq*(6*L*(3+L)-7*pi**2+12*(5+rs)))/(96.*pi**2)
         
C     adding alpha dependent terms
         if (alpha_ff.ne.1d0) then
            fi(2)=fi(2)+((gsq*((3*(-1 + alpha_ff - DLog(alpha_ff)))/2.
     &           - DLog(alpha_ff)**2))/(8.*pi**2))
         endif


C ij~ gluon and massive spectator
      elseif(mk.gt.0d0.and. id.eq.0) then
         if(scheme .eq. 'HV') then
            rs=0d0
         elseif(scheme .eq. 'DR') then
            rs=-1d0/6d0
         endif
C  1. g->QQ splitting
       if(id1.eq.1.and.mi.gt.0d0) then
          fi(2)=(gsq*((2*(1 - (4*musq_i)/(-1 + muk)**2)**1.5*muk)/
     &         (1 + muk) + (8*Sqrt(1 - (4*musq_i)/(-1 + muk)**2)*
     &         (1 + mui - muk)*(-1 + mui + muk))/(3.*(-1 + muk)**2)
     &         - 2*DLog(mui) + 2*DLog((1 +
     &         Sqrt(1 - (4*musq_i)/(-1 + muk)**2))/2.)+2*DLog(1 - muk)- 
     &         (2*musq_k*((8*musq_i*Sqrt(1 - (4*musq_i)/(-1 + muk)**2))/
     &         (-1 + musq_k)-DLog((1-Sqrt(1-(4*musq_i)/(-1 + muk)**2))/
     &         (1 + Sqrt(1 - (4*musq_i)/(-1 + muk)**2))) + 
     &         ((-1 + 4*musq_i + musq_k)/(-1 + musq_k))**1.5*
     &         DLog((-Sqrt(1 - (4*musq_i)/(-1 + muk)**2) +
     &         Sqrt((-1 + 4*musq_i + musq_k)/(-1 + musq_k)))/
     &         (Sqrt(1 - (4*musq_i)/(-1 + muk)**2) +
     &         Sqrt((-1 + 4*musq_i + musq_k)/(-1 + musq_k))))))
     &         /(1 - musq_k)))/(24.*Pi**2)/ca


C adding alpha dependent terms
          if(alpha_ff.ne.1d0) then
           a=1.-musq_k
           c=-1.+2*musq_i+musq_k
           yp=1.-2*muk*(1.-muk)/(1.-2*musq_i-musq_k)
           b=sqrt(c**2*yp**2-4.*musq_i**2)
           d=sqrt(alpha_ff*c**2*yp**2-4.*musq_i**2)
           fi(2)=fi(2)-gsq*((c*Sqrt(-c + 2*musq_i)*(4*(b - d)*musq_i**2 
     &          + c**2*yp*(-2*alpha_ff*b-d*(-2+yp) + alpha_ff**2*b*yp)+ 
     &          4*c*musq_i*(d - d*yp + b*(-1 + alpha_ff*yp))) - 
     &          2*b*d*Sqrt(-c + 2*musq_i)*
     &          (c**2 - 2*(1 + c)*musq_i + 4*musq_i**2)
     &          *DATAN((2*musq_i)/Sqrt(-4*musq_i**2 + c**2*yp**2)) + 
     &          2*b*d*Sqrt(-c + 2*musq_i)*
     &          (c**2 - 2*(1 + c)*musq_i + 4*musq_i**2)
     &          *DATAN((2*musq_i)/
     &          Sqrt(-4*musq_i**2 + alpha_ff**2*c**2*yp**2)) + 
     &          b*d*(2*a*(c + c**2 + 2*musq_i - 4*musq_i**2)*
     &          DLog(-((-c - 2*musq_i)**2.5
     &          *(1 + c - 2*musq_i)*(-1 + yp))) - 
     &          2*a*(c + c**2 + 2*musq_i - 4*musq_i**2)*
     &          DLog((-c - 2*musq_i)**2.5
     &          *(1 + c - 2*musq_i)*(1 - alpha_ff*yp)) + 
     &          2*c*Sqrt(-c + 2*musq_i)*DLog(-2*(b + c*yp)) 
     &          + 3*c**2*Sqrt(-c + 2*musq_i)*DLog(-2*(b + c*yp)) - 
     &          4*c*musq_i*Sqrt(-c + 2*musq_i)*DLog(-2*(b + c*yp)) 
     &          - 2*c*Sqrt(-c + 2*musq_i)*Log(-2*(d + alpha_ff*c*yp)) - 
     &          3*c**2*Sqrt(-c + 2*musq_i)*DLog(-2*(d + alpha_ff*c*yp)) 
     &          + 4*c*musq_i*Sqrt(-c + 2*musq_i)*
     &          DLog(-2*(d + alpha_ff*c*yp)) - 
     &          2*a*c*DLog(-4*musq_i**2 - b*Sqrt(c**2 - 4*musq_i**2) +
     &          c**2*yp) - 2*a*c**2*DLog(-4*musq_i**2 -
     &          b*Sqrt(c**2 - 4*musq_i**2) + c**2*yp) - 
     &          4*a*musq_i*DLog(-4*musq_i**2 - b*Sqrt(c**2 - 4*musq_i**2)
     &          + c**2*yp) + 8*a*musq_i**2*DLog(-4*musq_i**2 -
     &          b*Sqrt(c**2 - 4*musq_i**2) + c**2*yp) + 
     &          2*a*c*DLog(-4*musq_i**2 - d*Sqrt(c**2 - 4*musq_i**2) +
     &          alpha_ff*c**2*yp) + 2*a*c**2*Log(-4*musq_i**2 -
     &          d*Sqrt(c**2 - 4*musq_i**2) + alpha_ff*c**2*yp) + 
     &          4*a*musq_i*DLog(-4*musq_i**2 - d*Sqrt(c**2 - 4*musq_i**2)
     &          + alpha_ff*c**2*yp) - 8*a*musq_i**2*DLog(-4*musq_i**2 -
     &          d*Sqrt(c**2 - 4*musq_i**2) + alpha_ff*c**2*yp)))/
     &          (3.*c*(-c+2*musq_i)**1.5*Sqrt(-4*musq_i**2 + c**2*yp**2)
     &          *Sqrt(-4*musq_i**2+alpha_ff**2*c**2*yp**2)))/
     &          (8.*Pi**2)/ca


