~madteam/mg5amcnlo/series2.0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
      PROGRAM DRIVER
C *************************************************************************
C     THIS IS THE DRIVER FOR CHECKING THE STANDALONE MATRIX ELEMENT.
C     IT USES A SIMPLE PHASE SPACE GENERATOR
C *************************************************************************
      IMPLICIT NONE
C     
C     CONSTANTS  
C     
      REAL*8 ZERO
      PARAMETER (ZERO=0D0)

      LOGICAL READPS
      PARAMETER (READPS = .FALSE.)

      INTEGER NPSPOINTS
      PARAMETER (NPSPOINTS = 10)

C integer nexternal C number particles (incoming+outgoing) in the me 
      INTEGER NEXTERNAL, NINCOMING
	  PARAMETER (NEXTERNAL=%(nexternal)d,NINCOMING=%(nincoming)d)

	  character(512) MadLoopResourcePath

C     
C     INCLUDE FILES
C     
C the include file with the values of the parameters and masses      
      INCLUDE "coupl.inc"
C particle masses
      REAL*8 PMASS(NEXTERNAL)      
C integer    n_max_cg
      INCLUDE "ngraphs.inc" 
	  include "nsquaredSO.inc"

C     
C     LOCAL
C     
      INTEGER I,J,K
C four momenta. Energy is the zeroth component.
      REAL*8 P(0:3,NEXTERNAL)
	  INTEGER MATELEM_ARRAY_DIM
	  REAL*8 , allocatable :: MATELEM(:,:)
      REAL*8 SQRTS,AO2PI
C sqrt(s)= center of mass energy 
      REAL*8 PIN(0:3), POUT(0:3)
      CHARACTER*120 BUFF(NEXTERNAL)
	  INTEGER RETURNCODE, UNITS, TENS, HUNDREDS
	  INTEGER NSQUAREDSO_LOOP
	  REAL*8 , allocatable :: PREC_FOUND(:)

	  LOGICAL INIT
      DATA INIT/.TRUE./
	  COMMON/INITCHECKSA/INIT

C
C     GLOBAL VARIABLES
C
C     This is from ML code for the list of split orders selected by
c     the process definition
c
      integer NLoopChosen
      character*20 chosen_loop_so_indices(NSQUAREDSO)
	  LOGICAL CHOSEN_LOOP_SO_CONFIGS(NSQUAREDSO)
      COMMON/%(proc_prefix)sCHOSEN_LOOP_SQSO/CHOSEN_LOOP_SO_CONFIGS

C     
C     EXTERNAL
C     
      REAL*8 DOT
      EXTERNAL DOT
      
C 
C     BEGIN CODE
C
      IF (INIT) THEN
	    INIT=.FALSE.
	    CALL %(proc_prefix)sGET_ANSWER_DIMENSION(MATELEM_ARRAY_DIM)
	  	ALLOCATE(MATELEM(0:3,0:MATELEM_ARRAY_DIM))
		CALL %(proc_prefix)sGET_NSQSO_LOOP(NSQUAREDSO_LOOP)
	  	ALLOCATE(PREC_FOUND(0:NSQUAREDSO_LOOP))
C     
C     INITIALIZATION CALLS
C     
C     Call to initialize the values of the couplings, masses and widths 
C     used in the evaluation of the matrix element. The primary parameters of the
C     models are read from Cards/param_card.dat. The secondary parameters are calculated
C     in Source/MODEL/couplings.f. The values are stored in common blocks that are listed
C     in coupl.inc .
C first call to setup the paramaters
      call setpara('param_card.dat')
C set up masses
      include "pmass.inc"             
		
	  ENDIF

c     Start by initializing what is the squared split orders indices chosen
      NLoopChosen=0
      DO I=1,NSQUAREDSO
        IF (CHOSEN_LOOP_SO_CONFIGS(I)) THEN
          NLoopChosen=NLoopChosen+1
          WRITE(chosen_loop_so_indices(NLoopChosen),'(I3,A2)') I,'L)'
        ENDIF
      ENDDO

