~madteam/mg5amcnlo/series2.0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
 enter npoints,number_propagators,rank,scaloop,muscale
     
 scaloop= 1 -> looptools 1-loop 
 scaloop= 2 -> avh 1-loop (massive with complex masses)
 scaloop= 3 -> qcdloop   1-loop (Ellis and Zanderighi)
 muscale (dimension of energy) is the scale
 for the 1-loop integrals
     
  
------------------------------------------------------------------------
|              You are using CutTools - Version 1.9.0                  |
|              Authors: G. Ossola, C. Papadopoulos, R. Pittau          |
|              Published in JHEP 0803:042,2008                         |
|              http://www.ugr.es/~pittau/CutTools                      |
|                                                                      |
|              Compiler with  34  significant digits detetected        |
 ---------------------------------------------------------------------- 
   
########################################################################
#                                                                      #
#                      You are using OneLOop-3.2                       #
#                                                                      #
# for the evaluation of 1-loop scalar 1-, 2-, 3- and 4-point functions #
#                                                                      #
# author: Andreas van Hameren <hamerenREMOVETHIS@ifj.edu.pl>           #
#   date: 19-07-2012                                                   #
#                                                                      #
# Please cite                                                          #
#    A. van Hameren,                                                   #
#      Comput.Phys.Commun. 182 (2011) 2427-2438, arXiv:1007.4716       #
#    A. van Hameren, C.G. Papadopoulos and R. Pittau,                  #
#      JHEP 0909:106,2009, arXiv:0903.4665                             #
# in publications with results obtained with the help of this program. #
#                                                                      #
########################################################################
                
   iter=            1
                
                
  Complete Amplitude (without r2):     
                
                
  finite part           amp(0)= ( 2.29684837518455420E-007, 1.67257437866697418E-006)
  coeff of 1/eps   pole amp(1)= (  0.0000000000000000     ,  0.0000000000000000     )
  coeff of 1/eps^2 pole amp(2)= (  0.0000000000000000     ,  0.0000000000000000     )
                         ampcc= ( 2.29684837518455420E-007, 1.67257437866697418E-006)
                            R1= (  0.0000000000000000     ,  0.0000000000000000     )
                        stable= T
                
                
   iter=            2
                
                
  Complete Amplitude (without r2):     
                
                
  finite part           amp(0)= (-3.86240283547311229E-009, 5.33820913782236040E-009)
  coeff of 1/eps   pole amp(1)= (  0.0000000000000000     ,  0.0000000000000000     )
  coeff of 1/eps^2 pole amp(2)= (  0.0000000000000000     ,  0.0000000000000000     )
                         ampcc= (-3.86240283547311229E-009, 5.33820913782236040E-009)
                            R1= (  0.0000000000000000     ,  0.0000000000000000     )
                        stable= T
                
                
   iter=            3
                
                
  Complete Amplitude (without r2):     
                
                
  finite part           amp(0)= (-4.68320060774638477E-007, 1.68237308380606308E-006)
  coeff of 1/eps   pole amp(1)= (  0.0000000000000000     ,  0.0000000000000000     )
  coeff of 1/eps^2 pole amp(2)= (  0.0000000000000000     ,  0.0000000000000000     )
                         ampcc= (-4.68320060774638477E-007, 1.68237308380606308E-006)
                            R1= (  0.0000000000000000     ,  0.0000000000000000     )
                        stable= T
                
                
   iter=            4
                
                
  Complete Amplitude (without r2):     
                
                
  finite part           amp(0)= ( 5.01046940724204958E-008,-1.82029130561423645E-007)
  coeff of 1/eps   pole amp(1)= (  0.0000000000000000     ,  0.0000000000000000     )
  coeff of 1/eps^2 pole amp(2)= (  0.0000000000000000     ,  0.0000000000000000     )
                         ampcc= ( 5.01046940724204958E-008,-1.82029130561423645E-007)
                            R1= (  0.0000000000000000     ,  0.0000000000000000     )
                        stable= T
                
                
   iter=            5
                
                
  Complete Amplitude (without r2):     
                
                
  finite part           amp(0)= ( 1.17157017996028720E-007, 2.91172237574935625E-007)
  coeff of 1/eps   pole amp(1)= (  0.0000000000000000     ,  0.0000000000000000     )
  coeff of 1/eps^2 pole amp(2)= (  0.0000000000000000     ,  0.0000000000000000     )
                         ampcc= ( 1.17157017996028720E-007, 2.91172237574935625E-007)
                            R1= (  0.0000000000000000     ,  0.0000000000000000     )
                        stable= T
                
                
   iter=            6
                
                
  Complete Amplitude (without r2):     
                
                
  finite part           amp(0)= (-7.54210327705155058E-008, 1.02783630692108818E-007)
  coeff of 1/eps   pole amp(1)= (  0.0000000000000000     ,  0.0000000000000000     )
  coeff of 1/eps^2 pole amp(2)= (  0.0000000000000000     ,  0.0000000000000000     )
                         ampcc= (-7.54210327705155058E-008, 1.02783630692108818E-007)
                            R1= (  0.0000000000000000     ,  0.0000000000000000     )
                        stable= T
                
                
   iter=            7
                
                
  Complete Amplitude (without r2):     
                
                
  finite part           amp(0)= (-3.11273119861472443E-008, 4.90795540582046004E-008)
  coeff of 1/eps   pole amp(1)= (  0.0000000000000000     ,  0.0000000000000000     )
  coeff of 1/eps^2 pole amp(2)= (  0.0000000000000000     ,  0.0000000000000000     )
                         ampcc= (-3.11273119861472443E-008, 4.90795540582046004E-008)
                            R1= (  0.0000000000000000     ,  0.0000000000000000     )
                        stable= T
                
                
   iter=            8
                
                
  Complete Amplitude (without r2):     
                
                
  finite part           amp(0)= (-6.53258200376204763E-009,-2.15493986607851965E-008)
  coeff of 1/eps   pole amp(1)= (  0.0000000000000000     ,  0.0000000000000000     )
  coeff of 1/eps^2 pole amp(2)= (  0.0000000000000000     ,  0.0000000000000000     )
                         ampcc= (-6.53258200376204763E-009,-2.15493986607851965E-008)
                            R1= (  0.0000000000000000     ,  0.0000000000000000     )
                        stable= T
                
                
   iter=            9
                
                
  Complete Amplitude (without r2):     
                
                
  finite part           amp(0)= (-6.80306254781754129E-007, 1.32500886416169032E-006)
  coeff of 1/eps   pole amp(1)= (  0.0000000000000000     ,  0.0000000000000000     )
  coeff of 1/eps^2 pole amp(2)= (  0.0000000000000000     ,  0.0000000000000000     )
                         ampcc= (-6.80306254781754129E-007, 1.32500886416169032E-006)
                            R1= (  0.0000000000000000     ,  0.0000000000000000     )
                        stable= T
                
                
   iter=           10
                
                
  Complete Amplitude (without r2):     
                
                
  finite part           amp(0)= (-1.13679883442087762E-006,-1.08776236454768689E-006)
  coeff of 1/eps   pole amp(1)= (  0.0000000000000000     ,  0.0000000000000000     )
  coeff of 1/eps^2 pole amp(2)= (  0.0000000000000000     ,  0.0000000000000000     )
                         ampcc= (-1.13679883442087762E-006,-1.08776236454768689E-006)
                            R1= (  0.0000000000000000     ,  0.0000000000000000     )
                        stable= T
                
 n_tot =   10.000000000000000     
 n_mp  =   0.0000000000000000     
 n_unst=   0.0000000000000000