          endif

C  2. g->qq splitting
       elseif(id1.eq.1.and. mi.eq.0d0) then
          fi(2)=(gsq*((-1 + muk)*(-6*L*(1 + muk) - 4*(4 + muk)
c$$$     &         + 9*(1 + muk)*rs) + 12*(-1 + muk**2)*DLog(1 - muk) + 
c     RF No scheme dependence here. All in the g -> gg.
     &         ) + 12*(-1 + musq_k)*DLog(1 - muk) + 
     &         12*musq_k*DLog((2*muk)/(1 + muk))))/
     &         (144.*(-1 + musq_k)*pi**2)/ca
C     adding alpha dependent terms
          if(alpha_ff.ne.1d0) then
             fi(2)=fi(2)-(gsq*(-((-1 + alpha_ff)*(-1 + muk)**2) + 
     &            DLog(alpha_ff) + musq_k*(DLog(4d0) + DLog(1/alpha_ff)
     &            + 2*DLog(muk) - 2*DLog(1 + muk) - 
     &            2*DLog(1+alpha_ff-(2*alpha_ff)/(1+muk))))/
     &            (3.*(-1+musq_k)))/(8.*pi**2)/ca
          endif

C  3. g->gg splitting
       elseif(id1.eq.0) then
          fi(2)=(gsq*((200 + 66*L + 9*L**2-(132*muk)/(1 + muk)-15*Pi**2
     &         - 132*DLog(1 - muk) - (24*musq_k*DLog((2*muk)/(1 +
     &         muk)))/(-1 + musq_k) +66*DLog(1 - musq_k) + 9*(4*(L -
     &         DLog(muk))*DLog(muk) - 2*(L + 2*DLog(muk))*DLog(1 -
     &         musq_k) + DLog(1 - musq_k)**2) - 36*ddilog(1 - musq_k)))
     &         /18d0)/(8.*pi**2)

C     adding alpha dependent terms
          if (alpha_ff.ne.1d0) then
             yl=1d0 + alpha_ff*(-1 + muk)**2 - musq_k - 
     &            Sqrt(abs((-1+muk)**2*(alpha_ff**2*(-1+muk)**2+
     &            (1+muk)**2-2*alpha_ff*(1+musq_k))))
             fi(2)=fi(2)-(gsq*((11*(-2+2*muk+yl)**2)/
     &            ((-1+musq_k)*(-2+yl))
     &            -44*Log(2-2*muk) - 22*Log(muk) + 24*Log(2/(1 + muk))*
     &            (Log(2/(1 + muk)) + 2*Log(1 + muk)) +
     &            (2*((-11 + 15*musq_k)*Log(2*muk) + 
     &            4*musq_k*(-Log(-8*(-1+muk)*musq_k)+
     &            Log((-2 + yl)**2+4*musq_k*(-1 + yl))) + 
     &            (11 - 15*musq_k)*Log(2 - yl)))/(-1 + musq_k) + 
     &            22*Log(2 - 2*musq_k - yl) + 
     &            22*Log(yl)-12*(4*Log(1-yl/2.)*Log(-(yl/(-1+musq_k)))-
     &            Log(-(yl/(-1+musq_k)))**2 + 
     &            Log((-2*(-2 + 2*musq_k + yl))/
     &            ((-1 + musq_k)*(-2 + yl)))**2 + 
     &            2*Log(-(yl/(-1+musq_k)))*(
     &            Log((-2*(-2+2*musq_k+yl))/((-1+musq_k)*(-2+yl))) - 
     &            2*Log(1 + yl/(-2 + 2*musq_k)))) + 48*ddilog(1 - muk) -
     &            48*ddilog(1/(1 + muk)) - 
     &            48*ddilog(yl/2.) + 48*ddilog(yl/(2 - 2*musq_k))))/
     &            (48.*pi**2)
          endif
       endif