      AO2PI=G**2/(8.D0*(3.14159265358979323846d0**2))

      write(*,*) 'AO2PI=',AO2PI
C     Now use a simple multipurpose PS generator (RAMBO) just to get a 
C     RANDOM set of four momenta of given masses pmass(i) to be used to evaluate 
C     the madgraph matrix-element.       
C     Alternatevely, here the user can call or set the four momenta at his will, see below.
C           
      IF(nincoming.EQ.1) THEN
         SQRTS=PMASS(1)
      ELSE
C CMS energy in GEV
         SQRTS=1000d0
      ENDIF

      call printout()

      do K=1,NPSPOINTS

      if(READPS) then
        open(967, file="PS.input", err=976, status='OLD', action='READ')
        do i=1,NExternal
          read(967,*,end=978) P(0,i),P(1,i),P(2,i),P(3,i)
        enddo
       goto 978
  976  continue
         stop 'Could not read the PS.input phase-space point.'
  978  continue
       close(967)
      else
        if ((nincoming.eq.2).and.((nexternal - nincoming .eq.1))) then
          if (pmass(3).eq.0.0d0) then
              stop 'Cannot generate 2>1 kin. config. with m3=0.0d0'
          else
C deal with the case of only one particle in the final state
               p(0,1) = pmass(3)/2d0
               p(1,1) = 0d0
               p(2,1) = 0d0
               p(3,1) = pmass(3)/2d0
               if (pmass(1).GT.0d0) then
                 p(3,1) = dsqrt(pmass(3)**2/4d0 - pmass(1)**2)
               endif
               p(0,2) = pmass(3)/2d0
               p(1,2) = 0d0
               p(2,2) = 0d0
               p(3,2) = -pmass(3)/2d0
               if (pmass(2) > 0d0) then
                 p(3,2) = -dsqrt(pmass(3)**2/4d0 - pmass(1)**2)
               endif
               p(0,3) = pmass(3)
               p(1,3) = 0d0
               p(2,3) = 0d0
               p(3,3) = 0d0
          endif
        else
          CALL GET_MOMENTA(SQRTS,PMASS,P)
        endif
      endif

      do i=0,3
        PIN(i)=0.0d0
        do j=1,nincoming
          PIN(i)=PIN(i)+p(i,j)
        enddo
      enddo

C     In standalone mode, always use sqrt_s as the renormalization scale.
      SQRTS=dsqrt(dabs(DOT(PIN(0),PIN(0))))
      MU_R=SQRTS

C     Update the couplings with the new MU_R
      CALL UPDATE_AS_PARAM()

C     Optionally the user can set where to find the MadLoop5_resources folder.
C     Otherwise it will look for it automatically and find it if it has not
C     been moved
c     MadLoopResourcePath = '<MadLoop5_resources_path>'
c     CALL SETMADLOOPPATH(MadLoopResourcePath)
c     To force the stabiliy check to also be performed in the initialization phase
c     CALL %(proc_prefix)sFORCE_STABILITY_CHECK(.TRUE.)
c     To chose a particular tartget split order, SOTARGET is an integer labeling
c     the possible squared order couplings contributions (only in optimized mode)
c     CALL %(proc_prefix)sSET_COUPLINGORDERS_TARGET(SOTARGET)

C
C     Now we can call the matrix element
C
      CALL %(proc_prefix)sSLOOPMATRIX_THRES(P,MATELEM,-1.0d0,PREC_FOUND,RETURNCODE)
C
C        write the information on the four momenta 
C
      if (K.eq.NPSPOINTS) then
      write (*,*)
      write (*,*) " Phase space point:"
      write (*,*)
      write (*,*) "---------------------------------"
      write (*,*)  "n  E  px  py  pz  m"
      do i=1,nexternal
         write (*,'(i2,1x,5e15.7)') i, P(0,i),P(1,i),P(2,i),P(3,i),dsqrt(dabs(DOT(p(0,i),p(0,i))))
      enddo
      write (*,*) "---------------------------------"
      write (*,*) "Detailed result for each coupling orders combination."
	  %(print_so_born_results)s
	  %(print_so_loop_results)s
      UNITS=MOD(RETURNCODE,10)
      TENS=(MOD(RETURNCODE,100)-UNITS)/10
      HUNDREDS=(RETURNCODE-TENS*10-UNITS)/100
      if (HUNDREDS.eq.1) then
        if (TENS.eq.3.or.TENS.eq.4) then
          write(*,*) 'Unknown numerical stability because MadLoop is in the initialization stage.'
        else
          write(*,*) 'Unknown numerical stability, check CTModeRun value in MadLoopParams.dat.'
        endif
      elseif (HUNDREDS.eq.2) then
        write(*,*) 'Stable kinematic configuration (SPS).'
      elseif (HUNDREDS.eq.3) then
        write(*,*) 'Unstable kinematic configuration (UPS).'
        write(*,*) 'Quadruple precision rescue successful.'
      elseif (HUNDREDS.eq.4) then
        write(*,*) 'Exceptional kinematic configuration (EPS).'
        write(*,*) 'Both double an quadruple precision computations, are unstable.'
      endif
      if (TENS.eq.2.or.TENS.eq.4) then
        write(*,*) 'Quadruple precision computation used.'
      endif
      if (HUNDREDS.ne.1) then
        if (PREC_FOUND(0).gt.0.0d0) then
          write(*,'(1x,a23,1x,1e10.2)') 'Relative accuracy     =',PREC_FOUND(0)
        elseif (PREC_FOUND(0).eq.0.0d0) then
          write(*,'(1x,a23,1x,1e10.2,1x,a30)') 'Relative accuracy     =',PREC_FOUND(0),'(i.e. beyond double precision)'
        else
          write(*,*) 'Estimated accuracy could not be computed for an unknown reason.'
        endif
      endif
      write (*,*) "---------------------------------"
      IF (NLOOPCHOSEN.ne.NSQUAREDSO) THEN
        write (*,*) "Selected squared coupling orders combination for the loop summed result below:"
        write (*,*) (chosen_loop_so_indices(I),I=1,NLOOPCHOSEN)
      endif
      write (*,*) "---------------------------------"
      write (*,*) " This is a loop induced process, so only the "
	  write (*,*) " unnormalized finite part is output here. Be aware "
      write (*,*) " that all loops are expected to beUV-finite as no "
      write (*,*) " renormalization prescription is considered. "
      write (*,*) "---------------------------------"
      write (*,*) "Matrix element finite = ", MATELEM(1,0), " GeV^",-(2*nexternal-8)
      write (*,*) "---------------------------------"


      open(69, file="result.dat", err=976, action='WRITE')
      do i=1,nexternal      
          write (69,'(a2,1x,5e25.15)') 'PS',P(0,i),P(1,i),P(2,i),P(3,i)
      enddo
      write (69,'(a3,1x,i2)') 'EXP',-(2*nexternal-8)
      write (69,'(a4,1x,1e25.15)') 'BORN',0.0d0
      write (69,'(a3,1x,1e25.15)') 'FIN',MATELEM(1,0)
      write (69,'(a4,1x,1e25.15)') '1EPS',MATELEM(2,0)
      write (69,'(a4,1x,1e25.15)') '2EPS',MATELEM(3,0)
      write (69,*) 'Export_Format LoopInduced'
	  write (69,'(a7,1x,i3)') 'RETCODE',RETURNCODE
	  write (69,'(a3,1x,1e10.4)') 'ACC',PREC_FOUND(0)
	  write (69,*) 'Born_kept F'
	  write (69,*) 'Loop_kept',(CHOSEN_LOOP_SO_CONFIGS(I),I=1,NSQUAREDSO)
	  %(write_so_born_results)s
	  %(write_so_loop_results)s	  
      close(69)
      else
          write (*,*) "PS Point #",K," done."
      endif
      enddo