C ij~ gluon and massless spectator
      elseif(mk.eq.0d0.and.id.eq.0) then
         if(scheme .eq. 'HV') then
            rs=0d0
         elseif(scheme .eq. 'DR') then
            rs=-1d0/6d0
         endif
C     1. g->QQ splitting
         if(id1.eq.1.and.mi.gt.0d0) then
            fi(2)=(gsq*(-16*Sqrt(1-4*musq_i)+16*musq_i*Sqrt(1-4*musq_i)+
c$$$     &           9*rs-12*DLog(Sqrt(musq_i))+ 
c     RF No scheme dependence here. All in the g -> gg.
     &           12*DLog(Sqrt(musq_i))+ 
     &           12*DLog((1 + Sqrt(1 - 4*musq_i))/2.)))/(144.*pi**2)/ca
C adding alpha dependent terms
            if (alpha_ff.ne.1d0) then
               fi(2)=fi(2)-(gsq*(Sqrt(1-4*musq_i)+
     &              Sqrt(-4*musq_i**2+alpha_ff**2*(1-2*musq_i)**2) + 
     &              (2*Sqrt(-4*musq_i**2+alpha_ff**2*(1-2*musq_i)**2))/
     &              (-alpha_ff+2*(-1+alpha_ff)*musq_i) + 
     &              (-1 + 2*musq_i)*(-2*DATAN((2*musq_i)/
     &              Sqrt(1 - 4*musq_i)) + 
     &              2*DATan((2*musq_i)/
     &              Sqrt(-4*musq_i**2 + alpha_ff**2*(1 - 2*musq_i)**2))+ 
     &              DLog(-2*(-1 + 2*musq_i + Sqrt(1 - 4*musq_i))) - 
     &              DLog(-2*(alpha_ff*(-1+2*musq_i)+
     &              Sqrt(-4*musq_i**2+alpha_ff**2*(1-2*musq_i)**2))))))/
     &              (24.*pi**2)/ca
            endif
C  2. g->qq splitting
         elseif(id1.eq.1.and. mi.eq.0d0) then
c$$$            fi(2)=-(gsq*(8 + 3*L - 9*rs*ca))/(144.*pi**2)/ca
c     RF No scheme dependence here. All in the g -> gg.
            fi(2)=-(gsq*(8 + 3*L))/(144.*pi**2)/ca

C adding alpha dependent terms
            if (alpha_ff.ne.1d0) then
               fi(2)=fi(2)-(gsq*(-1 + alpha_ff - DLog(alpha_ff)))/
     &              (24.*pi**2)/ca
            endif

C  3. g->gg splitting
         elseif(id1.eq.0) then
            fi(2)=(gsq*((200+6*L*(11+3*L)-21*pi**2)+36*rs))/(144.*pi**2)

C adding alpha dependent terms
            if (alpha_ff.ne.1d0) then
               fi(2)=fi(2)-(gsq*(11-11*alpha_ff+11*DLog(alpha_ff)+
     &              6*DLog(alpha_ff)**2))/(24.*pi**2)
            endif
         endif
      endif

      end


      SUBROUTINE finitefi(mi,sik,sikzone,x,id1,id2,fi)
c  calculates the finite terms when emitter is in
c  final state and spectator is in initial state
      implicit none

      include "coupl.inc"
      include 'dipole.inc'
c Arguments
      REAL*8 mi,qsq,sik,x,fi(9),sikzone
      INTEGER id1,id2
c Global
      REAL*8 ddilog
      external ddilog
c Local
      INTEGER i
      REAl*8 cf,ca,rhoi,rhok,rho,musq_i,gsq,pi
      REAL*8 L,L_one,rs,musq_i_one
      PARAMETER (cf=4d0/3d0,ca=3d0)
      PARAMETER (pi=3.1415926535897932385d0)