C C
C C      Copy down here (or read in) the four momenta as a string. 
C C      
C C
C      buff(1)=" 1   0.5630480E+04  0.0000000E+00  0.0000000E+00  0.5630480E+04"
C      buff(2)=" 2   0.5630480E+04  0.0000000E+00  0.0000000E+00 -0.5630480E+04"
C      buff(3)=" 3   0.5466073E+04  0.4443190E+03  0.2446331E+04 -0.4864732E+04"
C      buff(4)=" 4   0.8785819E+03 -0.2533886E+03  0.2741971E+03  0.7759741E+03"
C      buff(5)=" 5   0.4916306E+04 -0.1909305E+03 -0.2720528E+04  0.4088757E+04"
C C
C C      Here the k,E,px,py,pz are read from the string into the momenta array.
C C      k=1,2          : incoming
C C      k=3,nexternal  : outgoing
C C
C      do i=1,nexternal
C         read (buff(i),*) k, P(0,i),P(1,i),P(2,i),P(3,i)
C      enddo
C
C C print the momenta out
C
C      do i=1,nexternal
C         write (*,'(i2,1x,5e15.7)') i, P(0,i),P(1,i),P(2,i),P(3,i), 
C     .dsqrt(dabs(DOT(p(0,i),p(0,i))))
C      enddo
C
C      CALL SLOOPMATRIX(P,MATELEM)
C
C      write (*,*) "-------------------------------------------------"
C      write (*,*) "Matrix element = ", MATELEM(1), " GeV^",
C      &-(2*nexternal-8)      
C      write (*,*) "-------------------------------------------------"

      end
      
        
        
        
         double precision function dot(p1,p2)
C *************************************************************
C     4-Vector Dot product
C *************************************************************
      implicit none
      double precision p1(0:3),p2(0:3)
      dot=p1(0)*p2(0)-p1(1)*p2(1)-p1(2)*p2(2)-p1(3)*p2(3)
      end


        SUBROUTINE GET_MOMENTA(ENERGY,PMASS,P)
C       auxiliary function to change convention between madgraph and rambo
c       four momenta.         
        IMPLICIT NONE
        INTEGER NEXTERNAL, NINCOMING
	    PARAMETER (NEXTERNAL=%(nexternal)d,NINCOMING=%(nincoming)d)
C        ARGUMENTS
        REAL*8 ENERGY,PMASS(NEXTERNAL),P(0:3,NEXTERNAL),PRAMBO(4,10),WGT
C         LOCAL
         INTEGER I
         REAL*8 etot2,mom,m1,m2,e1,e2

         ETOT2=energy**2
         m1=pmass(1)
         m2=pmass(2)
         mom=(Etot2**2 - 2*Etot2*m1**2 + m1**4 - 2*Etot2*m2**2 - 2*m1**2*m2**2 + m2**4)/(4.*Etot2)
         mom=dsqrt(mom)
         e1=DSQRT(mom**2+m1**2)
         e2=DSQRT(mom**2+m2**2)
c         write (*,*) e1+e2,mom

         if(nincoming.eq.2) then

            P(0,1)=e1
            P(1,1)=0d0
            P(2,1)=0d0
            P(3,1)=mom

            P(0,2)=e2
            P(1,2)=0d0
            P(2,2)=0d0
            P(3,2)=-mom
             
            call rambo(nexternal-2,energy,pmass(3),prambo,WGT)
            DO I=3, NEXTERNAL
               P(0,I)=PRAMBO(4,I-2)      
               P(1,I)=PRAMBO(1,I-2)
               P(2,I)=PRAMBO(2,I-2)
               P(3,I)=PRAMBO(3,I-2)      
            ENDDO
             
          elseif(nincoming.eq.1) then 
             
             P(0,1)=energy
             P(1,1)=0d0
             P(2,1)=0d0
             P(3,1)=0d0
             
             call rambo(nexternal-1,energy,pmass(2),prambo,WGT)
             DO I=2, NEXTERNAL
                P(0,I)=PRAMBO(4,I-1)      
                P(1,I)=PRAMBO(1,I-1)
                P(2,I)=PRAMBO(2,I-1)
                P(3,I)=PRAMBO(3,I-1)      
             ENDDO
          endif
          