      musq_i=mi**2/sik
      musq_i_one=mi**2/sikzone
      gsq=GG(1)**2
      L_one=DLog(mu**2/sikzone)

      do i=1,9
         fi(i)=0d0
      enddo

C  massive quark (ij~: quark)
      if(mi .gt. 0d0 .and. id1.eq.1) then
         rs=0d0
         fi(2)=(gsq*((1d0+DLOG(musq_i_one/(musq_i_one+1d0)))*L_one
     &        -2d0*ddilog(-musq_i_one)-pi**2/3d0+2d0+
     &        DLOG(musq_i_one)**2/2d0+DLOG(1+musq_i_one)**2/2d0-
     &        2d0*DLOG(musq_i_one)*DLOG(1+musq_i_one)+DLOG(musq_i_one)))
     &        /(8.*pi**2)

c adding the alpha dependent term
         if(alpha_fi.ne.1d0) then
            fi(2)=fi(2)+gsq/(8.*pi**2)*2.*DLog(alpha_fi)*
     &           (DLog((1d0+musq_i_one)/(musq_i_one))-1d0)
         endif
         if(x.gt.(1d0-alpha_fi)) then
            fi(1)=gsq/(8.*pi**2)*((1.-x)/(2.*(1-x+musq_i)**2)+2./
     &           (1-x)*DLog(((2.-x+musq_i)*musq_i_one)
     &           /((1.+musq_i_one)*(1-x+musq_i))))
            fi(3)=gsq/(8.*pi**2)*2./(1-x)*
     &           (DLOG((1+musq_i_one)/(musq_i_one))-1d0)
            fi(4)=fi(3)
         endif

C  massless quark (ij~: quark)
      elseif(mi.eq.0d0 .and. id1.eq.1) then
         if(scheme .eq. 'HV') then
            rs=0d0
         elseif(scheme .eq. 'DR') then
            rs=-1d0/2d0
         endif
         fi(2)=(gsq*(6*(7+L_one*(3+L_one))-7*pi**2+12*rs))/(96.*pi**2)
c     adding the alpha dependent term
         if (alpha_fi.ne.1d0) then
            fi(2)=fi(2)+gsq/(8.*pi**2)*(-3./2.*Dlog(alpha_fi)-
     &           Dlog(alpha_fi)**2)
         endif
         if(x.gt.(1d0-alpha_fi)) then
            fi(1)=gsq/(4d0*pi**2*(1-x))*DLog(2d0-x)
            fi(3)=-(gsq*(3/(1-x)+(4*DLog(1-x))/(1-x)))/(16.*pi**2)
            fi(4)=fi(3)
         endif

C  gluon (ij~: gluon)
      elseif(id1.eq.0) then
         if(scheme .eq. 'HV') then
            rs=0d0
         elseif(scheme .eq. 'DR') then
            rs=-1d0/6d0
         endif
C  1. g-> QQ (i:massive quark )
         if(id2.eq.1.and.mi.gt.0d0) then
            fi(7)=-(gsq*(5*Sqrt(1-4*musq_i_one)+
     &           4*musq_i_one*Sqrt(1-4*musq_i_one)+DLog(64d0) + 
     &           3*DLog(musq_i_one) -
     &           6*DLog(1+Sqrt(1-4*musq_i_one))))/(72.*pi**2)/ca
c adding the alpha dependent term
            if (alpha_fi.ne.1d0) then
               fi(7)=fi(7)+(gsq*((5 - 16*musq_i_one**2 -
     &              5*Sqrt(((1 - 4*musq_i_one)*
     &              (alpha_fi - 4*musq_i_one))/alpha_fi) - 
     &              4*musq_i_one*(4 + Sqrt(((1 - 4*musq_i_one)*
     &              (alpha_fi - 4*musq_i_one))/
     &              alpha_fi**3)))/Sqrt(1 - 4*musq_i_one)-
     &              6*DLog(1+Sqrt(1-4*musq_i_one)) + 
     &              6*DLog(Sqrt(alpha_fi)+
     &              Sqrt(alpha_fi-4*musq_i_one))))/(72.*pi**2)/ca
            endif
            if(x.lt.1d0-4d0*musq_i)then
               if(x.gt.(1d0-alpha_fi)) then
                  fi(8)=(gsq*Sqrt(1+(4*musq_i)/(-1 +x))*
     &                 (1 + 2*musq_i - x))/(24.*pi**2*(-1 + x)**2)/ca
                  fi(9)=fi(8)
               endif
            endif

c  2. g-> qq (i:massless quark)
         elseif(id2.eq.1.and.mi.eq.0d0) then
c     RF No scheme dependence here. All in the g -> gg.
            fi(2)=-(gsq*(10 + 6*L_one))/(144.*pi**2)/ca
c     adding the alpha dependent term
            if(alpha_fi.ne.1d0) then
               fi(2)=fi(2)+gsq/(8d0*pi**2)*DLog(alpha_fi)/3./ca
            endif
            if(x.gt.(1d0-alpha_fi)) then
               fi(3)=gsq/(24.*pi**2*(1 - x))/ca
               fi(4)=fi(3)
            endif

C  3. g-> gg (i: gluon )
         elseif(id2.eq.0) then
            fi(2)=(gsq*(134 + 6*L_one*(11 + 3*L_one) -
     &           21*pi**2 + 36*rs))/(144.*pi**2)
c adding the alpha dependent term
            if (alpha_fi.ne.1d0) then
               fi(2)=fi(2)+gsq/(8.*pi**2)*
     &              (-2d0*DLOG(alpha_fi)**2-11d0/3d0*DLOG(alpha_fi))
            endif
            if(x.gt.(1d0-alpha_fi)) then
               fi(1)=-(gsq*DLog(2 - x))/(2.*pi**2*(-1 + x))
               fi(3)=(gsq*(-11/(1-x)+(12*DLog(1-x))/(-1+x)))/(24.*pi**2)
               fi(4)=fi(3)
            endif
         endif
      endif

      end


      SUBROUTINE finiteif(mk,sik,sikzone,x,id1,id2,fi)
c  calculates the finite terms when the emitter is
c  in the initial state and the spectator is in the
c  final state.
      implicit none
      include "coupl.inc"
      include "dipole.inc"

c Arguments
      REAL*8 mk,sik,sikzone,x,fi(9)
      INTEGER id1,id2
c Global
      REAL*8 ddilog
      external ddilog
c Local
      INTEGER i
      REAl*8 cf,ca,pi,gsq
      REAL*8 zp,musq_k,L,L_one,rs,musq_k_one
      PARAMETER (cf=4d0/3d0,ca=3d0)
      PARAMETER (pi=3.1415926535897932385d0)

      gsq=GG(1)**2
      musq_k=mk**2/sik
      musq_k_one=mk**2/sikzone
      zp=(1d0-x)/(1d0-x+musq_k)
      L=DLog(mu**2/sik)
      L_one=DLog(mu**2/sikzone)

      do i=1,9
         fi(i)=0d0
      enddo
      
c quark-quark splitting
      if(id1 .eq.1.and.id2.eq.1) then
         if(scheme .eq. 'HV') then
            rs=0d0
         elseif(scheme .eq. 'DR') then
            rs=-1d0/2d0
         endif
         fi(2)=(gsq*(2*L_one**2-pi**2+4*rs+6*DLog(mu**2/muf**2) + 
     &        2*DLog(1 + musq_k_one)*(2*L_one + DLog(1 + musq_k_one)) + 
     &        8*ddilog(1/(1 + musq_k_one))))/(32.*pi**2)
         fi(1)=-(gsq*(-((-1 + x**2)*(L - DLog(mu**2/muf**2)))+ 
     &        (-1+x**2)*DLog(1 - x) - 2*DLog(2 - x) + 
     &        (-1+x)*(-1 + x +(1+x)*DLog((-1+x)/(-1-musq_k+x)))))/
     &        (8.*pi**2*(-1 + x))
         fi(3)=(gsq*(L-DLog(mu**2/muf**2)-2*DLog(1 - x)))/
     &        (4.*pi**2*(-1 + x))
         fi(4)=(gsq*(L_one-DLog(mu**2/muf**2)-2*DLog(1 - x)))/
     &        (4.*pi**2*(-1 + x))
         if (mk.ne.0d0) then
            fi(5)=gsq/(4d0*pi**2)*Dlog((2d0-x)/(2d0-x+musq_k))/(1d0-x)
            fi(6)=gsq/(4d0*pi**2)*Dlog(1d0/(1d0+musq_k_one))/(1d0-x)
         endif
c adding the alpha dependent term
         if(zp.gt.alpha_if) then
            fi(1)=fi(1)-(gsq*(-((1+x)*DLog(zp/alpha_if)) + 
     &           (2*DLog(((1+alpha_if-x)*zp)/(alpha_if*(1-x+zp))))/
     &           (1 - x)))/(8.*pi**2)
         endif