        RETURN
        END
      

      SUBROUTINE RAMBO(N,ET,XM,P,WT)
C **********************************************************************
C                       RAMBO                                         *
C    RA(NDOM)  M(OMENTA)  B(EAUTIFULLY)  O(RGANIZED)                  *
C                                                                     *
C    A DEMOCRATIC MULTI-PARTICLE PHASE SPACE GENERATOR                *
C    AUTHORS:  S.D. ELLIS,  R. KLEISS,  W.J. STIRLING                 *
C    THIS IS VERSION 1.0 -  WRITTEN BY R. KLEISS                      *
C    -- ADJUSTED BY HANS KUIJF, WEIGHTS ARE LOGARITHMIC (20-08-90)    *
C                                                                     *
C    N  = NUMBER OF PARTICLES                                         *
C    ET = TOTAL CENTRE-OF-MASS ENERGY                                 *
C    XM = PARTICLE MASSES ( DIM=NEXTERNAL-nincoming )                 *
C    P  = PARTICLE MOMENTA ( DIM=(4,NEXTERNAL-nincoming) )            *
C    WT = WEIGHT OF THE EVENT                                         *
C **********************************************************************
      IMPLICIT REAL*8(A-H,O-Z)
      INTEGER NEXTERNAL, NINCOMING
	  PARAMETER (NEXTERNAL=%(nexternal)d,NINCOMING=%(nincoming)d)
      DIMENSION XM(NEXTERNAL-NINCOMING),P(4,NEXTERNAL-NINCOMING)
      DIMENSION Q(4,NEXTERNAL-NINCOMING),Z(NEXTERNAL-NINCOMING),R(4),B(3),P2(NEXTERNAL-NINCOMING),XM2(NEXTERNAL-NINCOMING),E(NEXTERNAL-NINCOMING),V(NEXTERNAL-NINCOMING),IWARN(5)
      SAVE ACC,ITMAX,IBEGIN,IWARN
      DATA ACC/1.D-14/,ITMAX/6/,IBEGIN/0/,IWARN/5*0/
C
C INITIALIZATION STEP: FACTORIALS FOR THE PHASE SPACE WEIGHT
      IF(IBEGIN.NE.0) GOTO 103
      IBEGIN=1
      TWOPI=8.*DATAN(1.D0)
      PO2LOG=LOG(TWOPI/4.)
      Z(2)=PO2LOG
      DO 101 K=3,(NEXTERNAL-NINCOMING-1)
  101 Z(K)=Z(K-1)+PO2LOG-2.*LOG(DFLOAT(K-2))
      DO 102 K=3,(NEXTERNAL-NINCOMING-1)
  102 Z(K)=(Z(K)-LOG(DFLOAT(K-1)))
C
C CHECK ON THE NUMBER OF PARTICLES
  103 IF(N.GT.1.AND.N.LT.101) GOTO 104
      PRINT 1001,N
      STOP
C
C CHECK WHETHER TOTAL ENERGY IS SUFFICIENT; COUNT NONZERO MASSES
  104 XMT=0.
      NM=0
      DO 105 I=1,N
      IF(XM(I).NE.0.D0) NM=NM+1
  105 XMT=XMT+ABS(XM(I))
      IF(XMT.LE.ET) GOTO 201
      PRINT 1002,XMT,ET
      STOP
C
C THE PARAMETER VALUES ARE NOW ACCEPTED
C
C GENERATE N MASSLESS MOMENTA IN INFINITE PHASE SPACE
  201 DO 202 I=1,N
         r1=rn(1)
      C=2.*r1-1.
      S=SQRT(1.-C*C)
      F=TWOPI*RN(2)
      r1=rn(3)