c quark-gluon splitting (i:quark, ij~: gluon)
      elseif(id1.eq.1.and.id2.eq.0 ) then
         fi(1)=(cf*gsq*(x**2 - L*(2 + (-2 + x)*x) + 
     &        (2 + (-2 + x)*x)*DLog(mu**2/muf**2) + 
     &        (2 + (-2 + x)*x)*DLog(1 - x) + 
     &        (2 + (-2 + x)*x)*DLog((-1 + x)/(-1 - musq_k + x))))/
     &        (8.*pi**2*x)/ca
c adding the alpha dependent term
         if(zp.gt.alpha_if) then
            if(musq_k.gt.0d0) then
               fi(1)=fi(1)-
     &              (cf*gsq*((2*musq_k*DLog((1 - zp)/(1 - alpha_if)))/x 
     &              + ((1 + (1 - x)**2)*DLog(zp/alpha_if))/x))/
     &              (8.*pi**2)/ca
            elseif(musq_k.eq.0d0) then
               fi(1)=fi(1)-(cf*gsq*(2-2*x+x**2)*
     &              DLog(zp/alpha_if))/(8.*pi**2*x)/ca
            endif
         endif

c gluon-quark splitting (i:gluon, ij~: quark)
      elseif(id1.eq.0.and.id2.eq.1) then
         fi(1)=(gsq*(-L + 2*(1 + L)*x - 2*(1 + L)*x**2 + 
     &        (1 + 2*(-1 + x)*x)*DLog(mu**2/muf**2) + 
     &        (1 + 2*(-1 + x)*x)*DLog(1 - x) + 
     &        (1 + 2*(-1 + x)*x)*DLog((-1 + x)/(-1 - musq_k + x))))
     &        /(16.*pi**2)/cf
c adding the alpha dependent term
         if(zp.gt.alpha_if) then
            fi(1)=fi(1)-(gsq*((1-x)**2+x**2)*
     &           DLog(zp/alpha_if))/(16.*pi**2)/cf
         endif

c gluon-gluon splitting (i:gluon, ij~:gluon)
      elseif(id1.eq.0.and.id2.eq.0) then
         if(scheme .eq. 'HV') then
            rs=0d0
         elseif(scheme .eq. 'DR') then
            rs=-1d0/6d0
         endif
         if(musq_k.gt.0d0) then
            fi(2)=(gsq*(6*L_one**2 - 3*pi**2 + 12*rs 
     &           + (22 - 4*Nf/ca)*DLog(mu**2/muf**2) + 
     &           6*DLog(1 + musq_k_one)*(2*L_one + Log(1 + musq_k_one)) 
     &           + 24*ddilog(1/(1 + musq_k_one))))/(96.*pi**2)
            fi(1)=(gsq*(L - 3*L*x + 3*L*x**2 - 2*L*x**3 + L*x**4 - 
     &           (-1 + x)*(-1 + x*(2 + (-1 + x)*x))*DLog(mu**2/muf**2) - 
     &           (-1 + x)*(-1 + x*(2 + (-1 + x)*x))*DLog(1 - x) 
     &           + x*DLog(2 - x) - musq_k*DLog(musq_k/(1 + musq_k - x))
     &           + musq_k*x*DLog(musq_k/(1 + musq_k - x)) - 
     &           (-1 + x)*(-1 + x*(2 + (-1 + x)*x))*Log((-1 + x)/
     &           (-1 - musq_k + x))))/(4.*pi**2*(-1 + x)*x)
            fi(4)=(gsq*(L_one - DLog(mu**2/muf**2) - 2*DLog(1 - x)))/
     &           (4.*pi**2*(-1 + x))
            fi(3)=(gsq*(L - DLog(mu**2/muf**2) - 2*DLog(1 - x)))/
     &           (4.*pi**2*(-1 + x))
            fi(5)=gsq/(4d0*pi**2)*DLog((2d0-x)/(2d0-x+musq_k))/(1d0-x)
            fi(6)=gsq/(4d0*pi**2)*Dlog((1d0)/(1d0+musq_k_one))/(1d0-x)
c     adding the alpha dependent term
            if(zp.gt.alpha_if) then
               fi(1)=fi(1)+(gsq*((-2*musq_k*DLog((1-zp)/(1-alpha_if)))/x 
     &              -2*(-1+(1 - x)/x + (1 - x)*x)*DLog(zp/alpha_if) + 
     &              (2*DLog((alpha_if*(1-x+zp))/((1+alpha_if-x)*zp)))/
     &              (1 - x)))/(8.*pi**2)
            endif
         elseif(musq_k.eq.0d0) then
            fi(2)=(gsq*((6*L_one**2 + pi**2) + 12*rs 
     &           + (22 - 4*Nf/ca)*DLog(mu**2/muf**2)))/(96.*pi**2)
            fi(1)=(gsq*((-1 + x*(2 + (-1 + x)*x))*
     &           (L-DLog(mu**2/muf**2)-DLog(1-x))-
     &           x*Dlog(2-x)/(1-x)))/(4.*pi**2*x)
            fi(4)=(gsq*(L_one-DLog(mu**2/muf**2)-2*DLog(1-x)))/
     &           (4.*pi**2*(-1 + x))
            fi(3)=(gsq*(L-DLog(mu**2/muf**2)-2*DLog(1-x)))/
     &           (4.*pi**2*(-1 + x))
c     adding the alpha dependent term
            if(zp.gt.alpha_if) then
               fi(1)=fi(1)+(gsq*((1 - 3*x + 3*x**2 
     &              - 2*x**3 + x**4)*DLog(zp/alpha_if) - 
     &              x*DLog((alpha_if*(1 - x + zp))/
     &              ((1 + alpha_if - x)*zp))))/(4.*pi**2*(-1 + x)*x)
            endif
         endif
      endif

      end


      SUBROUTINE finiteii(sik,sikzone,x,id1,id2,fi)
c  calculates the finite terms when both emitter
c  and spectator are in the initial state.
      implicit none
      include "coupl.inc"
      include "dipole.inc"

c Arguments
      REAL*8 sik,sikzone,x,fi(9)
      INTEGER id1,id2
c Global
      REAL*8 ddilog
      external ddilog
c Local
      INTEGER i
      REAl*8 cf,ca,pi,gsq
      REAL*8 L,L_one,rs
      PARAMETER (cf=4d0/3d0,ca=3d0)
      PARAMETER (pi=3.1415926535897932385d0)

      gsq=GG(1)**2
      L=dlog(mu**2/sik)
      L_one=dlog(mu**2/sikzone)

      do i=1,9
         fi(i)=0d0
      enddo

c quark-quark splitting (i:quark, ij~: quark)
      if(id1 .eq.1.and.id2.eq.1) then
         if(scheme .eq. 'HV') then
            rs=0d0
         elseif(scheme .eq. 'DR') then
            rs=-1d0/2d0
         endif
         fi(2)=(gsq*(2*L_one**2-pi**2+4*rs+6*DLog(mu**2/muf**2)))/
     &        (32.*pi**2)
         fi(1)=-(gsq*(-1 + x + (-1 - x)*(L -dLog(mu**2/muf**2)) 
     &        + 2*(1 + x)*dLog(1 - x)))/(8.*pi**2)
         fi(4)=-(gsq*((2*(L_one - dLog(mu**2/muf**2)))/(1 - x)
     &        + (4*dLog(1 - x))/(-1 + x)))/(8.*pi**2)
         fi(3)=-(gsq*((2*(L - dLog(mu**2/muf**2)))/(1 - x)
     &        + (4*dLog(1 - x))/(-1 + x)))/(8.*pi**2)
c     adding the alpha dependent term
         if((1d0-x).gt.alpha_ii) then
            fi(1)=fi(1)+(gsq*(1+x**2)*DLog(alpha_ii/(1-x)))/
     &           (8.*pi**2*(1-x))
         endif


c quark-gluon splitting (i:quark, ij~:gluon)
      elseif(id1.eq.1.and.id2.eq.0) then
         fi(1)=(cf*gsq*(x**2 - L*(2 + (-2 + x)*x)
     &        +(2 + (-2 + x)*x)*dLog(mu**2/muf**2) + 
     &        2*(2 + (-2 + x)*x)*DLog(1 - x)))/(8.*pi**2*x)/ca
c     adding the alpha dependent term
         if((1d0-x).gt.alpha_ii) then
            fi(1)=fi(1)+(cf*gsq*(1+(1-x)**2)*DLog(alpha_ii/(1-x)))/
     &           (8.*pi**2*x)/ca
         endif


c gluon-quark splitting (i:gluon, ij~:quark)
      elseif(id1.eq.0.and.id2.eq.1) then
         fi(1)=(gsq*(-L + 2*(1 + L)*x - 2*(1 + L)*x**2 
     &        + (1 + 2*(-1 + x)*x)*DLog(mu**2/muf**2) + 
     &        (2 + 4*(-1 + x)*x)*DLog(1 - x)))/(16.*pi**2)/cf
c adding the alpha dependent term
         if((1d0-x).gt.alpha_ii) then
            fi(1)=fi(1)+(gsq*((1-x)**2+x**2)*DLog(alpha_ii/(1-x)))/
     &           (16.*pi**2)/cf
         endif