      r2=rn(4)
      Q(4,I)=-LOG(r1*r2)
      Q(3,I)=Q(4,I)*C
      Q(2,I)=Q(4,I)*S*COS(F)
  202 Q(1,I)=Q(4,I)*S*SIN(F)
C
C CALCULATE THE PARAMETERS OF THE CONFORMAL TRANSFORMATION
      DO 203 I=1,4
  203 R(I)=0.
      DO 204 I=1,N
      DO 204 K=1,4
  204 R(K)=R(K)+Q(K,I)
      RMAS=SQRT(R(4)**2-R(3)**2-R(2)**2-R(1)**2)
      DO 205 K=1,3
  205 B(K)=-R(K)/RMAS
      G=R(4)/RMAS
      A=1./(1.+G)
      X=ET/RMAS
C
C TRANSFORM THE Q'S CONFORMALLY INTO THE P'S
      DO 207 I=1,N
      BQ=B(1)*Q(1,I)+B(2)*Q(2,I)+B(3)*Q(3,I)
      DO 206 K=1,3
  206 P(K,I)=X*(Q(K,I)+B(K)*(Q(4,I)+A*BQ))
  207 P(4,I)=X*(G*Q(4,I)+BQ)
C
C CALCULATE WEIGHT AND POSSIBLE WARNINGS
      WT=PO2LOG
      IF(N.NE.2) WT=(2.*N-4.)*LOG(ET)+Z(N)
      IF(WT.GE.-180.D0) GOTO 208
      IF(IWARN(1).LE.5) PRINT 1004,WT
      IWARN(1)=IWARN(1)+1
  208 IF(WT.LE. 174.D0) GOTO 209
      IF(IWARN(2).LE.5) PRINT 1005,WT
      IWARN(2)=IWARN(2)+1
C
C RETURN FOR WEIGHTED MASSLESS MOMENTA
  209 IF(NM.NE.0) GOTO 210
C RETURN LOG OF WEIGHT
      WT=WT
      RETURN
C
C MASSIVE PARTICLES: RESCALE THE MOMENTA BY A FACTOR X
  210 XMAX=SQRT(1.-(XMT/ET)**2)
      DO 301 I=1,N
      XM2(I)=XM(I)**2
  301 P2(I)=P(4,I)**2
      ITER=0
      X=XMAX
      ACCU=ET*ACC
  302 F0=-ET
      G0=0.
      X2=X*X
      DO 303 I=1,N
      E(I)=SQRT(XM2(I)+X2*P2(I))
      F0=F0+E(I)
  303 G0=G0+P2(I)/E(I)
      IF(ABS(F0).LE.ACCU) GOTO 305
      ITER=ITER+1
      IF(ITER.LE.ITMAX) GOTO 304
      PRINT 1006,ITMAX
      GOTO 305
  304 X=X-F0/(X*G0)
      GOTO 302
  305 DO 307 I=1,N
      V(I)=X*P(4,I)
      DO 306 K=1,3
  306 P(K,I)=X*P(K,I)
  307 P(4,I)=E(I)
C
C CALCULATE THE MASS-EFFECT WEIGHT FACTOR
      WT2=1.
      WT3=0.
      DO 308 I=1,N
      WT2=WT2*V(I)/E(I)
  308 WT3=WT3+V(I)**2/E(I)
      WTM=(2.*N-3.)*LOG(X)+LOG(WT2/WT3*ET)
C
C RETURN FOR  WEIGHTED MASSIVE MOMENTA
      WT=WT+WTM
      IF(WT.GE.-180.D0) GOTO 309
      IF(IWARN(3).LE.5) PRINT 1004,WT
      IWARN(3)=IWARN(3)+1
  309 IF(WT.LE. 174.D0) GOTO 310
      IF(IWARN(4).LE.5) PRINT 1005,WT
      IWARN(4)=IWARN(4)+1
C RETURN LOG OF WEIGHT
  310 WT=WT
      RETURN
C
 1001 FORMAT(' RAMBO FAILS: # OF PARTICLES =',I5,' IS NOT ALLOWED')
 1002 FORMAT(' RAMBO FAILS: TOTAL MASS =',D15.6,' IS NOT',' SMALLER THAN TOTAL ENERGY =',D15.6)
 1004 FORMAT(' RAMBO WARNS: WEIGHT = EXP(',F20.9,') MAY UNDERFLOW')
 1005 FORMAT(' RAMBO WARNS: WEIGHT = EXP(',F20.9,') MAY  OVERFLOW')
 1006 FORMAT(' RAMBO WARNS:',I3,' ITERATIONS DID NOT GIVE THE',' DESIRED ACCURACY =',D15.6)
      END

      FUNCTION RN(IDUMMY)
      REAL*8 RN,RAN
      SAVE INIT
      DATA INIT /1/
      IF (INIT.EQ.1) THEN
        INIT=0
        CALL RMARIN(1802,9373)
      END IF
C
  10  CALL RANMAR(RAN)
      IF (RAN.LT.1D-16) GOTO 10
      RN=RAN
C
      END



      SUBROUTINE RANMAR(RVEC)
C     -----------------
C Universal random number generator proposed by Marsaglia and Zaman
C in report FSU-SCRI-87-50
C In this version RVEC is a double precision variable.
      IMPLICIT REAL*8(A-H,O-Z)
      COMMON/ RASET1 / RANU(97),RANC,RANCD,RANCM
      COMMON/ RASET2 / IRANMR,JRANMR
      SAVE /RASET1/,/RASET2/
      UNI = RANU(IRANMR) - RANU(JRANMR)
      IF(UNI .LT. 0D0) UNI = UNI + 1D0
      RANU(IRANMR) = UNI
      IRANMR = IRANMR - 1
      JRANMR = JRANMR - 1
      IF(IRANMR .EQ. 0) IRANMR = 97
      IF(JRANMR .EQ. 0) JRANMR = 97
      RANC = RANC - RANCD
      IF(RANC .LT. 0D0) RANC = RANC + RANCM
      UNI = UNI - RANC
      IF(UNI .LT. 0D0) UNI = UNI + 1D0
      RVEC = UNI
      END
 
      SUBROUTINE RMARIN(IJ,KL)
C     -----------------
C Initializing routine for RANMAR, must be called before generating
C any pseudorandom numbers with RANMAR. The input values should be in
C the ranges 0<=ij<=31328 ; 0<=kl<=30081
      IMPLICIT REAL*8(A-H,O-Z)
      COMMON/ RASET1 / RANU(97),RANC,RANCD,RANCM
      COMMON/ RASET2 / IRANMR,JRANMR
      SAVE /RASET1/,/RASET2/
C This shows correspondence between the simplified input seeds IJ, KL
C and the original Marsaglia-Zaman seeds I,J,K,L.
C To get the standard values in the Marsaglia-Zaman paper (i=12,j=34
C k=56,l=78) put ij=1802, kl=9373
      I = MOD( IJ/177 , 177 ) + 2
      J = MOD( IJ     , 177 ) + 2
      K = MOD( KL/169 , 178 ) + 1
      L = MOD( KL     , 169 )
      DO 300 II = 1 , 97
        S =  0D0
        T = .5D0
        DO 200 JJ = 1 , 24
          M = MOD( MOD(I*J,179)*K , 179 )
          I = J
          J = K
          K = M
          L = MOD( 53*L+1 , 169 )
          IF(MOD(L*M,64) .GE. 32) S = S + T
          T = .5D0*T
  200   CONTINUE
        RANU(II) = S
  300 CONTINUE
      RANC  =   362436D0 / 16777216D0
      RANCD =  7654321D0 / 16777216D0
      RANCM = 16777213D0 / 16777216D0
      IRANMR = 97
      JRANMR = 33
      END