c gluon-gluon splitting (i:gluon, ij~:gluon)
      elseif(id1.eq.0.and.id2.eq.0) then
         if(scheme .eq. 'HV') then
            rs=0d0
         elseif(scheme .eq. 'DR') then
            rs=-1d0/6d0
         endif
         fi(2)=(gsq*(6*L_one**2 - 3*pi**2 + 12*rs + (22 -
     &        4*Nf/ca)*DLog(mu**2/muf**2)))/(96.*pi**2)
         fi(1)=(gsq*(-1 + x*(2 + (-1 + x)*x))*
     &        (L-DLog(mu**2/muf**2)-2*DLog(1-x)))/(4.*pi**2*x)
         fi(4)=-(gsq*((2*(L_one-DLog(mu**2/muf**2)))/(1 - x)
     &        + (4*DLog(1 - x))/(-1 + x)))/(8.*pi**2)
         fi(3)=-(gsq*((2*(L-DLog(mu**2/muf**2)))/(1 - x)
     &        + (4*DLog(1 - x))/(-1 + x)))/(8.*pi**2)
c adding the alpha dependent term
         if((1d0-x).gt.alpha_ii) then
            fi(1)=fi(1)+(gsq*(-1+(1-x)*x)**2*DLog(alpha_ii/(1-x)))/
     &           (4.*pi**2*(1-x)*x)
         endif
      endif
      end


*
* dilog64.F,v 1.1.1.1 1996/04/01 15:02:05 mclareni
*
* Revision 1.1.1.1  1996/04/01 15:02:05  mclareni
* Mathlib gen
*
*
      FUNCTION DDILOG(X)
*
* imp64.inc,v 1.1.1.1 1996/04/01 15:02:59 mclareni Exp
*
* Revision 1.1.1.1  1996/04/01 15:02:59  mclareni
* Mathlib gen
*
*
* imp64.inc
*
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      DIMENSION C(0:19)
      PARAMETER (Z1 = 1, HF = Z1/2)
      PARAMETER (PI = 3.14159 26535 89793 24D0)
      PARAMETER (PI3 = PI**2/3, PI6 = PI**2/6, PI12 = PI**2/12)
      DATA C( 0) / 0.42996 69356 08136 97D0/
      DATA C( 1) / 0.40975 98753 30771 05D0/
      DATA C( 2) /-0.01858 84366 50145 92D0/
      DATA C( 3) / 0.00145 75108 40622 68D0/
      DATA C( 4) /-0.00014 30418 44423 40D0/
      DATA C( 5) / 0.00001 58841 55418 80D0/
      DATA C( 6) /-0.00000 19078 49593 87D0/
      DATA C( 7) / 0.00000 02419 51808 54D0/
      DATA C( 8) /-0.00000 00319 33412 74D0/
      DATA C( 9) / 0.00000 00043 45450 63D0/
      DATA C(10) /-0.00000 00006 05784 80D0/
      DATA C(11) / 0.00000 00000 86120 98D0/
      DATA C(12) /-0.00000 00000 12443 32D0/
      DATA C(13) / 0.00000 00000 01822 56D0/
      DATA C(14) /-0.00000 00000 00270 07D0/
      DATA C(15) / 0.00000 00000 00040 42D0/
      DATA C(16) /-0.00000 00000 00006 10D0/
      DATA C(17) / 0.00000 00000 00000 93D0/
      DATA C(18) /-0.00000 00000 00000 14D0/
      DATA C(19) /+0.00000 00000 00000 02D0/
      IF(X .EQ. 1) THEN
       H=PI6
      ELSEIF(X .EQ. -1) THEN
       H=-PI12
      ELSE
       T=-X
       IF(T .LE. -2) THEN
        Y=-1/(1+T)
        S=1
        A=-PI3+HF*(LOG(-T)**2-LOG(1+1/T)**2)
       ELSEIF(T .LT. -1) THEN
        Y=-1-T
        S=-1
        A=LOG(-T)
        A=-PI6+A*(A+LOG(1+1/T))
       ELSE IF(T .LE. -HF) THEN
        Y=-(1+T)/T
        S=1
        A=LOG(-T)
        A=-PI6+A*(-HF*A+LOG(1+T))
       ELSE IF(T .LT. 0) THEN
        Y=-T/(1+T)
        S=-1
        A=HF*LOG(1+T)**2
       ELSE IF(T .LE. 1) THEN
        Y=T
        S=1
        A=0
       ELSE
        Y=1/T
        S=-1
        A=PI6+HF*LOG(T)**2
       ENDIF
       H=Y+Y-1
       ALFA=H+H
       B1=0
       B2=0
       DO 1 I = 19,0,-1
       B0=C(I)+ALFA*B1-B2
       B2=B1
    1  B1=B0
       H=-(S*(B0-H*B2)+A)
      ENDIF
      DDILOG=H
      RETURN
      END